Chapter 5

Hydrodynamic model

This chapter is devoted to the proofs of Theorems 2.1 and 2.3. Theorem 2.1 shows the unique
existence and the asymptotic behavior of the time global solution to the hydrodynamic model
for the large initial data. It is summarized in Theorem 2.3 that the time global solution for
this model convergences to that for the energy-transport model as the parameter ¢ tends
to zero. Theorem 2.1 is proven in Sections 5.1-5.3. The uniform estimate of the time local
solution, of which existence is discussed in Appendix 6.2, is established in Section 5.1. The
time global existence is proven in Sections 5.2 and 5.3. These discussions are essentially
same as those for the energy-transport model in Sections 4.1-4.3. The relaxation limit of
the solution thus constructed for the hydrodynamic model is studied in Section 5.4, which
completes the proof of Theorem 2.3.

5.1 Uniform estimate of local solution

We show that there exists a positive constant T, independent of e, such that the initial
boundary value problem (2.11), (2.12) and (2.4)—(2.6) has a solution until time T. It is
summarized in Corollary 5.3. To show it, we firstly prove the following lemma, which asserts
the existence of the time local solution even though the existence time 7. may depend on ¢.
Its proof is postponed until Appendix 6.2.

Lemma 5.1. Suppose the initial data (po, jo,00) € H*(Q) x H*(Q) x H3(Q) and the boundary
data py, pr and ¢, satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Let n and N be

certain positive constants satisfying

inf po, inf o, inf oo, jo 6o >, [|(po. o) (®)ll2 + lfolls < N,

respectively. Then there exists a positive constant T., depending on &, n and N, such that the
initial boundary value problem (2.11), (2.12) and (2.4)—(2.6) has a unique solution (p, 7,0, @)
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68 CHAPTER 5. HYDRODYNAMIC MODEL

satisfying p,j € X2([0,T.]), 0,6, € D([0,1.]) and ¢ € C*([0,T.]; H?*) with the conditions
(2.10a), (2.10b) and (2.13).

In order to apply the same argument as in Section 4 to the hydrodynamic model, we
have to improve the above lemma so that we can take the existence time 7. independently
of the parameter ¢ (see Corollary 5.3). To this end, we define Y (T'; m, My, M), for positive
constants m, M; and My, by a set of the functions satisfying the regularity

p.j € X:((0.71), 0.0, €D([0,T]), ¢ € C*([0,T];H?)

as well as the estimates

e o Sl zm, (5:12)
1 t
EII(9 =D+ [I(p, )17 +/0 10:(7)||* d7 < M, (5.1b)

1
[FIOles Ellﬁac(t)ll2 1 (poes o) O + €ll (s ot o) I + €2l (2)]]2

t
+/ G Oe) (I + €ll G, ptt, Onat) (TP dr < My (5.1c)
0

for t € [0, 7).

The regularities of the functions p and j, constructed in Lemma 5.1, is insufficient to
justify the following computations. This problem is resolved by an argument with using the
mollifier with respect to the time variable t. We, however, omit this argument since it is a
standard manner.

Lemma 5.2. There exist positive constants m, My and Ms, depending on ||(po, 00)ll2, |l7oll1,
IvVEowzll; |v/Eboweell, Inf po, inf Oy and inf S|pq, jo, O] but independent of e, such that if the
solution (p, 7,0, @) to the problem (2.11), (2.12) and (2.4)~(2.6) belongs to Y (T;m/2,2M,,2Ms),
then (p, J, 0, ¢) satisfies

inf p,inf 0, inf S[p,j,0) > m — Clm, My, My] V', (5.2a)

%II(O = 1O+ ll(p, ) (DI + /Ot 10:(T)I|? dr < My + Clm, My, Mt (5.2b)
1711 + %IIM@IF + (s Oza) I + €l (s Ot O () 1> + €21 e (£)]]

+/Ot | Gaas Oat) (T I% + €l Gt pres Oaar) (7)]|? dT < My + Clm, My, Mt (5.2¢)

fort €[0,T], where c[m, My, Ms] and C[m, My, Ms] are positive constants depending on m,
My and M, but independent of € and t.
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Proof. We may assume 7" < 1 without loss of generality. Let
m = min {ilésfz P0s ;gg to, ;ggs[po,m, 90]} :
The Schwarz and the Sobolev inequalities together with (2.11a) yield the lower bound
t t
plt.a) = po(o) = [ pidr = intpo = [ Willdr = m = clm M, M)V
0 r 0

as (p,7,0,0) € Y(T;m/2,2M;,2M,), Similarly, it holds that

. . o>

inf 0, inf Slp, j,0] > m — clm, M, MVt

Hence, the estimate (5.2a) holds.
In order to determine M7 and M,, we derive several estimates. For this purpose, differ-
entiate the equation (2.11b) in  and use (2.11a) to get

epue — (S[p, 3, 01pz), + pe = (p0r)x + 22 <j‘;> — (pa), - (5.3)

In addition, dividing the equation (2.11¢) by p and differentiating the resultant equation in

x lead to
J 2 /(7 2K0 2 € j2 1
91 *91 -\ - 0 - 7911 =\3 55 9 - 76I' 5.4
f*{p +3<p>x } <3p ) <3 34) (p) ¢ >4

The elliptic estimate
10;¢()ll2 < Cllo;p()]| (5.5)

for i = 0,1 follows from the formula (2.8). Taking B°-, L?- and L* norms of the equations
(2.11b), (5.3) and (5.4), respectively, we have from (5.5)

l£3e@®)o + lepu @)l + VElOur (2]
< Cll(p, O)D)ll2, 17D 11, VEl Gz, b ) (D), i p(£)]. (5.6)

The constant M is determined as follows. Multiply the equations (2.11a) and (5.3) by
2p and 2p;, respectively. Then sum up two resultant equalities, integrate the result by part
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over the domain [0, ] x © and use the boundary conditions p,(¢,0) = p;(¢,1) = 0 and (2.11a).
The result is

1 t prl 1
/(p2+S[p,j79]p§+€j§)(t)dm+// QP?dxdT:/ 05 + Slpo, jo. bolpb, + €40, dax
0 0

72// jop ”’QDt 2+ {(pqﬁm) (06). €<2i)jz)x}ptdrd7'. (5.7)

Applying the Schwarz and the Sobolev inequalities to the right hand side of (5.7) with using
(5.5) and (p, 7,0, ¢) € Y(T;m/2,2M;,2M3), we obtain

1
lp@)1IF <CTll(po, jos 00) 11, m] + M/O 10:(7)II* dr + Clp, m, My, Mot (5.8)

where p is an arbitrary constant to be determined. Multiplying the equation (2.11c) by
2(60 — 1 — 60, + 0;)/p, integrating the result by part over [0,¢] x  and using the boundary
condition (2.6) give

! 1+¢ 2 2} 2 9 | 2Ko 0 2

OO0 -1)2 4+ 62N (¢)da + 2 02} + 02 + =2 (62 + 62,) dad
[ o rafwaz [[ Lo ayeen s 20w o)

1

P
:/ 140 g — )2 4 dx+// 32p“ _1)+3i;9metdxd7
j 2 e\Jj
// { <p>ze+<3_3<> }(9—1—9m+et)dxd7'

