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Rankin-Selberg method and periods of
modular forms

Hidenori Katsurada

0 Introduction

o]

Let f(z) = Z a(m) exp(2mimz) and g(z Z b(m) exp(2mimz) be cusp forms for SLy(Z).

Then the Rankm Selberg method gives an 1ntegral representatlon of the Dirichlet series, called the
Rankin-Selberg convolution product, defined by

oo

L(57 s g) = Z a(m)mm_s'

m=1

This method was first introduced by Rankin [27] and Selberg [29] independently. Since then, it
has fully developed for several types of modular forms, and has become one of the most useful
tools for studying modular forms and their L-functions. In particular, it plays a very important
role in proving analytic properties (meromorphy, functional equation etc.) of several automorphic
L-functions. As for this, the reader is referred to excellent surveys by Bump [2] and [3].

In this paper, we give another application of the Rankin-Selberg method, which expresses the
period of a cuspidal Hecke eigenform in terms of the special values of automorphic L-functions
related to it. Here we mean by the period of a cusp form f the Petersson product (f, f) of f in
almost all cases. The main purposes of this paper are as follows:

(1) to survey Petersson’s formula for the period of an elliptic cusp form and its application;

(2) to survey Kohnen-Zagier’s formula for the period of a Hecke eigenform of half integral weight;

(3) to give an outline of the proof of Tkeda’s conjecture on the period of the Ikeda lift.

To explain them more precisely, first let f be a cusp form of integral weight & for IH(N). Then,
in Section 2, we give Petersson’s formula, which expresses the period (f, f) in terms of the residue
of the Rankin-Selberg convolution product L(s, f, f) at s = k. (cf. Proposition 2.3.) This is due
to Petersson [26]. As an application, we express (f, f) in terms of the adjoint L-function of f
evaluated at s = 1 in case f is a normalized Hecke eigenform (cf. Theorem 2.4.) This topic is
rather elementary and well-known but instructive for our later investigation. So I will explain it
precisely. Furthermore, we consider the algebraicity of the special values of several L-functions.

Next let f be a Hecke eigenform in the Kohnen plus subspace of cusp forms of weight k + 1/2
for I'p(4), and S(f) the normalized Hecke eigenform of weight 2k for SLy(Z) corresponding to
f under the Shimura correspondence. Then, in Section 3, we explain Kohnen-Zagier’s formula,

which expresses the ratio (8. 50N
central critical value of the twisted Hecke L-function of S(f) (cf. Theorem 3.4.) This type of result

of the periods in terms of the Fourier coefficient of f and the

86



H. Katsurada

was first given by Waldspurger [39] in more general setting from the automorphic representation
theoretic view point, and later was refined for the above special case by Kohnen and Zagier [23].
We here remark that a certain Rankin-Selberg convolution product without Euler product plays
an important role in proving Theorem 3.4.

Finally for a normalized Hecke eigenform f of weight 2k — n for SLo(Z) with k,n even, let f be
the Tkeda lift of f (cf. [9]). Furthermore let f be a Hecke eigenform in the Kohnen plus subspace

of cusp forms of weight k —n/2+ 1/2 for I'y(4) such that S(f) = f. Then Ikeda [10] among others
(f,.f)

conjectured that the ratio %t would be expressed in terms of the special values of the Hecke

)

L-function and the adjoint L-function of f. This has been proved by the author and Kawamura (cf.
[18]). In Sections 5 and 6, we give an outline of the proof. Here we also would like to emphasize
that several Rankin-convolution products with or without Euler product play important roles in
the proof. As for an application of this period relation to congruence between Ikeda lifts and
non-lkeda lifts, the reader is referred to [17] and [15].

This paper is based on my lectures entitled “Periods of modular forms and special values of
their L-functions” at French-Japanese Winter School on Zeta and L-Functions held in January of
2008. T would like to thank Professor K. Matsumoto and Professor H. Tsumura for their fine jobs
in organizing the winter school. He also thank the referee for many valuable comments.

Notation. For a complex number z we put e(z) = exp(2miz). For a commutative ring R, we
denote by M, (R) the set of (m, n)-matrices with entries in R. In particular put M, (R) = My, (R).
Put GL,,(R) = {A € M,,(R) | det A € R*}, where det A denotes the determinant of a square
matrix A, and R* denotes the unit group of R. For an (m,n)-matrix X and an (m,m)-matrix
A, we write A[X] =X AX, where !X denotes the transpose of X. Let Symy,(R) denote the set
of symmetric matrices of degree n with entries in R. Furthermore, let £,, denote the set of half-
integral matrices of degree n over Z, that is, £, is the set of symmetric matrices of degree n whose
(i,j)-component belongs to Z or %Z according as ¢ = j or not. If S is a subset of Sym,(R) with
R the field of real numbers, we denote by Ssq (resp. S>o) the subset of S consisting of positive
definite (resp. semi-positive definite) matrices. Let R be a commutative ring. Then a subgroup G
of GL,(R) acts on the set Sym,(R) in the following way:

G x Symn(R) 3 (g9, A) — Alg] € Symn(R).

For a subset S of Sym,(R), we denote by S/G the set of equivalence classes of S with respect to
G.

1 Siegel modular forms

In this section we review modular forms of integral or half-integral weight. Put J,, = ( ?” Ln ) ,
where 1,, denotes the unit matrix of degree n. For a subring K of R put
GSpH(K) = {y € GLan(K) | Ju[y] = v(7)Jn with some v(v) > 0},

and
Spn(K) ={v € GSp;i (K) | Jul7] = Ju}.

We call GSp;(R) the group of proper symplectic similitudes of degree n, and I'™ = Sp,,(Z). For
a positive integer N we define the principal congruence subgroup F(”)(N ) of '™ of level N by

I'™(N)y={yeTI'™ |y =1y, mod N}.
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A subgroup I' of I'™ is called a congruence subgroup of '™ if I" contains some principal congru-
ence subgroup. For a positive integer N, we denote by [ ()(")(N ) the subgroup of I (") consisting of
matrices whose lower left nxn block is congruent to O,, modulo N. Clearly I (gn) (N) is a congruence
subgroup of I'™ . Let

H, ={Z € Sym,(C) | Im(Z) > 0}

be Siegel’s upper half-space of degree n. Write v € GSpf (R) as vy = ( A B ) with A, B,C,D €

C D
M,(R) and for Z € H,, put v(Z) = (AZ+B)(CZ+D)~. Then v(Z) also belongs to H,, and we can
define an action of the group GSp,} (R) on H,, in this way. Furthermore put j(v, Z) = det(CZ+ D).

First we define a modular form of integral weight. Let k be a positive integer. For a function f
on H,, we define f|iy as

(f16m)(Z) = det(1)*j (3, 2)* £ (1(2)).

