
CHAPTER 3

Manifolds with hyperbolic ends

1. Classification of 2-dimensional hyperbolic manifolds

The hyperbolic manifold is, by definition, a complete Riemannian manifold with
all sectional curvatures equal to −1. General hyperbolic manifolds are constructed
by the action of discrete groups on the upper-half space. The resulting quotient
manifold is either compact, or non-compact but of finte volume, or non-compact
with infinite volume. In the latter two cases, the manifold can be split into bounded
part and unbounded part, this latter being called the end. To study the general
structure of ends is beyond our scope. We briefly look at the 2-dimensional case.

1.1. Möbius transformation. Recall that C+ = {z = x + iy ; y > 0} is a
2-dimensional hyperbolic space equipped with the metric

(1.1) ds2 =
(dx)2 + (dy)2

y2
.

Let ∂C+ = ∂H2 = {(x, 0) ; x ∈ R} ∪∞ = R ∪∞. For a matrix

γ =
(

a b
c d

)
∈ SL(2,R)

the Möbius transformation is defined by

(1.2) C+ � z → γ · z :=
az + b

cz + d
,

which is an isometry on H2. Since γ and −γ define the same action, one usually
identifies them and considers the factor group:

PSL(2,R) := SL(2,R)/{±I}.

The non-trivial Möbius transformations γ are classified into 3 categories :

elliptic ⇐⇒ there is only one fixed point in C+

⇐⇒ |tr γ| < 2,

parabolic ⇐⇒ there is only one degenerate fixed point on ∂C+

⇐⇒ |tr γ| = 2,

hyperbolic ⇐⇒ there are two fixed points on ∂C+

⇐⇒ |tr γ| > 2.

1.2. Fuchsian group. Let Γ be a discrete subgroup of SL(2,R), which is
usually called a Fuchsian group. As a short introduction to the theory of Fuchsian
groups, we refer [81]. Let M = Γ\H2 be the fundamental domain by the action
(1.2). Γ is said to be geometrically finite if M is chosen to be a finite-sided convex
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96 3. MANIFOLDS WITH HYPERBOLIC ENDS

polygon. The sides are then geodesics of H2. The geometric finiteness is equivalent
to that Γ is finitely generated.

1.3. Examples. As a simple example, consider the cyclic group Γ which gen-
erates the action z → z + 1. This is parabolic with fixed point ∞. The as-
sociated fundamental domain is M = (−1/2, 1/2] × (0,∞), with which one can
endow the metric (1.1). It has two infinities : (−1/2, 1/2] × {0} and ∞. The part
(−1/2, 1/2] × (0, 1) has an infinite volume. Let us call it regular infinity in this
note. The part (−1/2, 1/2] × (1,∞) has a finite volume, and is called cusp. The
sides x = ±1/2 are geodesics.

Another simple example is the cyclic group generated by the hyperbolic action
z → λz, λ > 1. The sides of the fundamental domain M = {1 ≤ |z| ≤ λ} are
semi-circles orthogonal to {y = 0}, which are geodesics. The quotient manifold is
diffeomorphic to S1 × (−∞,∞). It is parametrized by (t, r), where t ∈ R/ log λZ
and r is the signed distance from the segment {(0, t) ; 1 ≤ t ≤ λ}. The metric is
then written as

(1.3) ds2 = (dr)2 + cosh2 r (dt)2.

The part x > 0 (or x < 0) of M is called funnel. Letting y = 2e−r, one can rewrite
(1.3) as

ds2 =
(dy

y

)2

+
(1

y
+

y

4

)2

(dt)2.

This means that the funnel can be regarded as a perturbation of the regular infinity.

1.4. Classification. The set of limit points of a Fuchsian group Γ, denoted
by Λ(Γ), is defined as follows : w ∈ Λ(Γ) if there exist z0 ∈ C+ and distinct
γn ∈ Γ, n = 1, 2, · · · , such that γn · z0 → w. Since Γ acts discontinuously on C+,
Λ(Γ) ⊂ ∂H2. There are only 3 possibilities.

• (Elementary) : Λ(Γ) is a finite set.
• (The 1st kind) : Λ(Γ) = ∂H.
• (The 2nd kind) : Λ(Γ) is a perfect (i.e. every point is an accumulation

point), nowhere dense set of ∂H.
If Λ(Γ) is a finite set, Γ is said to be elementary. Any elementary group is either

cyclic or is conjugate in PSL(2,R) to a group generated by γ · z = λz, (λ > 1),
and γ� · z = −1/z.

For non-elementary case, we have the following theorem.

Theorem 1.1. Let M = Γ\H2 be a non-elementary geometrically finite hyper-
bolic manifold. Then there exists a compact subset K such that M \ K is a finite
disjoint union of cusps and funnels.

For the proof of this theorem, see [21], p. 27, Theorem 2.13.
One more explanation is necessary about Theorem 1.1. Let Γ be a Fuchsian

group. For a point z0 ∈ C+, we put

Γz0 = {γ ∈ Γ ; γ · z0 = z0}.
If Γz0 �= {1}, z0 is called a fixed point of Γ. A fixed point in C+ is called an
elliptic fixed point. Let Msing be the set of elliptic fixed points of Γ. By a suitable
choice of local coordinates, M = Γ\H2 becomes a Riemann surface, moreover by
introducing the metric y−2

(
(dx)2 + (dy)2)

)
, M\Msing is a hyperbolic manifold.

However, this metric is singular around the points from Msing. In this case, there
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2. MODEL SPACE 97

exists a neighborhood U of z0 ∈ Msing such that U = Γz0\B, where B is a ball in
H2. Then M turns out to be an orbifold. Theorem 1.1 also holds for the orbifold
case. However, in this note, we do not enter into the orbifold structure in detail.
The case Γ = SL(2,Z) will be explained in §5.

2. Model space

By the above classification, it is natural to consider the manifold whose ends
are asymptotically equal to either Mreg = M × (0, 1), or Mcusp = M × (1,∞),
where M is a compact manifold, and the metrics of Mreg and Mcusp have the form

(2.1) ds2 =
(dy)2 + h(x, dx)

y2
,

where h(x, dx) =
∑n−1

i,j=1 hij(x)dxidxj is the metric on M , x being local coordinates
on M . Let ∆M be the Laplace-Beltrami operator on M , 0 = λ0 < λ1 ≤ · · ·
the eigenvalues, and ϕm(x), m = 0, 1, 2, · · · , the associated complete orthonormal
system of eigenvectors of −∆M . We define for φ ∈ L2(M)

(2.2) Pmφ = (φ, ϕm)L2(M) ϕm,

(2.3) Πmφ = (φ, ϕm)L2(M).

We now let M = M × (0,∞) equipped with the metric (2.1). The Laplace-
Beltrami operator on M is y2(∂2

y + ∆M ) − (n − 2)y∂y. We put

(2.4) Hfree = −y2(∂2
y + ∆M ) + (n − 2)y∂y − (n − 1)2

4
= −∆M − (n − 1)2

4
.

Here we need to explain the change of usage of suffix. In Chapters 1 and 2, we
used the subscript 0 to denote unperturbed operators. However, in the sequel, we
use the suffix free for that purpose. The suffix 0 will be used to distinguish the case
in which the eigenvalue λ0 = 0 is involved.

Spectral properties of Hfree can be studied in essentially the same way as in
Chap. 2. We have only to replace the space L2(Rn−1) by L2(M) and the Fourier
transform by the eigenfunction expansion associated with −∆M . The expansion
coefficient of f(x, y) is denoted by

(2.5) f̂m(y) = (f(·, y), ϕm)L2(M) =
(
Πm f

)
(y).

For f ∈ C∞
0 (M), we have

(
ΠmHfreef

)
(y) = Lfree(

√
λm)f̂m(y),

where Lfree(ζ) is defined by Chap. 1. (3.7). As in Corollary 1.3.10, for λm �= 0,
the Green operator of Lfree(

√
λm) − λ ∓ i� is

(
Lfree(

√
λm) − λ ∓ i�)

)−1 = Gfree(
√

λm,∓i
√

λ ± i�),

where Gfree(ζ, ν) is defined by Definition 1.3.5. The Fourier transformation asso-
ciated with Lfree(

√
λm) is given in Chap.1, (3.22):

(2.6) (Ffree,mψ) (k) =

(
2k sinh(kπ)

)1/2

π

∫ ∞

0

y(n−1)/2Kik(
√

λm y)ψ(y)
dy

yn
.

Letting ζ =
√

λm in Theorem 1.3.13, we obtain the following theorem.
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98 3. MANIFOLDS WITH HYPERBOLIC ENDS

Theorem 2.1. Let λm �= 0.
(1) Ffree,m is a unitary operator from L2((0,∞); dy/yn) onto L2((0,∞); dk).
(2) For ψ ∈ D(Lfree(

√
λm))

(Ffree,mLfree(
√

λm)ψ)(k) = k2(Ffree,mψ)(k).

(3) For ψ ∈ L2((0,∞); dy/yn) the inversion formula holds :

ψ =
(
Ffree,m

)∗
Ffree,mψ

= y(n−1)/2

∫ ∞

0

(2k sinh(kπ))1/2

π
Kik(

√
λm y)(Ffree,mψ)(k)dk.

We consider the case λm = 0, i.e. m = 0:

Lfree(0) = −y2∂2
y + (n − 2)y∂y − (n − 1)2

4
.

Since this is Euler’s operator, we have

(Lfree(0) − λ ∓ i�))−1 = Gfree,0(∓i
√

λ ± i�),

(2.7) Gfree,0(ν)ψ(y) =
∫ ∞

0

Gfree,0(y, y�; ν)ψ(y�)
dy�

(y�)n
,

(2.8) Gfree,0(y, y�, ν) =
1
2ν




y
n−1

2 +ν(y�)
n−1

2 −ν , 0 < y < y�,

y
n−1

2 −ν(y�)
n−1

2 +ν , 0 < y� < y.

In the same way as in Lemma 1.3.8, we can prove

‖Gfree,0(ν)ψ‖B∗ ≤ C

|ν|
‖ψ‖B,

where the constant C is independent of ν. The Fourier transform Ffree,0 associated
with Lfree(0) has 2 components:

(2.9) Ffree,0 =
(
F

(+)
free,0, F

(−)
free,0

)
,

(2.10)
(
F

(±)
free,0ψ

)
(k) =

1√
2π

∫ ∞

0

y
n−1

2 ±ikψ(y)
dy

yn
.

Let us check this fact. By (2.7), we have for ψ ∈ C∞
0 ((0,∞))

Gfree,0(∓ik)ψ(y) ∼ ± i

k

√
π

2




y
n−1

2 ∓ikF
(±)
free,0(k)ψ, y → 0,

y
n−1

2 ±ikF
(∓)
free,0(k)ψ, y → ∞.

On the other hand, we have
1

2πi

(
Gfree,0(−ik) − Gfree,0(ik)

)
ψ

=
1

4πk

∫ ∞

0

(yy�)
n−1

2

{(y�

y

)ik +
( y

y�

)ik
}

ψ(y�)
dy�

(y�)n

=
1

2k
√

2π

(
y

n−1
2 −ikF

(+)
free,0(k)ψ + y

n−1
2 +ikF

(−)
free,0(k)ψ

)
.

Hence we have
1

2πi

([
Gfree,0(−ik) − Gfree,0(ik)

]
ψ,ψ

)
=

1
2k

|(Ffree,0ψ)(k)|2 .
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2. MODEL SPACE 99

Integrating this equality and arguing as in Chap. 1, §3, we obtain the following
Theorem 2.2. Alternatively, one can use the fact that

(Ffree,0ψ)(k) =
(
ψ̃(−k), ψ̃(k)

)
,

where ψ̃ is the Fourier transform of Uψ(t) = e−(n−1)t/2ψ(et). In fact, U is unitary
from L2((0,∞); dy/yn) to L2(R; dt), and we have

(2.11) U

(
−y2∂2

y + (n − 2)y∂y − (n − 1)2

4

)
U∗ = −∂2

t .

Theorem 2.2. (1) Ffree,0 : L2((0,∞); dy/yn) → (L2((0,∞); dk))2 is unitary.
(2) For f ∈ D(Lfree,0(0)),

(Ffree,0Lfree,0(0)f)(k) = k2(Ffree,0f)(k).

(3) For f ∈ L2((0,∞); dy/yn), the inversion formula holds:

f = (Ffree,0)
∗
Ffree,0f

=
1√
2π

∫ ∞

0

y(n−1)/2
(
y−ikF

(+)
free,0(k)f + yikF

(−)
free,0(k)f

)
dk.

We now return to the operator Hfree whose resolvent is written as

(2.12) (Hfree − λ ∓ i0)−1f =
∞∑

m=0

ϕm(x)
(
Gfree(

√
λm,∓i

√
λ)f̂m

)
(y).

Here Gfree(
√

λ0,∓i
√

λ) = Gfree,0(∓i
√

λ). Repeating the proof of Lemma 1.4.1,
we can show the following lemma.

Lemma 2.3. Hfree

∣∣∣
C∞

0 (Ω)
is essentially self-adjoint.

Recall that the generalized Fourier transform is derived from the asymptotic
behavior of the resolvent at infinity. For M × (0,∞), there are two infinities ; y = 0
and y = ∞, the former corresponding to the regular infinity, the latter to the cusp.
We put the suffix reg or c for the Fourier transforms associated with regular infinity
or cusp.

Definition 2.4. Let D(M × (0,∞)) be the set of functions f(x, y) ∈ C∞(M ×
(0,∞)) such that f̂m ∈ C∞

0 ((0,∞)), moreover f̂m = 0 except for a finite number of
m. We put

h = L2(M) ⊕ C, Ĥ = L2((0,∞);h; dk),

F (±)
free =

(
F (±)

reg,free,F
(±)
c,free

)
,

and define on D(M × (0,∞))

(2.13) F (±)
reg,free =

∞∑
m=0

C(±)
m (k)Pm ⊗ F

(±)
free,m,

(2.14) F
(±)
free,m =

{
Ffree,m (λm �= 0)
F

(±)
free,0 (λm = 0),
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100 3. MANIFOLDS WITH HYPERBOLIC ENDS

(2.15) C(±)
m (k) =





(√
λm

2

)∓ik

(λm �= 0)

±i

kω±(k)

√
π

2
(λm = 0),

(2.16) F (±)
c,free = P0 ⊗ F

(∓)
free,0.

We define B,B∗, and L2,s by putting h = L2(M) ⊕ C in Chap. 1, §2. Note
that, geometrically, B corresponds to the diadic decomposition with respect to the
geodesic distance, and B∗ to the integral mean over the geodesic ball. Let

Rfree(z) = (Hfree − z)−1.

Then Theorem 2.1.3 remains valid for Hfree if X s is replaced by L2,s.

Theorem 2.5. (1) σ(Hfree) = [0,∞).
(2) σp(Hfree) = ∅.
(3) For λ > 0 and f, g ∈ B, the following weak limit exists

lim
�→0

(Rfree(λ ± i�)f, g) =: (Rfree(λ ± i0)f, g).

