
Chapter 5

Hydrodynamic model

This chapter is devoted to the proofs of Theorems 2.1 and 2.3. Theorem 2.1 shows the unique
existence and the asymptotic behavior of the time global solution to the hydrodynamic model
for the large initial data. It is summarized in Theorem 2.3 that the time global solution for
this model convergences to that for the energy-transport model as the parameter ε tends
to zero. Theorem 2.1 is proven in Sections 5.1–5.3. The uniform estimate of the time local
solution, of which existence is discussed in Appendix 6.2, is established in Section 5.1. The
time global existence is proven in Sections 5.2 and 5.3. These discussions are essentially
same as those for the energy-transport model in Sections 4.1–4.3. The relaxation limit of
the solution thus constructed for the hydrodynamic model is studied in Section 5.4, which
completes the proof of Theorem 2.3.

5.1 Uniform estimate of local solution
We show that there exists a positive constant T∗, independent of ε, such that the initial
boundary value problem (2.11), (2.12) and (2.4)–(2.6) has a solution until time T∗. It is
summarized in Corollary 5.3. To show it, we firstly prove the following lemma, which asserts
the existence of the time local solution even though the existence time Tε may depend on ε.
Its proof is postponed until Appendix 6.2.

Lemma 5.1. Suppose the initial data (ρ0, j0, θ0) ∈ H2(Ω)×H2(Ω)×H3(Ω) and the boundary
data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Let n and N be
certain positive constants satisfying

inf ρ0, inf θ0, inf S[ρ0, j0, θ0] ≥ n, ∥(ρ0, j0)(t)∥2 + ∥θ0∥3 ≤ N,

respectively. Then there exists a positive constant Tε, depending on ε, n and N , such that the
initial boundary value problem (2.11), (2.12) and (2.4)–(2.6) has a unique solution (ρ, j, θ, ϕ)
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68 CHAPTER 5. HYDRODYNAMIC MODEL

satisfying ρ, j ∈ X2([0, Tε]), θ, θx ∈ Y([0, Tε]) and ϕ ∈ C2([0, Tε];H
2) with the conditions

(2.10a), (2.10b) and (2.13).

In order to apply the same argument as in Section 4 to the hydrodynamic model, we
have to improve the above lemma so that we can take the existence time T∗ independently
of the parameter ε (see Corollary 5.3). To this end, we define Y (T ;m,M1,M2), for positive
constants m, M1 and M2, by a set of the functions satisfying the regularity

ρ, j ∈ X2([0, T ]), θ, θx ∈ Y([0, T ]), ϕ ∈ C2([0, T ];H2)

as well as the estimates

inf
x∈Ω

ρ, inf
x∈Ω

θ, inf
x∈Ω

S[ρ, j, θ] ≥ m, (5.1a)

1

ζ
∥(θ − 1)(t)∥2 + ∥(ρ, θ)(t)∥21 +

∫ t

0

∥θt(τ)∥2 dτ ≤M1, (5.1b)

∥j(t)∥21 +
1

ζ
∥θx(t)∥2 + ∥(ρxx, θxx)(t)∥2 + ε∥(jxx, θxt, θxxx)(t)∥2 + ε2∥ρtt(t)∥2

+

∫ t

0

∥(jxx, θxt)(τ)∥2 + ε∥(jt, ρtt, θxxt)(τ)∥2 dτ ≤M2 (5.1c)

for t ∈ [0, T ].
The regularities of the functions ρ and j, constructed in Lemma 5.1, is insufficient to

justify the following computations. This problem is resolved by an argument with using the
mollifier with respect to the time variable t. We, however, omit this argument since it is a
standard manner.

Lemma 5.2. There exist positive constants m, M1 and M2, depending on ∥(ρ0, θ0)∥2, ∥j0∥1,
∥
√
εj0xx∥, ∥

√
εθ0xxx∥, inf ρ0, inf θ0 and inf S[ρ0, j0, θ0] but independent of ε, such that if the

solution (ρ, j, θ, ϕ) to the problem (2.11), (2.12) and (2.4)–(2.6) belongs to Y (T ;m/2, 2M1, 2M2),
then (ρ, j, θ, ϕ) satisfies

inf
x∈Ω

ρ, inf
x∈Ω

θ, inf
x∈Ω

S[ρ, j, θ] ≥ m− C[m,M1,M2]
√
t, (5.2a)

1

ζ
∥(θ − 1)(t)∥2 + ∥(ρ, θ)(t)∥21 +

∫ t

0

∥θt(τ)∥2 dτ ≤M1 + C[m,M1,M2]t, (5.2b)

∥j(t)∥21 +
1

ζ
∥θx(t)∥2 + ∥(ρxx, θxx)(t)∥2 + ε∥(jxx, θxt, θxxx)(t)∥2 + ε2∥ρtt(t)∥2

+

∫ t

0

∥(jxx, θxt)(τ)∥2 + ε∥(jt, ρtt, θxxt)(τ)∥2 dτ ≤M2 + C[m,M1,M2]t (5.2c)

for t ∈ [0, T ], where c[m,M1,M2] and C[m,M1,M2] are positive constants depending on m,
M1 and M2 but independent of ε and t.
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Proof. We may assume T ≤ 1 without loss of generality. Let

m := min

{
inf
x∈Ω

ρ0, inf
x∈Ω

θ0, inf
x∈Ω

S[ρ0, j0, θ0]

}
.

The Schwarz and the Sobolev inequalities together with (2.11a) yield the lower bound

ρ(t, x) = ρ0(x)−
∫ t

0

ρt dτ ≥ inf
x∈Ω

ρ0 − c

∫ t

0

∥jx∥1 dτ ≥ m− c[m,M1,M2]
√
t

as (ρ, j, θ, ϕ) ∈ Y (T ;m/2, 2M1, 2M2), Similarly, it holds that

inf
x∈Ω

θ, inf
x∈Ω

S[ρ, j, θ] ≥ m− c[m,M1,M2]
√
t.

Hence, the estimate (5.2a) holds.
In order to determine M1 and M2, we derive several estimates. For this purpose, differ-

entiate the equation (2.11b) in x and use (2.11a) to get

ερtt − (S[ρ, j, θ]ρx)x + ρt = (ρθx)x + 2ε

(
jjx
ρ

)
x

− (ρϕx)x . (5.3)

In addition, dividing the equation (2.11c) by ρ and differentiating the resultant equation in
x lead to

θxt +

{
j

ρ
θx +

2

3

(
j

ρ

)
x

θ

}
x

−
(
2κ0
3ρ

θxx

)
x

=

(
2

3
− ε

3ζ

)(
j2

ρ2

)
x

− 1

ζ
θx. (5.4)

The elliptic estimate

∥∂itϕ(t)∥2 ≤ C∥∂itρ(t)∥ (5.5)

for i = 0, 1 follows from the formula (2.8). Taking B0-, L2- and L2- norms of the equations
(2.11b), (5.3) and (5.4), respectively, we have from (5.5)

|εjt(t)|0 + ∥ερtt(t)∥+
√
ε∥θxt(t)∥

≤ C[∥(ρ, θ)(t)∥2, ∥j(t)∥1,
√
ε∥(jxx, θxxx)(t)∥, inf

x
ρ(t)]. (5.6)

The constant M1 is determined as follows. Multiply the equations (2.11a) and (5.3) by
2ρ and 2ρt, respectively. Then sum up two resultant equalities, integrate the result by part
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over the domain [0, t]×Ω and use the boundary conditions ρt(t, 0) = ρt(t, 1) = 0 and (2.11a).
The result is∫ 1

0

(ρ2 + S[ρ, j, θ]ρ2x + εj2x)(t) dx+

∫ t

0

∫ 1

0

2ρ2t dxdτ =

∫ 1

0

ρ20 + S[ρ0, j0, θ0]ρ
2
0x + εj20x dx

− 2

∫ t

0

∫ 1

0

jxρ−
(S[ρ, j, θ])t

2
ρ2x +

{
(ρϕx)x − (ρθx)x − ε

(
2jjx
ρ

)
x

}
ρt dxdτ. (5.7)

Applying the Schwarz and the Sobolev inequalities to the right hand side of (5.7) with using
(5.5) and (ρ, j, θ, ϕ) ∈ Y (T ;m/2, 2M1, 2M3), we obtain

∥ρ(t)∥21 ≤C[∥(ρ0, j0, θ0)∥1,m] + µ

∫ 1

0

∥θt(τ)∥2 dτ + C[µ,m,M1,M2]t, (5.8)

where µ is an arbitrary constant to be determined. Multiplying the equation (2.11c) by
2(θ − 1 − θxx + θt)/ρ, integrating the result by part over [0, t] × Ω and using the boundary
condition (2.6) give∫ 1

0

{
1 + ζ

ζ
(θ − 1)2 + θ2x

}
(t) dx+ 2

∫ t

0

∫ 1

0

1

ζ
{(θ − 1)2 + θ2x}+ θ2t +

2κ0
3ρ

(θ2x + θ2xx) dxdτ

=

∫ 1

0

1 + ζ

ζ
(θ0 − 1)2 + θ20x dx+

∫ t

0

∫ 1

0

2κ0
3ρ2

ρxθx(θ − 1) +
2κ0
3ρ

θxxθt dxdτ

+

∫ t

0

∫ 1

0

2

{
j

ρ
θx +

2

3

(
j

ρ

)
x

θ +

(
2

3
− ε

3ζ

)
j2

ρ2

}
(θ − 1− θxx + θt) dxdτ

≤ C[∥θ0∥1] + µ

∫ 1

0

∥θt(τ)∥2 dτ + C[µ,m,M1,M2]t, (5.9)

where last inequality is shown similarly as in the derivation of (5.8). Adding (5.8) to (5.9)
and then making µ small enough lead to

∥(ρ, θ)(t)∥21+
1

ζ
∥(θ−1)(t)∥2+

∫ t

0

∥θt(τ)∥2 dτ ≤ C1[∥(ρ0, j0, θ0)∥1,m]+C[m,M1,M2]t, (5.10)

where C1 is a constant independent of M1, M2 and ε. Hence, we have the estimate (5.2b)
by letting

M1 := C1[∥(ρ0, j0, θ0)∥1,m].

