
CHAPTER 2

Relation between Real
and Complex Secondary Classes

A natural mapping ϕ : BΓC

q → BΓ2q is obtained by forgetting transverse com-

plex structures. There is a natural homomorphism from H∗(WO2q) to H∗(WUq)

which corresponds to this mapping as follows.

Theorem 2.1 ([64], [3, Theorem 3.1]). Let λ be the mapping from WO2q to

WUq given by

λ(ck) = (
√−1)k

k∑
j=0

(−1)jvk−jvj,

λ(h2k+1) =
(−1)k

2

√−1

2k+1∑
j=0

(−1)j ũ2k−j+1(vj + vj),

where v0 and v0 are considered as 1. Then λ induces a homomorphism from

H∗(WO2q) to H∗(WUq), denoted by [λ]. The homomorphism [λ] corresponds to

forgetting transverse complex structures, indeed, the following diagram commutes :

H∗(WO2q)
[λ]−−−−→ H∗(WUq)

χ

⏐⏐� ⏐⏐�χC

H∗(BΓ2q) −−−−→
ϕ∗ H∗(BΓC

q ).

The Godbillon–Vey class and the imaginary part of the Bott class are related by the

formula

[λ](GV2q) =
(2q)!

q! q!
ξq · chq1 ,
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where ch1 =
v1 + v1

2
and it corresponds to the first Chern class of the complex

normal bundle of the foliation. The image of GV2q under [λ] is also called the

Godbillon–Vey class.

Remark 2.2. Theorem 2.1 first appeared in [64] without proofs.

The kernel, image and cokernel of [λ] have the following meanings:

ker [λ] =

{
classes in H∗(WO2q) which are obstructions for foliations
to admit transverse holomorphic structures

}
,

im [λ] = {classes in H∗(WUq) which are invariants as real foliations},
coker [λ] = {classes in H∗(WUq) which cannot be induced from real classes}.

If H∗(WUq) is explicitly described, then one can write down [λ] and determine these

spaces. This is done for q ≤ 3 in [5]. The results are given in the last part of this

section (Theorems 2.6 and 2.7).

The image of GV2q is non-trivial in H∗(WUq). Indeed, we will construct trans-

versely holomorphic foliations with non-trivial Godbillon–Vey classes. On the other

hand, we have the following

Corollary 2.3. The image of GV2q is trivial in H∗(WC

q ).

Proof. The equality ch1 = d

(
u1 + u1

2

)
holds in WC

q . Therefore GV2q is

trivial by Theorem 2.1. �

This corollary implies that the Godbillon–Vey classes of transversely holo-

morphic foliations is trivial if the first Chern class of the complex normal bundle is

trivial.

There is a version of Theorem 2.1 for foliations with trivialized normal bundles.

Theorem 2.4 ([3]). Let λ̂ : W2q → WC

q be an extension of λ defined by

λ̂(h2k) =
(−1)k

2

√−1

2k∑
j=0

(−1)j(u2k−jvj + ujv2k−j),
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where v0 and v0 are regarded as 2, and u0 and u0 are regarded as 0. Then λ̂ induces

on the cohomology a homomorphism, denoted by [λ̂], which corresponds to forgetting

transverse complex structures.

Let ϕ̂ : BΓC
q → BΓ2q be the mapping obtained by forgetting transverse complex

structures. The induced homomorphisms commute as follows:

H∗(W2q)
[λ̂]

χ̂

H∗(WC
q )

χ̂C

H∗(WO2q)
[λ]

χ

H∗(WUq)

χC

H∗(BΓ2q)
ϕ̂∗ H∗(BΓC

q )

H∗(BΓ2q)
ϕ∗ H∗(BΓC

q ).

The mapping in which we are most interested in the first half of this monograph is

χC ◦ [λ] : H∗(WO2q) → H∗(BΓC

q ).

Remark 2.5 (cf. Remark 1.3.13). The above diagram can be explained in terms

of the Schubert varieties. Let Xq×Xq → X2q be the mapping induced by taking the

direct sum. This mapping also induces a mapping from X̃q = (Xq × Xq)/U(q) to

X2q/O(2q). Then the top square in the above diagram corresponds to the following

commutative diagram:

X2q

��

Xq ×Xq��

��

X2q/O(2q) X̃q.
��

The following is a table of bases for ker[λ], im[λ] and coker[λ] for q = 2, 3. The

image of a class α ∈ H∗(WO2q) under [λ] is denoted by [α]λ.
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Theorem 2.6 ([5, Theorem 1.8]).

1) As a basis for the image of H∗(WO4) in H∗(WU2), we can take the fol-

lowing classes :

[c2]λ, [h1c
2
2]λ, [h1c

2
1c2]λ, [h1c

4
1]λ.

2) The classes in Table 2.1 form a basis for the kernel of [λ].

3) The image is equal to
〈
[v1]

2 − 2[v2]
〉⊕H9(WU2), where

〈
[v1]

2 − 2[v2]
〉
de-

notes the linear subspace spanned by [v1]
2−2[v2]. In particular, the subspace

spanned by the classes [h1c
4
1], [h1c

2
1c2] and [h1c

2
2] in H9(WO4) is mapped

isomorphically to H9(WU2).

4) The cokernel consists of the secondary classes of H∗(WU2) which are not

of degree 9 and the subspace spanned by the classes [v1], [v1]
2 + 2[v2].

Theorem 2.7 ([5, Theorem 1.9]).

1) A basis for the image of H∗(WO6) in H
∗(WU3) is given by Table 2.2.

2) A basis for the kernel of [λ] is given by Table 2.3.