Moreover
‖Rfree(λ ± i0)f‖B∗ ≤ C‖f‖B,

where the constant C does not depend on λ if λ varies over a compact set in (0,∞).
(4) Letting F (±)

free(k)f = (F (±)
freef)(k) for f ∈ D(M × (0,∞)), we have

‖F (±)
free(k)f‖h ≤ C‖f‖B,

where the constant C does not depend on k if k varies over a compact set in (0,∞).
(5) F (±)

free is uniquely extended to a unitary operator from L2(M×(0,∞);
√

gMdxdy/yn)
to Ĥ. Moreover if f ∈ D(Hfree)

(F (±)
freeHfreef)(k) = k2(F (±)

freef)(k).

Proof. The assertions (1), (2) follow from Lemma 1.3.2. Note that Lfree(0)
should be treated separately, however, it is easy by (2.11). The proof of (3) is
almost the same as Theorem 2.2.3 (2), (3), the term Lfree(0) requires a small
change, though. In the next section, we shall give the proof for the more general
case (see Theorem 3.8). Applying Stone’s formulas for each Lfree(

√
λm), we have

1
2πi

([Rfree(λ + i0) − Rfree(λ − i0)]f, f) = ‖F (±)
free(k)f‖2,

which implies (4). Since each Ffree,m is unitary, (5) follows. �

The relation of F (±)
free and the asymptotic behavior of the resolvent is as follows.

Theorem 2.6. For k > 0 and f ∈ B, we have

(2.17) lim
R→∞

1
log R

∫

1/R<y<1

‖Rfree(k2 ± i0)f − v(±)
reg ‖2

L2(M)

dy

yn
= 0,

v(±)
reg = ω±(k) y(n−1)/2∓ikF (±)

reg,free(k)f,

(2.18) lim
R→∞

1
log R

∫

1<y<R

‖Rfree(k2 ± i0)f − v(±)
c ‖2

L2(M)

dy

yn
= 0,
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3. MANIFOLDS WITH HYPERBOLIC ENDS 101

v(±)
c = ω

(c)
± (k) y(n−1)/2±ikF (±)

c,free(k)f.

Here ω±(k) is defined by Chap. 1 (4.15), and

ω
(c)
± (k) = ± i

k

√
π

2
.

Proof. By Theorem 2.5(3) and (4), we have only to prove the theorem for
f ∈ D(M × (0,∞)). Assume that f = 0 for y < � and y > 1/�. Then if y < �, we
have by (2.12), (2.8) and Chap.1 Definition 3.5

Rfree(k2 ± i0)f

= ± i

k

√
π

2
1√
|M |

y(n−1)/2∓ikF
(∓)
free,0(k)f̂0

+
π(

2k sinh(kπ)
)1/2

∑
m≥1

ϕm(x)y(n−1)/2I∓ik(
√

λmy)Ffree,m(k)f̂m.

Using Definition 2.4 and Chap. 1 (3.5), we obtain (2.17).
For y > 1/�, we have by using Chap. 1 (3.10)

‖Rfree(k2 ± i0)f − 1√
|M |

Gfree,0(∓ik)f̂0‖2
L2(M)

≤ Cyn−2
∑
m≥1

(∫ ∞

0

|f̂m(y)| dy

y(n+2)/2

)2

,

which proves (2.18). �

3. Manifolds with hyperbolic ends

3.1. The formula of Helffer-Sjöstrand. We prepare a useful tool from
functional analysis introduced by Helffer-Sjöstrand [49]. Let σ ∈ R, and suppose
f(t) ∈ C∞(R) satisfies

(3.1) |f (k)(t)| ≤ Ck(1 + |t|)σ−k, ∀k, ∀t ∈ R.

Then there exists F (z) ∈ C∞(C) such that

(3.2)





F (t) = f(t), t ∈ R,

|F (z)| ≤ C(1 + |z|)σ,

|∂zF (z)| ≤ Cn|Im z|n(1 + |z|)σ−n−1, ∀n,

suppF (z) ⊂ {|Im z| ≤ 2 + 2|Re z|}.

Here ∂z = 1
2 (∂x + i∂y). This function F is called an almost analytic extension of f .

If f ∈ C∞
0 (R), we can construct F (z) ∈ C∞

0 (C).
Let us explain the idea of the proof. For z ∈ C, let 〈z〉 = (1 + |z|2)1/2. Take

χ(y) ∈ C∞
0 (R) such that χ(y) = 1 (|y| < 1), χ(y) = 0 (|y| > 2), and put

F (z) =
N−1∑
n=0

in

n!
f (n)(x)ynχ

( y

〈x〉

)
.

27600106 メモアール32巻.indd   107 2014/05/19   17:00:15



102 3. MANIFOLDS WITH HYPERBOLIC ENDS

Then we have

2∂zF (z) =
iN−1

(N − 1)!
f (N)(x)yN−1χ

( y

〈x〉

)

+
N−1∑
n=0

in

n!
f (n)(x)ynχ�

( y

〈x〉

)( i

〈x〉
− xy

〈x〉3
)
.

On the support of the first term of the right-hand side, |y| ≤ 2〈x〉. Hence for
1 ≤ n ≤ N − 1, it is dominated by C〈x〉σ−N |y|N−1 ≤ C|y|n〈z〉σ−n−1. On the
support of the 2nd term, 〈x〉 ≤ |y| ≤ 2〈x〉. Hence, it is dominated by

C
N−1∑
n=0

1
n!
〈x〉σ−n−1|y|n

∣∣∣χ�
( y

〈x〉

)∣∣∣ ≤ C〈x〉σ−1 exp
|y|
〈x〉

≤ Cn|y|n〈z〉σ−n−1.

Hence, |∂zF (z)| ≤ Cn|Im z|n(1+ |z|)σ−n−1 holds for 1 ≤ n ≤ N −1. By the similar
computation, one can show |F (z)| ≤ C(1 + |z|)σ. For the general construction of
F (z), see e.g. [62] p. 363.

Lemma 3.1. Let f(t) and F (z) be as above. Suppose σ < 0. Then for any
self-adjoint operator A, the following formula holds

f(A) =
1

2πi

∫

C

∂zF (z)(z − A)−1dzdz.

Proof. For λ ∈ R, we have by the generalized Cauchy formula

F (λ) =
1

2πi

∫

|z|=R

F (z)
z − λ

dz +
1

2πi

∫

|z|<R

∂zF (z)
z − λ

dzdz.

Letting R → ∞, we have

F (λ) =
1

2πi

∫

C

∂zF (z)
z − λ

dzdz,

where the integral is absolutely convergent. Let E(λ) be the spectral decomposition
of A. Then we have

f(A) =
∫ ∞

−∞
f(λ)dE(λ)

=
1

2πi

∫ ∞

−∞

∫

C

∂zF (z)
z − λ

dzdzdE(λ)

=
1

2πi

∫

C

∂zF (z)(z − A)−1dzdz. �

Let us mention here useful formulas to compute the commutator of functions
of self-adjont operators. For two operators P,A, we put

ad0(P,A) = P,

adn(P,A) = [adn−1(P,A), A], ∀n ≥ 1.

If A is self-adjoint and f(s) satisfies |f (k)(s)| ≤ Ck(1 + |s|)σ−k, ∀k ≥ 0, we have

(3.3) [P, f(A)] =
n−1∑
k=1

(−1)k−1

k!
adk(P,A)f (k)(A) + Rn,l,
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3. MANIFOLDS WITH HYPERBOLIC ENDS 103

(3.4) Rn,l =
1

2πi

∫

C

∂zF (z)(A − z)−1adn(P,A)(A − z)−ndzdz.

(3.5) [P, f(A)] =
n−1∑
k=1

1
k!

f (k)(A)adk(P,A) + Rn,r,

(3.6) Rn,r =
(−1)(n+1

2πi

∫

C

∂zF (z)(A − z)−nadn(P,A)(A − z)−1dzdz.

Here, F (z) is an almost analytic extension of f , and we assume that

‖(A − z)−nadn(P,A)(A − z)−1‖ ≤ C|Im z|−n−1〈z〉µ(n),

σ − n + µ(n) < 0,

in order to guarantee the convergence of the integrals (3.4), (3.6). Formal derivation
of (3.3), (3.5) is rather easy. However, rigorous derivation requires examination of
the domain of adn(P,A). When P and A are differential operators, this domain
question boils down to the regularity estimate for (A − z)−1.

3.2. Assumptions on ends. Now we consider an n-dimensional connected
Riemannian manifold M, which is written as a union of open sets:

M = K ∪M1 ∪ · · · ∪MN .

We assume that

(A-1) K is compact.

(A-2) Mp ∩Mq = ∅, p �= q.

(A-3) Each Mp, p = 1, · · · , N , is diffeomorphic either to Mreg = Mp × (0, 1)
or to Mc = Mp × (1,∞), Mp being a compact Riemannian manifold of dimension
n − 1, which is allowed to be different for each p.

(A-4) On each Mp, the Riemannian metric ds2 has the following form

(3.7) ds2 = y−2
(
(dy)2 + hp(x, dx) + Ap(x, y, dx, dy)

)
,

Ap(x, y, dx, dy) =
n−1∑
i,j=1

ap,ij(x, y)dxidxj + 2
n−1∑
i=1

ap,in(x, y)dxidy + ap,nn(x, y)(dy)2,

where hp(x, dx) =
∑n−1

i,j=1 hp,ij(x)dxidxj is a positive definite metric on Mp, and
ap,ij(x, y), 1 ≤ i, j ≤ n, satisfies the following condition

(3.8) |D̃α
x Dβ

y a(x, y)| ≤ Cαβ(1 + | log y|)−min(|α|+β,1)−1−�, ∀α, β

for some � > 0. Here Dy = y∂y, D̃x = ỹ(y)∂x, ỹ(y) ∈ C∞((0,∞)) such that
ỹ(y) = y for y > 2 and ỹ(y) = 1 for 0 < y < 1.

Following Example 1.3, we call Mp = Mp × (0, 1) a regular end and Mp =
Mp × (1,∞) a cusp.

Let us note that the above model in particular contains Hn. In fact, we take
K = B2(0, 1), and M1 = Hn \ Blog 2(0, 1), where Br(0, 1) is the geodesic ball of
radius r centered at (0, 1). Using geodesic polar coordinates, M1 is isometric to
Sn−1 × (log 2,∞) equipped with the metric (dr)2 + sinh2 r(dθ)2. Taking er = 2/y,
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104 3. MANIFOLDS WITH HYPERBOLIC ENDS

we see that M1 = Mreg = Sn−1 × (0, 1) equiped with the metric y−2
(
(dy)2 +

(dθ)2 + (y4/16 − y2/2)(dθ)2
)
.

The 2nd important remark is that, if Mp is equal to Mreg, one can assume
that the above metric (3.7) takes the form

(3.9) ds2 = y−2
(
(dy)2 + hp(x, dx) +

n−1∑
i,j=1

ap,ij(x, y)dxidxj
)

and each ap,ij(x, y) satisfies the condition (3.8). This can be proved in the same
way as in Theorem 4.1.6 to be given in Chap. 4. Therefore in the following we
consider the metric of the form (3.9) for such ends.

Let ∆g be the Laplace-Beltrami operator on M. As has been discussed in
Chap. 2, §2, we pass to the gauge transformation

(3.10) −∆g − (n − 1)2

4
→ H =: −ρ1/4∆gρ

−1/4 − (n − 1)2

4
,

where ρ ∈ C∞(M) is a positive function such that on each end Mp

(3.11) ρ = det g(p)/det g
(p)
free,

g
(p)
free and g(p) being the unperturbed and perturbed metrics

(3.12) g
(p)
free = y−2

(
(dy)2 + hp(x, dx)

)
,

(3.13) g(p) = y−2
(
(dy)2 + hp(x, dx) + Ap(x, y; dx, dy)

)

satisfying the above assumptions. Then H is written as

(3.14) H = −∆g + L2 −
(n − 1)2

4
,

L2 being a 2nd order differential operator on M, and satisfies the following condi-
tions.

(A-5) H is formally self-adjoint. Namely,

(Hϕ,ψ) = (ϕ,Hψ), ∀ϕ,ψ ∈ C∞
0 (M),

where ( , ) is the inner product of L2(M), i,e,

(ϕ,ψ) =
∫

M
ϕψdM,

dM being the measure which coincides with the unperturbed metric on each Mp.
(A-6) L2 is short-range on each Mp (1 ≤ p ≤ N). Namely, if L2 is represented as

L1 =
∑
|α|≤2

aα(x, y)Dα, D = (Dx, Dy) = (y∂x, y∂y),

there exists a constant � > 0 such that

|D̃β
xDk

yaα(x, y)| ≤ Cβ,k(1 + | log y|)−|β|−k−1−�, ∀β, ∀k.

We use the following partition of unity. Fix x0 ∈ K arbitrarily, and pick
χ0 ∈ C∞

0 (M), such that

χ0(x) =
{

1, dist (x, x0) < R,
0, dist (x, x0) > R + 1,
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3. MANIFOLDS WITH HYPERBOLIC ENDS 105

where dist(x, x0) is the distance between x and x0. Taking R large enough, we
define χj ∈ C∞(M) j = 1, . . . , N, such that

χj(x) =
{

1 − χ0(x), x ∈ Mj ,
0, x /∈ Mj .

Then we have

(3.15)





∑N
j=0 χj = 1,

suppχj ⊂ Mj , 1 ≤ j ≤ N,
χ0 = 1 on K.

For 1 ≤ j ≤ N , we construct χ̃j ∈ C∞(M) such that

supp χ̃j ⊂ Mj , χ̃j = 1 on suppχj .

Theorem 3.2. (1) H
∣∣
C∞

0 (M)
is essentially self-adjoint.

(2) σe(H) = [0,∞).

Proof. To prove assertion (1), we first observe that Theorem 2.1.3(4) and (6)
remain valid for H, if we substitute the spaces X s with

L2,s = {U ∈ L2
loc :

∫

M

(
1 + log2 (d(x, x0))

)s |u(x)|2 < ∞}.

Using this analog of Theorem 2.1.3 (4), assertion (1) is proven in the same way as
in Theorem 2.1.4.

To show (2), we derive a formula for the resolvent by using the partition of
unity (3.15). Recall that Mj is diffeomorphic to Mj × (0, 1) or Mj × (1,∞). Let
Hfree(j) be defined by (2.4) with M replaced by Mj , and put

(3.16) R(z) = (H − z)−1, Rfree(j)(z) = (Hfree(j) − z)−1.

Note that we are using the suffix free(j) to specify unperturbed operators with
respect to the model space Mj × (0,∞). Since

(H−z)χjRfree(j)(z)χ̃j = χj +χj(H−Hfree(j))Rfree(j)(z)χ̃j +[H,χj ]Rfree(j)(z)χ̃j ,

we have
χjRfree(j)(z)χ̃j = R(z)χj + R(z)Aj(z)χ̃j ,

Aj(z) = [H,χj ]Rfree(j)(z) + χj(H − Hfree(j))χ̃jRfree(j)(z).

Letting

(3.17) A(z) =
N∑

j=1

Aj(z)χ̃j ,

we then have

R(z) =
N∑

j=1

χjRfree(j)(z)χ̃j + R(z)(χ0 − A(z)).

By the assumption (A-4), R(z)(χ0 − A(z)) is compact. Indeed, for z �∈ R, Aj(z)
is bounded from W 2,2(M) to L2,s with 0 < s < 1 + �. Since R(z) is locally
smoothening, this implies the desired compactness if one considers the adjoint
(A(z)∗ − χ0)R(z)∗.
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106 3. MANIFOLDS WITH HYPERBOLIC ENDS

To prove (2), we first show (−∞, 0) ⊂ σd(H). It is sufficient to prove that f(H)
is compact for any f ∈ C∞

0 ((−∞, 0)). Let F be an almost analytic extension of f .
Then, by Lemma 3.1, we have

f(H) =
N∑

j=1

χjf(Hfree(j))χ̃j − K,

K =
1

2πi

∫

C

∂zF (z)R(z) (χ0 − A(z)) dzdz.