Next we determine M2. To this end, dividing the equation (2.11c) by ρ and then differ-
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entiating the resultant equation and (5.3) in t give

ερttt − (S[ρ, j, θ]ρxt)x − ρθxxt + 2ε
j

ρ
ρxtt + ρtt = K1, (5.11)

θtt −
2θ

3ρ
ρtt −

2κ0
3ρ

θxxt +
1

ζ
θt = K2 +K3, (5.12)

K1 := {(S[ρ, j, θ])tρx}x + ρtθxx + 2ε

(
j

ρ

)
t

jxx +

{
2ε

(
j

ρ

)
x

jx + ρxθx − (ρϕx)x

}
t

,

K2 :=
θx
ρ
jt +

2

3

(
j

ρ

)
x

θt +
2θρx
3ρ2

jt +

(
2

3
− ε

3ζ

)(
j2

ρ2

)
t

,

K3 :=j

(
θx
ρ

)
t

− 2θ

3

(
ρ2t
ρ2

− j

ρ2
ρxt +

2j

ρ3
ρtρx

)
+

(
2κ0
3ρ

)
t

θxx.

Multiply (5.11) by θ(2ρt + 4ερtt)/ρ
2, integrate the result by part over [0, t] × Ω and then

use the boundary conditions ρt(t, 0) = ρt(t, 1) = ρtt(t, 0) = ρtt(t, 1) = 0 and (2.11a). These
computations yield

∫ 1

0

{
θ

ρ2
(2ε2ρtt − 2ερttjx + j2x) + 2εS[ρ, j, θ]

θ

ρ2
j2xx

}
(t) dx

+

∫ t

0

∫ 1

0

2S[ρ, j, θ]
θ

ρ2
j2xx +

2εθ

ρ2
ρ2tt dxdτ −

∫ t

0

∫ 1

0

θ

ρ
θxxt(2ρt + 4ερtt) dxdτ

=

∫ 1

0

{
θ0
ρ20

(2ε2ρtt − 2ερttj0x + j20x) + 2S[ρ0, j0, θ0]
θ0
ρ20
j20xx

}
(0) dx

+

∫ t

0

∫ 1

0

(
θ

ρ2

)
t

(2ε2ρtt − 2ερttjx + j2x)− S[ρ, j, θ]

(
θ

ρ2

)
x

ρxt(2ρt + 4ερtt)

+ 2ε

(
S[ρ, j, θ]

θ

ρ2

)
t

j2xx + 4ε

(
jθ

ρ2
ρt

)
x

ρtt + 4ε2
(
jθ

ρ2

)
x

ρ2tt +
θ

ρ2
K1(2ρt + 4ερtt) dxdτ

≤ C[∥(ρ0, θ0)∥2, ∥j0∥1,
√
ε∥(j0xx, θ0xxx)∥, inf

x
ρ0]

+ µ

∫ 1

0

∥(θxt, jxx,
√
ερtt)(τ)∥2 dτ +

∫ 1

0

∥θt(τ)∥2 dτ + C[µ,m.M1,M2]t. (5.13)

In deriving the last inequality, we have applied the Schwarz and the Sobolev inequalities with
using (5.5), (5.6) and (ρ, j, θ, ϕ) ∈ Y (T ;m/2, 2M1, 2M2). Multiply the equations (2.11c) by
−3θxxt/ρ and the equations (5.12) by −6εθxxt, respectively. Sum up these two results,
integrate the resultant equality by part over [0, T ]×Ω and then use the boundary conditions
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θxt(t, 0) = θxt(t, 1) = 0 to get∫ 1

0

{
3

2ζ
θ2x +

κ0
ρ
θ2xx + 3εθ2xt

}
(t) dx

+

∫ t

0

∫ 1

0

3θ2xt + 3
ε

ζ
θ2xt + 4ε

κ0
ρ
θ2xxt dxdτ +

∫ t

0

∫ 1

0

θ

ρ
θxxt(2ρt + 4ερtt) dxdτ

=

∫ 1

0

{
3

2ζ
θ20x +

κ0
ρ
θ20xx + 3εθ2xt

}
(0) dx+ 6ε

∫ t

0

∫ 1

0

K2xθxt −K3θxxt dxdτ

+

∫ t

0

∫ 1

0

(
κ0
ρ

)
t

θ2xx + 3

{
j

ρ
θx −

2j

3ρ2
ρxθ −

(
2

3
− ε

3ζ

)
j2

ρ2

}
x

θxt dxdτ

≤ C[∥(ρ0, θ0)∥2, ∥j0∥1,
√
ε∥(j0xx, θ0xxx)∥, inf

x
ρ0]

+ µ

∫ 1

0

∥(θxt, jxx,
√
ερtt,

√
εθxxt)(τ)∥2 dτ +

∫ 1

0

∥θt(τ)∥2 dτ + C[µ,m.M1,M2]t, (5.14)

where the last inequality follows from the similar computation as in the derivation of (5.13).
Adding (5.14) to (5.13), making µ sufficiently small and then using (5.2b), we have

1

ζ
∥θx(t)∥2 + ∥(jx, θxx)(t)∥2 + ε∥(jxx, θxt)(t)∥2 + ε2∥ρtt(t)∥2

+

∫ t

0

∥(jxx, θxt)(τ)∥+ ε∥(ρtt, θxxt)(τ)∥ dτ

≤ C2[∥(ρ0, θ0)∥2, ∥j0∥1,
√
ε∥(j0xx, θ0xxx)∥,m,M1] + C[m.M1,M2]t, (5.15)

where C2 is a constant independent of M2 and ε.
Multiply (2.11b) by 2jt and integrate the resulting equality by part over [0, t] × Ω.

Then applying the Schwarz and the Sobolev inequalities to the resultant equality with using
(2.11a), (5.2b) and (5.5), we have∫ 1

0

j2(t) dx+

∫ t

0

∫ 1

0

2εj2t dxdτ =

∫ 1

0

j20 + {(θ0ρ0)x − ρ0(Φ[ρ0])x} j0 dx

−
∫ 1

0

{(θρ)x − ρϕx} j(t) dx+
∫ t

0

∫ 1

0

{(θρ)x − ρϕx}t j − ε

(
j2

ρ

)
x

jt dxdτ

≤ C[∥(ρ0, j0, θ0)∥1,M1] + C[m,M1,M2]t+

∫ t

0

∥(jxx, θxt)(τ)∥2 dτ.

+

∫ 1

0

1

2
j2(t) dx+

∫ t

0

∫ 1

0

εj2t dxdτ. (5.16)
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It together with (5.15) gives

∥j(t)∥2 +
∫ t

0

ε∥jt(τ)∥2 dτ ≤ C3[∥ρ0, θ0∥2, ∥j0∥1,
√
ε∥(j0xx, θ0xxx)∥,m,M1] + C[m,M1,M2]t,

(5.17)
where C3 is a constant independent of M2 and ε.

Finally, solving the equation (5.3) with respect to ρxx, taking L2-norm and then estimat-
ing the result with using (5.2b), (5.5), (5.15) and (5.17), we have

∥ρxx(t)∥2 ≤ C4[∥ρ0, θ0∥2, ∥j0∥1,
√
ε∥(j0xx, θ0xxx)∥,m,M1] + C[m,M1,M2]t, (5.18)

where C4 is a constant independent of M2 and ε. Moreover, solve the equation (5.4) with
respect to θxxx, take L2-norm and then estimate the result similarly as above to get

√
ε∥θxxx(t)∥2 ≤ C5[∥ρ0, θ0∥2, ∥j0∥1,

√
ε∥(j0xx, θ0xxx)∥,m,M1] + C[m,M1,M2]t, (5.19)

where C5 is a constant independent of M2 and ε. Consequently, summing up (5.15) and
(5.17)–(5.19) and then letting

M2 := C2 + C3 + C4 + C5,

we have the desired estimate (5.2c).

Owing to Lemmas 5.1 and 5.2, we can take the existence time of the solution (ρ, j, θ, ϕ)
independently of ε. As this fact is shown similarly as in the proof of Corollary 4.5, we omit
the proof.

Corollary 5.3. Suppose the initial data (ρ0, j0, θ0) ∈ H2(Ω) × H2(Ω) × H3(Ω) and the
boundary data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Let n0

and N0 be certain positive constants satisfying

inf ρ0, inf θ0, inf S[ρ0, j0, θ0] ≥ n0, ∥j0∥1 + ∥(ρ0, θ0)(t)∥2 +
√
ε∥(j0xx, θ0xxx)(t)∥ ≤ N0,

respectively. Then there exists a positive constant T ∗, depending on n0 and N0 but inde-
pendent of ε, such that the initial boundary value problem (2.11), (2.12) and (2.4)–(2.6)
has a unique solution (ρ, j, θ, ϕ) satisfying ρ, j ∈ X2([0, T

∗]), θ, θx ∈ Y([0, T ∗]) and ϕ ∈
C2([0, T ∗];H2) with the conditions (2.10a), (2.10b) and (2.13). Moreover, it satisfies

inf
x∈Ω

ρ, inf
x∈Ω

θ, inf
x∈Ω

S[ρ, j, θ] ≥ c, (5.20a)

∥j(t)∥21 +
1

ζ
∥(θ − 1)(t)∥21 + ∥(ρ, θ)(t)∥22 + ε∥(jxx, θxt, θxxx)(t)∥2 + ε2∥ρtt(t)∥2

+

∫ t

0

∥(θt, jxx, θxt)(τ)∥2 + ε∥(jt, ρtt, θxxt)(τ)∥2 dτ ≤ C, (5.20b)

where c and C are positive constants independent of ε.
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5.2 Semi-global existence of solution
The semi-global existence of the solution is established in this section. We also show in
Corollary 5.8 that the perturbation (ρ − ρ̃, j − j̃, θ − θ̃, ϕ − ϕ̃)(T, x) at time T becomes
arbitrarily small provided that T is sufficiently large (and thus εT is small). These proofs
essentially follow from the same arguments as in Section 4.2.

For clarity, throughout this section, we write the solution for the hydrodynamic model by
(ρε, jε, θε, ϕε) and the solution for the energy-transport model by (ρ0, j0, θ0, ϕ0), respectively.
The difference between (ρε, jε, θε, ϕε) and (ρ0, j0, θ0, ϕ0) is denoted by

Rε := ρε − ρ0, Jε := jε − j0, Qε := θε − θ0, Φε := ϕε − ϕ0,

Lε(t) := sup
T ∗≤τ≤t

(
1

ζ
∥Qε(τ)∥1 + ∥Jε(τ)∥1 + ∥(Rε, Qε)(τ)∥2 +

√
ε∥(jεxx, θεxxx)(τ)∥

)
.

In this section, T ∗ denotes existence time defined in Corollary 5.3 with

n0 := min {inf ρ0, inf θ0, inf S[ρ0, j0, θ0]} ,
N0 := ∥j0∥1 + ∥(ρ0, θ0)(t)∥2 +

√
ε∥(j0xx, θ0xxx)(t)∥.