We simply write f|y for f|gy if there is no confusion. Then f| defines an action of GSp;(R)
on f, that is, we have flr(v172) = (flg71)|x72 for any 1,72 € GSpt(R). Let I' be a congruence
subgroup of I'™ which contains some I'™(N), and x a character of I" trivial on I'™(N). A
function f on H,, is called a C"*°-modular form of weight k and character x for I" if it satisfies the
following conditions:

(i) f is a C*°-function on H, ;

(i) (flx)(Z) = x(1)f(Z) for any v € I

We call a C*°-modular form f a holomorphic modular form if
(i) f is holomorphic on Hy;
(ii) for any v € '™ f|,~ has the following Fourier expansion

(@)= 3" epn(Ae(tr(AZ/N)),

AELnZO

where tr denotes the trace of a matrix.
We call f(Z) a cusp form if
(iii) ¢f|,(A) = 0 unless A is positive-definite.
We note that we have the following Fourier expansion

F(2)= 3 cAe(tr(A2))

AEE,LEO

if f is a modular form for I'H(N).
Next we define a modular form of half-integral weight. Let k be a half-integer. In this case, for
a function f on H,, and v € GSp;} (R) we can also define f|y as

(Flen)(2) = det()¥2j(v, Z2) " f(1(2)),

where j(v,Z)™" is an appropriately defined single valued holomorphic function. However, this
does not define an action of GSp;(R). To overcome this obstacle, we define a group &&p; (R)
as follows. Namely let ®&p;(R) denote the set of all couples (v, ¢(Z)) formed by an element

Y= ( é g ) € GSp,(R) and a holomorphic function on H,, such that

k

$(2)* = tdety~ Y2 det(CZ + D)
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with ¢t € C!, where C! = {t € C | |t| = 1}. We define a law of multiplication in 6&p; (R) by

(71, @1) (72, 62) = (1172, P1(12(2))d2(2)).

By this, we make ®S&p; (R) a group. Let P : ®&pT(R) — GSp;(R) be the natural projection
map, and put 8&p, (K) = P~1(GSp; (K)) and &y, (K) = P~(Sp,(K)) for a subring K of R. In
particular we put ¢ (K) = ®&p] (K). We define the action of £ € &, (R) on H,, as that of
P(&) on H,,. For a function f on H, and £ = (v, ¢) € 8Sp; (R) we define f|ox& as

(f121)(2) = &(2) 7 F(1(2)).-

This defines an action of &p;" (R) on f. Now we define a function §(Z) on H,, as

02)= 3 e(Zm]).

meMp1(Z)

Put j(v,2) = % for v € Fém (4). Then we remark that

J(7, 2)? = (~1) et P=D/25(y, 7)

C D
(v,5(v,2)) € 8Sp(R) is an injective homomorphism of groups. For a congruence subgroup I’

for v = ( 4 B > Then (v,7(v,Z)) belongs to ®&p;(R) and the map I : Fén)(él) ERA

contained in Fo(n) (4) we use the same symbol I" to denote the image I(I"). Now let k be a half-

integer, assume that I" is contained in Fén)(ﬁl) and that it contains some I"(N). Furthermore
let x be a character of I" trivial on I'™(N). A function f on H,, is called a C*-modular form of
weight k for I if it satisfies the following conditions:

(i) f is a C*°-function on H,, ;

(ii) (fl2x)(Z) = x(7)f(Z) for any v € I';

We call a C*°-modular form f a holomorphic modular form if
(i) f is holomorphic on Hy;
(ii) for any v € &p,,(Z), f|ary has the following Fourier expansion

Flarv(Z) = Y cpipy(Ae(tr(AZ/N)).

A€£n20

In particular we call f(Z) a cusp form if
(iil) ¢f),.y(A) = 0 unless A is positive-definite.
We note that we have the following Fourier expansion

F(2)= 3 cAe(tr(AZ2))

Ae[jnZO

if f is a modular form for I'H(V).

For an integer or half-integer &, we denote by My (I, x) (resp. M°(I, x)) the space of holomorphic
(resp. C°-) modular forms of weight k& and character x for I. We denote by & (I, x) the subspace
of My (I, x) consisting of cusp forms. If y is the trivial character, we simply write M (I, x) as
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Mi(I"), and the others. Let x be a Dirichlet character mod N. Then the map IH(N) > v =
( é, g > — x(det D) is a character of I'y(NN), which we denote by the same symbol x. In
this case we understand that My (Io(N)) is M (Lo(N), 1) with ¢ the trivial character mod N.
Let f € Mp(Lo(N), ) with ¢ a Dirichlet character mod N. Let dv denote the invariant volume
element on H,, defined by dv = det(Im(Z))~""! Ni<j<i<n (dzji A dyj;). Here for Z € H,, we write
Z = (xj;) +i(y;;) with real matrices (x;;) and (y;;). For two C*°-modular forms f and g of weight
k for I'™ we define the Petersson scalar product (f,g) by

(frg) =™ T A F(Z)9(Z) det(Im(Z))"dv,

provided the integral converges. Here ®r is a fundamental domain for H,, modulo I

Now we review a general Hecke theory for modular forms. A more precise Hecke theory will be
explained in Sections 2,3 and 4. For a while put G, = GSp;} (Q) or 6&p}(Q), and I}, = Sp,(Z)
or Fén) (4) according as Gy, = GSp;(Q) or ®Sp,(Q). Let K be a commutative ring with unity.
Let A be a sub-semigroup of G,, and I' a congruence subgroup of I},. We denote by Ry (I, A)
the module of all the K-finite formal sum of the double coset I'yI" with v € A. We define the
following multiplication law: for two double cosets I'yI" and I'y'I" write

mr=|Jry

(2

and
ry'r=Jr;,
J
and we define I'yI'T'y'I" as
IYIryT =Y e(y";7,9) ',
"
where c¢(v";7,7") = #{(i,7) | I'Y" = I'v;7;}. Under this multiplication, Rk (I, A) becomes an
associative algebra over K, which we call the Hecke algebra over K associated with the Hecke pair
(I, A). Now we consider the action of R (I, A) on M(I, x). First let k be an integer. Let I" be
a congruence subgroup of Sp,(Z) and A a sub-semigroup of Sp,}}(Q). We assume that x can be
extended to A, which we denote by the same symbol y. Furthermore assume that if aya™ € I’
for v € I'a € A, then x(aya™!) = x(7). Let T = I'yI" be an element of Ry (I, A). Write T as
T = U, Iy and for f € My(I, x) define the Hecke operator |,T associated to T" as