Note that K is compact, since |∂zF (z)| ≤ Cl(1 + |z|)−l, for all l > 0, and so is
R(z)(χ0 − A(z)). Since σ(Hfree(j)) = [0,∞), we have f(Hfree(j)) = 0. Therefore
f(H) is compact, which proves σe(H) ⊂ [0,∞). The converse inclusion relation is
proven by Weyl’s method of singular sequence as in Lemma 1.3.12. �

3.3. Limiting absorption principle.

Lemma 3.3. Let f(x) ∈ L1(0,∞; dx) and put

u(x) =
∫ ∞

x

f(t)dt.

Then for s > 1/2∫ ∞

0

x2(s−1)|u(x)|2dx ≤ 4
(2s − 1)2

∫ ∞

0

x2s|f(x)|2dx.

Proof. We use the following inequality of Hardy : For p > 1, g(x) ∈ L1(0,∞),
we put

F (x) =
∫ ∞

x

g(t)dt.

Then we have ∫ ∞

0

|F (x)|pdx ≤ pp

∫ ∞

0

|xg(x)|pdx

([46], p. 244). Letting � = 2s − 1 > 0, y = x� for u(x) in the Lemma, we have

(2s − 1)
∫ ∞

0

x2(s−1)|u(x)|2dx =
∫ ∞

0

|u(y1/�)|2dy,

u(y1/�) =
1
�

∫ ∞

y

f(z1/�)z1/�−1dz.

By Hardy’s inequality, with g(z) = 1
� f(z1/�)z(1 − �)/� and p = 2,

∫ ∞

0

|u(y1/�)|2dy ≤ 4
�2

∫ ∞

0

|f(y1/�)|2y2/�dy

=
4
�

∫ ∞

0

|f(x)|2x2sdx,

which implies the Lemma. �

On each end Mj of M, the spaces L2,s, B, B∗ are defined in the same way as
before with h = L2(Mj). Using the above partition of unity χj , we put

‖u‖s = ‖χ0u‖L2 +
N∑

j=1

‖χju‖s,
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3. MANIFOLDS WITH HYPERBOLIC ENDS 107

‖u‖B = ‖χ0u‖L2 +
N∑

j=1

‖χju‖B,

‖u‖B∗ = ‖χ0u‖L2 +
N∑

j=1

‖χju‖B∗ ,

where ‖χju‖s is defined by

‖χju‖s =
(∫ ∞

0

(1 + | log y|)2s‖χju(y)‖2
L2(Mj)

dy

yn

)1/2

,

and ‖χju‖B, ‖χju‖B∗ are defined similarly.
Let us note that many a-priori estimates and preliminary results which are

proven in Chapter 2 for Hn may be straightforwardly generalized for M. For
example, Theorem 2.1.3 remains valid if we use L2,s instead of X s. Similarly,
Theorem 2.2.10 can be extended to the case in which (H − λ)u = 0 in one of the
regular ends Mp × (0, y0) (0 < y0 < 1). Analogous extensions are true for Lemmas
2.2.4 ∼ 2.2.8 and so on.

Lemma 3.4. Suppose all Mj (1 ≤ j ≤ N) have a cusp. If u ∈ B∗ satisfies
(H − λ)u = 0 for some λ > 0 and, on each Mj,

lim
R→∞

1
log R

∫ R

2

‖u(y)‖2
L2(Mj)

dy

yn
= 0,

then u ∈ L2,s, ∀s > 0. Moreover, for any s > 0 and any compact interval I ⊂
(0,∞), there exists a constant Cs > 0 such that

(3.18) ‖u‖s ≤ Cs‖u‖B∗ , ∀λ ∈ I.

Proof. For simplicity’s sake, we assume that N = 1. Letting U = χ1u and
M = M1, we have for � > 0 given in the assumption (A-4)

(3.19)




(
− y2(∂2

y + ∆M ) + (n − 2)y∂y − (n − 1)2

4
− λ

)
U = F,

U ∈ B∗, F ∈ L2,(1+�)/2.

In fact, F consists of U and its 1st and 2nd order derivatives, which, by Theorem
2.1.3, are in L2,−(1+�)/2, multiplied by functions decaying like (1+ | log y|)−1−�, � >
0. Therefore, F is in L2,(1+�)/2.

We apply the boot-strap arguments. In view of Lemma 2.2.6, letting h =
L2(M) and ∆M the Laplace-Beltrami operator on M , we have

(3.20)
∫ ∞

0

y2‖
√
−∆MU‖2

h

dy

yn
≤ C

(
‖U‖2

B∗ + ‖F‖2
B
)
.

Let P0 be the projection associated with the 0 eigenvalue of ∆M , and put

U0 = P0U, U � = U − P0U.

Then we have by (3.20)

‖U �‖s ≤ Cs(‖U‖B∗ + ‖F‖B), ∀s > 0.

Since U � satisfies the equation

(H0 − λ)U � = F � ∈ L2,(1+�)/2,
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108 3. MANIFOLDS WITH HYPERBOLIC ENDS

we have, by Theorem 2.1.3 (6), that

(3.21) U �, DiU
�, DiDjU

� ∈ L2,(1+�)/2.

Letting

t = log y, u0(t) = e−(n−1)t/2U0(et), f0(t) = e−(n−1)t/2F0(et),

we see that u0(t) satisfies

(3.22)




(−∂2
t − λ)u0 = f0,

lim
R→∞

1
R

∫ R

2

|u0(t)|2dt = 0,

(1 + t)(1+�)/2f0(t) ∈ L2((2,∞); dt).

Recall that the Green function of the 1-dimensional Helmholtz equation
(
− d2

dt2
− z

)
u = f, Im z ≥ 0

is given by
i

2
√

z
ei

√
z|t−s|. Hence u0 is represented as

u0(t) =
i

2
√

λ

∫ ∞

0

ei
√

λ|t−s|f0(s)ds + C+ei
√

λt + C−e−i
√

λt

=
i

2
√

λ

∫ t

0

ei
√

λ(t−s)f0(s)ds +
i

2
√

λ

∫ ∞

t

ei
√

λ(s−t)f0(s)ds

+ C+ei
√

λt + C−e−i
√

λt.

Since f0(t) ∈ L1((0,∞)); dt), we have

u0(t) ∼
(
C+ +

i

2
√

λ

∫ ∞

0

e−i
√

λsf0(s)ds
)
ei

√
λt + C−e−i

√
λt, t → ∞,

u0(t) ∼ C+ei
√

λt +
(
C− +

i

2
√

λ

∫ ∞

0

ei
√

λsf0(s)ds
)
e−i

√
λt, t → −∞.

They imply, by (3.22),

C+ = 0 = − i

2
√

λ

∫ ∞

0

e−i
√

λsf0(s)ds,

C− = 0 = − i

2
√

λ

∫ ∞

0

ei
√

λsf0(s)ds.

We then have

u0(t) =
i

2
√

λ

(
e−i

√
λt

∫ ∞

t

ei
√

λsf0(s)ds − ei
√

λt

∫ ∞

t

e−i
√

λsf0(s)ds

)
.

Using Lemma 3.3, we then have

(3.23) (1 + t)(−1+�)/2u0, (1 + t)(−1+�)/2 d

dt
u0 ∈ L2((0,∞); dt).

Then by (3.22), we also have

(3.24) (1 + t)(−1+�)/2 d2

dt2
u0 ∈ L2((0,∞); dt).

By (3.21), (3.23) and (3.24), we have U,DiU,DiDjU ∈ L2,(−1+�)/2. Hence we have
F ∈ L2,(1+2�)/2.
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3. MANIFOLDS WITH HYPERBOLIC ENDS 109

We return to the equation (3.19), and apply the same arguments as above.
Then we have U,DiU,DiDjU ∈ L2,(−1+2�)/2, hence F ∈ L2,(1+3�)/2. We repeat
these procedures to obtain U ∈ L2,(−1+N�)/2, ∀N > 0 and the inequality (3.18). �

Theorem 3.5. (1) If one of Mj has a regular infinity, σp(H) ∩ (0,∞) = ∅.
(2) If all of Mj have a cusp, then σp(H)∩(0,∞) is discrete with finite multiplicities,
whose possible accumulation points are 0 and ∞.

Proof. We shall prove (1). Let u be the eigenvector of H with eigenvalue
λ ∈ (0,∞). Applying Theorem 2.2.10 on Mj having a regular infinity, we see
that u vanishes in a neighborhood of infinity of Mj . By the unique continuation
theorem, u vanishes identically on M.

To prove (2) assume that there exist an infinite number of eigenvlaues (counting
multiplicities) in a compact interval I ⊂ (0,∞). Let un, n = 1, 2, · · · , be the
associated orthonormal system of eigenvectors. Choose x0 ∈ K arbitrarily, and
let χR be such that χ(x) = 1 for dist (x, x0) < R, χ(x) = 0 for dist (x, x0) >
R. By (3.18), for any � > 0, there exists R > 0 independent of n such that
‖(1 − χR)un‖L2 < � and ‖χRun‖L2 ≥ 1 − 2

√
�. Using Rellich’s theorem, one can

choose a subsequence of {χRun}n≥1 which converges in L2,

χRun → u, ‖u‖L2 ≥ 1 − 2
√

�.

Thus, for sufficiently large n,m,

(un, um) = (χRun, χRum) + ((1 − χR)un, χRum)
+ (χRun, (1 − χR)um) + ((1 − χR)un, (1 − χR)um)

≥ (1 − 2
√

�)2 − 3� > 0, if � <
1
16

.

This is a contradiction to (un, um) = 0. �
Theorem 3.6. Suppose λ > 0, and u ∈ B∗ satisfies (H−λ)u = 0. Furthermore,

assume that, when Mj has a regular infinity,

lim
R→∞

1
log R

∫ 1/2

1/R

‖u(·, y)‖2
L2(Mj)

dy

yn
= 0,

and when Mj has a cusp,

lim
R→∞

1
log R

∫ R

2

‖u(·, y)‖2
L2(Mj)

dy

yn
= 0.

Then:
(1) If one of Mj has a regular infinity, then u = 0.
(2) If all of Mj have a cusp, then u ∈ L2,s, ∀s > 0.

Proof. Applying Theorem 2.2.10 to Mj with regular infinity, we see that u
vanishes on an open set of Mj , hence u = 0 by the unique continuation theorem.
The assertion (2) follows from Lemma 3.4. �

As in Chap. 2, §2, we put

σ±(λ) =
n − 1

2
∓ i

√
λ.

We say that a solution u ∈ B∗ of the equation

(H − λ)u = f ∈ B
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110 3. MANIFOLDS WITH HYPERBOLIC ENDS

satisfies the outgoing radiation condition, when Mj has a regular infinity , if

(3.25) lim
R→∞

1
log R

∫ 1/2

1/R

‖(Dy − σ+(λ))u(·, y)‖2
L2(Mj)

dy

yn
= 0,

and when Mj has a cusp

(3.26) lim
R→∞

1
log R

∫ R

2

‖(Dy − σ−(λ))u(·, y)‖2
L2(Mj)

dy

yn
= 0.

The incoming radiation condition is defined similarly by exchanging σ+(λ) and
σ−(λ).

Let us remark that, compared to the case of Hn (see Chap. 2, (2.20)), the
condition (3.26) seems to be confusing. Due to the presence of 0-eigenvalue of ∆M ,
there exist generalized eigenfunctions for Hfree which behave like y(n−1)/2±i

√
λ as

y → ∞. To distinguish these two functions, we need (3.26).

Theorem 3.7. Let λ > 0 and suppose u ∈ B∗ satisfies (H − λ)u = 0 and the
outgoing or incoming radiation condition. Then:
(1) If one of Mj has a regular infinity, then u = 0.
(2) If all Mj have a cusp, then u ∈ L2,s, ∀s > 0.

Proof. We assume that the ends M1, · · · , Mµ have regular infinities, and
Mµ+1, · · · , MN have cusps. Recall that for 1 ≤ j ≤ µ, Mj is diffeomorphic to
Mj×(0, 1), and for µ+1 ≤ j ≤ N , Mj is diffeomorphic to Mj×(1,∞). Let {χj}N

j=0

be a smooth partition of unity such that
∑N

j=0 χj = 1 on M, and suppχj ⊂ Mj

for 1 ≤ j ≤ N . We shall assume that for 1 ≤ j ≤ µ,

χj(y) =

{
1, (y < 1/2),

0, (y > 3/4),

and for µ + 1 ≤ j ≤ N ,

χj(y) =

{
0, (y < 3/2),

1, (y > 2).

We take ρ(t) ∈ C∞
0 (R) such that ρ(t) = ρ(−t) and

ρ(t) =

{
c, |t| < 1,

0, |t| > 2,

where c is a positive constant such that
∫ 0

−∞
ρ(t)dt =

∫ ∞

0

ρ(t)dt = 1.

We put

ϕ(t) =
∫ t

−∞
ρ(s)ds, ψ(t) =

∫ ∞

t

ρ(s)ds,

and

ϕR(y) = ϕ

(
log y

log R

)
, ψR(y) = ψ

(
log y

log R

)
.

Then we have
χj(y)ϕR(y) ∈ C∞

0 (Mj) for 1 ≤ j ≤ µ,

χj(y)ψR(y) ∈ C∞
0 (Mj) for µ + 1 ≤ j ≤ N.
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Moreover,

(3.27) lim
R→∞

ϕR(y) = ϕ(0) = 1, lim
R→∞

ψR(y) = ψ(0) = 1.

Since (H − λ)u = 0, we have

0 = ((H − λ)u, χjϕRu) = (u, [H,χjϕR]u).

Therefore, we have

(u, [H,χj ]ϕRu) + (u, χj [H,ϕR]u) = 0,

(u, [H,χj ]ψRu) + (u, χj [H,ψR]u) = 0,

(u, [H,χ0]u) = 0.

We add them, and let R → ∞. Then by (3.27)
µ∑

j=1

(u, [H,χj ]ϕRu) +
N∑

j=µ+1

(u, [H,χj ]ψRu) + (u, [H,χ0]u) →
N∑

j=0

(u, [H,χj ]u) = 0.

Therefore, as R → ∞,

(3.28)
µ∑

j=1

(u, χj [H,ϕR]u) +
N∑

j=µ+1

(u, χj [H,ψR]u) → 0.

We put

Vj = H −
(
− D2

y + (n − 1)Dy − y2∆Mj −
(n − 1)2

4

)
.

Then we have, for 1 ≤ j ≤ µ,

[H,ϕR] = [−D2
y + (n − 1)Dy, ϕR] + [Vj , ϕR]

= − 2
log R

ρ

(
log y

log R

) (
Dy − n − 1

2
)

+
1

log R
Lj,R.