Subtracting (2.11) from (2.14) leads to the system for (Rε, Jε, Qε, Φε)

Rε
t + Jε

x = 0, (5.21a)

εjεt + ε

(
(jε)2

ρε

)
x

+ θεRε
x + ρεQε

x + Jε = F1, (5.21b)

Qε
t −

2κ0
3ρε

Qε
xx +

2θε

3ρε
Jε
x +

ε

3ζ

(jε)2

(ρε)2
+

1

ζ
Qε = F2 + F3, (5.21c)

Φε
xx = Rε, (5.21d)

F1 := ϕ0
xR

ε + ρεΦε
x − ρ0xQ

ε − θ0xR
ε, F2 := −θ

ε
x

ρε
Jε − 2ρεxθ

ε

3(ρε)2
Jε +

2

3

(
(jε)2

(ρε)2
− (j0)2

(ρ0)2

)
,

F3 :=− 2

3

{
j0x
ρε
Qε − j0xθ

0

ρερ0
Rε +

j0xθ
ε

(ρε)2
Rε

x +
j0ρ0x
(ρε)2

Qε + j0ρ0xθ
0

(
1

(ρε)2
− 1

(ρ0)2

)}
− j0

ρε
Qε

x +
j0θ0x
ρερ0

Rε
x −

2κ0θ
0
xx

3ρερ0
Rε.

From (2.4) and (2.6), we have the boundary conditions

Rε(t, 0) = Rε(t, 1) = Qε
x(t, 0) = Qε

x(t, 1) = Φε(t, 0) = Φε(t, 1) = 0. (5.22)
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Differentiate the equation (5.21b) with respect to x and then utilize the equations (2.11a)
and (5.21a) to get

ερεtt − ε

(
(jε)2

ρε

)
xx

− θεRε
xx − ρεQε

xx +Rε
t = −F1x + F4, F4 := θεxR

ε
x + ρεxQ

ε
x. (5.23)

The first two estimates in (5.68) in Lemma 5.4 show the positivity of the density and the
temperature. This essential condition follows from the same property of the solution to the
energy-transport model in Corollary 4.17 by assuming the difference of the solutions Lε(T )
suitably small.

Lemma 5.4. Let T be an arbitrary positive constant greater than or equal to T ∗, and
(ρε, jε, θε, ϕε) be a solution to (2.11), satisfying ρε, jε ∈ X2([0, T ]), θ, θx ∈ Y([0, T ]), ϕ ∈
C2([0, T ] : H2(Ω)) with the conditions (2.10a), (2.10b) and (2.13). Then there exist posi-
tive constants δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, there exist a positive constant ε0,
depending on ζ but independent of δ, such that if Lε(T ) + ε ≤ ε0, then the estimates

inf
x∈Ω

ρε, inf
x∈Ω

θε, inf
x∈Ω

S[ρε, jε, θε] ≥ c, (5.24a)

|ϕε(t)|2 + |εjεt (t)|0 ≤ C, (5.24b)
1

ζ
∥(θε − 1)(t)∥21 + ∥jε(t)∥21 + ∥(ρε, θε)(t)∥22 + ε∥(jεxx, θεxxx)(t)∥2 ≤ C, (5.24c)

ε∥θεxt(t)∥2 + ε2∥ρεtt(t)∥2 ≤ C, (5.24d)∫ t

0

∥(θεt , θεxt, jεxx)(τ)∥2 + ε∥(jεt , ρεtt)(τ)∥2 dτ ≤ C(1 + t) (5.24e)

hold for an arbitrary t ∈ [0, T ], where c and C are positive constants independent of t, δ and
ε.

Proof. The estimates in (5.24a) hold for t ∈ [0, T ∗] owing to Corollary 5.3. Because Lε(t) ≤
ε0 for suitably small ε0, we also have (5.24a) for t ∈ [T ∗, T ] with aid of (4.81a). Similarly, the
estimate (5.24c) are proven for t ∈ [0, T ]. Then estimating the B0-norm of the formula (2.8)
and the equation (2.11b) gives (5.24b). Moreover, take the L2-norm of the equation (5.3)
and (5.4) with aid of (5.24c) to obtain (5.24d). The inequality (5.24e) is derived similarly
as the derivations of (5.2a) and (5.2b).

Lemmas 5.5 and 5.6 ensure that Lε(T ) becomes arbitrarily small if ε is taken small
enough. To show these two lemmas, we use estimates F1, F2, F3 and F4:

∥F1∥21 ≤ C∥(Rε, Qε)(t)∥21, ∥(F3, F4)∥2 ≤ C∥(Rε, Qε)(t)∥21, (5.25)
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which are shown by the inequalities (4.81a), (4.81b) and (5.24a)–(5.24c) as well as the elliptic
estimate

∥∂itΦε(t)∥2 ≤ C∥∂itRε(t)∥ (5.26)

for i = 0, 1. Using the equation (5.21b), we have

∥F2∥2 ≤ C∥(Jε, Rε)(t)∥2 ≤ C(ε2 + ε2∥jεt ∥2 + ∥(Rε, Qε)(t)∥21). (5.27)

Lemma 5.5. Assume that (5.24) hold for t ∈ [0, T ]. Then it holds that

∥(Rε, Qε)(t)∥21 +
∫ t

0

∥(Rε
t , Q

ε
xx)(τ)∥2 +

1

ζ
∥Qε(τ)∥2 dτ ≤ C

(
ε+

ε2

ζ2

)
eβt, (5.28a)

1

ζ
∥Qε(t)∥2 +

∫ t

0

∥(Rε
xx, Q

ε
t)(τ)∥2 dτ ≤ C

(
ε+

ε2

ζ2

)
eβt, (5.28b)

∥Jε(t)∥2 ≤ ∥Jε(0)∥2e−t/ε + C

(
ε+

ε2

ζ2

)
eβt (5.28c)

for t ∈ (0, T ], where β and C are positive constants independent of t, δ and ε.

Proof. Multiply the equation (5.21b) by Qε − 3Qε
xx/2, integrate the resultant equality by

part over [0, t]× Ω and then use the boundary condition (5.22) to obtain

∫ 1

0

1

2
(Qε)2 +

3

4
(Qε

x)
2 dx+

∫ t

0

∫ 1

0

1

ζ
(Qε)2 +

(
2κ0
3ρε

+
3

2ζ

)
(Qε

x)
2 +

κ0
ρε

(Qε
xx)

2 − θε

ρε
Qε

xxJ
ε
x dxdτ

=

∫ t

0

∫ 1

0

(
2κ0

3(ρε)2
ρεxQ

ε
x −

2θε

3ρε
Jε
x

)
Qε −

(
ε

3ζ

(
jε

ρε

)2

− F2 − F3

)(
Qε − 3

2
Qε

xx

)
dxdτ

≤ µ

∫ t

0

∥(Rε
t , Q

ε
xx)(τ)∥2 dτ + C[µ]

∫ t

0

∥(Qε, Rε)(τ)∥21 dτ + C[µ]

(
ε+

ε2

ζ2

)
(1 + t), (5.29)

where µ is an arbitrary positive constant. In deriving the above inequality, we have also
utilized the estimates (5.24), (5.25) and (5.27) as well as the Sobolev and the Schwarz
inequalities. Multiplying the equation (5.23) by θεRε

t/(ρ
ε)2 and integrating the resultant

equality by part over [0, t] × Ω with using the boundary condition (5.22) and the equation
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(5.21a), we have∫ 1

0

(θε)2

2(ρε)2
(Rε

x)
2 dx+

∫ t

0

∫ 1

0

θε

(ρε)2
(Rε

t )
2 +

θε

ρε
Qε

xxJ
ε
x dxdτ

=

∫ t

0

∫ 1

0

(
(θε)2

2(ρε)2

)
t

(Rε
x)

2 −
(
(θε)2

(ρε)2

)
x

Rε
xR

ε
t

− θε

(ρε)2

{
ερεtt − ε

(
(jε)2

ρε

)
xx

+ F1x − F4

}
Rε

t dxdτ

≤ µ

∫ t

0

∥Rε
t (τ)∥ dτ + C[µ]

∫ t

0

(1 + ∥(ρεt , θεt )(τ)∥1)∥(Qε, Rε)(τ)∥21 dτ + C[µ]ε(1 + t), (5.30)

where the last inequality follows from the similar computation as in the derivation of (5.29).
Add (5.29) to (5.30), let µ sufficiently small, and then apply the Poincaré inequality ∥Rε∥ ≤
C∥Rε

x∥ to obtain that

∥(Rε, Qε)(t)∥21 +
∫ t

0

∥(Rε
t , Q

ε
xx)(τ)∥2 dτ

≤ C

∫ t

0

(1 + ∥(ρεt , θεt )(τ)∥1)∥(Qε, Rε)(τ)∥21 dτ + C

(
ε+

ε2

ζ2

)
(1 + t). (5.31)

The desired estimate (5.28a) follows from the Gronwall inequality applied to (5.31) together
with (5.24e).

Solve the equation (5.23) with respect to Rε
xx, take the L2-norm and then use (5.28a) to

get ∫ t

0

∥Rε
xx(τ)∥2 dτ ≤ C

(
ε+

ε2

ζ2

)
eβt. (5.32)

Multiply the equation (5.21b) by Qε
t and integrate the result by the part over [0, t]×Ω. After

that, applying the Sobolev and the Schwarz inequalities with using (5.28a) yield

1

2ζ

∫ 1

0

(Qε)2 dx+

∫ t

0

∫ 1

0

(Qε
t)

2 dxdτ

=

∫ t

0

∫ 1

0

(
2κ0
3ρε

Qε
xx −

2θε

3ρε
Jε
x −

ε

3ζ

(jε)2

(ρε)2
+ F2 + F3

)
Qε

t dxdτ

≤ 1

2

∫ t

0

∫ 1

0

(Qε
t)

2 dxdτ + C

(
ε+

ε2

ζ2

)
(1 + t). (5.33)

Then adding (5.33) to (5.32), we have the estimate (5.28b).
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Multiply the equation (5.21b) by et/εJε and integrate the result by the part over [0, t]×Ω.
Then estimating the resulting equality by the Schwarz and the Sobolev inequalities as well
as the estimates (4.81d), (5.24) and (5.28a), we have

ε

2
et/ε

∫ 1

0

(Jε)2(t) dx+
1

2

∫ t

0

∫ 1

0

eτ/ε(Jε)2 dxdτ

=
ε

2

∫ 1

0

(Jε)2(0) dx−
∫ t

0

∫ 1

0

eτ/ε
{
εj0t + ε

(
(jε)2

ρε

)
x

+ θεRε
x + ρεQε

x − F1

}
Jε dxdτ

≤ ε

2
∥Jε(0)∥2 + 1

4

∫ t

0

∫ 1

0

eτ/ε(Jε)2 dxdτ + Cε

(
ε+

ε2

ζ2

)
et/εeβt, (5.34)

where we have also used
∫ t

0
eτ/ε dτ ≤ εet/ε. Obviously the desired estimate (5.28c) follows

from (5.34).