FIRT = det(y)M2= V2N 5 (3) fliy-

i

This expression does not depend on the choice of v, and f[xT belongs to M(I", x). We call this
action the Hecke operator as usual (cf. [1].) Next let k& be a half-integer. Then, for a congruence
subgroup of Fén)(4) and a sub-semigroup A of ®&p;" (Q), we can define the action of R (I',A) on
M (L, 1) in a similar way. If f is an eigenfunction of a Hecke operator T' € Ry (I, A) we denote
by Af(T) its eigenvalue. We call f € M (I, x) a Hecke eigenform for Ry (I, A) if it is a common
eigenfunction of all Hecke operators in R (I, A).
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2 Elliptic modular forms

Throughout this section and the next, we simply write Fél)(N) as I[o(N). Let f € Mp(Io(N), 9).
Then we have the following Fourier expansion of f:

flz)= Z a(m)e(mz).

m=0
Then for a Dirichlet character x we define the Dirichlet series

o0

L(s, fox) = Y a(m)x(m)m™*.

m=1

We briefly review the properties of L(s, f, x) following [24]. The Dirichlet series L(s, f, x) can be
continued to a meromorphic function on the whole s-plane. Furthermore L(s, f, x) is entire if f is
a cusp form. Let

AO(N):{( “ Z) € My(Z) | ¢ =0 mod N, (a, N) = 1,ad — be > 0}.

Put Ro(N) = Rz(Io(N), Ao(N)). For integers [, m such that Ijm and (I, N) = 1 define an element
T(l,m) of Ro(N) by
10

0 m

T(1,m) = To(N) ( ) (V).

In particular put 7'(p) = T'(1,p) for a prime number p. Then R((V) is the polynomial ring over Z
generated by T'(p), T (p,p) with all prime numbers p prime to N, and T'(g) with prime numbers ¢
dividing N. We simply call f a Hecke eigenform if it is a Hecke eigenform for Ro(N). Now assume
that f is a normalized Hecke eigenform, that is, f is a Hecke eigenform with the first Fourier
coefficient 1. Put A(m) = A¢(m). Then we have

We also have

if (m,n) =1, and
AP?) = Ap)* = ¢(p)p*!

for any prime number p. Thus we have

L(s, f,x) = [ (1 = A@)p~"x(@) + 0" >0 (p)x(p)*) "

We call L(s, f, x) Hecke’s L-function of f twisted by x. We write A(p) as

A(p) = "> (o, + B,) and a8, = ¥ (p)

with ay, 8, complex numbers. Then L(s, f,x) can also be expressed as

L(s, £,x) = [ J{(1 = aup®> 727 x(p)) (1 = Bpp™* > *x(p))} 1.
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If  is the principal character, we simply write L(s, f, x) as L(s, f). In Section 3, we will express
L(s, f) for a Hecke eigenform f in Mp(SL2(Z)) in another way.

Now for f(z) = S5 a(m)e(m=) € Ry(Th(N), 6) and g(z) = X5 b(m)e(m=) € R(IH(N), 1)
we then define the Rankin-Selberg convolution product as

o0

D(s, f.9) = 3 a(m)b(m)m™".

m=1

We consider an integral expression of D(s, f,g) in case f or g is a cusp form. Let A be a non-
negative integer and y a Dirichlet character mod N such that y(—1) = (—1)*. We define the
Eisenstein series Ey n(z, s; x) by

BEaxn(zsix)=v" Y, x(MMily2) il 2)] 7
v€l\I0(N)

Proposition 2.1. Let A\, N and x be as above.
(1) Put
@(S) = F(S + )‘)E)\,N(Z7 S, X)7
where T'(s) is Gamma function. Then as a function of s, €(s) can be continued to a meromorphic

function on the whole s-plane. Furthermore €(s) is entire if X # 0 or x is non-trivial. If A = 0
and x is trivial, €(s) has a simple pole at s =1 with the residue

3 Ch—
mH(l‘f‘P Hh
pIN

(2) If A>3, or A =2 and x # 1. Then E) n(2,0,X) belongs to Mx(IH(N),X), and in particular if
X 18 a primitive character, we have the following Fourier expansion

&)

Exn(z,0,x) =1+ ﬁ > O x(d)d*e(nz),
’ n=1 dln

where L(s,x) is the Dirichlet L-function associated with x. Furthermore, if x is trivial, then we
have

c oo
By n(2,0,x) = Iy + che(nz)
n=0
with rational numbers ¢ and c,,.
Now by using so called the Rankin-Selberg method we have the following:

Theorem 2.2. Let f(z) = > o0 ja(m)e(mz) € &,(Io(N),¢) and g(z) = > oo, b(m)e(mz) €

m=0

W (Lo(N),v). Assume that k > 1. Then we have

(4m)"°L(s)D(s, f,9) = L F(2)9(2)Exin(2,5+ 1=k, g)y**dady
Ip(N)

Proof. Put

I'= / F(2)9(2)Ex—in(2,5+ 1 — k, o)y 2dady.
Pro(v)
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Then we have

I= L 9GS )T eMPMIMh ) i, 2) 722 Ry dady.

o) YEToNTo(N)
For any v € I'h(N) we have
FEEmM(z) P SNBMI2) 150 27272 = f(y(2))9(7(2) Im((2)) .
Thus we have

I= / F(2)g () m(=) "y~ 2ddy
Useroo\Io (MY (Pro(3))

= [ 7gGTm () y 2 dady,
R
where R = {z € H | |Re(z)| < 1/2}. Thus we have

1/2 oo -
I= / / m)b(n)exp(2mi(m — n)x — 2w (m + n)y)y* y 2dzdy

1/2

Tnn—

1/2
m)b(n) / exp(2mi(m — n)z — 2m(m + n)y)y* Ty *dedy
—1/2

m,n= 0

= /000 Z a(m)mexp(lewmy)ys-ﬁ-ly_gdy

m=1

Z b(m) (4mm) 5T (s).