< Cllfoll] + / 16,(r) |2 dr + Clu,m, My, Myt (5.9)
0

where last inequality is shown similarly as in the derivation of (5.8). Adding (5.8) to (5.9)
and then making g small enough lead to

||(p,9)(15)||f+%\\(9—1)(t)||2+/0 10:(7)II* d7 < Ci[ll(po. Jo, o) I, m]+Clm, My, Mot, (5.10)

where C is a constant independent of M;, M, and . Hence, we have the estimate (5.2b)
by letting

Ml = 61“‘(p07j07 90)”1’7”]'

Next we determine My. To this end, dividing the equation (2.11c) by p and then differ-
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entiating the resultant equation and (5.3) in ¢ give

epur — (S[p, 7, 0)pwt), — POzt + 26%,01& + pu = K, (5.11)
20 2K
O — 37),0& B;Ozzt + Cot K + Ks, (5.12)

Ky :={(Sp, 4, )Pz}, + pibaa + 22 (i)tﬂ'w + {25 (f))

0.,. 2/(j 29px, 2 € 52
Ky =— (= 6 — —
=5 (5) 0 e (5-5) (5),
/0, 2 j 2 %0
Ko = — — |\ = — =Pz - - gzz
’ j<ﬂ>t 3 (pZ P2 t+p3ptp>+<3p>t

Multiply (5.11) by 0(2p; + 4epy)/p?, integrate the result by part over [0,¢] x Q and then
use the boundary conditions p;(¢,0) = pi(¢,1) = pu(t,0) = pu(t,1) = 0 and (2.11a). These
computations yield

Jo + paltle — (p¢1)z} s

x t

Lo 0
/ { (25 Pit — 25ptt]z + ]z) + QES[Q j7 0] 2-7.L(L‘} (t) d‘/L

// 2S[p, 4,0 ZJM e ptt dxdr — // 001 (20¢ + depy) dadr

= / { (26” pue — 2epueos + Joz) + 25[po, Jos Oo] pgjom} (0) da
0

. . . 0
// ( ) (26°py — 2epujs + j2) — Slp. 4., 0] (pg) Pat(2p¢ + 4put)

0 jo 0 0
+ 2¢ (S[p,j, 9}p2> G2 4+ de (,02 pt> pu + 4e? (;) P2+ EKl(th + depy) dedr

C[H (Po: o)||25 ||.70||1> \[||(.70m, Oozaa )| igf Po]

1 1
+ 1 / (Ot Jiwws Vepu) (T)||? dr + / 16:(T)|1? dr + Clp, m.My, My)t. (5.13)
0 0

In deriving the last inequality, we have applied the Schwarz and the Sobolev inequalities with
using (5.5), (5.6) and (p, 4,0,9¢) € Y(T;m/2,2M;,2M,). Multiply the equations (2.11c) by
—30..+/p and the equations (5.12) by —6e6,,;, respectively. Sum up these two results,
integrate the resultant equality by part over [0, 7] x € and then use the boundary conditions
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ezt(tv 0) = ezt(tv 1) =0to get

1
/{3{92 0€§x+3£9§t} (t) dz
0
t 10
// 3602, + 3 02t+45—92ztdxd7+// =050t (2p¢ + 4epy) dadr
oJo P
t orl
= / 79335 9?,M+359§t (0) dz + 6¢ / / K220u — K300 dudr
o L2€ 0J0
j 2j 2 g 52
2
20— (2 =)L
//( )9 +3{ V- T332 (3 3()02}19””7
S C[||(p0760)||27 ||.70||17 \[”(.JOmxa 903&mx)||7nz1fp0}
1 1
+,M/ ||(9xtajacxa\£ptt7ﬁexxt)(7)||2d7—+/ ||9t(7—)H2dT+C[Mam~MlaM2]ta (514)
0 0

where the last inequality follows from the similar computation as in the derivation of (5.13).
Adding (5.14) to (5.13), making p sufficiently small and then using (5.2b), we have

%Ilt%(lf)Il2 + 11Uy Oue) O + €ll G O 17 + [l (2]

t
" / |G Ba) (I + €l (1t B ()
< Col(po, 00) |2 lldoll1: Vel (Jowas Oozaa)|l, m, Mi] + Clm. My, Malt, (5.15)

where Cs is a constant independent of M and «.

Multiply (2.11b) by 2j; and integrate the resulting equality by part over [0,¢] x €.
Then applying the Schwarz and the Sobolev inequalities to the resultant equality with using
(2.11a), (5.2b) and (5.5), we have

/01j2(t) dv + /Ot/ol 2ej; dvdr = /Oljg +{(00p0)z — po(®lp0)a} Jo d
- [0 poitra s [ [ 100 - oy (Z) s

t
< CI(po, Jo, o) |1, Mi] +C[m7M1JWQ]f+/ | (G Oze) (7)) .
0

11 t pl
+/ sz(t)dx+// eji drdr. (5.16)
0 2 0J0
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It together with (5.15) gives

t
||.7(t)||2 + ‘/0 5||jt(7-)||2 dr S C3[||p07 90”27 ||j0||17 \/g||(j0rm7 00IT’£)||7 m, Ml] + C[ma Mla MQ]@

o (5.17)
where C'3 is a constant independent of M, and e.
Finally, solving the equation (5.3) with respect to p,., taking L2-norm and then estimat-
ing the result with using (5.2b), (5.5), (5.15) and (5.17), we have

||p11(f)||2 S 64[”/007 00“27 ||j0H17 \@H(]Orzv 0017%1)”7 m, Ml] + O[ma M17 MZ]tv (518)

where C} is a constant independent of M, and . Moreover, solve the equation (5.4) with
respect to 0,,,, take L2-norm and then estimate the result similarly as above to get

\/‘g”ezzz(t)nz S 55[ Po, 90“27 ||j0||17 \/gH(]Ozza 00111)“7 m, Ml] + C[m7 M17 MQ]t7 (519)

where Cj is a constant independent of M, and e. Consequently, summing up (5.15) and
(5.17)—(5.19) and then letting

M, :=Cy+C3+ Cy + Cs,
we have the desired estimate (5.2c). O
Owing to Lemmas 5.1 and 5.2, we can take the existence time of the solution (p, j,6, ¢)

independently of . As this fact is shown similarly as in the proof of Corollary 4.5, we omit
the proof.

Corollary 5.3. Suppose the initial data (po, jo,00) € H?(2) x H*(Q) x H*(RY) and the
boundary data p;, p. and ¢, satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Let ng
and Ny be certain positive constants satisfying

inf po, inf by, inf S[po, jo, 0] > 1o, ldollr + [[(po, 00) () |l2 + V|| (Gowz: bozza) ()| < No,

respectively. Then there exists a positive constant T*, depending on ng and Ny but inde-
pendent of €, such that the initial boundary value problem (2.11), (2.12) and (2.4)—(2.6)
has a unique solution (p,j,0,¢) satisfying p,j € X2([0,T7%]), 6,0, € D([0,T*]) and ¢ €
C*([0,T*); H?) with the conditions (2.10a), (2.10b) and (2.13). Moreover, it satisfies

b e stz .

iR + =110 = DI + 1o, )O3 + &l Gz Oat Oaaa) (DI + &2l pee () I

1
2|
t
+ / 1(8es jums 60) (PP + [l G s Bat) (PP dr < €, (5.20b)
0

where ¢ and C are positive constants independent of €.
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5.2 Semi-global existence of solution

The semi-global existence of the solution is established in this section. We also show in
Corollary 5.8 that the perturbation (p — p,j — 7,60 — 0,0 — q@)(T,x) at time T becomes
arbitrarily small provided that T is sufficiently large (and thus er is small). These proofs
essentially follow from the same arguments as in Section 4.2.