To apply the similar arguments as in the proof of Theorem 4.9, which shows semi-
global existence for the energy-transport model, we derive the estimates for the higher order
derivatives of the difference (Rε, Jε, Qε). For this purpose, differentiating the equations
(5.21c) and (5.23) with respect to t yields

Qε
tt −

2κ0
3ρε

Qε
xxt +

2θε

3ρε
Jε
xt +

1

ζ
Qε

t =

(
2κ0
3ρε

)
t

Qε
xx −

(
2θε

3ρε

)
t

Jε
x −

(
ε(jε)2

3ζ(ρε)2

)
t

+ F2t + F3t,

(5.35)

ερεttt − θεRε
xxt − ρεQε

xxt +Rε
tt = ε

(
(jε)2

ρε

)
xxt

+ θεtR
ε
xx + ρεtQ

ε
xx − F1xt + F4t. (5.36)

By the estimates (4.81a), (4.81b), (5.24a)–(5.24c) and (5.26), the L2-norm of F1xt, F2x, F3x,
F3t and F4t are handled as

∥(F1xt, F3t, F4t)∥ ≤ C
(
∥(j0t , ρ0tt)(t)∥+ ∥(jεx, θεt )(t)∥1 + ∥(ρ0t , θ0t )(t)∥2

)
, (5.37)

∥(F2x, F3x)∥ ≤ C
(
∥(Jε, Rε

t )(t)∥+ ∥(Rε, Qε)(t)∥2 + ∥(ρ0xt, θ0xxx)(t)∥∥(Rε, Qε)(t)∥1
)
, (5.38)

where we have also used the equations (2.11a), (2.14a) and (5.21a). Due to the estimates
(4.81d), (4.81e), (5.24e), (5.28), (5.37) and (5.38), it holds that∫ t

0

τ 2∥(F1xt, F3t, F4t)∥2 dτ ≤ C(1 + t3),

∫ t

0

τ 2∥(F2x, F3x)∥2 dτ ≤ C

(
ε+

ε2

ζ2

)
eβt. (5.39)

Lemma 5.6. Assume that (5.24) hold for t ∈ [0, T ]. Then it holds that

1

ζ
∥Qε

x(t)∥2 + ∥(Rε
xx, J

ε
x, Q

ε
xx)(t)∥2 + ε∥(jεxx, θεxxx)(t)∥2 ≤ C

(
ε+

ε2

ζ2

)1/2

eβtt−2 (5.40)

for t ∈ (0, T ], where β and C are positive constants independent of t, δ and ε.
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Proof. Firstly multiplying the equation (5.21c) by −3t2Qε
xxt/2 and integrating the resultant

equality by part over [0, T ]× Ω with using the boundary condition (5.22), we obtain

t2
∫ 1

0

3

4ζ
(Qε

x)
2 +

κ0
2ρε

(Qε
xx)

2 dx+

∫ t

0

∫ 1

0

3τ 2

2
(Qε

xt)
2 + τ 2

θε

ρε
Qε

xxtR
ε
t dxdτ = I0, (5.41)

I0 :=

∫ t

0

∫ 1

0

3τ

2ζ
(Qε

x)
2 +

{
κ0τ

ρε
+
τ 2

2

(
κ0
ρε

)
t

}
(Qε

xx)
2 +

τ 2

2

{
ε(jε)2

ζ(ρε)2
− 3(F2 + F3)

}
x

Qε
xt dxdτ.

By the Schwarz and the Sobolev inequalities as well as the estimates (5.24a)–(5.24c), the
term I0 is estimated as

I0 ≤ Ct

∫ t

0

1

ζ
∥Qε

x(τ)∥2 + ∥Qε
xx(τ)∥2 dτ + Ct2

(∫ t

0

∥ρεt(τ)∥21 dτ
)1/2(∫ t

0

∥Qε
xx(τ)∥2 dτ

)1/2

+ C

(∫ t

0

ε2

ζ2
τ 2 + τ 2∥(F2x, F3x)∥2 dτ

)1/2(∫ t

0

τ 2∥Qε
xt(τ)∥2 dτ

)1/2

≤ C

(
ε+

ε2

ζ2

)1/2

eβt. (5.42)

In deriving the last inequality, we have also used (4.81d), (5.24e), (5.28a), (5.39) and ρεxt =
−jεxx.

Secondly multiply the equation (5.36) by t2θεRε
t/(ρ

ε)2, integrate the resultant equality
by part over [0, T ]× Ω and use the convergence (4.80) to get

t2
∫ 1

0

εθε

(ρε)2
Rε

ttR
ε
t +

θε

2(ρε)2
(Rε

t )
2 dx

+

∫ t

0

∫ 1

0

τ 2
(θε)2

(ρε)2
(Rε

xt)
2 − ετ 2θε

(ρε)2
(Rε

tt)
2 − τ 2

θε

ρε
Qε

xxtR
ε
t dxdτ = I1 + I2, (5.43)

I1 :=ε

∫ t

0

∫ 1

0

{
2τθε

(ρε)2
+ τ 2

(
θε

(ρε)2

)
t

}
Rε

ttR
ε
t −

τ 2θε

(ρε)2
ρ0tttR

ε
t − τ 2

(
(jε)2

ρε

)
xt

(
θεRε

t

(ρε)2

)
x

dxdτ,

I2 :=

∫ t

0

∫ 1

0

{
τθε

(ρε)2
+
τ 2

2

(
θε

(ρε)2

)
t

}
(Rε

t )
2 − τ 2

(
(θε)2

(ρε)2

)
x

Rε
xtR

ε
t

+
τ 2θε

(ρε)2
(θεtR

ε
xx + ρεtQ

ε
xx − F1xt + F4t)R

ε
t dxdτ.

Apply the Schwarz and the Sobolev inequalities to the term I1 with using the estimates
(5.24a)–(5.24c) and (5.37) to obtain

I1 ≤ C
√
ε

∫ t

0

(τ + τ 2)
(
∥(ρεt , θεt , ρ0t , θ0t )(τ)∥21 + ε∥(jεt , ρεtt, ρ0tt)(τ)∥2

)
+ τ 3∥ρ0ttt(τ)∥2 dτ

≤ C
√
ε(1 + t3). (5.44)



80 CHAPTER 5. HYDRODYNAMIC MODEL

In deriving the last inequality in (5.44), the estimates (4.81d)–(4.81f) and (5.24e) have been
also used. Using the Schwarz and the Sobolev inequalities as well as the estimates (4.81),
(5.24), (5.28a) and (5.39), we estimate I2 as

I2 ≤ C

(∫ t

0

1 + τ 2∥(ρεt , θεt , ρ0t , θ0t )(τ)∥21 + τ 2∥(F1xt, F4t)∥2 dτ
)1/2(∫ t

0

τ 2∥Rε
t (τ)∥2 dτ

)1/2

≤ C

(
ε+

ε2

ζ2

)1/2

eβt. (5.45)

Thirdly multiplying the equation (5.35) by −3εt2Qε
xxt, integrating the resultant equality

by part over [0, T ]× Ω and using (4.80) yield

εt2
∫ 1

0

3

2
(Qε

xt)
2 dx+ 2ε

∫ t

0

∫ 1

0

κ0τ
2

ρε
(Qε

xxt)
2 +

3

2ζ
τ 2(Qε

xt)
2 + τ 2

θε

ρε
Qε

xxtR
ε
tt dxdτ

= 2ε

∫ t

0

∫ 1

0

3τ

2
(Qε

xt)
2 − τ 2

(
κ0
ρε

)
t

Qε
xxQ

ε
xxt + τ 2

(
θε

ρε

)
t

Jε
xQ

ε
xxt

+
ετ 2

2ζ

(
(jε)2

(ρε)2

)
t

Qε
xxt +

3τ 2

2
F3tQ

ε
xxt + τ 2

(
3θεx
2ρε

+
ρεxθ

ε

(ρε)2

)
t

JεQε
xxt

− τ 2
{(

3θεx
2ρε

+
ρεxθ

ε

(ρε)2

)
Jε
t

}
x

Qε
xt + τ 2

(
(jε)2

(ρε)2
− (j0)2

(ρ0)2

)
xt

Qε
xt dxdτ

≤ C

(
ε+

ε2

ζ2

)1/2

eβt. (5.46)

The last inequality follows from the similar calculation as in the derivation of (5.44).
Fourthly multiply the equation (5.36) by 2t2θεRε

tt/(ρ
ε)2, integrate the resultant equality

by part over [0, T ] × Ω and use the convergence (4.80) and the equality Rε = ρε − ρ0. The
result is

t2
∫ 1

0

ε2θε

(ρε)2
(Rε

tt)
2 +

ε(θε)2

(ρε)2
(Rε

xt)
2 dx+ 2ε

∫ t

0

∫ 1

0

τ 2θε

(ρε)2
(Rε

tt)
2 − τ 2θε

ρε
Qε

xxtR
ε
tt dxdτ

= 2ε

∫ t

0

∫ 1

0

ε

{
τθε

(ρε)2
+
τ 2

2

(
θε

(ρε)2

)
t

}
(Rε

tt)
2 +

{
τ(θε)2

(ρε)2
+
τ 2

2

(
(θε)2

(ρε)2

)
t

}
(Rε

xt)
2

+ τ 2
(
(θε)2

(ρε)2

)
x

Rε
xtR

ε
tt +

τ 2θε

(ρε)2
(θεtR

ε
xx + ρεtQ

ε
xx − F1xt + F4t)R

ε
tt −

τ 2θε

(ρε)2
ρ0tttR

ε
tt

− ε

(
τ 2θε

(ρε)2

)
x

(
(jε)2

ρε

)
xt

Rε
tt + ε

τ 2θε

(ρε)2

(
(jε)2

ρε

)
xt

ρ0xtt dxdτ − I3, (5.47)

I3 := 2ε2
∫ t

0

∫ 1

0

τ 2θε

(ρε)2

(
(jε)2

ρε

)
xt

ρεxtt dxdτ.