This proves the assertion.
By (1) of Propositions 2.1 and Theorem 2.2 we have

Proposition 2.3. Let f and g be as in Theorem 2.2. Then D(s, f,g) can be continued to a
meromorphic function on the whole s-plane. Furthermore we have

Ress:kD(87f7 f) = F(k‘) <f7 f>%

Let f(z) =Y oo_; a(m)e(mz) be a normalized Hecke eigenform in &(IH(N), ¢) and ay and 5,
the complex numbers defined as above. We then define the adjoint L-function L(s, f, x, Ad) of f
twisted by x as

L(s, f,x, Ad) = [ {1 = agp™*x(@))(1 = Bpp~*x(p)) (1 — p cByx(p))}

If x is the principal character, we simply write L(s, f,x, Ad) as L(s, f,Ad). In Section 4, we
will express L(s, f,Ad) for a Hecke eigenform f in M;(SLy(Z)) in another way. Put f,(z) =
> oo _ia(m)e(mz). Then we note that we can write D(s, f, f,) as

m=1

D(S,f,fp) :H( 253p2k 2— 25 H{ 2 k—1— 5)( ,62 k—1— 5)(1_pk—1—sap,8p)2}—1

P
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We note that a8, = ¢(p). Thus by comparing the Euler products of L(s, f, Ad) and D(s + k —
1, f, f») we have
(*)  L(s,9)L(s, f, Ad) = L(25,6*)D(s + k — 1, f, f,)-

In particular, if f € &,(IH(N)), we have f(z) = f,(z), and apB, = 0 or 1 according as p divides
N or not. Thus we have

where (n(s) = ((s) [I,n(1 —p~*) with ¢(s) Riemann’s zeta function. Thus by Proposition 2.3 we
have

Theorem 2.4. Under the above notation and the assumption, L(s, f,Ad) can be continued to
a meromorphic function on the whole s-plane. In particular, if f € &(Io(N)), then we have

L(1, f,Ad)  22+-1
T H(f, f) (k)

[T+,
p|N

Remark. (1) Similarly for any character x, L(s, f, x, Ad) can be continued to a meromorphic

function on the whole s-plane. Furthermore, if f € & (I(N)), then L(s, f, x, Ad) is entire for any
character x. As for this, see [31].
(2) By Theorem 2.4, the period (f, f) of a normalized Hecke eigenform f € & (Ip(N)) can be
expressed as the adjoint L-function of f evaluated at s = 1 and some elementary quantities. The
same formula holds for a normalized Hecke eigenform in & (IH(V), ) with non-trivial character
o.
In the rest of this section, we consider the special values of several L-functions of a modular
form. For a Hecke eigenform f in & (Io(N), ¢), we denote by Q(f) the field generated over Q by
all the eigenvalues of the Hecke operators, and call it the Hecke field of f. First, by using (2) of
Proposition 2.1 and Theorem 2.2, we have

Proposition 2.5 ([32]) Let f € & (Io(N), o) and g € M(Io(N), ) be normalized Hecke eigen-

forms. Assume that k > 1, and let m be an integer such that %(k+l—2) <m < k. Then Dim. [.9)

™ (f, f)
belongs to Q(f)Q(g).

Put I'c(s) = %75)82 Then by applying Proposition 2.5, we get the following (cf. [32],[33].)

Theorem 2.6. (1) Let ¢ be a Dirichlet character mod N. Let f be a normalized Hecke eigen-
form in & (Iv(N),). Then there exist complex numbers uy(f) uniquely determined up to Q(f)*

multiple such that % € Q(f)(x) for any integer 0 < m < k — 1 and a Dirichlet
j
character x such that j = (—1)™x(—1), where 7(x) is the Gauss sum.

Finally we consider the algebraicity of the adjoint L-function. Proposition 2.5 holds for two
modular forms of different weights. Thus we cannot derive the above type of result for the adjoint
L-function from Proposition 2.5. However, by using a variant of the Rankin-Selberg method we
can get the following.
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Theorem 2.7. ([35],[40]) Let ¢ be a Dirichlet character mod N. Let f be a Hecke eigenform in
Sr(Io(N), ). Let x be a Dirichlet character. Let m be a positive integer not greater than k — 1
and x(=1) = (=1)™"L. Put
FC(m)FC(m +k— I)L(m7 f7 X5 Ad)

(£,.) '

Then L(m, f, x, Ad) belongs to Q(f)(x), and in particular it is algebraic.

L(m7 f? X? Ad) =

3 Half-integral weight modular forms
Let N be a positive integer. Let h(z) = >, cp(m)e(mz) € &y 1q1/2(I0(4N),x) and g(z) =
Yo Cg(m)e(msz) € &1 1/2(I5(4N),1)). We then define

[e o]
D(s,h,g) = Zch m~°.

m=1

Then similarly to the integral weight case, we have the following.

Proposition 3.1. Assume that k > . Then we have

I'(s)(4m)"°D(s, h,g) = / h(z)g(z)Ex—1an(z,5+1/2 — k,w)y* 3 2 dxdy,
Proan)

where w(d) = ((71;k7l)x(d)1/)(d). In particular, we have

F(S)(47T)_SD(57 h7 h) = / ‘h(z)|2E0,4N(27 5+ 1/2 - kvw)yk_B/Qdmdy'
Pryan)

In particular, the period (h,h) can be expressed in terms of the residue of the convolution

product
(s, h, h) Z |Ch

However there is no formula like Theorem 2.4. Instead we express the ratio of the period of h to
that of its Shimura correspondence S(h) in terms of L(k/2,S(h)).

Let N be an odd positive integer. We define the Kohnen plus subspace M, ., (IH(4N)) of

k+1/2
Miy1/2(L0(4N)) by
9)?;:_,'_1/2(]})(4]\7))
Z c¢(m)e(mz) | cg(m) = 0 unless m = (=1)¥ mod 4 or m = 0 mod 4}.
We also put &, , ,(To(4N)) = &p1/2(T0(4N)) N My, o (T0(4N)). We note that My, »(To(4N))

can also be defined as the eigenspace of a certain linear operator acting on My /2(F0(4N )), and

the canonical projection pr from My /5(I9(4N)) to 9)2;_1/2(]“0 (4N)) is given by

1
DI (N glopagal) + 20,

pr(g) = (-1 3

3\f

v mod 4
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where Bl (2))
4 1 . _ ay(z
e= (5 4 ) exlmi/a.ai = (o, Lo
. 1 0 . .
with o, = ( ANy 1 ) (cf. [21].) Now to explain the Shimura correspondence, let 6(z) =

ST e(—m?2z) be the theta series defined in Section 1, and put 6;(z) = 6(tz) for each pos-

m=—o0

itive integer £. We note that 6,(2) belongs to M, /5(Io(4t), ( Dr)). where Dy is the discriminant
of Q(vt) and (£t) denotes the Kronecker symbol. We denote by A¢(4N) the subalgebra of
Ra(Io(4N), 6% (Q)) generated by all the F0(4N)(( (1) ;2
bers not dividing N. Then Ag(4N) acts on EDtka(Fo(élN)) as in Kohnen [21]. We simply call an

element h € MF /o(T0(4N)) a Hecke eigenform if h is a Hecke eigenform for A¢(4N). Then we

have the following (cf. Kohnen [21], Shimura [30].)