For clarity, throughout this section, we write the solution for the hydrodynamic model by
(p°, 55, 6°, ¢°) and the solution for the energy-transport model by (p°, 5°,0° ¢°), respectively.
The difference between (pf, j, 6%, ¢F) and (p°, 5°,6° ¢°) is denoted by

RE = [)E _ p07 JE = js _jO7 Qs = g — 907 P = d)e _ ¢)07
1
20 i= sup (IO + 10+ 1 QD+ VEN G ) O )

In this section, T* denotes existence time defined in Corollary 5.3 with

no := min {inf pg, inf by, inf S{po, jo, o]},
No = [l70ll1 + 120, 00) ) ]l2 + VE Il Gowa Oozae ) (E)-

Subtracting (2.11) from (2.14) leads to the system for (R*, J¢, Q°, ¥°)

R+ J5 =0, (5.21a)
-2\ 2
eji +e ((jpe) ) HOR A+ QL+ T = Fy, (5.21b)
2k 20° e (9?2 1
QF — e c 4 — +2Q° = Fy + F3, 5.21c
©T 3 37" T3 (p)? " ¢ e (>:21¢)
>, = R, (5.21d)
E 1> 92 2 ’1)95 [ 2 jE § ‘70 i
Fl = ¢2R +p€¢i - ng - egRav F2 = 7; 3(pp ) J 3 <§p5§2 - Ep()i? ’
O 0 -0 e -0 .0
.]z e 9 ]19 e J Pz e 00 1 1
Fyi=— 2972Q° — 25 R+ S R+ +—5Q° + 000 -
’ { pep° (p°)? (p°)? () (p°)?
090 2kt
_ 7@5 :L‘ Tr
pep° 3p=p°

From (2.4) and (2.6), we have the boundary conditions

RE(,0) = RE(E,1) = Q5(L,0) = Q5 (t, 1) = &°(t,0) = &°(t, 1) = 0. (5.22)
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Differentiate the equation (5.21b) with respect to = and then utilize the equations (2.11a)
and (5.21a) to get

AW
epf, —¢€ (OPE) ) —O0°R,, —p°Q, + R =—Fi, +Fy, Fy:=0.R,+p.Q,. (5.23)

The first two estimates in (5.68) in Lemma 5.4 show the positivity of the density and the
temperature. This essential condition follows from the same property of the solution to the
energy-transport model in Corollary 4.17 by assuming the difference of the solutions L.(T)
suitably small.

Lemma 5.4. Let T be an arbitrary positive constant greater than or equal to T*, and
(0%, 75, 0°,0°) be a solution to (2.11), satisfying p°,j¢ € X2(]0,T]), 0,0, € D([0,T]), ¢ €
C*([0,T] : H*(Q)) with the conditions (2.10a), (2.10b) and (2.13). Then there exist posi-
tive constants &g and (y such that if § < §y and ( < (o, there exist a positive constant &g,
depending on ¢ but independent of ¢, such that if L.(T) + & < eo, then the estimates

Y O CUCEE 20

[ ()]2 + legi (B)]o < C, (5.24b)

3@ = DOIE + O + 16700018 + 2l G ) OFF < (5.240)
el N+l ps (D < €, (5.24d)

[ 16 0 2+ <l ) < 141 (5.210)

hold for an arbitrary t € [0,T], where ¢ and C' are positive constants independent of t,  and
E.

Proof. The estimates in (5.24a) hold for ¢ € [0, T*] owing to Corollary 5.3. Because L.(t) <
go for suitably small &g, we also have (5.24a) for ¢ € [T*, T with aid of (4.81a). Similarly, the
estimate (5.24c) are proven for ¢ € [0, 7]. Then estimating the B%-norm of the formula (2.8)
and the equation (2.11b) gives (5.24b). Moreover, take the L?-norm of the equation (5.3)
and (5.4) with aid of (5.24c¢) to obtain (5.24d). The inequality (5.24e) is derived similarly
as the derivations of (5.2a) and (5.2b). O

Lemmas 5.5 and 5.6 ensure that L.(7") becomes arbitrarily small if ¢ is taken small
enough. To show these two lemmas, we use estimates F, Fy, F3 and Fy:

17T < CINES @)WY, I(Fs, Fyll* < Cll (R, Q)1 (5.25)
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which are shown by the inequalities (4.81a), (4.81b) and (5.24a)-(5.24c) as well as the elliptic
estimate

10:0° ()2 < CllO; R ()| (5.26)
for i = 0,1. Using the equation (5.21b), we have

IB2]* < ClI= B < CE* + 157 17 + 1R, Q) (01D). (5.27)

Lemma 5.5. Assume that (5.24) hold for t € [0, T]. Then it holds that

2
Ir @+ [ R ()||2+IIIQE(T)IIQdTSC/“(HZQ) e (5.28)
IR+ / (R, ||2dr<0(6+ <> o, (5.25h)

€ £ —t/e 9
IO < O+ 0 (24 5 ) (5.250)
fort € (0,T], where 8 and C are positive constants independent of t, § and .

Proof. Multiply the equation (5.21b) by Q° — 3Q¢,/2, integrate the resultant equality by
part over [0,t] x 2 and then use the boundary condition (5.22) to obtain

1 t 1
/ L S / / i@f)%(?’” C) @2+ )—Z  JE dadr

//(2 p 5_295 )Qs (32<f>2_pg )(Qa_ s)dm

2
<u/||Rf,E ()2 dr + Ol IIQERE)( >||1d7+0[]<e+g2)<1+t>, (5.29)

where p is an arbitrary positive constant. In deriving the above inequality, we have also
utilized the estimates (5.24), (5.25) and (5.27) as well as the Sobolev and the Schwarz
inequalities. Multiplying the equation (5.23) by 6°R:/(p°)? and integrating the resultant
equality by part over [0,¢] x Q with using the boundary condition (5.22) and the equation
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(5.21a), we have

/ (9 2 d + / / " (R Q;Jgdm
- / ( ), if—(ii#)fm

i . () .
- w {eptt —€ ( ) + Fi, — Fyp Ry dxdr

Su/o IIRf(T)HdTJrC[M]/O(1+H(pfﬁf)(f)lll)\\(QayRS)(T)II?dT+C[u}€(1+t), (5.30)

where the last inequality follows from the similar computation as in the derivation of (5.29).
Add (5.29) to (5.30), let p sufficiently small, and then apply the Poincaré inequality || R?|| <
C||R:|| to obtain that

(R, Q)@ + / (R, Q) ()2 dr

2
(3 € 1 1> €
< C/ (14 1G5, ) (DDIQ, B ()T dr + C <5+ a
0

The desired estimate (5.28a) follows from the Gronwall inequality applied to (5.31) together
with (5.24e).

Solve the equation (5.23) with respect to R¢
get

) (1+1). (5.31)

take the L2-norm and then use (5.28a) to

xx?