5.2. SEMI-GLOBAL EXISTENCE OF SOLUTION 81

Due to the integration by part, the term I3 is rewritten as

I3 =− ε2t2
∫ 1

0

θε(jε)2

(ρε)4
(ρεxt)

2 dx+ 2ε2
∫ t

0

∫ 1

0

{
τ
θε(jε)2

(ρε)4
+
τ 2

2

(
θε(jε)2

(ρε)4

)
t

}
(ρεxt)

2

+

(
τ 2jεθε

(ρε)2

)
x

(ρεtt)
2 + τ 2

{(
2

(
jε

ρε

)
x

jεt −
(
(jε)2

(ρε)2

)
x

ρεt

)
θε

(ρε)2

}
x

ρεtt dxdτ. (5.48)

Substitute (5.48) in (5.47) and then estimate the right hand side of the resulting equality by
the similar calculation as in the derivation of (5.44). These procedures give

t2
∫ 1

0

ε2θε

(ρε)2
(Rε

tt)
2 +

ε(θε)2

(ρε)2
(Rε

xt)
2 dx

+ 2ε

∫ t

0

∫ 1

0

τ 2θε

(ρε)2
(Rε

tt)
2 − τ 2θε

ρε
Qε

xxtR
ε
tt dxdτ ≤ C

√
ε(1 + t3). (5.49)

Then sum up (5.41), (5.43), (5.46) and (5.49) and then substitute the estimates (5.42),
(5.44) and (5.45) in the result. After that, using the equation (5.21a), we have

t2

ζ
∥Qε

x(t)∥2 + t2∥(Jε
x, Q

ε
xx,

√
εJε

xx,
√
εQε

xt, εR
ε
tt)(t)∥2 ≤ C

(
ε+

ε2

ζ2

)1/2

eβt. (5.50)

To complete the derivation of the desired estimate (5.40), it suffices to show the estimates
of Rε

xx, jεxx and θεxxx in (5.40). The estimate

εt2∥jεxx(t)∥2 ≤ C

(
ε+

ε2

ζ2

)1/2

eβt (5.51)

immediately follows from (4.81c), (5.50) and Jε
xx = jεxx + ρ0xt. Solve the equation (5.23) in

Rε
xx, take the L2-norm and then use ρεtt = Rε

tt + ρ0tt to get

t2∥Rε
xx(t)∥2 ≤ Ct2

(
ε2∥(Rε

tt, ρ
0
tt, j

ε
xx)(t)∥2 + ε2 + ∥(Rε, Qε)(t)∥21 + ∥(Jε

x, Q
ε
xx)(t)∥2

)
≤ C

(
ε+

ε2

ζ2

)1/2

eβt. (5.52)

In deriving the last inequality, we have also utilized (4.81c), (5.50) and (5.51). The estimate
of θεxxx is derived as follows. Divide the equation (2.11c) by ρε and differentiate the result
in x. Multiply the resulting equation by εθεxxx and integrate the result by part over Ω.
Then applying the Schwarz and the Sobolev inequalities with using the estimates (4.81c),
(5.24a)–(5.24c), (5.50) and (5.51), we have the inequality

εt2

ζ
∥θεxx(t)∥2 + εt2∥θεxxx(t)∥2 ≤ Cεt2∥(jεxx, Qε

xt, θ
0
xt)(t)∥2 + Cεt2 ≤ C

(
ε+

ε2

ζ2

)1/2

eβt. (5.53)

Consequently, summing up the estimates (5.50)–(5.53) yields the desired estimate (5.40).
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Using Corollary 5.3 and Lemmas 5.4–5.6, we establish the semi-global existence of the
solution to the hydrodynamic model. Once the estimates (5.28) and (5.40) are shown, it is
proven by essentially same arguments as in the proof of Theorem 4.9. Hence we omit the
proof.

Theorem 5.7. Suppose the initial data (ρ0, j0, θ0) ∈ H2(Ω) × H2(Ω) × H3(Ω) and the
boundary data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then there
exist positive constants δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, for arbitrary positive time
T , there exist a positive constant εT , depending on ζ and T but independent of δ, such that if
ε ≤ εT , then the initial boundary value problem (2.11), (2.12) and (2.4)–(2.6) has a unique
solution (ρε, jε, θε, ϕε) verifying ρε, jε ∈ X2([0, T ]), θε, θεx ∈ Y([0, T ]) and ϕε ∈ C2([0, T ];H2)
with the conditions (2.10a), (2.10b) and (2.13). In addition, it satisfies the estimates (5.24),
(5.28) and (5.40).

The next corollary is proven by using Theorem 5.7 together with the estimates (3.37),
(3.38) and (4.81b). Since this proof is similar to that of Corollary 4.10, we omit the details.

Corollary 5.8. Suppose the same assumptions as in Theorem 5.7. For an arbitrary positive
number Λ, there exist positive constants TΛ and εΛ such that if 0 < ε ≤ εΛ, the problem
(2.11), (2.12) and (2.4)–(2.6) has a unique solution (ρε, jε, θε, ϕε) verifying ρε, jε ∈ X2([0, T ]),
θε, θεx ∈ Y([0, T ]) and ϕε ∈ C2([0, T ];H2) with the conditions (2.10a), (2.10b) and (2.13).
Moreover, it satisfies the estimates (5.24), (5.28), (5.40) and

1

ζ
∥(θε − θ̃

ε

ζ)(TΛ)∥21 + ∥(jε − j̃
ε

ζ)(TΛ)∥21 + ∥(ρε − ρ̃εζ , θ
ε − θ̃

ε

ζ)(TΛ)∥22

+ ε∥({jε − jεζ}xx, {θε − θ̃
ε

ζ}xxx)(TΛ)∥2 ≤ Λ. (5.54)

5.3 Global existence of solution

To construct the time global solution for the hydrodynamic model with the large initial data,
it suffices to show the asymptotic stability of the stationary solution with the small initial
disturbance.

Theorem 5.9. Let ε < ζ and (ρ̃, j̃, θ̃, ϕ̃) be the stationary solution of (2.17). Suppose that
the initial data (ρ0, j0, θ0) ∈ H2(Ω) × H2(Ω) × H3(Ω) and the boundary data ρl, ρr and ϕr

satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then there exists a positive constant
δ∗ such that if

ζ+δ+
1√
ζ
∥θ0− θ̃∥+∥j0− j̃∥1+∥(ρ0− ρ̃, θ0− θ̃)∥2+

√
ε∥({j0− j̃}xx, {θ0− θ̃}xxx)∥ ≤ δ∗, (5.55)
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the initial boundary value problem (2.11), (2.12) and (2.4)–(2.6) has a unique solution
(ρ, j, θ, ϕ) satisfying ρ, j ∈ X2([0,∞)), θ, θx ∈ Y([0,∞)), ϕ ∈ C2([0,∞);H2(Ω)) and the
conditions (2.10a), (2.10b) and (2.13). Moreover, the solution (ρ, j, θ, ϕ) verifies the addi-
tional regularity ϕ− ϕ̃ ∈ X2

2([0,∞)) and the decay estimate
1

ζ
∥(θ − θ̃)(t)∥21 + ∥(j − j̃)(t)∥21 + ∥(ρ− ρ̃, θ − θ̃)(t)∥22

+ ε∥({j − j̃}xx, {θ − θ̃}xxx)(t)∥2 + ∥(ϕ− ϕ̃)(t)∥24

≤ C

(
1

ζ
∥θ0 − θ̃∥21 + ∥j0 − j̃∥21 + ∥(ρ0 − ρ̃, θ0 − θ̃)∥22

+ε∥({j0 − j̃}xx, {θ0 − θ̃}xxx)∥2
)
e−αt, (5.56)

where C and α are positive constants independent of δ, ε, ζ and t.

We begin the proof of Theorem 5.9 with rewriting the problem (2.11), (2.12) and (2.4)–
(2.6) to that for the perturbation

ψ(t, x) := ρ(t, x)− ρ̃(x), η(t, x) := j(t, x)− j̃(x),

χ(t, x) := θ(t, x)− θ̃(x), σ(t, x) := ϕ(t, x)− ϕ̃(x)

from the stationary solution to (2.17). Divide (2.11b) by ρ and use the equation (2.11a) to
get

ε

(
j

ρ

)
t

+
ε

2

(
j2

ρ2

)
x

+ θ (log ρ)x + θx = ϕx −
j

ρ
. (5.57)

Similarly, it follows from (2.17b) that

ε

2

(
j̃
2

ρ̃2

)
x

+ θ̃ (log ρ̃)x + θ̃x = ϕ̃x −
j̃

ρ̃
. (5.58)

Subtracting (2.17a) from (2.11a), (5.58) from (5.57), (2.17c) from (2.11c) and (2.17d) from
(2.11d), respectively, we obtain the equations for the perturbation (ψ, η, χ, σ):

ψt + ηx = 0, (5.59a)

ε

(
j̃ + η

ρ̃+ ψ

)
t

+
ε

2

(
(j̃ + η)2

(ρ̃+ ψ)2
− j̃

2

ρ̃2

)
x

+ θ̃ {log (ρ̃+ ψ)− log ρ̃}x

+
ρ̃x + ψx

ρ̃+ ψ
χ+ χx − σx +

j̃ + η

ρ̃+ ψ
− j̃

ρ̃
= 0, (5.59b)

(ρ̃+ ψ)χt +
2

3
(θ̃ + χ)ηx −

2

3
(θ̃ + χ)

ρ̃x + ψx

ρ̃+ ψ
η − 2κ0

3
χxx +

ρ̃+ ψ

ζ
χ = G1 + G2, (5.59c)

σxx = ψ, (5.59d)
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G1 :=
2j̃

3

(
θ̃ + χ

ρ̃+ ψ
ψx +

ρ̃x
ρ̃+ ψ

χ− θ̃ρ̃x
ρ̃(ρ̃+ ψ)

ψ

)
− θ̃ − 1

ζ
ψ,

G2 :=− (j̃ + η)χx − θ̃xη +

(
2

3
− ε

3ζ

)(
2j̃ + η

ρ̃+ ψ
η − j̃

2
ψ

(ρ̃+ ψ)ρ̃

)
.

The initial and the boundary data to (5.59) are derived from (2.4)–(2.6) and (2.12) as

ψ(x, 0) = ψ0(x) := ρ0(x)− ρ̃(x), η(x, 0) = η0(x) := j0(x)− j̃(x),

χ(x, 0) = χ0(x) := θ0(x)− θ̃(x), (5.60)
ψ(t, 0) = ψ(t, 1) = χ(t, 0) = χ(t, 1) = σ(t, 0) = σ(t, 1) = 0. (5.61)

The unique existence of the time local solution (ψ, η, χ, σ) to the problem (5.59)–(5.61)
follows from Theorem 3.5 and Corollary 5.3.