) ,pY?)I[H(4N) s with p prime num-

Theorem 3.2. (1) Let N be an odd positive integer. Let k be a positive integer and D a
fundamental discriminant such that (—1)¥D > 0. For h(z) = 3.0°_, c(m)e(mz) € &, ., (IH(4N)),

we define Syan,p(h)(z) by

k+1/2

Skan,p(h Z Z dk 'e(|D|(m/d)?)e(mz).
" 1<d,dJ‘v7;11

Then Sk an,p(h)(2) belongs to ok (Io(N)). The map Sy an,p is an isomorphism from & o(Io(4N))
to Soi(I'v(N)). In particular if N =1, then the map

5 clmpelima) - LOELR ) | S5 S Dyt pun a2 elrns)

m=0 m=1 dlm

induces an isomorphism from 9)2k+1/2( 0(4)) to Mar(SLa(Z)) whose restriction to 6k+1/2(1})(4))
is equal to Sk 4,p. This map will be denoted by the same symbol Sk 4, p.
(2) Let D be as above. Then, for any Hecke eigenform h € 6k+1/2( 0(4)), Sga,p(h) is a Hecke

eigenform in S (SLa(Z)), and we have

D(s,h,0,p))L(s — k + 1, (g)) = c(|D|)L(s, Ska,p(h))-

We call Sp 4y p the Shimura correspondence associated to D. For a Hecke eigenform h in
®z+1/2(l“0(4)), let S(h) be the normalized Hecke eigenform in &y, (S Lo (Z)) such that Q(Sk.a.p(h)) =
Q(S(h)). This S(h) is uniquely determined by h and does not depend on the choice of D. We also
call S(h) the normalized Hecke eigenform corresponding to i under the Shimura correspondence.
As for the recent development related to Theorem 3.2, see Ueda [36]. Now as for the period of a

half-integral weight cusp form, we have the following (cf. Shimura [33].)

Theorem 3.3. Let h be a Hecke eigenform in 6k+1/2(F0(4)). Assume that all the Fourier
coefficients of h belong to a field K. Then we have
mi(h, h)

R
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Roughly speaking, the period (h, h) is nothing but u_(S(h)). Now our main result of this section
is to give the ratio % in terms of L(k/2,S(h),x) with some quadratic character x. This
type of result was first gfven by Waldspurger in automorphic representation theoretic view point.
Here we give a refinement of it in a special case where h is in the Kohnen plus subspace due to
Kohnen and Zagier. As for the recent progress of this theme, see Sakata [28].

Theorem 3.4. (Kohnen-Zagier [23]) Let h be a Hecke eigenform in 6z+1/2(1“0(4)). Then for

any fundamental discriminant D such that (=1)"?D > 0 we have

len(IDDI? _ (k) |DI*"V2L(k, S(h), (2))
(h, ) mk (S(h), S(h))

To prove the above theorem, we consider the following Eisenstein series: Let D be a fundamental
discriminant such that (—1)*D > 0. We then put

D
Gr,p(z,8) = Ey p|(2, s, (?)),

~ D
Gr.p(z,8) = Gy p(4z,s) — 2_k_25(5)Gk,D(22, s).

Furthermore put

Gr,p(z) = ka,D(%O)a
and
Gy,p(z) = L(l%k’(%))ékp(zvo)-
We note that Gy p(z,s) and Gy p(z,s) belong to W (Lo(| DY), (2)) and M2 (Io(4D)), (g)), re-

spectively, and, in particular if k& > 3, then Gy p(z) and Gy, p(z) belong to My (Io(|D]), (Z)) and
Mi.(10(4| D)), (2)), respectively. We define Fp(z,s) and Gp(z, s) as

Folz8) = PG p(2)Grp(2,9)),

and

3 D, o5 _ 4D A

2= () (P (G (=, )6(ID).

Here for positive integers N, M such that N|M we denote by Trd the trace map from R (IH(M))
to M°(Io(N)) given by

Gp(z,s) =

™= Y fO)

el (M)\Io(N)
for f € M°(IH(M)). Furthermore put
L1 -k, (2
Foe) = B 70,
and b
L(1—-Fk, (2
Go(z) = 2L g (2.0,
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We note that Fp(z) and Gp(z) belong to Mok (SLe(Z)), and 9th+1/2( 0(4)), respectively, if k& > 3.

Proposition 3.5. Let D be a fundamental discriminant such that (—1)¥D > 0. Let f be a
normalized Hecke eigenform in &o1,(SLa(Z)). Then we have

D(2k —1)L(1 — k,(2)) L2k — 1, f)L(k, f, (D))
VIR = Ty L@y
Proof. Put I(s) = (f, Fp(x,3)). Then we have
1(s) :/ > FO ()G (1(2)Grp(1(2), 8)y** 2 dady
512(2) ye (| D)\SL2(Z)

= / f(z)Gkﬁp(z)GhD(z,§)y2k_2dxdy.
®ry(1p))

Thus by Theorem 2.2, for s € C with sufficiently large real part, we have

T2k —1+5s)

I(S) = W‘L<2k -1 + S,f7 Gk7D)

and therefore by (2) of Proposition 2.1 we have

D(2k — 14 8) L(2k — 1+ s, f)L(k + 5, f, (2))

I(s) = (dm) 2T+ Lk +2s,(2)) *

The both hand-sides of the above are holomorphic at s = 0. thus the assertion holds.

Proposition 3.6. Let D and f be as in Proposition 3.5, and g(z) = > oo_j cg(m)e(mz) be a
Hecke eigenform in 6k+1/2( 0(4)) such that Sk4,p(g9) = c4(|D|)f. Then we have

Dk —1/2)L(1 ~ k(7))
A(dm)R =12 L(k, (2))| D[R/

(9,9p) = L2k =1, f)eg(IDI).

Proof. The assertion can be proved in a way similar to Proposition 3.5 by using Propositions
3.1 and 3.2.

Proof of Theorem 3.4. Let {g,} be an orthogonal basis of e,m/Q( 0(4)) consisting of Hecke

eigenforms. Furthermore, we define the Eisenstein series Ej_1/5(z) and G} 11 /2( z) as

Ek+1/2(2) = Z (9(;(722’))))7%—1

Y€ \I0(4)

)

and
ok N ke -1
Giliijo(2) = C(1 = 2k)(Epp/o(2) +2 P14 (—1)ki)F l/zEzm/g(fZ)-

Then Ej1/2(2) and Gk+1/2( z) belong to My41/2(10(4)) and 9)?16“/2( 0(4)), respectively. Then Gp
can be written as

Gp(z )*)‘Gk+1/2 )"’Z/\Vgu(z)
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with A, A, € C. Then we have

A\, — (gD7 gu>
<gl/7 gu>
Let {f,} be the basis of &5;(SL2(Z)) consisting of normalized Hecke eigenforms such that S(g,) =

fo-
We note that

D
Skan(Gly ) = L1 —k, ()G,
Sk,4,D(gll) = Cgu(|D|)fu»

and
Ska.0(9p) = Fp.