/ | R, (T)|*dr < C <5 + a > e, (5.32)

Multiply the equation (5.21b) by Qf and integrate the result by the part over [0,¢] x Q. After
that, applying the Sobolev and the Schwarz inequalities with using (5.28a) yield

1 t 1
% / () dx + / /0 (QF)? dudr
3 -£\2
[ (i i )ase

<3 /O/O (Q)? dxdr + C <a + zz) (1+1). (5.33)

Then adding (5.33) to (5.32), we have the estimate (5.28b).
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Multiply the equation (5.21b) by €*/¢.J¢ and integrate the result by the part over [0, ] x Q2.
Then estimating the resulting equality by the Schwarz and the Sobolev inequalities as well
as the estimates (4.81d), (5.24) and (5.28a), we have

t/f/ (J)2(t) dx + = // T/5(J%)? dadr
_ (JE)Q & DE Fas £
= 0)dx — ejp +¢ - +O0°R 4+ p°Q — Fy p J° dadT
2
< §||JE(0)||2 +7 // eT/E(JE)2 dxdr + Ce (5 + ;) et/eelt (5.34)

where we have also used f 7/edr < eet/s. Obviously the desired estimate (5.28c) follows
from (5.34). O

To apply the similar arguments as in the proof of Theorem 4.9, which shows semi-
global existence for the energy-transport model, we derive the estimates for the higher order
derivatives of the difference (R¢, J%,Q°). For this purpose, differentiating the equations
(5.21¢c) and (5.23) with respect to ¢ yields

2k 20° 1 2k 20° e(j°)?
Qf—;z+J;+Q6—( )@ (5n) - ( + B+ Fa,
M T T 3 \3p7 ), 307/, ()2 ),
(5.35)

(jE)Q 0°RE c e F I3 5.36
pg + tilex + P&y — Lt + Ly ( . )
xxt

Epftt 9 -p met =€ (

By the estimates (4.81a), (4.81b), (5.24a)—(5.24c) and (5.26), the L*norm of Fi, Foy, Fi,
F3; and Fy; are handled as

| (Frae, Far, Fao) || < C (G p2) O+ 1GE ) Ol + 117, 8 (D]l2) (5.37)
(e, Fo) | < C (177, RO+ I1(EE QT ()2 + | (P, O O (B, Q) (D)11) . (5.38)

where we have also used the equations (2.11a), (2.14a) and (5.21a). Due to the estimates
(4.81d), (4.81¢), (5.24e), (5.28), (5.37) and (5.38), it holds that

t t 2
[ 1 PP <o), [ PEn R <o (s 5) e 539
0 0

Lemma 5.6. Assume that (5.24) hold for t € [0,T]. Then it holds that

1/2
%IIQi(t)IIZHI( ror o Qaa) NP + el (G50, 0520) (D)1 <C<€+ §2> M (5.40)

fort € (0,T], where 8 and C' are positive constants independent of t, § and ¢.
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Proof. Firstly multiplying the equation (5.21¢) by —3t2Q¢_,/2 and integrating the resultant
equality by part over [0,7] x © with using the boundary condition (5.22), we obtain

,/01 4C(Q5) d:v+// ia fRedudr =1, (5.41)

S e

By the Schwarz and the Sobolev inequalities as well as the estimates (5.24a)—(5.24c), the
term I is estimated as

e / QP + Q5 (P dr + ( / ||p§<r>||%dr) ( / Qe ||2d7)

t 52 1/2 t 1/2
e ( |5 +r2<sz,F3x>||2dT) ( / T2Q;<r>2dr)
0 0
52 1/2
<C (e + 42) e’ (5.42)

In deriving the last inequality, we have also used (4.81d), (5.24¢), (5.28a), (5.39) and p5, =
Secondly multiply the equation (5.36) by #20° R /(p°)?, integrate the resultant equality
by part over [0,7] x € and use the convergence (4.80) to get

2 189 £ E 95 3
* [ G g >(R)d

1/2

eT?0c, . 20 .
// pf R:,) ) — ) (Rtt)2 —7? = cuRidrdr =1 + 1, (5.43)
27_96 9 7_295 (ja)Q 0¢ Re
R, R; — ORS—TZ( ) ( t) dxdr,
// { ( : > } T el P ) NP2/,
7_95 7_ 5 (95)2 . .
& :// e pf>2>} (), R

7_265
+ —— (RS, + poQ, — Fio + Fu) R dadr.

(r°)?
Apply the Schwarz and the Sobolev inequalities to the term I; with using the estimates
(5.24a)—(5.24¢) and (5.37) to obtain

t
I < Cﬁ/g (m+7) (105, 0, 22, ) (DT + €l (G, P P2 (DIP) + 72 05 (7)1 d
< CVe(1+t%). (5.44)
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In deriving the last inequality in (5.44), the estimates (4.81d)-(4.81f) and (5.24¢) have been
also used. Using the Schwarz and the Sobolev inequalities as well as the estimates (4.81),
(5.24), (5.28a) and (5.39), we estimate I, as

1/2

t 1/2 t
I2SO< / 1+72||<p§7e;p2,e?><r>||%+72||<FM,F4»Qdf) ( / 72||R5(7)2d7>
0 0

52 1/2
<C (s + CQ) e, (5.45)

Thirdly multiplying the equation (5.35) by —3¢t2Q¢
by part over [0,7] x € and using (4.80) yield

H()T 3 9 95
9 2 e e
/ )2 da + 8// ca) + 2( Q) + = p= ¢ Ry dadr

65
—26// Qs - (“) QT () S,
P/ P~/
&

€)2 372 302 € 9°
+— T ((‘7 )2> ;xt+;thQim+72< ”+p’” > JQ5
t

° .+, integrating the resultant equality

L. % bl
A ) e (- 5), e
<C( ;)1/2659 (5.46)

The last inequality follows from the similar calculation as in the derivation of (5.44).

Fourthly multiply the equation (5.36) by 2t26°R5,/(p°)?, integrate the resultant equality
by part over [0,T] x € and use the convergence (4.80) and the equality R® = p° — p°. The
result is

1 205 0 20¢
t2/ oL (Rtt) (( )) V2 dr + 2 // pr— c wRe dxdr
T

iy s

)2 e E 2‘96 € E £NE 3 7—296 0 £
+ 72 R RS, (O;RS, + p; Q5 — Fiut + Fu) RS, — Wﬂtttht

(ps)2 VL

t rl 295 €\2
I3 := 252// T 5 <(‘7 ) > Py dadr.
0Jo (p°) I -
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Due to the integration by part, the term I3 is rewritten as
05( E) 95 5 7_2 06(]'5)2
I:f€2t2/ p5,)? do + 267 // { — 05.)?
’ o (P () 0J0 p* 4 2 ()t ), (#2)
NGO Y
+ pL)+T 21 =) 4 — o5 p5, dxdr. 5.48
((pe)Q z( tt) 0 . t (pe)g N t (p5)2 N tt ( )

Substitute (5.48) in (5.47) and then estimate the right hand side of the resulting equality by
the similar calculation as in the derivation of (5.44). These procedures give

2 lﬁ € \2 (95) 5 T
# [ G+ g (R a

2ne
+ 2¢ // 779 B dedr < CVE(1+1%). (5.49)

Then sum up (5.41), (5.43), (5.46) and (5.49) and then substitute the estimates (5.42),
(5.44) and (5.45) in the result. After that, using the equation (5.21a), we have

2 2\ 1/2
ZHQW)HQ + (7, Qe VET o VEQS, e R (D < C <€+ <2> . (5.50)
To complete the dorivation of the desired estimate (5.40), it suffices to show the estimates
of R and 62 in (5.40). The estimate

€T ]‘L'Z' TrT

2\ 1/2
linoPsc(s+5) e (5.51)
immediately follows from (4.81c¢), (5.50) and JZ, = j5, + p2,. Solve the equation (5.23) in
Rt take the L?*norm and then use pf, = R, + p!, to get

IR (O < O ((Ris piys J2a) OI° + €7 + (B, Q)1 + 15, Q) B)]17)
1/2
<C < 22) est. (5.52)

In deriving the last inequality, we have also utilized (4.81c), (5.50) and (5.51). The estimate
of 6¢,, is derived as follows. Divide the equation (2.11¢) by p° and differentiate the result
in . Multiply the resulting equation by €6, and integrate the result by part over Q.
Then applying the Schwarz and the Sobolev inequalities with using the estimates (4.81c),
(5.24a)—(5.24c), (5.50) and (5.51), we have the inequality

xx?