3) The image is described as follows :

i) The only Chern class in the image is [v1]
2 − 2[v2].

ii) The image of the secondary classes is contained in the subspace

H13(WU3)⊕H17(WU3)⊕H18(WU3), more precisely,

•• the subspace of H13(WO6) spanned by the classes

[h1c
6
1], [h1c

4
1c2], [h1c

3
1c3], [h1c1c2c3], [h1c

2
3], [h1c

2
1c

2
2]

is mapped to the subspace of H13(WU3) spanned by the classes

[ũ1v
3
1v

3
1], [ũ1v1v2v

3
1], [ũ1v1v2v1v2], [ũ1v1v2v3], [ũ1v3v

3
1],

[ũ1v3v3].

The class [h3c
2
2] is mapped to the class [ũ2v1v2v2]−[ũ2v2v3] mod-

ulo the above subspace.

• The class [h3c
2
3], of degree 17, is mapped to the class [ũ3v3v3].
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4 [c2]
2, [c4],

[h3c2]− 1

2
[h1c1c3],

9

[h1c4]− 1

2
[h1c

2
2] +

1

12
[h1c

4
1], [h1c1c3]− [h1c

2
1c2] +

1

3
[h1c

4
1]

[h3cJ ], where |J | ≥ 3

[h1h3cJ ], where |J | ≥ 4

Table 2.1. A basis for the kernel of [λ] : H∗(WO4) → H∗(WU2).

4 [c2]λ

13 [h1c
2
3]λ, [h1c1c2c3]λ, [h1c

3
1c3]λ, [h1c

4
1c2]λ, [h1c

2
1c

2
2]λ, [h1c

6
1]λ, [h3c

2
2]λ

17 [h3c
2
3]λ

18 [h1h3c
2
3]λ, [h1h3c1c2c3]λ, [h1h3c

3
1c3]λ, [h1h3c

4
1c2]λ, [h1h3c

2
1c

2
2]λ, [h1h3c

6
1]λ

Table 2.2. A basis for the image of [λ] : H∗(WO6) → H∗(WU3).

• The subspace spanned by the classes

[h1h3c
6
1], [h1h3c1c2c3], [h1h3c

3
1c3], [h1h3c

2
3], [h1h3c

4
1c2],

[h1h3c
2
1c

2
2],

which are of degree 18, is mapped to the subspace spanned by the

classes

[ũ1ũ3v
3
1v

3
1], [ũ1ũ3(v1v2v3 + v3v1v2)], [ũ1ũ3(v

3
1v3 + v3v

3
1)],

[ũ1ũ3v3v3], [ũ1ũ3v1v2v
3
1], [ũ1ũ3v1v2v1v2].

4) The following classes form a basis for the cokernel, namely,

i) the classes of degree not equal to 4, 13, 17, 18,

ii) the class [ũ2v1v2v2] + [ũ2v2v3] (of degree 13),

iii) the classes [ũ1ũ3(v
3
1v3− v3v

3
1)], [ũ1ũ3(v1v2v3− v3v1v2)], [ũ2ũ3v1v2v2],

[ũ2ũ3v2v3] and [ũ2ũ3v3v2] (of degree 18), and

iv) the class [v1]
2 + 2[v2] (of degree 4).
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the Pontrjagin classes other than [c2]

[h1c
3
2]−

1

8
[h1c

6
1] +

3

4
[h1c

4
1c2]−

3

2
[h1c

2
1c

2
2],

[h1c2c4]− 1

16
[h1c

6
1]− [h1c1c2c3] +

1

4
[h1c

2
1c

2
2] +

1

8
[h1c

4
1c2],

[h1c
2
1c4]−

1

4
[h1c

6
1] + [h1c

4
1c2]− [h1c

3
1c3]−

1

2
[h1c

2
1c

2
2],

13 [h1c1c5]− [h1c1c2c3]− 1

20
[h1c

6
1] +

1

2
[h1c

2
1c

2
2],

[h1c6] +
1

80
[h1c

6
1]−

1

8
[h1c

4
1c2] +

1

4
[h1c

2
1c

2
2]−

1

2
[h1c

2
3],

[h3c4]− 1

4
[h1c

3
1c3] + [h1c1c2c3]− [h1c

2
3]−

1

2
[h3c

2
2],

[h5c2]− 1

2
[h1c1c5]

15 [h3c5], [h3c2c3]

[h3c6]− 1

2
[h3c

2
3],17

[h5c4], [h5c
2
2], [h3c

3
2], [h3c2c4]

[h1h3c
3
2]−

1

8
[h1h3c

6
1] +

3

4
[h1h3c

4
1c2]−

3

2
[h1h3c

2
1c

2
2],

[h1h3c2c4]− 1

16
[h1h3c

6
1]− [h1h3c1c2c3] +

1

4
[h1h3c

2
1c

2
2] +

1

8
[h1h3c

4
1c2],

18 [h1h3c
2
1c4]−

1

4
[h1h3c

6
1] + [h1h3c

4
1c2]− [h1h3c

3
1c3]−

1

2
[h1h3c

2
1c

2
2],

[h1h3c1c5]− [h1h3c1c2c3]− 1

20
[h1h3c

6
1] +

1

2
[h1h3c

2
1c

2
2],

[h1h3c6] +
1

80
[h1h3c

6
1]−

1

8
[h1h3c

4
1c2] +

1

4
[h1h3c

2
1c

2
2]−

1

2
[h1h3c

2
3]

19 [h5c5]

the secondary classes of degree greater than 20

Table 2.3. A basis for the kernel of [λ] : H∗(WO6) → H∗(WU3).