Thus we have

Fp(2) = AGar(2) + Y Aveg, (1D ful2),

and therefore we have

<gDvgu>

(o Fo) = Ao, (DD i £0) = e, (D)o S) 20

Thus the assertion follows from Propositions 3.5 and 3.6 by remarking L(2k—1, f)L(1—k, (2)) # 0.

4 Tkeda’s conjecture on the period of the Ikeda lift

The Rankin-Selberg method plays an important role also in investigating the period relation of
Siegel modular forms. Here we apply it to Ikeda’s conjecture. We restrict ourselves to the full
modular case, and we define standard L-function. Let L, = Rq(I’ () GSp;(Q)), and for each
prime number p let L, = Rq(I'™,GSp;}(Q) N GLay(Z[p~'])). Then Ly, is a subalgebra of Ly,
and L, is generated by all the Ly;’s. Now let

T(p) = I'" (1, Lp1,) ™,
and
(p™) = T (p*120) T,
Furthermore, for ¢ = 1,...,n — 1 put
Ty(p?) = I'™ (1, Lpli Lp?1,,_; Lpl) ™.

Then Ly, is generated over Q by (pT),T(p) and T;(p?) (i = 1,..,n — 1). We now review the
Satake p-parameters of Ly,. Let P,, = Q[Xoi, Xli7 e X,ﬂ be the ring of Laurent polynomials in
X0, X1, ..., X, over Q. Let W,, be the group of Q-automorphisms of P,, generated by all permu-
tations in variables X7, ..., X;; and by the automorphisms 71, ..., 7, defined by

7i(Xo) = XoXi, 7i(Xi) = X, 7(X)) = X (5 #9).

2

Furthermore a group VNV,L isomorphic to W, acts on the set T,, = (C* )"'*'1 in a way similar to the
above. Then there exists a Q-algebra isomorphism (2, called the Satake isomorphism, from Ly,
to the W-invariant subring PW» of P,,. Then for a non-zero C-algebra homomorphism \ from
L, to C, there exists an element (ag(p, A), a1(p, A), ..., an(p, A)) of Ty, such that

A (F(Xo, X1, ..., X3))) = F(ao(p, A), 01 (p, A), ... an(p, A))
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for F € PWn. The equivalence class of (ag(p, \), @1(p, \), ..., an(p, A)) under the action of W, is
uniquely determined by . Now assume that f is a Hecke eigenform in My (I"™). Then for each
prime number p, the map Ay, : Ly, 2 T — Af(T') defines a non-zero C-homomorphism from Ly,
to C. We denote by (ao(p), a1(p), ..., an(p)) the Satake p-parameters of Ly, determined by Ay,
Let x be a Dirichlet character. We then define the spinor L-function L(s, f, x, Sp) of f twisted by
X as

L(s, f,x,Sp) = H{ 1—ag(p)p~*x(p H I[I  —aiy®a@px®)}
r=11<31<...<9»<n

We also define the standard L-function L(s, f,x, St) of f twisted by x as

s, f,x,St) = HH{ 1=p*x()(1 = ai(p)p~*x(0))(1 — ai(p)'p*x(p))} .

p i=1

Let f be a Hecke eigenform in & (SL2(Z)), and o, and B, be the complex numbers in Section 2.
Then we have 3, = a,*. We note that we can take ag(p) = 27120, and aq(p) = a,? as the
Satake p-parameters determined by f. Thus we have

L(s, f,x,5p) = L(s, f, x),

and
L(s, f,x,St) = L(s, f, x, Ad).
For an integer D € Z such that D = 0 or 1 mod 4, put dp be the discriminant of Q(v/D), and put
fp =4 /%. Let n be a positive even integer. For an element T € £,,~q, put 07 = b(,l)n/z det(27) T =

f(—1yn/2 det(2r) and X7 = (DTT) Now we define the local Siegel series by (T, s) by
b(T.5) = > e(tx(TR)pr ol ),
RESymn(Z[l/p])/Symn(Z)
where j1,(R) = [RZy + Z : Z;]. We remark that there exists a unique polynomial F,(T, X) in X
such that P _
(1—p~*) 1501 —p*%)

1= xr(p)p"/>=*
(cf. Kitaoka [19]). Now let k be a positive even integer. Let

bp(T's) = Fp(T,p™°)

oo

f(z) =) a(m)e(mz)

m=1

be a normalized Hecke eigenform in 621«771(1%1))- Furthermore let

(2) =Y ele)e(ez)

€

be a cuspidal Hecke eigenform in the Kohnen plus subspace Sk n/2+1/2( 0(4)) such that S(f) = f.
We define a Fourier series I,,(f)(Z) in Z € H,, by

L(NZ)= Y anp(De(tr(T2)),

TeELn>o
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where

ar,()(T) = c(or|) [T 7271 2a,) (0 T Fp (T, p~ 920, 1.
p p

Then Ikeda [9] showed the following:

Theorem 4.1. I,,(f)(Z) is a Hecke eigenform in &,(I'"™) whose standard L-function is

¢(s) HL(S +k—i, f).

We call I,,(f) the Ikeda lift of f. We note that I,(f) is uniquely determined by f. We also note
that Io(f) is the Saito-Kurokawa lift of f.
To formulate Tkeda’s conjecture, put

Ir(s) = 7 *?I(s/2).

Furthermore put
and

Put
A(87 f7 X) = PC(S)L(‘S? f7 X)T(X)il‘

Furthermore put B
A(s, f, Ad) =Tc(s)l'c(s + 2k —n—1)L(s, f, Ad).
Now we have the following diagram of liftings:
6; n/2+1Z2( (4)) A 62197n(1j(1)) - Gk(rm))
f © f = In(f)

Then Ikeda [10] proposed the following conjecture:

Conjecture A. We have
n/2—

&ld), 1nlh) (<)~ f’;( D _ gatnip(k, )é H (20 +1, f, Ad)E(2i),

where a(n, k) is a certain integer depending only on n and k.

Remark. When n = 2, Conjecture A holds true. Namely, Kohnen and Skoruppa [22] showed

that
L(f), I(f))

{ (<J);’ 5= 252N (K, f)E(2).

(See also Oda [25].)

Now we have
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Theorem 4.2 (Katsurada-Kawamura [18]) Conjecture A holds true for any even positive integer
n.

By this result combined with Theorem 3.4, we get the following result.

Theorem 4.3. For any fundamental discriminant D such that (=1)"?D > 0 and L(k —
n/2, f,(£)) # 0 we have

Unlh): 1nl) _ ansleDDPAG, £) = "Fr  R@i+ 1, [ Ad)
(f, Fymr2 _IDI’“‘"/QA(k*n/Zﬁ(?))g()zl;[l v o

with some algebraic number a,, ;; depending only on n, k.