(3.29)

Here Lj,R is a 1st order differential operator

(3.30) Lj,R = aj,R(x, y)Dy + bj,R(x, y)Dx + cj,R,

whose coefficients satisfy, due to (3.8),

(3.31) |aj,R(x, y)| + |bj,R(x, y)| + |cj,R(x, y)| ≤ C(1 + | log y|)−1−�,

where the constant C is independent of R > 1. Similarly, we have, for µ+1 ≤ j ≤ N ,

[H,ψR] = [−D2
y + (n − 1)Dy, ψR] + [Vj , ϕR]

=
2

log R
ρ

(
log y

log R

) (
Dy − n − 1

2
)

+
1

log R
Lj,R,

(3.32)

where Lj,R is a 1st order differential operator having the same property as above.
In view of (3.28), we then have

−
µ∑

j=1

2
log R

(χjρ

(
log y

log R

) (
Dy − n − 1

2
)
u, u)

+
N∑

j=µ+1

2
log R

(χjρ

(
log y

log R

)(
Dy − n − 1

2
)
u, u)

+
N∑

j=1

1
log R

(χjLj,Ru, u) → 0.

(3.33)
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112 3. MANIFOLDS WITH HYPERBOLIC ENDS

We consider the case when u satisfies the outgoing radiation condition. Then we
have, by (3.33),

(3.34)
N∑

j=1

2i
√

λ

log R
(χjρ

( log y

log R

)
u, u) → 0,

since one can replace (Dy − (n − 1)/2) by −i
√

λ for 1 ≤ j ≤ µ, by i
√

λ for
µ + 1 ≤ j ≤ N , and (χjLj,Ru, u)/ log R → 0. This shows that, for 1 ≤ j ≤ N ,

1
log R

∫ ∞

0

χj(y)ρ
( log y

log R

)
‖u(·, y)‖2

L2(Mj)

dy

yn
→ 0.

Thus, u satisfies conditions of Theorem 3.6, providing the desired result.
The case in which u satisfies the incoming radiation condition is proved simi-

larly. �

These preparations are sufficient to prove the limiting absortion principle for
H as in Chap. 2, §2.

Theorem 3.8. For λ ∈ σe(H) \ σp(H), there exists a limit

lim
�→0

R(λ ± i�) ≡ R(λ ± i0) ∈ B(B;B∗)

in the weak ∗ sense. Moreover, for any compact interval I ⊂ σe(H) \ σp(H), there
exists a constant C > 0 such that

‖R(λ ± i0)f‖B∗ ≤ C‖f‖B, λ ∈ I.

For f ∈ B, we put u = R(λ ± i0)f . Then u is a unique solution to the equation
(H − λ)u = f satisfying the outgoing (for the case +) or incoming (for the case
−) radiation condition. For f, g ∈ B, (R(λ ± i0)f, g) is continuous with respect to
λ ∈ σe(H) \ σp(H).

In order to prove Theorem 3.8, recall that Lemmas 2.2.4 ∼ 2.2.9 also hold for
Mj × (0,∞) with h replaced by L2(Mj). Let χj be the partition of unity (3.15),
and put u = R(λ + i�)f, uj = χju. Then, with � defined by (3.8),

(3.35) ‖uj‖B∗ ≤ Cs (‖f‖B + ‖u‖−s) , 1/2 < s < (1 + �)/2,

where Cs is independent of λ ∈ I. Indeed, we first observe that

(H − λ − i�)uj = χjf + [H,χj ]u.

By Theorem 2.1.3 (6),

‖Diuj‖−s, ‖DiDluj‖−s ≤ Cs (‖f‖B + ‖uj‖−s) ,

and as [H,χj ] ,
[
Hfree(j), χj

]
are compactly supported, we also have

‖ [H, χj ] u‖B, ‖
[
Hfree(j), χj

]
u‖B ≤ Cs (‖f‖B + ‖uj‖−s) .

At last, rewriting the equation for uj as

(Hfree(j) − λ − i�)uj = χjf + [Hfree(j), χj ]u + χjV u,

and using (3.8), we obtain (3.35) by Lemma 2.2.9. Summing up (3.35), we obtain

‖u‖B∗ ≤ Cs (‖f‖B + ‖u‖−s) , 1/2 < s < (1 + �)/2,

Once we have derived this estimate, the remaining arguments are essentially the
same as those in Chap. 2. Namely, arguing in the same way as in Lemma 2.2.13,
we can prove the following lemma.
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3. MANIFOLDS WITH HYPERBOLIC ENDS 113

Lemma 3.9. Take s > 1/2 sufficiently close to 1/2. Let I be any compact
interval in (0,∞) \ σp(H), and put J = {λ ± i�;λ ∈ I, 0 < � < 1}.
(1) There exists a constant Cs > 0 such that

sup
z∈J

‖R(z)f‖−s ≤ Cs‖f‖B.

(2) For any f ∈ B and λ ∈ (0,∞)\σp(H), the strong limit lim�→0 R(λ± i0)f exists
in L2,−s.
(3) R(λ ± i0)f is an L2,−s-valued continuous function of λ ∈ (0,∞) \ σp(H).

Since L2,s (s > 1/2) is dense in B, Theorem 3.8 follows from Lemma 3.9 and
(3.35). �

3.4. Fourier transform associated with H. One can apply the abstract
theory in Chap. 2, §4 to H after suitable modifications. However, we shall give
here a direct approach to the spectral representation for H.

Let Hfree(j) be as above and χj as in (3.15). We put

(3.36) Ṽj = H − Hfree(j) on Mj .

This is symmetric, since so are H and Hfree(j) on C∞
0 (Mj). Using

(3.37) (Hfree(j) − λ)χjR(λ ± i0) = χj +
(
[Hfree(j), χj ] − χj Ṽj

)
R(λ ± i0),

we have

χjR(λ ± i0) = Rfree(j)(λ ± i0)χj

+ Rfree(j)(λ ± i0)
(
[Hfree(j), χj ] − χj Ṽj

)
R(λ ± i0).

(3.38)

This formula suggests how the generalized Fourier transform is constructed by the
perturbation method.

3.4.1. Definition of F (±)
free(j)(k). Let 0 = λj,0 < λj,1 ≤ λj,2 ≤ · · · be the eigen-

values of the Laplace-Beltrami operator on Mj and |Mj |−1/2 = ϕj,0, ϕj,1, ϕj,2, · · ·
the associated orthonormal eigenvectors, where |Mj | is the volume of Mj . We
define, for φ ∈ L2(Mj),

(3.39) Pj,mφ = (φ, ϕj,m)L2(Mj)ϕj,m,

(3.40) Πj,mφ = (φ, ϕj,m)L2(Mj)
.

Assume that for 1 ≤ j ≤ µ, Mj has a regular infinity, and for µ + 1 ≤ j ≤ N ,
Mj has a cusp.

(i) For 1 ≤ j ≤ µ (the case of regular infinity), we define

(3.41) F (±)
free(j)(k) =

∞∑
m=0

C
(±)
j,m(k)Pj,m ⊗ F

(±)
free(j),m(k),
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114 3. MANIFOLDS WITH HYPERBOLIC ENDS

where F
(±)
free(j),m is defined by (2.6), (2.10), (2.14) with M replaced by Mj , and

C
(±)
j,m(k) is the constant in (2.15) with λm replaced by λj,m, i.e.

(3.42) C
(±)
j,m(k) =





(√
λj,m

2

)∓ik

, (λj,m �= 0),

±i

kω±(k)

√
π

2
, (λj,m = 0).

Thus, in this case, F
(±)
free(j)(k) = F

(±)
reg,free(j)(k), see (2.13).

(ii) For µ + 1 ≤ j ≤ N (the case of cusp), we define

(3.43) F (±)
free(j)(k) = Pj,0 ⊗ F

(∓)
free(j),0(k).

Thus, in this case, F
(±)
free(j)(k) = F

(±)
c,free(j)(k), see (2.16).

3.4.2. Definition of F (±)(k). For 1 ≤ j ≤ N , we define

(3.44) F (±)
j (k) = F (±)

free(j)(k)Qj(k2 ± i0),

(3.45) Qj(z) = χj +
(
[Hfree(j), χj ] − χj Ṽj

)
R(z) = (Hfree(j) − z)χjR(z).

Finally, we define the Fourier transform associated with H by

(3.46) F (±)(k) =
(
F (±)

1 (k), · · · ,F (±)
N (k)

)
.

3.4.3. Asymptotic expansion of the resolvent. For f, g ∈ B∗ on M, by f � g
we mean that on each end the following expansion

lim
R→∞

1
log R

∫ R

1/R

ρj(y)‖f(y) − g(y)‖2
L2(Mj)

dy

yn
= 0

holds, where ρj(y) = 1 (y < 1), ρj(y) = 0 (y > 1) when Mj has a regular infinity,
and ρj(y) = 0 (y < 1), ρj(y) = 1 (y > 1) when Mj has a cusp. Applying Theorem
2.6 on each end, we get the following theorem.

Theorem 3.10. Let f ∈ B, k2 ∈ σe(H) \ σp(H), and χj the partition of unity
from (3.15). Then we have

R(k2 ± i0)f � ω±(k)
µ∑

j=1

χjy
(n−1)/2∓ikF (±)

j (k)f

+ ω
(c)
± (k)

N∑
j=µ+1

χjy
(n−1)/2±ikF (±)

j (k)f.

We put

(3.47) h∞ =
(

µ
⊕

j=1
L2(Mj)

)
⊕

(
N
⊕

j=µ+1
Pj,0L

2(Mj)
)

,

As a matter of fact,

Pj,0L
2(Mj) = Cϕj,0 = {c ϕj,0 ; c ∈ C} , ϕj,0 = |Mj |−1.2,

equipped with the inner product

(3.48) (c1ϕj,0, c2ϕj,0)Cj = c1c2.
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3. MANIFOLDS WITH HYPERBOLIC ENDS 115

For φ, ψ ∈ h∞ we define the inner product by

(3.49) (φ, ψ)h∞ =
µ∑

j=1

(φj , ψj)L2(Mj) +
N∑

j=µ+1

(φj , ψj)Cj .

We then have the following lemma.

Lemma 3.11. For f, g ∈ B and k2 ∈ σe(H) \ σp(H),

k

πi

([
R(k2 + i0) − R(k2 − i0)

]
f, g

)
=

(
F (±)(k)f,F (±)(k)g

)
h∞

.

Proof. Take χ ∈ C∞
0 (R) such that χ(t) = 1 (|t| < 1), χ(t) = 0 (|t| > 2). Let

χR ∈ C∞
0 (M) be such that χR = 1 on a neighborhood of K, χR = χ(log y/ log R)

on each Mj , where R > 0 is a large parameter. Let χj be the partition of unity
from (3.15). Putting u = R(k2 + i0)f, v = R(k2 + i0)g, we have

(χRu,Hv) − (Hu,χRv) = ([H,χR]u, v) =
N∑

j=1

(χj [H,χR]u, v),

since χR = 1 on a neighborhood of suppχ0. Next we take χ̃j ∈ C∞(Mj) such that
supp χ̃j ⊂ Mj and χ̃j = 1 on suppχj . Then, by Theorems 3.8, 2.1.3 (5) and (3.8),
we have, as R → ∞,

(χRu,Hv) − (Hu,χRv) =
N∑

j=1

(χj [H,χR]χ̃ju, v)

=
N∑

j=1

(χj [Hfree(j), χR]χ̃ju, v) + o(1).

On each end, we have
[
− y2∂2

y + (n − 2)y∂y, χR

]
= − 2

log R
χ�

( log y

log R

)(
Dy − n − 1

2

)

−
(

1
log R

)2

χ��
( log y

log R

)
.

Therefore,

(χj [Hfree(j), χR]χ̃ju, v) = − 2
log R

(
χjχ

�
( log y

log R

)(
Dy − n − 1

2

)
u, v

)
+ o(1).

Since, by Theorem 3.8, u satisfies the outgoing radiation condition, for 1 ≤ j ≤ µ,
one can replace (Dy − (n − 1)/2)u by −iku. Hence,

(χj [Hfree(j), χR]χ̃ju, v) =
2ik

log R

(
χjχ

�
( log y

log R

)
u, v

)
+ o(1)

=
2ik

log R
· π

2k2

(
χjχ

�
( log y

log R

)
yn−1F (+)

j (k)f,F (+)
j (k)g

)
+ o(1)

=
πi

k

(
F (+)

j (k)f,F (+)
j (k)g

)
L2(Mj)

+ o(1),

where we have used Theorem 3.10 in the 2nd line, and

1
log R

∫ 0

−∞
χ�

( log y

log R

)dy

y
= 1.
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For µ + 1 ≤ j ≤ N , one replaces (Dy − (n − 1)/2)u by iku, and uses

1
log R

∫ ∞

0

χ�
( log y

log R

)dy

y
= −1

to obtain

(χj [Hfree(j), χR]χ̃ju, v) = − 2ik

log R

(
χjχ

�
( log y

log R

)
u, v

)
+ o(1)

=
πi

k

(
F (+)

j (k)f,F (+)
j (k)g

)
Cj

+ o(1).

Using

(χRu,Hv) − (Hu,χRv) → (u, g) − (f, v)
= (R(k2 + i0)f, g) − (f,R(k2 + i0)g),

we complete the proof of the lemma. �

We put
Ĥ = L2((0,∞);h∞; dk).

Theorem 3.12. We define
(
F (±)f

)
(k) = F (±)(k)f for f ∈ B. Then F (±)

is uniquely extended to a bounded operator from L2(M) to Ĥ with the following
properties.
(1) Ran F (±) = Ĥ.
(2) ‖f‖ = ‖F (±)f‖ for f ∈ Hac(H).
(3) F (±)f = 0 for f ∈ Hp(H).
(4)

(
F (±)Hf

)
(k) = k2

(
F (±)f

)
(k) for f ∈ D(H).

(5) F (±)(k)∗ ∈ B(h∞;B∗) and (H − k2)F (±)(k)∗ = 0 for k2 ∈ (0,∞) \ σp(H).
(6) For f ∈ Hac(H), the inversion formula holds:

f =
(
F (±)

)∗
F (±)f =

N∑
j=1

∫ ∞

0

F (±)
j (k)∗

(
F (±)

j f
)

(k)dk.

Remark The meaning of the integral in (6) is as follows. Let (0,∞) \ σp(H) =
∪∞

i=1Ii, Ii = (ai, bi) being non-overlapping connected open interval. For g(k) ∈ Ĥ,
we have by (5) ∫ √

bi−�

√
ai+�

F (±)
j (k)∗g(k)dk ∈ B∗.

As a matter of fact, it belongs to L2(M), and

lim
�→0

∫ √
bi−�

√
ai+�

F (±)
j (k)∗g(k)dk ∈ L2(M)

in the sense of strong convergence in L2(M). Denoting this limit by∫
√

Ii

F (±)
j (k)∗g(k)dk,

we define ∫ ∞

0

F (±)
j (k)∗g(k)dk =

∞∑
i=1

∫
√

Ii

F (±)
j (k)∗g(k)dk.
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3. MANIFOLDS WITH HYPERBOLIC ENDS 117

Proof. Let E(λ) be the spectral decomposition for H. Since the interval (ai, bi)
does not contain eigenvalues of H, we have by Lemma 3.11 and Stone’s formula

1
2πi

∫ bi−�

ai+�

([R(λ + i0) − R(λ − i0)]f, f) dλ =
∫ √

bi−�

√
ai+�

‖F (±)(k)f‖2dk,

for f ∈ B. When � → 0, the left-hand side converges to (E((ai, bi))f, f). Therefore,
so does the right-hand side and

(E(Ii)f, f) =
∫
√

Ii

‖F (±)(k)f‖2dk.