Lemma 5.10. Suppose that the initial data (ψ0, η0, χ0) belongs to H2(Ω)×H2(Ω)×H3(Ω)
and (ρ̃+ψ0, j̃ + η0, θ̃+χ0) satisfies (2.10a), (2.10b) and (2.13). Then there exists a positive
constant T ∗, independent of ε, such that the initial boundary value problem (5.59)–(5.61)
has a unique solution (ψ, η, χ, σ) satisfying ψ, η ∈ X2([0, T

∗]), χ, χx ∈ Y([0, T ∗]) and σ ∈
X2

2([0, T
∗]) with the property that (ρ̃+ ψ, j̃ + η, θ̃ + χ) satisfies (2.10a), (2.10b) and (2.13).

The existence of the time global solution in Theorem 5.9 follows from the continuation
argument together with the local existence of the solution in Lemma 5.10 and an a-priori
estimate (5.62) below. To derive the estimate (5.62), it is convenient to use notations

Nε(t) := sup
0≤τ≤t

nε(τ), nε(τ) :=
1√
ζ
∥χ(τ)∥1 + ∥η(τ)∥1 + ∥(ψ, χ)(τ)∥2 +

√
ε∥(ηxx, χxxx)(τ)∥.

Proposition 5.11. Let T > 0 and let (ψ, η, χ, σ) be the solution to (5.59)–(5.61), satisfying
ψ, η ∈ X2([0, T ]), χ, χx ∈ Y([0, T ]) and σ ∈ X2

2([0, T ]). Then there exist positive constants
δ0 and ζ0, independent of T , such that if Nε(T ) + δ ≤ δ0 and ε < ζ ≤ ζ0, then the estimate

n2
ε(t) + ∥σ(t)∥24 +

∫ t

0

n2
ε(τ) + ∥σ(τ)∥24 dτ ≤ Cn2

ε(0) (5.62)

holds for t ∈ [0, T ], where C is a positive constant independent of T , δ, ζ and ε.

The proof of this proposition is derived in the several steps, which are stated in Lemma
5.12–5.16, and is completed at the end of this section.
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We first derive the basic estimate (5.70) in Lemma 5.12. To this end, define an energy
form E2, which is almost same as in [32], by

E2 :=
ε

2ρ
(j − j̃)2 + ρθ̃Ψ

(
ρ̃

ρ

)
+

1

2

{
(ϕ− ϕ̃)x

}2

+
3

2
ρθ̃Ψ

(
θ

θ̃

)
, (5.63)

Ψ(s) := s− 1− log s.

Here Ψ(s) is equivalent to |s − 1|2 if s ≥ c > 0. Thus, if the quantity |(ψ, χ)| is sufficiently
small, E2 is equivalent to |(ψ,

√
εη, χ, σx)|2 thanks to the estimates in (3.11). Namely,

c|(ψ,
√
εη, χ, σx)|2 ≤ E2 ≤ C|(ψ,

√
εη, χ, σx)|2, (5.64)

where c and C are positive constants.
Multiply the equation (5.59b) by η. Apply the product rule for derivatives to the first

term, the third and the sixth terms, respectively, Then substitute ηx = −ψt and ηx = −σxxt
in the third and the sixth terms, respectively. These procedure yields{

ε

2ρ
η2 + ρθ̃Ψ

(
ρ̃

ρ

)
+

1

2
(σx)

2

}
t

+
1

ρ̃
η2 +

ρx
ρ
χη = −χxη +R3x +R4, (5.65)

R3 := σσxt + ση − θ̃ {log ρ− log ρ̃} η,

R4 := −εη + 2j̃

2ρ2
ηxη −

ε

2

(
j2

ρ2
− j̃

2

ρ̃2

)
x

η − j

(
1

ρ
− 1

ρ̃

)
η + θ̃x {log ρ− log ρ̃} η.

Multiply the equation (5.59c) by 3χ/2θ and apply the product rule for derivatives to the
first and the fourth terms on the left hand side to obtain{

3

2
ρθ̃Ψ

(
θ

θ̃

)}
t

+
3ρ

2ζθ
χ2 +

κ0
θ
χ2
x −

ρx
ρ
χη = −χηx +R5x +R6, (5.66)

R5 :=
κ0
θ
χχx, R6 := −3

2
θ̃ηxΨ

(
θ

θ̃

)
+
κ0θx
θ2

χχx +
3

2θ
(G1 + G2)χ.

Adding (5.65) to (5.66), we have an equation for the energy form E2

E2t +
1

ρ̃
η2 +

3ρ

2ζθ
χ2 +

κ0
θ
χ2
x = −(χη)x + (R3 +R5)x +R4 +R6. (5.67)

The estimates

∥∂itσ(t)∥22 ≤ C∥∂itψ(t)∥2 for i = 0, 1, 2, (5.68)
∥σxt(t)∥2 ≤ ∥η(t)∥2 (5.69)

follow from the same computation as in Lemma 3.3 in [30].
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Lemma 5.12. Under the same conditions as in Proposition 5.11, it holds that

∥(ψ, χ, σx)(t)∥2 + ε∥η(t)∥2 +
∫ t

0

∥(ψ, η, χx, σx)(τ)∥2 +
1

ζ
∥χ(τ)∥2 dτ

≤ Cn2
ε(0) + C(Nε(T ) + δ + ζ1/4)

∫ t

0

∥(ψx, ψt)(τ)∥2 dx (5.70)

for t ∈ [0, T ], where C is a positive constant independent of t, δ, ζ and ε.

Proof. We show the basic estimate (5.70) by the similar manner as in Lemma 3.6 in [32].
Integrating (5.63) over the domain Ω yields

d

dt

∫ 1

0

E2 dx+
∫ 1

0

1

ρ̃
η2 +

3ρ

2θ
χ2 +

κ0
θ
χ2
x dx

≤ C(Nε(T ) + δ + ζ1/4)

(
1

ζ
∥χ(t)∥2 + ∥(ψ, η, χ)(t)∥21

)
(5.71)

since the integration of (R3 +R5)x is zero with aid of the boundary conditions (5.61). Here
we also used the estimate∫ 1

0

−(χη)x +R4 +R6 dx ≤ C(Nε(T ) + δ + ζ1/4)

(
1

ζ
∥χ(t)∥2 + ∥(ψ, η, χ)(t)∥21

)
,

where is derived from similar manner as in the derivation of (4.52) and (4.53). Moreover,
multiply the equation (5.59b) by −σx and integrate the result over the domain Ω. Then
apply the Schwarz and the Sobolev inequalities to the resultant equality and then use (5.68),
(5.69) and the mean value theorem. These computations give

c∥(ψ, σx)(t)∥ ≤ d

dt

∫ 1

0

ε

(
j

ρ
− j̃

ρ̃

)
σx dx

+ C∥(η, χ, χx)(t)∥2 + C(Nε(T ) + δ)∥(ψ, ψx, ηx)(t)∥2. (5.72)

Notice that the integration in t of the first term in the left hand side of (5.72) are estimated
as ∫ 1

0

ε

(
j

ρ
− j̃

ρ̃

)
σx(t, x)− ε

(
j

ρ
− j̃

ρ̃

)
σx(0, x) dx ≤ Cnε(0) + C

∫ 1

0

E2(t) dx

with aid of (5.64) and (5.68). Hence, multiply (5.72) by α, where α is a positive constant,
and then add the result to (5.71). Let α and Nε(T ) + δ + ζ1/4 be sufficiently small and use
ψt = −ηx to obtain the desired estimate (5.70).
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We turn to the derivation of the higher order estimates. To this end, we firstly derive the
estimates of the derivatives in the time variable t. Then we rewrite them in the derivatives
of the spatial variable x by using the estimates

1

ζ2
∥χ(t)∥2 ≤ C

(
∥χt(t)∥2 + ∥(ψ, η)(t)∥21 + ∥χ(t)∥22

)
, (5.73a)

∥εηt(t)∥2 ≤ C∥(ψ, η, χ)(t)∥21, (5.73b)
∥ηx(t)∥2 = ∥ψt(t)∥2, ∥ηxt(t)∥2 = ∥ψtt(t)∥2, ∥ηxx(t)∥2 = ∥ψxt(t)∥2, (5.73c)

cn2
ε(t) ≤

(∥∥∥∥(ψ, χ√ζ
)
(t)

∥∥∥∥2
1

+ ∥(η, ψt, χxx,
√
εψxt,

√
εχxt, εψtt)(t)∥2

)
≤ Cn2

ε(t), (5.73d)

∥σ(t)∥24 ≤ C∥ψ(t)∥22. (5.73e)

The above estimates are shown by using the equation (5.59). Precisely, owing to (3.11),
(3.25) and the Sobolev inequality, the estimate (5.73a) follows from the equation (5.59c);
(5.73b) follows from (5.59b); (5.73c) follows from (5.59a); (5.73d) follows from (5.59b) and
(5.59c); (5.73e) follows from (5.59d).

Differentiate (2.1b) with respect to x and multiply the result by 1/ρ. Similarly, differ-
entiate (2.17b) with respect to x and multiply the result by 1/ρ̃. Taking a difference of the
two resultant equalities and substituting the equations (5.59a) and (5.59d) in the result, we
have

ε

ρ
ψtt −

{
S[ρ, j, θ]

ψx

ρ

}
x

+ ψ +
ψt

ρ
− χxx = −2ε

j

ρ2
ψxt + F1 + F2, (5.74)

F1 :=
2ε

ρ2
ψ2
t + 4ε

jρx
ρ3
ψt + 2ε

j2

ρ4
(ρ+ ρ̃)xψx + ε

(
j2

ρ3

)
x

ψx −
θx − 2θ̃x

ρ
ψx +

(
θ

ρ2
ρx −

ϕx

ρ

)
ψx,

F2 :=2ε
ρ̃2x
ρ4

(j + j̃)η − 2εj̃
2
ρ̃2x

(ρ̃+ ψ)4 − ρ̃4

ρ̃4ρ4
− ε

ρ̃xx
ρ3

(j + j̃)η + εj̃
2
ρ̃xx

(ρ̃+ ψ)3 − ρ̃3

ρ̃3ρ3

+
ρ̃xx
ρ
χ− θ̃ρ̃xx

ρ̃ρ
ψ +

2ρx
ρ
χx −

2ρ̃xθ̃x
ρρ̃

ψ − ρ̃x
ρ
σx +

ϕ̃xρ̃x
ρρ̃

ψ.