2

12 2\ 1/2
L0 + 105 O < ) zt><>||2+cst2<c(s+g) . (5.53)

Consequently, summing up the estimates (5.50)-(5.53) yields the desired estimate (5.40). [



82 CHAPTER 5. HYDRODYNAMIC MODEL

Using Corollary 5.3 and Lemmas 5.4-5.6, we establish the semi-global existence of the
solution to the hydrodynamic model. Once the estimates (5.28) and (5.40) are shown, it is
proven by essentially same arguments as in the proof of Theorem 4.9. Hence we omit the
proof.

Theorem 5.7. Suppose the initial data (po,jo,00) € H*(Q) x H*() x H3(Q) and the
boundary data py, p, and ¢, satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then there
exist positive constants &g and (y such that if 6 < dy and ( < (y, for arbitrary positive time
T, there exist a positive constant e, depending on ¢ and T but independent of 6, such that if
e < e, then the initial boundary value problem (2.11), (2.12) and (2.4)—~(2.6) has a unique
solution (p*, j¢, 0, ¢°) verifying p°, j¢ € X2([0,T)), 6°,65 € ([0, T]) and ¢* € C*([0,T]; H?)
with the conditions (2.10a), (2.10b) and (2.13). In addition, it satisfies the estimates (5.24),
(5.28) and (5.40).

The next corollary is proven by using Theorem 5.7 together with the estimates (3.37),
(3.38) and (4.81b). Since this proof is similar to that of Corollary 4.10, we omit the details.

Corollary 5.8. Suppose the same assumptions as in Theorem 5.7. For an arbitrary positive
number A, there exist positive constants Th and 5 such that if 0 < € < e, the problem
(2.11), (2.12) and (2.4)~(2.6) has a unique solution (p°, j¢, 05, ¢°) verifying p°, j° € X5([0, T),
65,65 € D([0,T]) and ¢¢ € C*([0,T); H?) with the conditions (2.10a), (2.10b) and (2.13).
Moreover, it satisfies the estimates (5.24), (5.28), (5.40) and

(67 = 0TI + 167 =TT+ 110 = 526 = 0)(Tw) 3

+ell({5° = 38 aws {0° — Ocbawa) (TH)|> < A (5.54)

1
¢l

5.3 Global existence of solution

To construct the time global solution for the hydrodynamic model with the large initial data,
it suffices to show the asymptotic stability of the stationary solution with the small initial
disturbance.

the initial data (po, jo,00) € H*(Q) x H*(Q) x H3(Q) and the boundary data p;, p, and ¢,
satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then there exists a positive constant
0. such that if

Theorem 5.9. Let ¢ < ¢ and (p, j, 0, (5) be the stationary solution of (2.17). Suppose that
2 ) H2

]- 5 . ~ ~ ~ . ~ ~
C+5+ﬁ”90—9”+||JO—J||1+||(P0—P7 00— 0)l2+v=l|({jo— 7 }aer {00 —O}aaa)|| < 0, (5.55)
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the initial boundary value problem (2.11), (2.12) and (2.4)~(2.6) has a unique solution
(p, 3,0, 0) satisfying p, j € X2([0,00)), 0,0, € D([0,00)), ¢ € C*([0,00); H2()) and the
conditions (2.10a), (2.10b) and (2.13). Moreover, the solution (p, j, 0, ¢) verifies the addi-
tional reqularity ¢ — ¢ € X2([0,00)) and the decay estimate

O OO+ G- DO+ 10— 5.6 - OO
e = o 48 = Bra) DI + 16 — DO
<c (2”90 B+ o — 312+ (o0 — 7100 — D)2

1
¢l

/(Lo = Theas {80 — O |2) %, (5.56)
where C' and « are positive constants independent of 9, €, ¢ and t.

We begin the proof of Theorem 5.9 with rewriting the problem (2.11), (2.12) and (2.4)-
(2.6) to that for the perturbation

w(t>x) = p(t,I) —ﬁ(l‘), 77(75793) ::j(tvx) _3~(I)7

x(t,x) = 0(t,x) — 0(x), olt,z):= d(t,z) — d(x)

from the stationary solution to (2.17). Divide (2.11b) by p and use the equation (2.11a) to
get

. .2 .
J €(J J
el=) +5|= ) +0(ogp), +0, = ¢, —=. 5.57
<p>t 2 (pQ) 2 (os7) p (557
Similarly, it follows from (2.17b) that

€ -

~2
= ({2> +§(1ogﬁ)z+éz:¢x—
2\p

Subtracting (2.17a) from (2.11a), (5.58) from (5.57), (2.17¢) from (2.11c) and (2.17d) from
(2.11d), respectively, we obtain the equations for the perturbation (¢, 7, x,0):

(5.58)

SN

Ve +1. =0, (5.59a)
J+n c(G+n? T
g = +* ~ - +é 10 ~+ —10 ~z
(pﬂ/))t 2<(p+¢)2 p2>z {log (p+v) ~log )
SRR R A —2=0, (5.59b
Pty XX p+Y D ( )
~ 2 - 2~ ﬁx_‘_wm 2K/O ﬁ+1/’
(0 Iife ~ T T4 Azz X = ) .
(p+w)xt+3( +x)n 3( +X)p+w77 3 oo+ c X G+ G, (5.59¢)
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2i [0+ 7] 05 61
glz—j(N Xy Loy P ¢> ¥,

3\p+e p+v” plp+)

2 ¢ 2417 521/1
= =0, = - — _ .
o2 Ut mix 77+<3 3C) <p+w” (p+w)p>

The initial and the boundary data to (5.59) are derived from (2.4)—(2.6) and (2.12) as

(x,0) = do(x) := po(x) = plx), n(x,0) = no(x) := jo(x) — j(x),
X(@,0) = xo(2) := bo(x) — 6(2), (5.60)
O(t,0) = (1, 1) = x(t,0) = x(t, 1) = o(t,0) = o(t, 1) = 0. (5.61)

The unique existence of the time local solution (i,7,x,0) to the problem (5.59)—(5.61)
follows from Theorem 3.5 and Corollary 5.3.

Lemma 5.10. Suppose that the initial data (o, 0, X0) belongs to H*(Q) x H(Q) x H?(2)
and (4o, ] + 10, 0 + xo) satisfies (2.10a), (2.10b) and (2.13). Then there exists a positive
constant T*, independent of €, such that the initial boundary value problem (5.59)—(5.61)
has a unique solution (¥, n, x,0) satisfying ¥,n € X2([0,T*]), X, x= € D([0,T*]) and o €
X3(0, %)) with the property that (p+ 1,7 4+ 1,0 + x) satisfies (2.10a), (2.10b) and (2.13).