Since the end points of (ai.bi) are eigenvalues, we have adding these formulas

(
E((0,∞) \ ∪λn∈σp(H){λn})f, f

)
=

∫ ∞

0

‖F (±)(k)f‖2dk.

Let Pac(H) be the projection onto the absolutely continuous subspace for H. Then

E((0,∞) \ ∪λn∈σp(H){λn}) = Pac(H).

Therefore, we have

(Pac(H)f, f) =
∫ ∞

0

‖F (±)(k)f‖2dk,

which proves (2), (3).
Let f ∈ C∞

0 (M). By (3.44), (3.45) and Theorem 2.1 (2), we have

F (±)
j (k)(H − k2)f = F (±)

free(j)(k)Qj(k2 ± i0)(H − k2)f

= F (±)
free(j)(k)(Hfree(j) − k2)χjf = 0.

To prove (4) for f ∈ D(H), we have only to approximate it by a sequence in
C∞

0 (M).
Theorem 3.8 and Lemma 3.11 imply that F (±)(k) ∈ B(B;h∞). Therefore,

F (±)(k)∗ ∈ B(h∞;B∗). This and (4) yield (5).
To prove (1). we have only to show that RanF (±) is dense in Ĥ, since RanF (±)

is closed by (2), (3). The idea is the same as the case of Lemma 1.3.19. For the sake
of notational simplicity, we assume that there are only 2 ends, M1 with regular
infinity and M2 with cusp. Suppose

(ϕ1(k), ϕ2(k)ϕ2,0) ∈ h∞ = L2((0,∞); L2(M1); dk) × L2((0,∞);C; dk),

where ϕ2,0 = |M2|−1/2 is the eigenfunction of ∆M2 associated with zero eigenvalue,
is orthogonal to RanF (+). Let {e1, e2, · · · } be a complete orthnormal system of
L2(M1), and put

ϕ1,n(k) = (ϕ1(k), en)L2(M1).

Let L(ψ) be the set of Lebesgue points of ψ ∈ L1
loc((0,∞)) introduced in the proof

of Lemma 1.3.19. We take

� ∈
(
∩∞

n=1 L(ϕ1,n)
)
∩

(
L(‖ϕ1(k)‖2

L2(M1)
)
)
∩

(
L(ϕ2)

)
∩

(
L(|ϕ2|2)

)
.

Let {χj}2
j=0 be the partition of unity from (3.15). We fix m arbitrarily, and put

u� = ω+(�)χ1(y)y(n−1)/2−i�αem + ω
(c)
+ (�)χj(y)y(n−1)/2+i�βϕ2,0,
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α, β being arbitraily chosen constants. We further put

(H − �2)u� = g�.

Then, as can be checked easily, g� ∈ L2,(1+�)/2, and by Theorems 3.8 and 3.10, u� is
written as u� = R(�2 + i0)g�. Moreover, etting F (+)(k)g� = (C1(k), C2(k)ϕ2,0), we
see that (C1(k), C2(k)ϕ2,0) is an L2(M1) ×C-valued continuous function of k > 0,
satisfying

(3.50) (C1(�), en) = δmnα, C2(�) = β.

By our assumption, (ϕ1(k), ϕ2(k)ϕ2,0) is orthogonal to F (+)(k)EH(I)g�, I being
any interval of (0,∞). Hence,

∫

I

(
(ϕ1(k), C1(k))L2(M1) + ϕ2(k)C2(k)

)
dk = 0

for any interval I ⊂ (0,∞). By the same arguments as in the proof of Lemma
1.3.19, we then have

1
2�

∫ �+�

�−�

ϕ2(k)C2(k)dk → ϕ2(�)β.

The 1st term is computed as

1
2�

∫ �+�

�−�

(ϕ1(k), C1(k))L2(M1)dk =
1
2�

∫ �+�

�−�

(ϕ1(k), C1(k) − C1(�))L2(M1)dk

+
1
2�

∫ �+�

�−�

(ϕ1(k), C1(�))L2(M1)dk.

By (3.50), (ϕ1(k), C1(�))L2(M1) = ϕ1,m(k)α, hence

1
2�

∫ �+�

�−�

(ϕ1(k), C1(�))L2(M1)dk → ϕ1,m(�)α.

We also have

∣∣∣∣∣
1
2�

∫ �+�

�−�

(ϕ1(k), C1(k) − C1(�))L2(M1)dk

∣∣∣∣∣

≤

(
1
2�

∫ �+�

�−�

‖ϕ1(k)‖2
L2(M1)

dk

)1/2

×

(
1
2�

∫ �+�

�−�

‖C1(k) − C1(�)‖2
L2(M1)

dk

)1/2

.

The right-hand side tends to 0, since � is an Lebesgue point of ‖ϕ1(k)‖2
L2(M1)

,
and C1(k) is an L2(M1)-valued continuous function of k > 0. We have, therefore,
obtained that

ϕ1,m(�)α + ϕ2(�)β = 0.

Since α, β and m are arbitrarily, we have ϕ1(�) = 0, ϕ2(�) = 0, which completes
the proof of (1). The proof of (6) is the same as Theorem 1.3.13. �
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3.5. S matrix. As in Chap. 2, we can prove the existence and completeness of
time-dependent wave operators and introduce the Radon transform associated with
H. We give a breif sketch of the proof later. Here, instead of this time-depedent
approach, we construct the S-matrix by using the generalized Fourier transform.

The following theorem is proved in the same way as Theorem 1.4.3 with F (±)
0 (k)

replaced by F (±)(k), and is a generalization of the modified Poisson-Herglotz for-
mula.

Theorem 3.13. If k2 �∈ σp(H), we have

F (±)(k)B = h∞,

{u ∈ B∗ ; (H − k2)u = 0} = F (±)(k)∗h∞.

We derive an asymptotic expansion of solutions to the Helmholtz equation. Let
Vj be the differential operator defined by

Vj = [Hfree(j), χj ] − χj Ṽj (1 ≤ j ≤ N),

where Ṽj is defined by (3.36). We put

(3.51) Jj(k) =
∞∑

m=1

(√
λj,m

2

)−2ik

Pj,m =

(√
−∆Mj

2

)−2ik

(I − Pj,0),

where ∆Mj is the Laplace-Beltami operator on Mj and Pj,0 is the projection onto
the zero eigenspace for ∆Mj . For 1 ≤ j, l ≤ N , we define Ŝjl(k) ∈ B(L2(Ml); L2(Mj))
by

(3.52) Ŝjl(k) =




δjlJj(k) +
πi

k
F (+)

j (k)
(
Vl

)∗ (
F (−)

free(l)(k)
)∗

, 1 ≤ j ≤ µ,

πi

k
F (+)

j (k)
(
Vl

)∗ (
F (−)

free(l)(k)
)∗

, µ + 1 ≤ j ≤ N.

Theorem 3.14. For ψ = (ψ1, · · · , ψN ) ∈ h∞, the following asymptotic expan-
sion holds:

(
F (−)(k)

)∗
ψ =

N∑
j=1

(
F (−)

j (k)
)∗

ψj

� ik

π
ω−(k)

µ∑
j=1

χj y(n−1)/2+ik ψj +
ik

π
ω

(c)
− (k)

N∑
j=µ+1

χj y(n−1)/2−ik ψj

− ik

π
ω+(k)

µ∑
j=1

N∑
l=1

χj y(n−1)/2−ik Ŝjl(k)ψl

− ik

π
ω

(c)
+ (k)

N∑
j=µ+1

N∑
l=1

χj y(n−1)/2+ik Ŝjl(k)ψl.

Proof. First note that by (3.44)

(3.53)
(
F (−)

j (k)
)∗

= χj

(
F (−)

free(j)(k)
)∗

+ R(k2 + i0)
(
Vj

)∗ (
F (−)

free(j)(k)
)∗

.
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120 3. MANIFOLDS WITH HYPERBOLIC ENDS

By (3.41), for 1 ≤ j ≤ µ,
(
F (−)

free(j)(k)
)∗

φ =
∞∑

m=0

C
(−)
j,m(k)

(
F

(−)
free(j),m(k)

)∗
Pj,mφ

= C
(−)
j,0 (k)

1√
2π

y(n−1)/2+ikPj,0φ

+
∞∑

m=1

C
(−)
j,m(k)

(2k sinh(kπ))1/2

π
y(n−1)/2Kik(

√
λj,m y)Pj,mφ,

and by (3.43), for µ + 1 ≤ j ≤ N ,

(3.54)
(
F (−)

free(j)(k)
)∗

φ =
1√
2π

y(n−1)/2−ikφ.

Since F (−)(k)∗ ∈ B(h∞;B∗), we have only to prove the theorem for ψ =
(ψ1, · · · , ψN ) ∈ h∞ such that for 1 ≤ j ≤ µ, Pj,mψj = 0 except for a finite number
of m. By using Chap. 1, (3.6), (4.15) and (4.18), for 1 ≤ j ≤ µ, one can show

(
F (−)

free(j)(k)
)∗

ψj � ik

π
ω−(k)y(n−1)/2+ikψj

− ik

π
ω+(k)y(n−1)/2−ik

∑
m≥1

(√
λm

2

)−2ik

Pj,mψj .
(3.55)

We apply (3.54) and (3.55) to the 1st term of the right-hand side of (3.53). To the
2nd term, we apply Theorem 3.10. We then have, for 1 ≤ j ≤ µ,

(
F (−)

j (k)
)∗

ψj � ik

π
ω−(k) χj y(n−1)/2+ik ψj

− ik

π
ω+(k)

µ∑
l=1

χl y
(n−1)/2−ik Ŝlj(k)ψj

− ik

π
ω

(c)
+ (k)

N∑
l=µ+1

χl y
(n−1)/2+ik Ŝlj(k)ψj .

Similary, one can show, for µ + 1 ≤ j ≤ N ,
(
F (−)

j (k)
)∗

ψj � ik

π
ω

(c)
− (k)χj y(n−1)/2−ik ψj

− ik

π
ω+(k)

µ∑
l=1

χl y
(n−1)/2−ik Ŝlj(k)ψj

− ik

π
ω

(c)
+ (k)

N∑
l=µ+1

χl y
(n−1)/2+ik Ŝlj(k)ψj .

Summing up these two formulas, we obtain the theorem. �

We define an operator-valued N × N matrix Ŝ(k) by

(3.56) Ŝ(k) =
(
Ŝjl(k)

)
,

and call it S-matrix. This should be more properly called the geometric S-matrix
in the context of Chap. 2, §6. This is a bounded operator on h∞. Similarly to
Theorem 2.7.9, we have the following asymptotic expansion.
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3. MANIFOLDS WITH HYPERBOLIC ENDS 121

Theorem 3.15. (1) For any u ∈ B∗ satisfying (H − k2)u = 0, there exists a
unique ψ(±) = (ψ(±)

1 , · · · , ψ
(±)
N ) ∈ h∞ such that

u � ω−(k)
µ∑

j=1

χj y(n−1)/2+ik ψ
(−)
j + ω

(c)
− (k)

N∑
j=µ+1

χj y(n−1)/2−ik ψ
(−)
j

− ω+(k)
µ∑

j=1

χj y(n−1)/2−ik ψ
(+)
j − ω

(c)
+ (k)

N∑
j=µ+1

χj y(n−1)/2+ik ψ
(+)
j .

(2) For any ψ(−) ∈ h∞, there exists a unique ψ(+) ∈ h∞ and u ∈ B∗ satisfying
(H − k2)u = 0, for which the expansion (1) holds. Moreover

ψ(+) = Ŝ(k)ψ(−).

Proof. By Theorem 3.13, u ∈ F (−)(k)∗h∞. Using Theorem 3.14, we prove the
result. �

Theorem 3.16. Ŝ(k) is unitary on h∞.

Proof. Let u ∈ B∗ such that (H − k2)u = 0. By Theorem 3.13, u =
F (+)(k)∗ψ(+), ψ(+) ∈ h∞. By similar arguments as in Theorem 3.14, with F (+)(k)∗

instead of F (−)(k)∗, one can show that there exists ψ(−) ∈ h∞ such that the ex-
pansion in Theorem 3.15 (1) holds. In particular, ψ(+) = Ŝ(k)ψ(−). This means
that Ŝ(k) is onto.

Thus, we have only to prove that Ŝ(k) is isometric. Take ψ(−) = (ψ(−)
1 , · · · , ψ

(−)
N ) ∈

h∞ such that for 1 ≤ j ≤ µ, Pj,mψ
(−)
j = 0 except for a finite number of m. We put

for 1 ≤ j ≤ µ

aj,m =




Pj,0ψ
(−)
j , (m = 0)

(√
λj,m

2

)−ik

Γ(1 + ik)Pj,mψ
(−)
j , (m �= 0)

u
(−)
j = ω−(k) χj

(
y(n−1)/2+ikaj,0 +

∑
m≥1

y(n−1)/2Iik(
√

λj,m y)aj,m

)
.

Then, as y → 0,

u
(−)
j � ω−(k)χj(y) y(n−1)/2+ikψ

(−)
j .

For µ + 1 ≤ j ≤ N , we put

(3.57) u
(−)
j = ω

(c)
− (k)χj y(n−1)/2−ikψ

(−)
j ,

and define

u(−) =
N∑

j=1

u
(−)
j , f = (H − k2)u(−) ∈ B,

u(+) = R(k2 + i0)f, u = u(+) − u(−),

ψ(+) = F (+)(k)f.
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122 3. MANIFOLDS WITH HYPERBOLIC ENDS

Then, by Theorem 3.10, u and ψ(±) give the expansion in Theorem 3.15 (1). Lemma
3.11 implies

1
2k

‖ψ(+)‖2 =
1

2πi

(
R(k2 + i0)f − R(k2 − i0)f, f

)

=
1

2πi

[
(f, u(−)) − (u(−), f)

]
.

Here we have used the fact that

R(k2 − i0)f = u(−),

since u(−) is incoming. Now we do the same computation as in Lemma 3.11. Let
χR be as in the lemma. Then,

(f, χRu(−)) − (χRu(−), f) = ([H,χR]u(−), u(−))

=
N∑

j=1

(χj [Hfree(j), χR]χ̃j u(−), u(−)) + o(1).

Recall that

[Hfree(j), χR] = − 2
log R

χ�( log y

log R

)(
Dy − n − 1

2
)

+ O(| log R|−2).

Then, for 1 ≤ j ≤ µ, using the fact that u(−) has the form (3.57), we have

(χj [Hfree(j), χR]χ̃j u(−), u(−)) =
2ik

log R

(
χ�

( log y

log R

)
u

(−)
j , u

(−)
j

)
+ o(1)

=
2ik

log R
|ω−(k)|2

∫ 1

0

χ�
( log y

log R

)dy

y
‖ψ(−)

j ‖2 + o(1)

=
πi

k
‖ψ(−)

j ‖2 + o(1),

where, at the last step, we use equation (4.18) of Ch. 1.
Similarly, for µ + 1 ≤ j ≤ N ,

(χj [Hfree(j), χR]χ̃j u(−), u(−)) =
πi

k
‖ψ(−)

j ‖2 + o(1).

Taking R → ∞, we obtain ‖ψ(+)‖ = ‖ψ(−)‖. �

Corollary 3.17. F (+)(k) = Ŝ(k)F (−)(k).