Note that the estimates

∥F1∥ ≤ C(Nε(T ) + δ)∥(ψx, ψt)(t)∥, ∥F2∥ ≤ C∥(ψ, η, χ, χx)(t)∥ (5.75)

follow from the Sobolev inequality as well as the estimates (3.11), (3.25), (5.68) and (5.73c).
In this calculation, the estimate∣∣∣∣ θρ2ρx − ϕx

ρ

∣∣∣∣ = ∣∣∣∣ε jtρ2 + ε

(
j2

ρ

)
x

1

ρ2
+
θx
ρ

+
j

ρ2

∣∣∣∣ ≤ C(Nε(T ) + δ) (5.76)
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has been utilized to handled the last term in F1. Similarly, G1 and G2 in the equation (5.59c)
are estimated as

∥(G1,G2)∥i ≤ C(Nε(T ) + δ)∥(ψ, η, χ, ψx, χx)∥i (5.77)

for i = 0, 1.

Lemma 5.13. Under the same assumptions as in Proposition 5.11, it holds that

∥(ψx, χx)(t)∥2 + ε∥ψt(t)∥2 +
∫ t

0

1

ζ
∥χx(τ)∥2 + ∥(ψt, ψx, χxx)(τ)∥2 dτ

≤ Cn2
ε(0) + C

∫ t

0

1

ζ
∥χ(τ)∥2 + ∥(ψ, η, χx)(τ)∥2 dτ + C(Nε(T ) + δ + ζ1/2)

∫ t

0

∥χt(τ)∥2 dτ

(5.78)

for t ∈ [0, T ], where C is a positive constant independent of T , δ, ζ and ε.

Proof. Multiply the equation (5.74) by ψ+2ψt, integrate the result by part over the domain
Ω and then use the boundary conditions (5.61) to obtain

d

dt

∫ 1

0

1

ρ

(
εψ2

t + εψψt +
ψ2

2

)
+ S[ρ, j, θ]

ψ2
x

ρ
+ ψ2 dx

+

∫ 1

0

ψ2
t

ρ
+ S[ρ, j, θ]

ψ2
x

ρ
+ ψ2 dx−

∫ 1

0

2χxxψt dx = I1 + I2, (5.79)

I1 :=

∫ 1

0

(
1

ρ

)
t

(
εψ2

t + εψψt +
1

2
ψ2

)
+ ε

(
2j

ρ2
ψ

)
x

ψt + ε

(
2j

ρ2

)
x

ψ2
t

+

(
S[ρ, j, θ]

ρ

)
t

ψ2
x + F1(ψ + 2ψt) dx,

I2 :=−
∫ 1

0

χxψx −F2(ψ + 2ψt) dx.

We estimate the integration I1, by applying the Schwarz and the Sobolev inequalities with
using (3.11), (3.25), (5.73b), (5.73c) and (5.75), as

|I1| ≤ C(Nε(T ) + δ)∥(η, ψ, χ, ψx, ψt, χx, χt)(t)∥2. (5.80)

By the Schwarz inequality and (5.75), the estimate

|I2| ≤ µ∥(ψx, ψt)(t)∥2 + C[µ]∥(η, ψ, χ, χx)(t)∥2 (5.81)

holds, where µ is an arbitrary positive constant to be determined.
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On the other hand, multiplying the equation(5.59d) by −3χxx and integrate the resulting
equality by part over the domain Ω give

d

dt

∫ 1

0

3ρ

2
χ2
x dx+

∫ 1

0

3ρ

ζ
χ2
x + 2κ0χ

2
xx dx+

∫ 1

0

2χxxψt dx = I3 + I4, (5.82)

I3 :=

∫ 1

0

3

2
ψtχ

2
x − 2(θ − 1)ψtχxx − 3(G1 + G2)χxx dx,

I4 :=−
∫ 1

0

3ρxχtχx +
3ρx
ζ
χχx +

θρx
ρ
ηχxx dx.

By the application of the Schwarz and the Sobolev inequalities with using (3.11), (3.25),
(5.73c) and (5.77), the integration I3 is estimated as

|I3| ≤ C(Nε(T ) + δ)∥(η, ψ, χ, ψx, ψt, χx, χxx)(t)∥2. (5.83)

Similarly, it holds that

|I4| ≤ µ

(
1

ζ
∥χx(t)∥2 + ∥χxx(t)∥2

)
+ C[µ]

(
1

ζ
∥χ(t)∥2 + ∥(η, ψ, χx)(t)∥2 + ζ∥χt(t)∥2

)
.

(5.84)
Finally, substitute the estimates (5.80) and (5.81) in (5.79) as well as the estimates (5.83)

and (5.84) in (5.82), respectively. Then sum up the both results, taking µ and Nε(T ) + δ
small enough and integrating the resultant inequality in t, we have the desired estimate
(5.78) with aid of the subsonic condition (3.25b).

Lemma 5.14. Under the same assumptions as in Proposition 5.11, it holds that

1

ζ
∥χ(t)∥2 +

∫ t

0

∥χt(τ)∥2 dτ ≤ n2
ε(0) + C

∫ t

0

∥(ψ, η, ψx, ψt)(τ)∥2 + ∥χ(τ)∥22 dτ (5.85)

for t ∈ [0, T ], where C is a positive constant independent of T , δ, ζ and ε.

Proof. Multiplying the equation (5.59c) by χt/ρ and integrating resulting equality by part
over the domain Ω lead to

d

dt

∫ 1

0

1

2ζ
χ2 dx+

∫ 1

0

χ2
t dx =

∫ 1

0

(
2θρx
3ρ

η − 2

3
θηx +

2κ0
3
χxx + G1 + G2

)
χt

ρ
dx

≤ 1

2
∥χt(t)∥2 + C(∥(ψ, η, ψx, ψt)(t)∥2 + ∥χ(t)∥22). (5.86)

In deriving the last inequality, we have used the estimate (5.77) as well as the Schwarz and
the Sobolev inequalities. Hence, integration of (5.86) in t yield the estimate (5.85).
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Differentiating the equations (5.59c) and (5.74) in t yields

ε

ρ
ψttt −

{
S[ρ, j, θ]

ψxt

ρ

}
x

+ ψt +
ψtt

ρ
− χxxt = −2ε

j

ρ2
ψxtt + F1t + F2t + F3, (5.87)

ρχtt +
2θ

3
ηxt −

2θρx
3ρ

ηt −
2κ0
3
χxxt +

ρ

ζ
χt = G1t + G2t + G3, (5.88)

F3 :=−
(
1

ρ

)
t

(εψtt + ψt) +

{(
S[ρ, j, θ]

ρ

)
t

ψx

}
x

− 2ε

(
j

ρ2

)
t

ψxt,

G3 :=− ψtχt +
2

3
χtηx +

(
2θρx
3ρ

)
t

η − ψt

ζ
χ.

Using the Sobolev inequality as well as the estimates (3.11), (3.25), (5.68) and (5.73a)–
(5.73d), we have

∥(F1t,F2t,F3)∥ ≤ C
(
∥η(t)∥+ ∥(ψ, χ, ψt, χt)(t)∥1 +

√
ε∥ψtt(t)∥

)
, (5.89)

√
ε∥(G1t,G3)∥+ ε∥G2t∥1 ≤ C(Nε(T ) + δ +

√
ε)(∥(ψxt, χxt)(t)∥+

√
ε∥(ψtt, χxxt)(t)∥)

+ C∥(ψ, η, ψx, ψt)(t)∥+ C∥χ(t)∥2. (5.90)

Lemma 5.15. Under the same assumptions as in Proposition 5.11, it holds that

1

ζ
∥χx(t)∥2 + ∥(ψt, χxx)(t)∥2 + ε∥(ψxt, χxt)(t)∥2 + ε2∥ψtt(t)∥2

+

∫ t

0

∥(ψxt, χxt)(τ)∥2 + ε∥(ψtt, χxxt)(τ)∥2 dτ

≤ Cn2
ε(0) + C

∫ t

0

1

ζ
∥χ(τ)∥21 + ∥(ψ, η, ψx, ψt, χt, χxx)(τ)∥2 dτ (5.91)

for t ∈ [0, T ], where C is a positive constant independent of T , δ, ζ and ε.

Proof. Multiplying the equation (5.87) by ψt + 2εψtt, integrating the resultant equality by
part over the domain Ω and then using the boundary condition (5.61), we obtain

d

dt

∫ 1

0

1

ρ

(
ε2ψ2

tt + εψtψtt +
ψ2
t

2

)
+ εS[ρ, j, θ]

ψ2
xt

ρ
+ εψ2

t dx

+

∫ 1

0

ε

ρ
ψ2
tt + S[ρ, j, θ]

ψ2
xt

ρ
+ ψ2

t dx−
∫ 1

0

χxxtψt + 2εχxxtψtt dx = H1, (5.92)

H1 :=

∫ 1

0

(
1

ρ

)
t

(
ε2ψ2

tt + εψtψtt +
1

2
ψ2
t

)
+ ε

(
2j

ρ2
ψt

)
x

ψtt + ε2
(
2j

ρ2

)
x

ψ2
tt

+ ε

(
S[ρ, j, θ]

ρ

)
t

ψ2
xt + (F1t + F2t + F3)(ψt + 2εψtt) dx.
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We multiply the equation (5.59c) by −3χxxt/2, integrate the resultant equality by part over
the domain Ω and then use the equation (5.59a). The resultant equality is

d

dt

∫ 1

0

3ρ

4ζ
χ2
x +

κ0
2
χ2
xx dx+

∫ 1

0

3ρ

2
χ2
xt dx+

∫ 1

0

χxxtψt dx = H2, (5.93)

H2 :=
3

2

∫ 1

0

(
2

3
(θ − 1)ηx −

2θρx
3ρ

η − G1 − G2

)
x

χxt − ρxχtχxt +
ψt

2ζ
χ2
x −

ρx
ζ
χχxt dx.

Furthermore, multiplying the equation (5.88) by −3εχxxt and integrating the resultant equal-
ity by part over the domain Ω yield

d

dt

∫ 1

0

3ε

2
ρχ2

xt dx+

∫ 1

0

2εκ0χ
2
xxt +

3ερ

ζ
χ2
xt dx+

∫ 1

0

2εχxxtψtt dx = H3, (5.94)

H3 := ε

∫ 1

0

3

2
ψtχ

2
xt − 2(θ − 1)ψttχxxt − 3(G1t + G3)χxxt +

(
3G2t + 2

θρx
ρ
ηt

)
x

χxt

− 3ρx
ζ
χtχxt − 3ρxχttχxt dx.