The existence of the time global solution in Theorem 5.9 follows from the continuation
argument together with the local existence of the solution in Lemma 5.10 and an a-priori
estimate (5.62) below. To derive the estimate (5.62), it is convenient to use notations

Ne(t) := sup ne(7), ne(r) := %HX(T)Hl + 1) + 1@, ) ()2 + VEl (Maws Xawa) (7]

0<r<t
Proposition 5.11. Let T > 0 and let (v,n, x,0) be the solution to (5.59)—(5.61), satisfying

¥,m € X2([0, 7)), X, Xz € D([0,T]) and o € X3([0,T]). Then there exist positive constants
do and (o, independent of T, such that if N.(T) + 0 < &y and e < { < (o, then the estimate

n(t) + ||a(t)||§+/0 nZ(r) + llo(r)|lidr < CnZ(0) (5.62)

holds for t € [0,T], where C is a positive constant independent of T, §,  and €.

The proof of this proposition is derived in the several steps, which are stated in Lemma
5.12-5.16, and is completed at the end of this section.
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We first derive the basic estimate (5.70) in Lemma 5.12. To this end, define an energy
form &, which is almost same as in [32], by

(j =) + P <i> 41 {(¢ - <z~5)gc}2 + %pé\lf <Z> : (5.63)

3

&
2 2

2
U(s):=s—1—1logs.

Here U(s) is equivalent to |s — 1|? if s > ¢ > 0. Thus, if the quantity |(¢, x)| is sufficiently
small, & is equivalent to |(¢,/zn, X, 0)|? thanks to the estimates in (3.11). Namely,

(W, Ve, x, 02))? < & < C|(W, Ve, x, 02) %, (5.64)

where ¢ and C are positive constants.

Multiply the equation (5.59b) by n. Apply the product rule for derivatives to the first
term, the third and the sixth terms, respectively, Then substitute n, = —¢; and 7, = —0u
in the third and the sixth terms, respectively. These procedure yields

_ A\ 1 1 .
{5772 +ph¥ <p> * (aw>2} o+ P = x4 Rep + Rey (5.65)
2p p) 2 ¢ P P

R 1= 00, +on— 0 {logp —log p}n,

~ ~2
n+2j ef(i® (L1 7] 5
R4;:—g 77177—5 - = n—J73\——= 77+91{103P_10gp}77
7). p P

202 2

Multiply the equation (5.59¢) by 3y /26 and apply the product rule for derivatives to the
first and the fourth terms on the left hand side to obtain

3 ~ 0 3/) Ko Pu
2000 ( = 2 O = v+ Rs, + R 5.66
{20 (9>}t+2<9>< + g PR + Rs. + R, (5.66)
_ ko L 3~ 0 Kol 3
Rs =3 XXa» Re:= 29nz‘lf <é> t 2 xxz+29(gl+gz)x-

Adding (5.65) to (5.66), we have an equation for the energy form &,

1 3 K
€t S + Tcpexz +gxs = = (s + (Ra+ Ra)s + Ra+ Re. (5.67)
The estimates
10ta(®)]l5 < Cllo@)|)> for i=0,1,2, (5.68)
o (D)1 < [ln(@)]1? (5.69)

follow from the same computation as in Lemma 3.3 in [30].
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Lemma 5.12. Under the same conditions as in Proposition 5.11, it holds that

I o) OF + el + [ 1mx ) (DI + x| i
< Crt(0) + COVAT) +6+ ¢ [ @i de (570

fort €[0,T], where C is a positive constant independent of t, §, ¢ and e.

Proof. We show the basic estimate (5.70) by the similar manner as in Lemma 3.6 in [32].
Integrating (5.63) over the domain  yields

/Sgdr+/ 177 +§g +%Xidx
sc<NS<T>+6+<“4>( IO + 1m0 >%) (5.71)

since the integration of (R34 Rs). is zero with aid of the boundary conditions (5.61). Here
we also used the estimate

/0 — (XM + Ra + R de < C(NT) +6 + ¢ (illx(f)ll2 + ||(¢,77~,X)(t)||§> ;

where is derived from similar manner as in the derivation of (4.52) and (4.53). Moreover,
multiply the equation (5.59b) by —o, and integrate the result over the domain §2. Then
apply the Schwarz and the Sobolev inequalities to the resultant equality and then use (5.68),
(5.69) and the mean value theorem. These computations give

ol <5 [ e(2-2) e

+ Cll X, Xa) O + CNAT) + )| (%, ) (0. (5.72)

Notice that the integration in ¢ of the first term in the left hand side of (5.72) are estimated

as /015 (Z ) 2) 7t = (}]) ) i) 72(0,2) do < Cne(0) + C/O1 Ex(t) du

with aid of (5.64) and (5.68). Hence, multiply (5.72) by «, where « is a positive constant,
and then add the result to (5.71). Let a and N.(T) + & + ¢*/* be sufficiently small and use
1y = —n; to obtain the desired estimate (5.70). O
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We turn to the derivation of the higher order estimates. To this end, we firstly derive the
estimates of the derivatives in the time variable t. Then we rewrite them in the derivatives
of the spatial variable z by using the estimates

éllx(t)H2 < C (Ie@IP + 11, mOIF + Ix@)13) - (5.73a)
lene(O11* < Cll(w.m, X)), (5.73D)
eI = MO, a1 = [Da I, eI = e ()11, (5.73¢)

en(t) < (H(zp\’/%) (0 1+||<n,wt7xmﬁwm,ﬁxzt,swttan?) <o), (5.73)
I < Clo@) (5.730)

The above estimates are shown by using the equation (5.59). Precisely, owing to (3.11),
(3.25) and the Sobolev inequality, the estimate (5.73a) follows from the equation (5.59¢);
(5.73b) follows from (5.59b); (5.73c) follows from (5.59a); (5.73d) follows from (5.59b) and
(5.59¢); (5.73e) follows from (5.59d).

Differentiate (2.1b) with respect to 2 and multiply the result by 1/p. Similarly, differ-
entiate (2.17b) with respect to x and multiply the result by 1/p. Taking a difference of the
two resultant equalities and substituting the equations (5.59a) and (5.59d) in the result, we
have

€ . '
q/Jtt_{ [p .77 ]d) } +w+%_X1JL:_2E%det+F1+-FQ: (574)
P P, P P
2e - 251 0 -
]:1 :7¢3+4 ]‘p t+2€*(ﬂ+p) wz+5( > %—77/1Z+ (2P1_¢> %,
p? pt P P P

..2 ~4 3 _
]_-2 _257(]_'_]) 25] ~2% pxx( (P+1/))

= Jjt+J 77+5] Poo—=5 5
pot /) p°p?
) 05 204 20,0 Do D
g Pazy  ZPawy 2Pz, o ZPalc w—&oz—kL{)
p op P pp P pp
Note that the estimates
[F1ll < CNAT) + )| (e, L) O, 1F2ll < ClIWo,ms x5 X))l (5.75)

follow from the Sobolev inequality as well as the estimates (3.11), (3.25), (5.68) and (5.73c).
In this calculation, the estimate

0 \ : 2\ 16,
b —e];+s(]> —+ 24l
p p)et 0

AP < C(N(T) +0) (5.76)

p p
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has been utilized to handled the last term in F;. Similarly, G; and G, in the equation (5.59¢)
are estimated as

fori=0,1.