Proof. The above f satisfies ψ(±) = F (±)(k)f . Since ψ(+) = Ŝ(k)ψ(−) and, by
(3.58), ψ(−) = F (−)(k)f , the corollary is proved. �

3.6. Wave operators. We briefly look at the temporal asymptotics of e−it
√

Hf
for f ∈ Hac(H). Let {χj}N

j=0 be the partition of unity given in Subsection 3.2. We
can then show that

(3.58) ‖χ0e
−it

√
Hf‖ → 0, as t → ±∞.

In fact, by approximating f , we have only to consider the case that f ∈ D(H) ∩
Hac(H). In this case, we have χ0e

−it
√

Hf = χ0(H + i)−1e−it
√

H(H + i)f . Since
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4. CUSPS AND GENERALIZED EIGENFUNCTIONS 123

(H + i)f ∈ Hac(H), we have χ0e
−itH(H + i)f → 0 weakly as t → ±∞. As also

χ0(H + i)−1 is compact, this proves (3.58). It then implies

‖e−it
√

Hf −
N∑

j=1

χje
−it

√
Hf‖ → 0, as t → ±∞.

Consider the behavior of χje
−it

√
Hf on the end Mj . Suppose Mj is a regular end.

Then the argument in Chapter 2 Subsection 8.3 works well without any essential
change, and one can show that, as t → ∞,∥∥∥∥χje

−it
√

Hf − χj
y(n−1)/2

√
π

∫ ∞

0

eik(− log y−t)
(
F (+)

j f
)
(k)dk

∥∥∥∥ → 0.

Similarly, for g ∈ L2(Mj),∥∥∥∥χje
−it

√
Hfree(j)g − χj

y(n−1)/2

√
π

∫ ∞

0

eik(− log y−t)
(
F (+)

free(j)g
)
(k)dk

∥∥∥∥ → 0.

Taking g =
(
F (+)

free(j)

)∗F (+)
j f , these two limits imply

χje
−it

√
Hf ∼ χje

−it
√

Hfree(j)

(
F (+)

free(j)

)∗
F (+)

j f.

We can prove similar formulae when Mj is a cusp. This means that, in the long-
run, the waves disappear from compact parts of the manifold, and, on each end,
they behave like free waves.

Similarly, we can prove

s − lim
t→∞

eit
√

Hχje
−it

√
Hfree(j) =

(
F (+)

j

)∗F (+)
free(j),

and, therefore, there exist the wave operators,

(3.59) W± = s − lim
t→±∞

N∑
j=1

eit
√

Hχje
−it

√
Hfree(j) =

N∑
j=1

(
F (+)

j

)∗F (+)
free(j).

Since F (+)
free(j) are unitary, it follows from Theorem 3.12, that and W± are complete:

RanW± = Hac(H).

As in Chap. 2, §8, we construct F± from F (±), and define the Radon transform
by the formula

(R±f) (s) =
1√
2π

∫ ∞

−∞
eiks (F±f) (k)dk.

Then Theorem 2.8.9 also holds on M.

4. Cusps and generalized eigenfunctions

In the following two sections, we consider the case in which M has only cusps
as infinity. We use the same notation as in the previous section, and for the sake
of simplicity assume that M has only one cusp and the manifold at infinity M
satisfies |M | = 1. In this section z denotes a point in M. Moreover, we assume:

(C-1) The end M1 is identified with M × (1,∞) and the metric of M is

(4.1) ds2 =
n∑

i,j=1

gij(z)dzidzj =
(dy)2 + h(x, dx)

y2
on M1,
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124 3. MANIFOLDS WITH HYPERBOLIC ENDS

where we typically use local coordinates z = (x, y), x = (x1, . . . , xn−1) being local
coordinates on M .

4.1. A remark on the S-matrix. In Theorem 3.15, we have proven that for
k > 0 such that k2 �∈ σp(H) and u ∈ B∗ satisfying (H−k2)u = 0, there exist unique
constant functions ψ(±) ∈ P0L

2(M) such that

(4.2) u � ω
(c)
− (k)y(n−1)/2−ikψ(−) − ω

(c)
+ (k)y(n−1)/2+ikψ(+), ω

(c)
± (k) = ± i

k

√
π

2
.

w
(c)
± (k) has natural extension to k < 0. Then taking u(k) = u(−k), we obtain, for

k < 0, a solution to (H − k2)u = 0 which also satisfies (4.2). With this in mind, we
change the notion of the S-matrix as follows. Let

N (k) =
{

u ∈ B∗ ;
(
− ∆g − (n − 1)2

4
− k2

)
u = 0

}
.

Then, for any 0 �= k ∈ R, such that k2 �∈ σp(H), dimN (k) = 1, and one can choose
a basis u(z, k) ∈ N (k) satisfying

(4.3) u � y(n−1)/2−ik + Ŝ(k)y(n−1)/2+ik,

Ŝ(k) being a complex number of modulus 1. Traditionally, we put

(4.4) S(s) = Ŝ(k), s = (n − 1)/2 − ik,

and call it the S-matrix.

4.2. Eisenstein series. We put
√

σp(H) = {ζ ∈ C ; ζ2 ∈ σp(H)}.

Let χ ∈ C∞((0,∞)) be such that χ(y) = 0 for y < 2, χ(y) = 1 for y > 3. We define
for k > 0 and � > 0

(4.5) ϕ(z, k − i�) = χ(y) y
n−1

2 +i(k−i�) − R((k − i�)2) [H,χ] y
n−1

2 +i(k−i�).

Due to (C-1), supp ([H,χ]) ⊂ M × (2, 3) and this function ϕ satisfies

(H − (k − i�)2)ϕ(z, k − i�) = 0.

By the reasoning to be explained in the next section, this function is called
an Eisenstein series. As a function of k − i�, this is meromorphic in the lower-
half plane and has poles at

√
σp(H) ∩ C−. Note that in the standard notation,

we put s = (n − 1)/2 + i(k − i�) and regard ϕ as a meromorphic function on
{s ∈ C ; Re s > (n − 1)/2}. By the limiting absorption principle, letting � → 0,
ϕ(z, k − i�) is continuously extended to R \

√
σp(H).

Using the definitions (3.44), (2.16), (2.9), and (3.45) with Ṽ = 0, we have, for
k ∈ (0,∞) \

√
σp(H),

F (+)(k)f =
1√
2π

∫

M
ϕ(z, k)f(z) dM.

Hence, by Theorem 3.12 we have the following theorem.
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4. CUSPS AND GENERALIZED EIGENFUNCTIONS 125

Theorem 4.1. F (+) maps Hac(H) onto L2((0,∞) ; P0(L2(M)) ; dk). For any
f ∈ L2(M), the inversion formula holds:

f(z) =
1√
2π

∫ ∞

0

ϕ(z, k)f̃(k)dk +
∑

i

(f, ψi)ψi,

f̃(k) =
1√
2π

∫

M
ϕ(z, k)f(z)dM,

where ψi is a normalized eigenvector of H.

4.3. Theory of quadratic forms. Let us recall the theory of quadratic forms
associated with self-adjoint extensions of symmetric operators. For the details, see
e.g. [80] p. 322 or [62], p. 38. Let D be a dense subspace of a Hilbert space
H. A hermitian quadratic form a(·, ·) with domain D is a mapping : D × D → C
satisfying

a(λu + µv,w) = λa(u,w) + µa(v, w), λ, µ ∈ C, u, v, w ∈ D

a(u, v) = a(v, u), u, v ∈ D.

A hermitian quadratic form a(·, ·) is said to be positive definite if there exists a
constant C > 0, such that

a(u, u) ≥ C‖u‖2, u ∈ D.

In this case a(·, ·) defines an inner product on D. If D is complete with respect to
the norm ‖u‖a =

√
a(u, u), a(·, ·) is said to be a closed form. We say that a(·, ·) is

closable if, for any sequence un ∈ D such that ‖un‖ → 0, ‖un − um‖a → 0, we have
‖un‖a → 0. For a closable form a(·, ·), we define a subspace D̃ by

u ∈ D̃ ⇐⇒ ∃un ∈ D s.t.‖un − u‖ → 0, ‖un − um‖a → 0.

For u, v ∈ D̃, there exist un, vn ∈ D such that un → u, vn → v, ‖un − um‖a → 0,
‖vn − vm‖a → 0. Then, the quadratic form, defined by

ã(u, v) = lim
m,n→∞

a(um, vn)

can be shown to be positive defnite and closed and is called the closed extension of
a(·, ·). Then the following theorem holds.

Theorem 4.2. Let a(·, ·) be a positive definite closed form with domain D.
Then there exists a unique self-adjoint operator A such that D(A) ⊂ D and

a(u, v) = (Au, v), u ∈ D(A), v ∈ D.

Moreover D = D(A1/2).

A quadratic form a(·, ·) with domain D is said to be bounded from below if
there exists a constant C0 ≥ 0 such that

a(u, u) ≥ −C0‖u‖2, ∀u ∈ D.

In this case the quadratic form b(·, ·) defined by

b(u, v) = a(u, v) + (C0 + 1)(u, v)

is positive definite. a(·, ·) is said to be closable if so is b(·, ·). Let b̃(·, ·) be the closed
extension of b(·, ·) . By Theorem 4.2, there exists a unique self-adjoint operator B

such that D(B) ⊂ D̃ and

b̃(u, v) = (Bu, v), u ∈ D(B), v ∈ D̃.
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126 3. MANIFOLDS WITH HYPERBOLIC ENDS

Letting
ã(u, v) = b̃(u, v) − (C0 + 1)(u, v),

A = B − (C0 + 1),

we have D(A) = D(B) ⊂ D̃, and

A ≥ −C0, ã(u, v) = (Au, v), u ∈ D(A), v ∈ D̃.

We call A the self-adjoint operator associated with a(·, ·).

4.4. 0-mode boundary value problem. We show that the Eisenstein se-
ries ϕ(z, k) is meromorphically extended to C with respect to k. Following the
arguments of [26], we consider the boundary value problem as below.

Recall that M is assumed to be

(4.6) M = K ∪M1, M1 = M × (1,∞), |M | = 1,

where K is compact. We can assume that

K ∩
(
M × (2,∞)

)
= ∅.

Take a > 3, and put

Ma
int = K ∪

(
M × (1, a)

)
, Ma

ext = M × (a,∞), Γa = M × {a}.

Using the projections P0 and P � on L2(M),

(P0ψ)(x) =
∫

M

ψ(x�)dMx′ , P � = 1 − P0,

we define the following Hilbert space:

H = L2(Ma
int) ⊕ (P � ⊗ Ia

y )L2(Ma
ext) ⊂ L2(M),

with π : L2(M) → H being the associated orthogonal projection. Here, for any b >
0, Ib

y is the cut-off projector, in the y-coordinate, onto y > b. To define the Sobolev
spaces Hm(M), we use representation (4.6) of M. Namely, if Ul, l = 1, . . . , L, is a
coordinate covering of M , we use, as a coordinate covering of M,

M =
L+P
∪

l=1
Ul,

where Ul = Ul × (1,∞), l = 1, . . . , L; {Ul}L+P
l=L+1 being a coordinate covering of

M2
int. Using the corresponding decomposition of unity,

1 =
L+P∑
l=1

Ψl(z), supp(Ψl) ⊂ Ul,

where we assume, for y > 2, Ψl(x, y) = ψl(x), supp(ψl) ⊂ Ul, l = 1, . . . , L, we
define

‖f‖2
Hm(M) =

L+P∑
l=1

‖Ψlf‖2
Hm(Ul)

.

Here Hm(Ul), l = L + 1, . . . , L + P, are usual Sobolev spaces, while

‖Ψlf‖2
Hm(Ul)

=
∑

|α|≤m

∫ ∞

1

‖Dα (Ψlf) ‖2
L2(M)

dy

yn
, l = 1, . . . , L,

where Di = y∂i, i = 1, . . . , n.
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Note that, if m = 1, ‖f‖H1 is equivalent to the classical invariant definition of
H1 on a Riemannian manifold,

(4.7) ‖f‖2
H1(M) ∼ ‖f‖2

L2(M) +
∫

M
|df |2gdM = ‖f‖2

L2(M) +
∫

M
gij ∂if ∂jf

√
g dz.

Next we define
Hm := πHm(M), m ≥ 1.

Note that, with IM being identity on M and b > 1,
(
IM ⊗ Ib

y

)
f ∈ Hm(M × (b,∞))

iff ∑
j

∫ ∞

b

y2m
[
(1 + λ2

j)
m|f̂j(y)|2 + |∂m

y f̂j(y)|2
] dy

yn
< ∞.

Here f(x, y) =
∑

j=0 f̂j(y)φj(x), for y > b. Thus,

(P � ⊗ Ib
y)Hm → Hm(M × (b,∞)), b > 1.

Also, if u ∈ Hm, then ∂j
y(P � ⊗ Ib

y)u, 0 ≤ j ≤ m − 1, is continuous across
Γa, a > b.

We define a quadratic form l(·, ·) with domain H1 by

l(u, u) = (du, du)L2(Ma
int)

+ ‖u‖2
L2(Ma

int)

+ (du, du)L2(Ma
ext)

+ ‖u‖2
L2(Ma

ext)
,

see (4.7). Then l(·, ·) is a positive definite closed form on H1, and
√

l(·, ·) is equiv-
alent to the H1-norm. Hence, by Theorem 4.2, there exists a unique self-adjoint
operator L such that L ≥ 1, D(L1/2) = H1 and

l(u, v) = (Lu, v), ∀u ∈ D(L), ∀v ∈ H1.

We introduce the set DL by

(4.8) DL = {u ∈ H2 ; (∂y(P0 ⊗ Iy)u) (a − 0) = 0}.
Here, for w ∈ H1(M × (a, a+1)) or w ∈ H1(M × (a− 1, a)), w(a± 0) is defined by

w(a ± 0) = lim
�→0

w(·, a ± �).

Lemma 4.3. (1) L has compact resolvent.
(2) D(L) = DL.
(3) If ζ �∈ σ(L), for any f ∈ H and λ ∈ C, there exists a unique solution u ∈ DL

of the following boundary value problem

(4.9)




(
− ∆g − (n − 1)2

4
+ 1 − ζ

)
u = f in Ma

int,

(
− ∆g − (n − 1)2

4
+ 1 − ζ

)
(P � ⊗ 1)u = f in Ma

ext,(
∂y(P0 ⊗ Iy)u

)
(a − 0) = λ.

The solution u = u(z, ζ, λ) is analytic with respect to λ and meromorphic on C
with respect to ζ with possible poles at σ(L).

Proof. By (4.1), if y > 1, the inverse to gij is, For y > 1, the metric takes the
form

(gij) =
(

hij(x)/y2 0
0 1/y2

)
.
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128 3. MANIFOLDS WITH HYPERBOLIC ENDS

Therefore, its inverse is
(
gij

)
=

(
y2hij(x) 0

0 y2

)
.

To show the compactness of the resolvent, we have only to show that if {uj} is
a bounded sequence in H1, it contains a subsequence convergent in H. Since Pm

is the projection onto the the eigenspace corresponding to m-th eigenvalue λm of
−∆M , we have, for u ∈ H1(M) and R > a,∫

M×(R,∞)

gij ∂iu ∂ju dM =
∫

M×(R,∞)

y2
(
|∂yu|2 + hij∂xiu∂xj u

) dMdy

yn

≥ R2
∞∑

m=0

λm

∫ ∞

R

‖Pmu(y)‖2
L2(M)

dy

yn

≥ λ1R
2

∫

M×(R,∞)

|(P � ⊗ Iy)u|2dM.