In order to estimate H3, by using the equation (5.88), we rewrite the term ρxχttχxt as

−ρxχttχxt =
ρx
ρ

(
2θ

3
ηxt −

2θρx
3ρ

ηt −
2κ0
3
χxxt +

ρ

ζ
χt − G1t − G2t − G3

)
χxt.

Then applying the Schwarz and the Sobolev inequalities to H1, H2 and H3 with using the
estimates (3.11), (3.25), (5.73a)–(5.73d), (5.77), (5.89) and (5.90), we have

|(H1,H2,H3)| ≤ {µ+ C(Nε(T ) + δ +
√
ε)}∥(χxt, ψxt,

√
εψtt,

√
εχxxt)(t)∥2

+ C[µ]

(
1

ζ
∥χ(t)∥21 + ∥(ψ, η, ψx, ψt, χt, χxx)(τ)∥2

)
. (5.95)

Finally, sum up the equalities (5.92)–(5.94) and substitute the estimate (5.95) in the
resultant equality. Successively take µ and Nε(T ) + δ +

√
ε small enough and integrate the

result in t. These procedures give the desired estimate (5.91).

Lemma 5.16. Under the same conditions as in Proposition 5.11, it holds that

∥η(t)∥2 +
∫ t

0

ε∥ηt(τ)∥2 dτ

≤ Cn2
ε(0) + C∥(ψ, χ)(t)∥21 + C

∫ t

0

∥η(τ)∥2 + ∥(ψ, ψt, χt)(τ)∥21 dτ (5.96)

for t ∈ [0, T ], where C is a positive constant independent of T , δ, ζ and ε.
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Proof. Subtract (2.17b) from (2.11b), multiply the resultant equation by ηt and integrate
the result by part over the domain Ω. Then apply the Schwarz and the Sobolev inequalities
to the resultant equality. The result is

d

dt

∫ 1

0

η2

2
dx+

∫ 1

0

εη2t dx

≤ d

dt

∫ 1

0

{ρσx + ϕ̃xψ}η − {θψ + ρ̃χ}xη dx+ C∥η(t)∥2 + C∥(ψ, ψt, χt)(t)∥21, (5.97)

of which integration in t yields the estimate (5.96).

We derive the a-priori estimate (5.62) in Proposition 5.11 and complete the proof of
Theorem 5.9.

Proofs of Proposition 5.11 and Theorem 5.9. Rewrite (5.70), (5.78), (5.85), (5.91) and (5.96),
which are estimates of the derivatives in t, to those in x by using (5.73d), we have the a-priori
estimate (5.62). It complete the proof of Proposition 5.11.

The continuation argument with the time local existence in Corollary 5.10 and the a-
priori estimate (5.62) yields the time global existence for the small initial disturbance, which
is asserted in Theorem 5.9.

The decay estimate (5.56) follows from the similar manner as in the proof of Theorem
4.11. Precisely, multiply (5.72) by β, (5.79) and (5.82) by β2, (5.86) by β3, (5.92)–(5.94) by
β4 and (4.62) by β5, respectively, where β ∈ (0, 1]. Sum up these results and (5.71) and then
substitute the estimates (5.80), (5.81), (5.83), (5.84) and (5.95) in Ii and Hi. Successively
letting µ small enough gives an ordinary differential inequality

d

dt
E(t) + c1D(t) ≤ C1βD(t) + C(Nζ(T ) + δ + ζ1/4 + ε1/2)D(t), (5.98)

E(t) :=

∫ 1

0

E2 − βε

(
j

ρ
− j̃

ρ̃

)
σx +

β2

ρ

(
εψ2

t + εψψt +
ψ2

2

)
+ β2S[ρ, j, θ]

ψ2
x

ρ
+ β2ψ2

+ β23ρ

2
χ2
x +

β3

2ζ
χ2 +

β4

ρ

(
ε2ψ2

tt + εψtψtt +
ψ2
t

2

)
+ β4εS[ρ, j, θ]

ψ2
xt

ρ
+ β4εψ2

t

+ β43ρ

4ζ
χ2
x + β4κ0

2
χ2
xx + β5η

2

2
− β5{ρσx + ϕ̃xψ}η + β5{θψ + ρ̃χ}xη dx,

D(t) :=∥(η, χx)(t)∥2 +
1

ζ
∥χ(t)∥2 + β∥(ψ, σx)(t)∥2 + β2∥(ψt, ψx, χxx)(t)∥

+
β2

ζ
∥χx(t)∥2 + β3∥χt(t)∥2 + β4∥(ψxt, χxt)(t)∥2 + β4ε∥(ψtt, χxxt)(t)∥.
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For the suitably small β, we see from (5.73d) that E(t) is equivalent to nε(t):

cnε(t) ≤ E(t) ≤ Cnε(t), (5.99)

where c and C are positive constants. Take β so small that (5.99) and c1 − C1β > 0 hold.
Moreover, let Nζ(T )+ δ+ ζ

1/4+ε1/2 sufficiently small in (5.98) and substitute cE(t) ≤ D(t),
which holds for a suitably chosen small positive constant c. Consequently, we obtain an
ordinary differential inequality

d

dt
E(t) + αE(t) ≤ 0, (5.100)

where α is a positive constant. Solving (5.100) and using (5.99), we have

nε(t) ≤ nε(0)e
−αt.

The above inequality together with (5.73e) yields the decay estimate (5.56). 2

We are now at the position to complete the proof of Theorem 2.1 which asserts the
asymptotic stability of the stationary solution for the hydrodynamic model with the large
initial data. As it is done by the same discussions as in the proof of Theorem 4.2, we only
state a brief sketch here.

Proof of Theorem 2.1. Take the constant Λ in Corollary 5.8 so small that the assumption
(5.55) in Theorem 5.9 holds. By applying Theorem 5.9 with regarding TΛ as initial time and
(ρ, j, θ)(TΛ) as the initial data, we establish the existence of the solution (ρ, j, θ, ϕ) globally
in time. The decay estimate (2.21) immediately follows from (5.56). 2

5.4 Momentum and energy relaxation limits
We justify the relaxation limits of the time global solution for the hydrodynamic model. We
show the estimates (2.22)–(2.24), which complete the proof of Theorem 2.3. Once Theorem
2.3 is proven, Corollary 2.5 follows from Theorem 2.4. Note that the time global solution for
the energy-transport model and the hydrodynamic models have been already constructed in
Sections 4.3 and 5.3, respectively.

Proof of Theorem 2.3. We firstly show that the estimates (5.28) and (5.40) hold for t ∈ [0,∞).
It suffices to prove the assumption (5.24) in Lemmas 5.5 and 5.6 holds for t ∈ [0,∞). Let
Λ be the constant fixed in the proof of Theorem 2.1 and thus TΛ is corresponding existence
time. Corollary 5.8 means that the solution (ρε, jε, θε, ϕε) verifies (5.24) for arbitrary time
t ∈ [0, TΛ]. Hence, it is sufficient to show that the time global solution, for initial data
(ρ, j, θ)(TΛ) at initial time TΛ constructed in Theorem 5.9, verifies (5.24). The estimate
(5.24c) follows from the decay estimate (5.56). The solution (ρε, jε, θε, ϕε) satisfies (5.24a)
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for t ∈ [0, TΛ′ ]. On the other hand, it converges to the stationary solution (ρ̃ε, j̃
ε
, θ̃

ε
, ϕ̃

ε
),

which satisfies (5.24a), as t tends to infinity. Hence, taking Λ′ small, which is equivalent to
taking TΛ′ large, (ρε, jε, θε, ϕε) verifies (5.24a) for t ∈ [TΛ′ ,∞). Moreover, the other estimates
in (5.24) follow from the similar discussion as in the proof of Lemma 5.4. Hence, thanks to
Lemmas 5.5 and 5.6, the estimates (5.28) and (5.40) hold for t ∈ [0,∞).

By applying these estimates, we show the estimates (2.22)–(2.24). Let λ ∈ (0, 1/2) and
then define a constant

T1 :=
1

β
log {ε+ (ε/ζ)2}−λ.

The estimates (5.28) and (5.40) mean that

∥(Rε, Qε)(t)∥21 ≤ C{ε+ (ε/ζ)2}eβT1 ≤ C{ε+ (ε/ζ)2}1−λ, (5.101a)

∥Jε(t)∥2 ≤ ∥Jε(0)∥2e−t/ε + C{ε+ (ε/ζ)2}1−λ, (5.101b)

∥(Rε
xx, J

ε
x, Q

ε
xx)(t)∥2 ≤ C{ε+ (ε/ζ)2}(1/2)−λt−2 (5.101c)

hold for 0 < t ≤ T1. On the other hand, we have the estimate

∥Rε(t)∥22 ≤ C∥(ρε − ρ̃ε)(t)∥22 + C∥(ρ0 − ρ̃0)(t)∥22 + C∥(ρ̃ε − ρ̃0)(t)∥22
≤ C

(
e−αT1 + ε+ (ε/ζ)2

)
≤ C

(
{ε+ (ε/ζ)2}αλ/β + ε+ (ε/ζ)2

)
(5.102)

for t ≥ T1 with aid of the estimates (2.21), (3.37), (3.38) and (4.81b). Similarly, it hold that

∥Jε(t)∥21 + ∥Qε(t)∥22 ≤ C
(
{ε+ (ε/ζ)2}αλ/β + ε+ (ε/ζ)2

)
. (5.103)

Letting γ := min{(1/2)− λ, αλ/β}, we have the inequalities

∥(Rε, Qε)(t)∥21 ≤ C{ε+ (ε/ζ)2}γ, (5.104a)

∥Jε(t)∥2 ≤ ∥Jε(0)∥2e−t/ε + C{ε+ (ε/ζ)2}γ, (5.104b)
∥(Rε

xx, J
ε
x, Q

ε
xx)(t)∥2 ≤ C(1 + t−1){ε+ (ε/ζ)2}γ (5.104c)

owing to the estimates (5.101)–(5.103). The inequalities in (5.104) together with the elliptic
estimate ∥Φε(t)∥4 ≤ C∥Rε(t)∥2 yield the desired estimate (2.22)–(2.24). 2

Remark 5.17. The constants C and γ in (5.104) are taken independently of ζ for the special
initial data θ0 = 1. It is shown by the same procedure in this chapter (also see Remark 4.18).
This fact shows Remark 2.6.