Lemma 5.13. Under the same assumptions as in Proposition 5.11, it holds that

(% Xa) (O + elle (011 + / = (DI + (%6, s Xaa) (7)1 dT
< On( +C/ (P + 1@, x) (0P dr + C(NA(T) + 6 + ¢H/?) / xe(m)1? dr
(5.78)
fort € [0,T], where C is a positive constant independent of T, 8§, ¢ and €.

Proof. Multiply the equation (5.74) by v + 21, integrate the result by part over the domain
2 and then use the boundary conditions (5.61) to obtain

d 1 2 2
i ), ;@t + ey + 4 > + S[p, J,0 ]£+¢ dx

1,2 2 !
0 0

_ [ 1 2j 2j
e () () (39) e (2)

. (S{ppa» l> U+ Fi(0+ 200) da

1
T, = — / Xothe — Folth + 20) da
0

We estimate the integration Z;, by applying the Schwarz and the Sobolev inequalities with
using (3.11), (3.25), (5.73b), (5.73¢c) and (5.75), as

By the Schwarz inequality and (5.75), the estimate

IZa] < pll (e, ) (O + Claalll (m, %, X x) ()2 (5.81)

holds, where p is an arbitrary positive constant to be determined.
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On the other hand, multiplying the equation(5.59d) by —3x,. and integrate the resulting
equality by part over the domain €2 give
d [*3p

1
3p
2 2
X; dr + —X
dt Jo 277 0o ¢°F

1
3
Tui= [ 500¢ =200 = Dbicas — 301 + Gvew
0

1
+ 2k0x 2, dx + / 2X ey dx = T3 + 1y, (5.82)
0

1
3Pz 00,
I4 = / szXth + %XXZ + %anz dz.
0

By the application of the Schwarz and the Sobolev inequalities with using (3.11), (3.25),
(5.73¢c) and (5.77), the integration Z; is estimated as

| Z3| < C(N(T) + 0|10, %, X Yy s Xeos X ()] (5.83)

Similarly, it holds that

L&Su(?wAﬂ2+Mm@2>+CM<bRWW+HW¢WQ@W+CXNW§A
(

5.84)

Finally, substitute the estimates (5.80) and (5.81) in (5.79) as well as the estimates (5.83)
and (5.84) in (5.82), respectively. Then sum up the both results, taking p and N.(T) +
small enough and integrating the resultant inequality in ¢, we have the desired estimate
(5.78) with aid of the subsonic condition (3.25b). O

Lemma 5.14. Under the same assumptions as in Proposition 5.11, it holds that

%M@W+AHMﬂWWSﬁ@+CAme%WMﬂWHMW%M (5.85)

fort € [0,T], where C is a positive constant independent of T, d, ¢ and €.

Proof. Multiplying the equation (5.59¢) by x;/p and integrating resulting equality by part
over the domain €2 lead to

d (*1 , ! L 726p 2 2k Xt
— [ =x%d X da = =1 = 00 + —~Xaw —d
i |, ZCX x+/0 X; dx /O ( pn 377+ 3 X +Ql+9’2>p T

3
< S+ U e b2 + XD (5.86)

In deriving the last inequality, we have used the estimate (5.77) as well as the Schwarz and
the Sobolev inequalities. Hence, integration of (5.86) in ¢ yield the estimate (5.85). O
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Differentiating the equations (5.59¢) and (5.74) in ¢ yields

€ - ]
— e — { [p,J,0 ]1/1 t} + v+ Y Xaat = %"pxtt + Fie + Fou + F3, (5.87)
p pJ, p p
2 Wp, 2w
PXtt + gnzt - TZ% - %Xzzt + gXt = G + Go + G, (5.88)

o () (2259 o) 2(2) e

. 2 29px 1/%
Gy = —Yyx; + 3Xt77.r + ( 30 >t77 4X-

Using the Sobolev inequality as well as the estimates (3.11), (3.25), (5.68) and (5.73a)-
(5.73d), we have

1(Fre, For, Fs) | < C (IIn()1 + 100 x e xe) Ol + Vellwu ) (5.89)
Vel (G, Gs)ll + €llGalli < C(N(T) + 6 + vVE) ([ (Yats Xat) (O + VEN (Wr2, Xt (B)])
+ O, 0, P, L) O + Clix(@)l2- (5.90)

Lemma 5.15. Under the same assumptions as in Proposition 5.11, it holds that

LGOI + 10X )OI + & ar )OI + (o)
+ / et X ) (P2 + ll (s Xoar) (7|2 i

< Cn +C/ ||X ||2 + ||(¢7777¢17¢t7XhXII)(T)HQdT (591)

fort € [0,T), where C is a positive constant independent of T, 8, ¢ and .

Proof. Multiplying the equation (5.87) by v, + 2ety, integrating the resultant equality by
part over the domain € and then using the boundary condition (5.61), we obtain

d [Y1(,, (0 , 2 2
al, » Yy, + ety + 5 + €S[ij>9]7 + ey dz
1 2 1
=+ / ;wi +Slp, J, 9}7” + 1/%2 dx — / XeatWt + 26XzatVu dx = Hy, (5.92)
0 0

1
H, ::/ <1) (521/Jt2t + ety + ;1/)?) ( 1/11:) Y +&° < ) Vi
0o \P/¢

ve (SBR0) b (Bt P B+ 200
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We multiply the equation (5.59¢) by —3x..t/2, integrate the resultant equality by part over
the domain 2 and then use the equation (5.59a). The resultant equality is

d 3p X2 Ko, 2 3p 5 ' —
at J, 4< z T 3 Xaw dx +/0 o Xat dx +/O XeatWr dr = Ha, (5.93)
3 (12 29;01 " o
== —(0—1)n, — . VR VERLv. B SOV
Ho 2/0 <3( ) 3p -G — gg)ﬁXt PXtXt+2CXZ CXXt .

Furthermore, multiplying the equation (5.88) by —3ex,.: and integrating the resultant equal-
ity by part over the domain 2 yield

d 1 3 1 3 1
—/ —prz.t dx + / 25f$gxfm + ﬁxit dx + / 28X zat Wyt dx = Hs, (5.94)
dt Jo 2 0 ¢ 0

'3 0p,
Hs = 5/ ii/JtXit —2(0 — 1)¥uXaat — 3(G1e + G3) Xawt + (3g2t + 22%) Xat
0

x

3p,
- %Xtth — 3Pz XetXat dT.