By the above inequality, for any � > 0 there exists R > 1 such that

sup
j

∫

M×(R,∞)

|(P � ⊗ Iy)uj |2dM < �.

On M\M×(R,∞) we apply Rellich’s theorem to extract a convergent subsequence.
This proves (1).

Any u ∈ D(L) is written as u = L−1f for some f ∈ H. It satisfies

(4.10) l(u, v) = (Lu, v) = (f, v), ∀v ∈ H1.

Taking v from C∞
0 (Ma

int) and (P � ⊗ Iy)C∞
0 (Ma

ext), we see that

(−∆g − (n − 1)2

4
+ 1 − ζ)u = f weakly in Ma

int, and Ma
ext.

Therefore, u ∈ H2
loc(Ma

int), (P �⊗Iy)u ∈ H2
loc(Ma

ext). Take v = ϕm(x)χ(y) (m ≥ 1),
where χ ∈ C∞

0 ((2,∞)) and ϕm is the eigenfunction associated with λm. Then
from (4.10), we see that (u(·, y), ϕm) satisfies a 2nd order differential equation on
(2,∞). Therefore, we have that (P � ⊗ Iy)u ∈ H2

loc(M × (2,∞)). We then have
u ∈ H2(Ma

int) and, by Theorem 2.1.3, u = (P � ⊗ Iy)u ∈ H2(Ma
ext). By taking

v ∈ (P0 ⊗ Iy)C∞(M × (2, a]) such that v = 0 for y < 3 in (4.10), and integrating
by parts, we have ((

y(n−2∂y(P0 ⊗ Iy)u
)
(a − 0), v

)
L2(Γa)

= 0.

Therefore, (∂y(P0 ⊗ Iy)u) (a − 0) = 0. These facts prove D(L) ⊂ DL.
Take u ∈ DL and put h = (−∆g − (n − 1)2/4 + 1)u for y �= a. Then by

integration by parts, we have

l(u, v) = (h, v)H, ∀v ∈ H1.

Since l(u, v) = (L1/2u, L1/2v)H, we then have∣∣(L1/2u, L1/2v)H
∣∣ ≤ C‖v‖H, ∀v ∈ H1

with a constant C independent of v ∈ H1 = D(L1/2). This shows that L1/2u ∈
D(L1/2), which proves DL ⊂ D(L). In particular, we have proven for y �= a

Lu =
(
− ∆g − (n − 1)2

4
+ 1

)
u, u ∈ D(L).
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4. CUSPS AND GENERALIZED EIGENFUNCTIONS 129

The uniqueness in (3) follows from ζ �∈ σ(L). Indeed, if u1, u2 be two different
solutions, then ui−u2 ∈ DL would be an eigenfunction of L. To show the existence,
we take η(y) ∈ C∞(Ma

int) such that η(y) = 0 for y < 2, η(a−0) = 0, (∂yη)(y−a) =
1, and η(y) = 0 in Ma

ext. Let

f̃ =





(
− ∆g − (n − 1)2

4
+ 1 − ζ

)
η in Ma

int,

0 in Ma
ext,

and put

(4.11) u = u(z, ζ, λ) = λχ(y) + (L − ζ)−1f − λ(L − ζ)−1f̃ .

This is analytic with respect to λ and meromorphic with respect to ζ. �
For 0 < α < β < ∞, we put

U
(±)
αβ = {ζ ∈ C ; α < Re ζ < β, 0 ≤ ±Im ζ}.

Lemma 4.4. On M × (0,∞), we consider H0 = −y2(∂2
y +∆M )+ (n− 2)y∂y −

(n−1)2/4, and R0(ζ) = (H0−ζ)−1. Suppose f ∈ C∞
0 (M) satisfies supp f ⊂ M1 =

M × (1,∞). Let ρ(y) ∈ C∞((0,∞)) be such that ρ(y) = 0 for y < 2, ρ(y) = 1 for
y > 3. Then, for any 0 < α < β < ∞, there exist � > 0, C > 0 such that∣∣∣ρ(y) ((P � ⊗ Iy)R0(ζ)f) (x, y)

∣∣∣ ≤ Ce−�y, ζ ∈ U
(±)
αβ .

Proof. By (2.12),

u(x, y) := (P � ⊗ Ia
y )R0(ζ + i0)f =

∑
m≥1

ϕm(x)
(
G0(

√
λm, ν)f̂m

)
(y),

with ν = −i
√

ζ, where G0(ζ, ν) is defined by Definition 1.3.5. Then we have by
Chap. 1, (3.14)

‖u(·, y)‖2
L2(M) =

∑
m≥1

|G0(
√

λm, ν)f̂m(y)|2 ≤ Ce−�y.

Note that supp f̂m(y) is away from 0, and the singularities of Iν(y),Kν(y) at y = 0
do no harm. Since, for any q > 0, ‖∆q

xu(·, y)‖2 is estimated in a similar manner,
by Sobolev’s inequality we have |u(x, y)|2 ≤ Ce−�y. �

4.5. Meromorphic continuation of the Eisenstein series. Here we pass
to the traditional parametrization. For a subset E ⊂ R, we write

n − 1
2

±
√
−E =

{
s ∈ C ; s(n − 1 − s) − (n − 1)2

4
∈ E

}
.

Let A = L − 1 − (n−1)2

4 , and put

Σ(A) =
n − 1

2
±

√
−σ(A), Σ(H) =

n − 1
2

±
√
−σ(H),

Σd(H) =
n − 1

2
±

√
−σd(H), Σp(H) =

n − 1
2

±
√
−σp(H),

L =
{

s ∈ C ; Re s =
n − 1

2

}
, L± =

{
s ∈ L ; ± Im s > 0

}
.

Note that Σ(H) = L∪Σd(H), and that Σ(A) is a discrete set, since σ(A) is discrete
by Lemma 4.3.
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130 3. MANIFOLDS WITH HYPERBOLIC ENDS

In view of (4.5), we define for
{
Re s > (n − 1)/2

}
\ Σp(H)

E(z, s) = χ(y) ys −
(
− ∆g − s(n − 1 − s)

)−1 [−∆g, χ(y)] ys

= ϕ(z, k − i�),

where s = (n − 1)/2 + i(k − i�) (� > 0). By Theorem 3.8, E(z, s) is extended to
L\

(
Σp(H)∪{(n−1)/2}

)
. We take s = (n−1)/2+ ik ∈ L\

(
Σp(H)∪{(n−1)/2}

)
.

Since (−∆g − s(n − 1 − s))−1
f satisfies outgoing radiation condition,

E(z, s) − ys ∼ Cyn−1−s.

Comparing with (4.3),

E(z, s) � ys + S(s)yn−1−s, as y → ∞.

By Lemma 4.3, for s �∈ Σ(A), there exists a unique solution v = v(z, s) ∈ DL

of the following boundary value problem

(4.12)




(
− ∆g − s(n − 1 − s)

)
v(z, s) = 0 in Ma

int,(
− ∆g − s(n − 1 − s)

)
(P � ⊗ I1

y )v(z, s) = 0 in Ma
ext,(

y∂y(P0 ⊗ I1
y )v

)
(a − 0, s) = 1.

We define

(4.13) λa(s) =
(
(P0 ⊗ I1

y )v
)
(a − 0, s).

By Lemma 4.3 (3), λa(s) is meromorphic on C with respect to s with poles in Σ(A).

Lemma 4.5. (1) For s ∈ L \
(
Σ(A) ∪ Σp(H) ∪ {(n − 1)/2}

)
, we have

(4.14)

λa(s) =
as + an−1−sS(s)

sas + (n − 1 − s)an−1−sS(s)
, S(s) = a2s−n+1 1 − sλa(s)

(n − 1 − s)λa(s) − 1
.

(2) Letting v(z, s) be the solution to (4.12), we have

E(z, s) −
(
sa(s) − (n − 1 − s)S(s)a(n−1−s)

)
v =

{
ys + S(s)yn−1−s, on Ma

ext,

0, on Ma
int.

(3) S(s) and E(z, s) are extended to meromorphic functions on C.

Proof. Lemma 4.4 implies∣∣(P � ⊗ Ia
y )E(z, s)

∣∣ ≤ Ce−�y, � > 0.

Hence, we have
(P0 ⊗ Ia

y )E(z, s) � ys + S(s)yn−1−s.

On the other hand,for y > 3,(
−y2∂2

y + (n − 2)y∂y − s(n − 1 − s)
)
(P0 ⊗ I3

y )E(z, s) = 0.

Therefore, we have

(4.15) (P0 ⊗ I3
y )E(z, s) = ys + S(s)yn−1−s,

since any solution of the equation
(
−y2∂2

y + (n − 2)y∂y − s(n − 1 − s)
)
u(y) = 0 is

written uniquely by a linear combination of ys and yn−1−s. Let

u =

{
E(z, s) in Ma

int,

(P � ⊗ Ia
y )E(z, s) in Ma

ext.
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4. CUSPS AND GENERALIZED EIGENFUNCTIONS 131

Then u ∈ DL, and




(
− ∆g − s(n − 1 − s)

)
u = 0 in Ma

int,(
− ∆g − s(n − 1 − s)

)
(P � ⊗ 1)u = 0 in Ma

ext,(
y∂y(P0 ⊗ Iy)u

)
(a − 0, s) = sas + (n − 1 − s)S(s)an−1−s.

Comparing with (4.12), we obtain, by the uniqueness,

(4.16) u =
(
sas + (n − 1 − s)S(s)an−1−s

)
v.

Using (4.15), we obtain (1). The assertions (2) and (3) are direct consequences of
Lemma 4.3 (3), (4.16) and the meromorphy of λa(s). �

Lemma 4.6. λa(s) ∈ R for s ∈ L \ Σ(A) and λa(s) = λa(s̄).

Proof. Note that if v ∈ DL, then v ∈ DL, and also that s(n−1−s) ∈ R if s ∈ L.
Then, if v(z, s) satisfies (4.12), so does v(z, s). By the uniqueness, v(z, s) is then
real-valued. This proves that λa(s) ∈ R. As, for s ∈ L, s(n− 1− s) = s̄(n− 1− s̄)
it follows from (4.12) that λa(s) = λa(s̄). �

Theorem 4.7. S(s) is holomorphic on Re s = (n − 1)/2.

Proof. Take s1 = (n−1)/2+ik1, 0 �= k1 ∈ R, and suppose λa(s) is holomorphic
at s1. It follows from Lemma 4.6 that λa(s1) is real. Then (n−1−s1)λa(s1)−1 �= 0,
hence by Lemma 4.5 (1), S(s) is holomorphic at s1.

Suppose λa(s) has a pole at s1 = (n − 1)/2 + ik1, 0 �= k1 ∈ R. Then κa(s) =
1/λa(s) is holomorphic at s1, and κa(s1) = 0. By the formula

(4.17) S(s) = a2s−n+1 κa(s) − s

n − 1 − s − κa(s)
,

S(s) is holomorphic at s1.
Suppose λa(s) is holomorphic at s0 = (n−1)/2. By Lemma 4.5 (1), if λa(s0) �=

2/(n − 1), S(s) is holomorphic at s0, and S(s0) = −1. If λa(s0) = 2/(n − 1), by
the Taylor expansion λa(s0 + w) = 2/(n − 1) + cw + O(w2). We then have

S(s0 + w) = −a2w

(
c +

( 2
n − 1

)2)
w + O(w2)

(
c −

( 2
n − 1

)2)
w + O(w2)

.

Since λa(s) = λa(s̄), we have c = 0. Therefore, S(s) is holomorphic at s0 and
S(s0) = 1.

Suppose λa(s) has a pole at s0 = (n − 1)/2. By (4.17), S(s) is holomorphic at
s0 and S(s0) = −1. �

Note, since by Theorem 3.16, Ŝ(k) is unitary for k > 0, k2 �∈ σp(H), we have
|S(s)| = 1 a.e. on L. In particular, due to the proof of Theorem 4.7, S((n−1)/2) =
±1.

To prove the holomorphy of E(z, s), we prepare an identity. Let v(z, s) be a
solution to (4.12), and put

w̃(z, s) =
(
sas + (n − 1 − s)an−1−sS(s)

)
v(z, s),

and, for k ∈ R,

w(z, k) = w̃
(
z,

n − 1
2

+ ik
)
.
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It satisfies the equation

(L − 1 − s(n − 1 − s))w = 0, s =
n − 1

2
+ ik,

and the boundary condition

(
(P0 ⊗ I1

y )
)
w(a − 0, k) = a(n−1)/2+ik + a(n−1)/2−ikS

(n − 1
2

+ ik
)
,

where we have used the definition of λa(s) and Lemma 4.5. It also satisfies

(
y∂y(P0 ⊗ I1

y )w
)
(a − 0, k) =

(n − 1
2

+ ik
)
a(n−1)/2+ik

+
(n − 1

2
− ik

)
a(n−1)/2−ikS

(n − 1
2

+ ik
)
.

Lemma 4.8. For k, h ∈ R, the following formula holds:

(w(·, k), w(·, h))H

=
i

k − h

(
ai(h−k)S

(n − 1
2

+ ik
)
S

(n − 1
2

+ ih
)
− ai(k−h)

)

− i

k + h

(
ai(k+h)S

(n − 1
2

+ ih
)
− a−i(k+h)S

(n − 1
2

+ ik
))

.

(4.18)

Proof. Letting w0(y, k) = (P0 ⊗ I1
y )w

∣∣
M1

, we have, by integration by parts and
Lemma 4.4,

(Lw(k), w(h))H − (w(k), Lw(h))H

=
1

yn−2

(
w0(y, k)(∂yw0)(y, h) − (∂yw0)(y, k)w0(y, h)

)∣∣∣
y=a−0

.

Using the equation and the boundary conditions, we have

(k2 − h2)(w(k), w(h))

= i(h + k)
(

ai(h−k)S
(n − 1

2
+ ik

)
S

(n − 1
2

+ ih
)
− ai(k−h)

)

+ i(h − k)
(

ai(k+h)S
(n − 1

2
+ ih

)
− a−i(k+h)S

(n − 1
2

+ ik
))

,

which proves the lemma. �

Theorem 4.9. Eisenstein series E(z, s) is holomorphic on Re s = (n − 1)/2.

Proof. In view of Lemma 4.5 (2), we have only to show that when k → k0 ∈
Σ(A), ‖w(k)‖ is bounded. We prove this by first letting h → k �= 0 and k → k0

in (4.18). Since S(s) is holomorphic and, by the unitarity, |S(s)| = 1 on Re s =
(n − 1)/2, the 1st term of the right-hand side of (4.18) is bounded in this process.
The second term is bounded when k0 �= 0.

By the note after Theorem 4.7, S(s0) = ±1 for s0 = (n − 1)/2. Therefore, the
2nd term of the right-hand side of (4.18) is bounded when k, h → k0. �
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5. SL(2,Z)\H2 as a Riemann surface

In this section we summarize the basic properties of the quotient manifold by
the action of modular group

SL(2,Z) =
{(

a b
c d

)
; a, b, c, d ∈ Z, ad − bc = 1

}
,

where the action SL(2,Z) × C+ � (γ, z) → γ · z ∈ C+ is defined by (1.2). In the
following, I2 denotes the 2 × 2 unit matrix.