Ak, f) and A2t +1, f, Ad)

n
1 are algebraic numbers and belong to the Hecke field Q(f). Thus we get the following corollary.

By Theorems 2.6 and 2.7, we see that fori=1,...,n/2—

Corollary. In addition to the above assumption, assume that all the Fourier coefficients of f

{In(f), 1n(1))
(f, fm/?

This has been already proved by Furusawa [6] in case n = 2, and by Choie and Kohnen [4] in
general case. Thus our result can be regarded as a refinement of theirs. We also remark that
we can apply Theorem 4.3 to solve a problem concerning the congruence between Ikeda lifts and
non-Ikeda lifts. This was announced in [17], and the details will be discussed in [15] (see also [14].)

are algebraic. Then is algebraic.

5 Rankin-Selberg Dirichlet series associated with the Fourier-
Jacobi expansion of the Tkeda lift

In this section and the next, we give an outline of the proof of Theorem 4.2. First we give an explicit
formula for a certain Rankin-convolution product associated with the Fourier-Jacobi expansion of
the Ikeda lift, and express its residue in terms of its period. First we review Jacobi forms of integral
index. Let Hy ,,(R) be the real Heisenberg group of characteristic (1, n), that is, the set

Hi,(R) =R xR ={[X, x]| X eR™ ke R}
with the following group-structure: for [X;, x;] € Hi ,(R) (¢ = 1,2),
(X1, k1] * [Xa, ko] = [X1 + Xa, k1 + k2 + X1Jn ' Xo].
Since the group GSp;f (R) acts on Hy ,(R) by
(X, K]y = () Xy, v(v) K] (X, 8] € Hin(R), v € GSp (R)),
we can define the semi-direct product G'Sp;;(R)” = GSp;}f (R) x Hy,(R), that is, the set
GSp, (R) x Hin(R) = GSp,; (R) x Hin(R)
with the following group-structure: for g; = (v, [X;, xi]) € GSpi(R) x Hy ,(R) (i = 1,2),

9192 = (n2s ([X1, k1] - v2) * [Xa, K2)
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= (M2, V(1) T X1y + Xa, v(72) He1 + K2 + v(h2) T X2 TX0)).

For simplicity, we denote any element of GSpt(R)’ by [y, X, &] = (v, [X, &]) with v € GSp;} (R),
X e R and s € R.

Remark. For any g = [v, X, x] € GSp;(R)’, we write y = (4 B) and X = (A, p), in which
A, B, C, D are n x n matrices and ), u are n-vectors. Then we define ¢’ by

v 0 0 O 1 Ak pu
, [0 40 B 0 1, ‘u O,
=10 0 1 0 0 1 0 |’

0 C 0 D 0 0, —'\ 1,

where v = v(v). Then we easily see that ¢’ € G,S’p:[_‘_1 (R) and the correspondence g — ¢ defines
an injective group-homomorphism.

We also define a subgroup '™’ of GSpt(R)’ by '™ = (™ x H, ,(Z), where Hy,(Z) =
Hi,(R) N (Z* x Z). Let k and m be non-negative integers. For any [y, X, k] € GSp;;(R)’, we
decompose v and X into n X n blocks (é g) and n-vectors (A, u), respectively. For any function

o(t, z) on H,, x C", we define

((b k,7n[77 X’ H])(T7 Z)
=™ (k4 T[N 42X\ 24+ X tu— (Cr+ D)7 1C[ Uz + A+ p)))
x det(CT + D)’kqﬁ(fy(T), v(z+ A+ p)(CT + D)’l),

where we write v = v(v). Then for any g; = [y, Xi, k] € GSp;}(R)7 (i = 1, 2), we have

(@1, m 91) |k, mv 92 = G|k, m (9192),

where we write v = v(7y;). Moreover, we denote the actions of v € GSp;r(R) and X € Z2" by

¢|k,m7 = ¢|k,m [’Ya 07 O]a

and
¢‘mX = ¢|k,m [12717 X7 0}7
respectively. Then for any v, v/ € GSp(R) and X, X’ € Z?", we have

(¢|k,m7)|k,mv ’Yl = ¢ k,m (’Y’Y/)v
(¢|mX)|mX/ = d"m (X + X'),

(¢|k,m )l (VﬁlX’Y) = (Blm X)

k,m s

where we write v = v(7). Let k and m be positive integers. A holomorphic function ¢ on H,, x C"
is called a (holomorphic) Jacobi form of degree n, weight k and index m if it satisfies the following
two conditions:

(i) lg,my=¢ forany e .7
(ii) ¢ has a Fourier expansion of the form

o(r, z) = Z co(T, r)e(tr(TT) +1'z)
TELy, reZn

with (T, r) = 0 unless 4mT — 'rr > 0. If ¢ satisfies the stronger condition c4(T, r) = 0 unless
4mT — trr >0, it is called a Jacobi cusp form. We denote by Ji (™) and J,il;ip(F(")’J) the
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C-vector spaces of the (holomorphic) Jacobi forms and Jacobi cusp forms of degree n, weight k
and index m, respectively. If ¢, 1 € Ji (™) and ¢op € J, % (I'™):7), then we can define the
Petersson inner product of ¢ and i by

(¢, ¥) = /1> ¢(7, 2)i(7, 2) det(v)* "2 exp(—drmo ' ['y]) dudvdady,
rn),J

where ®(n),s is a fundamental domain for H,, x C™ modulo ™/ and 7 =u+iv e Hy, z =
x + iy € C". As is well-known, the Petersson inner product defines a Hermitian inner product on
J (I ("):7), We also have a Hecke theory for Jacobi forms, but we omit the details of it.

Now we consider a certain Rankin-Selberg Dirichlet series associated with the Fourier-Jacobi
expansion of a Siegel cusp form. Let F' € & (I (”)). Then we have the following Fourier expansion:

F(Z)= Y A(Ble(tr(BZ)) (Z€H,).
BeLyso

T/

Writing Z = < t, j_ > with 7 € H,,_1, z € C* ! and 7/ € H;, we have the Fourier-Jacobi

expansion of F of type (1, n — 1) as follows:

P((7 7)) Zont ety

Here ¢n (7, z) is the N-th Fourier-Jacobi coefficient of F' and defined as follows:

onir )= 3 A(( t% 7’4,2 ))e(tr(TT)-i—rtz).