In order to estimate Hz, by using the equation (5.88), we rewrite the term p, XXzt as

260 20, 2K0

Pz XX :& iy - -5 X +
P Xtt X xt P 3 Tt 3p Mt 3 zat

C — Gt — Gor — 93) Xaxt-

Then applying the Schwarz and the Sobolev inequalities to Hi, Ho and Hsz with using the
estimates (3.11), (3.25), (5.73a)—(5.73d), (5.77), (5.89) and (5.90), we have

(s, Ha, Ha)| < {1+ CONT) + 8+ V)M (s hars VW0, VX))
e (illx(t)l? n <w,n,wm,wt7xt,xm><r>2) S (5.99)

Finally, sum up the equalities (5.92)-(5.94) and substitute the estimate (5.95) in the
resultant equality. Successively take p and N.(T') 4+ 6 + /¢ small enough and integrate the
result in ¢. These procedures give the desired estimate (5.91). O

Lemma 5.16. Under the same conditions as in Proposition 5.11, it holds that

(@)1 + / ()2 dr

< CnZ(0) + Cll(@. )T + C/O () + 11, e, x) (T[T dr - (5.96)

fort € [0,T], where C is a positive constant independent of T, §, ¢ and €.
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Proof. Subtract (2.17b) from (2.11b), multiply the resultant equation by 7, and integrate
the result by part over the domain Q2. Then apply the Schwarz and the Sobolev inequalities
to the resultant equality. The result is

d 1

<4 / {92+ ,04n — {60 + ixdende + ClaO? + Clw, v )OI, (597

of which integration in ¢ yields the estimate (5.96). O

We derive the a-priori estimate (5.62) in Proposition 5.11 and complete the proof of
Theorem 5.9.

Proofs of Proposition 5.11 and Theorem 5.9. Rewrite (5.70), (5.78), (5.85), (5.91) and (5.96),
which are estimates of the derivatives in ¢, to those in by using (5.73d), we have the a-priori
estimate (5.62). It complete the proof of Proposition 5.11.

The continuation argument with the time local existence in Corollary 5.10 and the a-
priori estimate (5.62) yields the time global existence for the small initial disturbance, which
is asserted in Theorem 5.9.

The decay estimate (5.56) follows from the similar manner as in the proof of Theorem
4.11. Precisely, multiply (5.72) by 3, (5.79) and (5.82) by 2, (5.86) by 33, (5.92)—(5.94) by
B* and (4.62) by 3, respectively, where 3 € (0,1]. Sum up these results and (5.71) and then
substitute the estimates (5.80), (5.81), (5.83), (5.84) and (5.95) in Z; and H;. Successively
letting 1 small enough gives an ordinary differential inequality

o E(t) + e1D(t) < CL8D(t) + C(N(T) + 6 + CM* + V3 D(t), (5.98)

1 . ~ 2 2
—/5255(J{) z+ﬁ<€¢t+€¢¢t ‘Z’)w? 05,012 + 522
0 PP p

3 4 2 2
+ 62@% + gCX +Z (621/)?,5 + et + %) +BleSlp. 3,01 + ey
n2 _
+ ! 2’ X2+ B+ B — Bpo, + G0k + B0 + px}anda,

D(t) =l(n, xa)(®)]|* + %le(lt)ll2 + B, ) O + B2 (v, o, Xaw) (B

2
+ fllxm(t)ll2 + BN + B2l (@t Xat) (O + Bl (Wra, Xevwe) ()]
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For the suitably small 5, we see from (5.73d) that E(t) is equivalent to n.(t):
ene(t) < E(t) < Cn.(t), (5.99)

where ¢ and C' are positive constants. Take 8 so small that (5.99) and ¢; — C1 > 0 hold.
Moreover, let N¢(T') +6 + (/4 +¢'/2 sufficiently small in (5.98) and substitute cE(t) < D(t),
which holds for a suitably chosen small positive constant ¢. Consequently, we obtain an
ordinary differential inequality

%E(t) +aB(@#) <0, (5.100)

where « is a positive constant. Solving (5.100) and using (5.99), we have

ne(t) < n.(0)e .

The above inequality together with (5.73¢) yields the decay estimate (5.56). |

We are now at the position to complete the proof of Theorem 2.1 which asserts the
asymptotic stability of the stationary solution for the hydrodynamic model with the large
initial data. As it is done by the same discussions as in the proof of Theorem 4.2, we only
state a brief sketch here.

Proof of Theorem 2.1. Take the constant A in Corollary 5.8 so small that the assumption
(5.55) in Theorem 5.9 holds. By applying Theorem 5.9 with regarding T as initial time and
(p,7,0)(Th) as the initial data, we establish the existence of the solution (p, 7,6, ) globally
in time. The decay estimate (2.21) immediately follows from (5.56). O

5.4 Momentum and energy relaxation limits

We justify the relaxation limits of the time global solution for the hydrodynamic model. We
show the estimates (2.22)-(2.24), which complete the proof of Theorem 2.3. Once Theorem
2.3 is proven, Corollary 2.5 follows from Theorem 2.4. Note that the time global solution for
the energy-transport model and the hydrodynamic models have been already constructed in
Sections 4.3 and 5.3, respectively.

Proof of Theorem 2.3. We firstly show that the estimates (5.28) and (5.40) hold for ¢ € [0, 00).
It suffices to prove the assumption (5.24) in Lemmas 5.5 and 5.6 holds for ¢ € [0,00). Let
A be the constant fixed in the proof of Theorem 2.1 and thus T} is corresponding existence
time. Corollary 5.8 means that the solution (p°, j¢, 0%, ¢°) verifies (5.24) for arbitrary time
t € [0,Ty]. Hence, it is sufficient to show that the time global solution, for initial data
(p,7,0)(Tn) at initial time T constructed in Theorem 5.9, verifies (5.24). The estimate
(5.24c) follows from the decay estimate (5.56). The solution (p*, j¢, 6%, ¢°) satisfies (5.24a)
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for t € [0,Ty/]. On the other hand, it converges to the stationary solution (7%, g, QZE),
which satisfies (5.24a), as t tends to infinity. Hence, taking A’ small, which is equivalent to
taking T/ large, (pf, j¢, 6°, ¢°) verifies (5.24a) for t € [Th/, 00). Moreover, the other estimates
in (5.24) follow from the similar discussion as in the proof of Lemma 5.4. Hence, thanks to
Lemmas 5.5 and 5.6, the estimates (5.28) and (5.40) hold for ¢ € [0, c0).

By applying these estimates, we show the estimates (2.22)-(2.24). Let A € (0,1/2) and
then define a constant

Ty := %log {e+ (/0

The estimates (5.28) and (5.40) mean that

(R, Q) (1)1} < C{e + (/¢)*}e"™ < C{e + (£/¢)*}' 7, (5.101a)
1@ < 12 + Cfe + (/0P (5.101b)
(RS, T2, Q5) ()1 < Ce + (/)73 /222 (5.101c)

hold for 0 < ¢t < Tj. On the other hand, we have the estimate

IR @))15 < Cll(p° = )O3 + Cll(e® = )BII5 + Cll (5" = 2°) ()13
SC(eM e+ (e/0)”) <C ({e+ (/Y M + e+ (¢/¢)%) (5.102)

for t > T with aid of the estimates (2.21), (3.37), (3.38) and (4.81b). Similarly, it hold that
I7EONF + QM3 < € ({e + (/)3 + e+ (£/¢)?). (5.103)

Letting v := min{(1/2) — X\, a\/B}, we have the inequalities

1B Q) WI? < Ofe + (/%) (5.1042)
1712 < [TO)IPe ™ + Cle + (/)Y (5.104D)
1Ry T2, QL)OIP < CL+ ) e + (/)2 (5.1040)

owing to the estimates (5.101)-(5.103). The inequalities in (5.104) together with the elliptic
estimate |9 (t)|l4 < C||R(t)]|2 yield the desired estimate (2.22)—(2.24). O

Remark 5.17. The constants C' and 7 in (5.104) are taken independently of ¢ for the special
initial data 0y = 1. It is shown by the same procedure in this chapter (also see Remark 4.18).
This fact shows Remark 2.6.