5.1. Fundamental domain. Let M = SL(2,Z)\H2. The fundamental do-
main Mf of M is the following set:

Mf = {z ∈ C+ ; |z| ≥ 1,−1/2 ≤ Re z ≤ 1/2},

∂Mf = ∂Mf
1 ∪ ∂Mf

2 ,

∂Mf
1 =

{
− 1

2
+ iy ;

√
3

2
≤ y < ∞

}
∪

{1
2

+ iy ;
√

3
2

≤ y < ∞
}

,

∂Mf
2 =

{
eiϕ ;

π

3
≤ ϕ ≤ 2π

3

}
,

(see e.g. [5] p. 30, [128] p. 241). We put

γ(T ) =
(

1 1
0 1

)
, γ(I) =

(
0 −1
1 0

)
.

Their actions are

γ(T ) · z = z + 1, γ(I) · z = −1
z
.

To get M from Mf , we glue ∂Mf
1 by the action of γ(T ), i.e. − 1

2 + iy → 1
2 + iy,

and ∂Mf
2 by the action of γ(I), i.e. eiϕ → ei(π−ϕ). We denote this identification by

Π, i.e.
M = Mf/Π.

The resulting surface M has two singular points, p1 = Π(i) and p2 = Π(eiπ/3) =
Π(e2πi/3). The nature of these singularities is clarified by the following lemmas
(see e.g. [124] p. 15, [128], p. 247, p. 251). We denote by 〈γ〉 the cyclic group
generated by γ.

Lemma 5.1. SL(2,Z) is generated by γ(T ) and γ(I).

Lemma 5.2. For w ∈ C+, we put

Gw = {γ ∈ SL(2,Z) ; γ · w = w}.

That w ∈ Mf and Gw 
= {±I2} occurs only for the following three cases.

(1) w = i. In this case Gw =
〈(

0 −1
1 0

)〉
.

(2) w = eπi/3. In this case Gw =
〈(

0 −1
1 −1

)〉
.

(3) w = e2πi/3. In this case Gw =
〈(

−1 −1
1 0

)〉
.
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Note that in the case w = i, the order of the group Gw is 2, while in the case
w = eπi/3 and e2πi/3 (which are identified by γ(T ) and γ(I)), the order of the group
Gw is 3. As a result, the point pi has a vicinity Ui ⊂ M, i = 1, 2, which can be
represented as U1 = Γ1\B(1/2), U2 = Γ2\B(1/2), where Γ1, Γ2 are the groups of
rotations corresponding to Gi and Geπi/3 , and B(r) is the ball of radius r > 0 in C
centered at 0. These introduce orbifold structure on M, however, in this note, we
do not issue these constructions further.

5.2. Analytic structure. To introduce local coordinates on M, we consider
3 different cases.

1. Let V0 = Mf \ ∂Mf
2 , and U0 = Π(V0). Define for p ∈ U0

ζ0(p) = ϕ0(z) = e2πi z, p = Π(z).

Then, since two points −1/2+ iy, 1/2+ iy are identified by the action of γ(T ), ζ0(p)
defines analytic coordinates on U0.

2. Let V1 = Mf \ ∂Mf
1 , and U1 = Π(V1) be a neighborhood of p1 = Π(i). Define

for p ∈ U1

ζ1(p) = ϕ1(z) =
(

z − i

z + i

)2

, Π(z) = p.

Then, since two points eiϕ, ei(π−ϕ), where π/3 ≤ ϕ < π/2, are identified by the
action of γ(I), ζ1(p) defines analytic coordinates on U1.

3. Let V2 = Mf \ iR, and U2 = Π(V2) be a neighborhood of p2 = Π(eπi/3) =
Π(e2πi/3). Define for p ∈ U2

ζ2(p) = ϕ2(z) =




(
z − eπi/3

z − e−πi/3

)3

, p = Π(z), Re z > 0,

(
z − e2πi/3

z − e−2πi/3

)3

, p = Π(z), Re z < 0.

Since two points −1/2 + iy, 1/2 + iy are identified by the action of γ(T ), and two
points eiϕ, ei(π−ϕ), where π/3 ≤ ϕ < π/2, are identified by the action of γ(I), this
ζ2(p) defines analytic local coordinates on U2.

To check that ϕ1, ϕ2 satisfy the desired analytical property, it is convenient
to observe that ϕ1, ϕ2 map the corresponding sectors of the circle |z| = 1 onto an
interval of a ray emanating from 0.

Since ζα ◦ ζ−1
β on ζβ(Uα ∩ Uβ), α, β = 0, 1, 2, are analytic, the local coordinate

system {(Uα, ζα)}2
α=0 makes M a Riemann surface.

5.3. Singularities as a Riemannian manifold. By the metric

ds2 =
(dx)2 + (dy)2

y2
= − 4dzdz

(z − z)2
on Mf ,

M becomes a hyperbolic space. However, we must pay attention to the points
p1, p2. By the above local coordinate ζα(p) = ϕα(z), p = Π(z), α = 0, 1, 2, this
metric becomes

ds2 =
dζαdζα

(Im z)2|ϕ�
α(z)|2

.
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5. SL(2, Z)\H2 AS A RIEMANN SURFACE 135

Therefore, on the zeros of ϕ�
1(z), i.e. at i, ϕ2(z), i.e. eπi/3, e2πi/3, this Riemannian

metric has singularities. In these cases,

ζα = ϕα(z) = T (z)α+1, T (z) =
z − w

z − w
,

where w = i for α = 1, and w = eπi/3 and w = e2πi/3 for α = 2. In these cases,

z =
w − wζ1/n

1 − ζ1/n
= w + (w − w)ζ1/n + · · · .

Therefore, dz/dζ = n−1(w − w)ζ1/n−1 + · · · , hence

(5.1) |ϕ�
α(z)|2 =

∣∣∣∣
dz

dζ

∣∣∣∣
−2

= O(|ζ|λ), λ = 2 − 2
n

.

Note that 1 ≤ λ < 2. The volume element and the Laplace-Beltrami operator are
rewritten as

(5.2)
dx ∧ dy

y2
=

i

2y2
dz ∧ dz =

i
∣∣dz/dζ

∣∣2
2(Im z)2

dζ ∧ dζ,

(5.3) y2
(
∂2

x + ∂2
y

)
= 4(Im z)2

∂2

∂z∂z
=

4(Im z)2∣∣dz/dζ|2
∂2

∂ζ∂ζ
.

Both of them have singularities at the corresponding w. However, the singularity
of the volume element and that of the Laplace-Beltrami operator cancel, since we
have, for C∞-functions f, g supported near w,

(5.4)
∫

M
y2

(
∂2

x + ∂2
y

)
f · g dxdy

y2
= 2i

∫
∂2

∂ζ∂ζ
f · g dζdζ.

We take small open neighborhoods Ũi of pi, i = 1, 2 such that Ũ1 ∩ Ũ2 = ∅.
We construct a partition of unity {χα}2

α=0 such that supp χα ⊂ Ũα, α = 1, 2,
suppχ0 ⊂ U0, and

∑3
α=0 χα = 1 on M. In addition to the hyperbolic volume

element, let

(5.5) dV
(α)
E =

i

2
dζα ∧ dζα,

and define a quadratic form a(u, v) by

(5.6) a(u, v) =
3∑

α=0

∫
χαu v dV

(α)
H +

3∑
α=0

∫
χα∇u · ∇v dV

(α)
E ,

where
∇ = (∂t, ∂s), (ζ = t + is).

We can show that the quadratic form a(u, v) with domain C∞
0 (M) is closable in

L2(M, dvH). Let ã(u, v) be its closed extension, and H̃1 the set of u such that
a(u, u) < ∞ equipped with the inner product (5.6). This is the 1st order Sobolev
space on M. By Theorem 4.2, we have a self-adjoint operator A such that a(u, v) =
(Au, v)M,g for u ∈ D(A), v ∈ H̃1. Then 1 − A is a self-adjoint realization of the
Laplace-Beltrami operator ∆g.

When we deal with the perturbation problem of ∆g, we should restrict our-
selves to the case that the coefficients of differential of more than one order of
the pertubation term vanish around i, eπi/3, e2πi/3. The precise assumption is as
follows.
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Let H0 = −∆g = −y2(∂2
y + ∂2

x), and V a 2nd order differential operator on M
such that

(M-1) H = H0 + V is formally self-adjoint.

(M-2) Around i, eπi/3, e2πi/3, V is an operator of multiplication by a bounded real
function.

(M-3) Except for the neighborhoods in (M-2), V is a differential operator of the
form :

V =
∑

i+j≤2

aij(x, y)(y∂x)i(y∂y)j

|Dαaij(x, y)| ≤ Cα(1 + | log y|)−min(|α|,1)−1−�, ∀α,

D = (Dx, Dy) = (y∂x, y∂y).
We define a self-adjoint extension of H through the quadratic form discussed

in §4. This means that we perturb the hyperbolic metric on M except for neigh-
borhoods of singular points so that it is asymptotically equal to the original metric
at infinity.

Since the measure dxdy/y2 has singularties at i, eπ/3, e2πi/3, the following lemma
is not obvious.

Lemma 5.3. For any R > 1, let χR be the characteristic function of M∩{y <
R}. Then χR(H + i)−1 is compact in L2(M; dxdy/y2).

Proof. Assume that fn, n = 1, 2, · · · , are on the unit sphere of L2(M; dxdy/y2),
and let un = (H +i)−1fn. By Rellich’s theorem, from {χRun}n≥1 one can extract a
subsequence which converges in L2 outside small neighborhoods of singular points.

Around p1 = i and p2 = ω, we take local coordinate ζ = t+ is as above, and for
a suffiently small r > 0, let Br be a disc {t2 + s2 < r2}. Then, if u ∈ L2(M, dxdy

y2 )
has a support in Br, we have by (5.2)

(5.7)
∫

Br

|u|2dtds ≤ C

∫

Br

|u|2dV
(α)
H ,

with a constant C > 0. By the Sobolev imbedding Hs(Rn) ⊂ Lp(Rn), where
0 ≤ s < n/2, p = 2n/(n − 2s), we have

(5.8) H1(R2) ⊂ Lp(R2), ∀p > 2,

with continuous inclusion.
We take α, β such that α−1 + β−1 = 1, 1 < α < 2/λ, where λ is defined by

(5.1). Then, by Hölder’s inequality,
∫

Bδ

|u|2dV
(α)
H ≤ C

∫

Bδ

r−λ|u|2dtds ≤ C

(∫

Bδ

r−λαdtds

)1/α (∫

Bδ

|u|2βdtds

)1/β

.

Since λα < 2, the 1st term of the most right-hand side tends to 0 when δ → 0. To
the 2nd term of the most right-hand side we apply (5.8). Then, for any � > 0, there
exists δ > 0 such that∫

Bδ

|u|2dV
(α)
H ≤ �

(∫

Bδ

|u|2dV
(α)
H +

∫

Bδ

|∇u|2dV
(α)
E

)
, u ∈ H̃1.

Given the bouded sequence {un} in H̃1, the integral of |un|2 over Bδ can be made
small uniformly in n. Outside Bδ, we use the usual Rellich theorem. This proves
the lemma. �
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5.4. Spectrum. By the above Lemma 5.3, the results in §3 and §4 also hold
for H. Let R(z) = (H − z)−1.

Theorem 5.4. (1) σe(H) = [0,∞).
(2) σp(H)∩ (0,∞) is of finite multiplicity, discrete as a subset in R, with possible
accumulation points 0 and ∞.
(3) If λ ∈ (0,∞) \ σp(H), R(λ ± i0) ∈ B(B;B∗).

5.5. Eisenstein series. We return to the case of H0 = −y2(∂2
y + ∂2

x). Let

G = SL(2,Z), G0 =
{(

1 n
0 1

)
; n ∈ Z

}
,

i.e. G0 is the group of translations by n along the y−axis.

Lemma 5.5. (1) For g =
(

a b
c d

)
, g� =

(
a� b�

c� d�

)
∈ G,

g�g−1 ∈ G0 ⇐⇒ ∃n ∈ Z s.t. a� − a = nc, b� − b = nd, c� = c, d� = d

(2)
(

1 0
0 1

)
,

(
∗ ∗
c d

)
, (c, d) = 1, are the complete representative of G0\G.

Here (c, d) = 1 means that c and d are mutually prime.

The proof is omitted.

Let us note that for z = x + iy

Im g · z =
y

(cx + d)2 + c2y2

holds. The Eisenstein series is defined by

(5.9) Ẽ(z, s) =
∑

[g]∈G0\G

(Im g · z)s = ys +
∑

(c,d)=1

(
y

(cx + d)2 + c2y2

)s

.

We show that it is absolutely convergent for Re s > 1.

Lemma 5.6. For |x| ≤ 1/2, y ≥
√

3/2, cd �= 0,
y

(cx + d)2 + c2y2
≤ 2√

3|cd|
.

Proof. Letting r2 = x2 + y2, we have

(cx + d)2 + c2y2 = r2

(
c +

dx

r2

)2

+
y2

r2
d2 ≥ y2

r2
d2 ≥ 3

4
d2.

This together with the obvious inequality

(cx + d)2 + c2y2 ≥ c2y2

proves

(cx + d)2 + c2y2 ≥ 1
2

(
c2y2 +

3
4
d2

)
≥

√
3

2
y|cd|. �

Lemma 5.6 implies the following lemma.

Lemma 5.7. For Re s > 1, the series (5.9) is absolutely convergent and

|Ẽ(z, s) − ys| ≤ Cs, ∀z ∈ M.
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Since ys satisfies on H2,

−∆(ys) − s(1 − s)ys = 0,

due to g ∈ SL(2,Z) being an isometry on H2,

−∆(Im g · z)s) − s(1 − s) (Im g · z)s = 0.

In addition, (Im g0 · z)s = Im z = y for g0 ∈ G0. Therefore, by Lemma 5.5 (2),
Ẽ(z, s) satisfies

−∆Ẽ(z, s) − s(1 − s)Ẽ(z, s) = 0, on M.

By Lemma 5.7, Ẽ(z, s) − ys ∈ L∞(M) ⊂ L2(M), in view of M having finite
measure, L∞(M) ⊂ L2(M). Therefore, for Re s > 1

Ẽ(z, s) = χ(y)ys − R0(s(1 − s))
(
[H0, χ]ys

)
.

Here R0(ζ) = (H0 − ζ)−1, and χ(y) ∈ C∞((0,∞)) such that χ(y) = 0 for y < 2,
χ(y) = 1 for y > 3. This coincides with the Eisenstein series (4.5) introduced in
§4. By using properties of number theoretic functions and Poisson’s summation
formula, the S-matrix is computed as follows (see e.g. [70], p. 61).

Theorem 5.8. For the case of H0 = −y2(∂2
y + ∂2

x), we have

S(s) =
√

π
Γ(s − 1/2) ζ(2s − 1)

Γ(s) ζ(2s)
,

where ζ(s) is Riemann’s zeta function.

Remark 5.9. For 3-dimensions, one can define a similar surface by using the
Picard group

SL(2,Z + iZ) =
{(

a b
c d

)
; a, b, c, d ∈ Z + iZ, ad − bc = 1

}
,

where the action is defined by quarternios. The quotient space SL(2,Z + iZ)\H3

is also an orbifold. See [33].
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