TeELy—1, Teznilv
ANT— trr>0

Then it is easily shown that ¢x € Ji'3F (') for each N € Z~.
Now we define a Dirichlet series D1 (s, F) as

o0

Di(s;F) = (25— 2k +2n) 3 (. ow) N,

N=1

where (dn,dn) is the Petersson product defined on the space JZ’UJS\}J(F(”_U’J). Then, as for the
analytic properties of Dj(s; F') the reader is referred to [38], where they are proved by using the
Rankin-Selberg method:

Proposition 5.1. Let T, x(s) = 7% (27) "% (s)['(s — k + n), Then the function
Di(s; F) =Ty i(s) Di(s; F)

has meromorphic continuation to the whole s-plane, and has simple poles at s =k and s =k —n
with the residue %(R F). Furthermore, it satisfies the following functional equation:

Di(s; F) =D1(2k —n —s; F).

Now we give an explicit formula for D (s, I(f)):
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Theorem. 5.2. ([16], Main Theorem) Let n and k be positive even integers s.t. k > n + 1.
Let f be a normalized Hecke eigenform in Sgk,n(F(UL and ¢1 = ¢1, ()1 the first Fourier-Jacobi
coefficient of I,(f). Then we have

D1(s;I,(f)) = (¢1, ¢1) (s — k+1)¢(s — k+n)L(s, f).

By taking the residues of the both sides of Theorem 5.2, we have

Corollary. Under the same assumption as above, we have

<ITL(f)7 ]n(f)) _ 9—k+n—1 Y n
e — 2 Ak, f)E(n). (5.1)

Remark. In [16], we incorrectly quoted Yamazaki’s result [38]. Namely, “(F,G)” on the page
2026, line 14 of [16] should read %(F G)” and therefore “225="+1” on the page 2027, line 7 of [16]
should read “2%F—n”

We give an outline of the proof of Theorem 5.2. Let

(7 2)) —Nim(r, 2e(N 7).

First we use the following fact due to Hayashida [7]:
Proposition 5.3. ([16], Theorem 4) For each N and m, there is a homomorphism
Dy(N) : J (e =y — Jb (re =)
such that D¢(N)(¢m) = dmn-

We note that Dy(N) coincides with the usual shift operator Vi in Eichler-Zagier [5] and with
D,,_1(N) in Yamazaki [37] in case n = 2. However it does not so in general, and depends on f.
Next we use the fact concerning the adjoint operator of Df(N). To explain it more precisely, for
a positive integer N put

S+1 —(6+1) 5 -5
0% — o, —
. _ P P —(n—1)/2 P P
U, (N; ap) = e I
Qp — Qp Qp — Qp

where ¢ = ord,(NN), and ¢, is the complex number defined in Section 2. Then we have the
following;:

Proposition 5.4. ([16], Lemma 2) Let D}(N) : Jioby (I=D-7) — i (rt=17) pe the
adjoint operator of D¢(N), that is

(Dy(N)(9); ¥) = (&, DF(N)())

for any ¢ € szlff(l“(”*l)"]) and ) € JETZFN(F(”*U’J)‘ Then

D3(N)Dy(N)(¢1) = Y d=H(Nd=H)E= 02 T @, (Nd ™ o).
d|N p|Nd—1
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Proof of Theorem 5.2. By using the above two propositions we have

> (b, 6NN
N=1

thg

(Dy(N)(d1), Dp(N)(91))N~*

=
I

1

=3 (61, DFHN)Ds(N) (1)) N~
N=1

:i<¢17¢1N Sy AN (NG O2 TT W, (Nd Y ay)

N=1 d|N p|Nd—1

C(s—k+1)((s—k+n)L(s, f)

= (¢1, é1) ¢(2s — 2k +2n)

Thus the assertion holds.

6 Rankin-Selberg Dirichlet series associated with the Ibukiyama
correspondence of the Fourier-Jacobi coefficient of the Ikeda
lift

To prove Conjecture A, we rewrite it in terms of the residue of the Rankin-Selberg convolution
product of a certain half-integral weight modular form. Let [ be a positive integer. Let F(Z) €

6171/2(F0(m) (4)). Then F(Z) has the following Fourier expansion:
F(Z)= > ap(Ae(tr(A2)).
A€£m>o
We define the Rankin-Selberg convolution product R(s, F') of F' as
lar(A4)?
F) = B
R(s, F) 2. e(A)(det A)s
A€Lm>0/SLm(Z)
where e(A) = #{X € SL,(Z) | A[X] = A}. Let

!
LWL>0 -

{A€ Lnso | A= —'rr mod 4L, for some r € Z™}.

We note the 7 in the above definition is uniquely determined modulo 2Z™ by A, which will be
denoted by 7 4. Now we define the generalized Kohnen plus subspace of weight {—1/2 with respective

to Fo(m) (4) as

&, H(N" W) ={F(Z) = > c(A)e(tr(AZ)) € &y (13" (4))]

A€Lm>o

c(A) =0unless A € L], _,}.

106



H. Katsurada

Then there exists a correspondence between the space of Jacobi-forms of index 1 and the generalized
Kohnen plus space due to Ibukiyama. To explain this, let ¢(Z,2) € Jl?LIISp(I‘(m)J ). Then we have
the following Fourier-Jacobi expansion:

(2, z)= Y. oT,r)etr(TZ)+r'2).

TeLm,reZ™,
AT — trr>0

We call two elements (T,r) and (T7,7") of L, x Z™ are SL,,(Z)-equivalent with each other and
wright (T, 7) ~ (T”,r') if there exists an element g € SL,,(Z) such that T/ —''v' /4 = (T —'rr/4)g].
We then define a Dirichlet series R(s, @) as

B e(T,r)
R(s,0) = > (det(T' = trr/4))%e(T — trr/4)’

(Tr)

where (T,7) runs over a complete set of representatives of S L, (Z)-equivalence classes of L, x Z™
such that T — 'rr/4 € L;,~0. Now ¢(Z, 2) can also be expressed as follows:

d(Z,2)= > h(2)6(Z,2),
T-EZ‘"L/2Z’NL
where h,(Z) is a holomorphic function on H,,, and
0.(Z,2)= Y etr(Z[(A+27'r)]) +2(A+27'r)"2).
XEM) 1 (Z)

We note that h,(Z) have the following Fourier expansion:

he(Z) = e(T,r)e(tr((T - 'rr/4)2)),

T

where T runs over all elements of £, such that T' — ‘rr/4 is positive definite. Put h(Z) =
(h+(Z))rezm j2zm- Then h is a vector valued modular form of weight [ —1/2 for I'™) Namely, for

each v € I'™) | we have

h(y(2)) = J (v, 2)h(v(2)),
where J(v,Z) is an m x m matrix with entries in holomorphic functions on H,, such that
tJ(y, 2)J (v, Z) = |3(v, Z)|*"'1,,. In particular, we have

Y. h@G(@D) = in P Y he(2)he(2).

T.GZ‘"L/2Z1!L TEZ"L/2Z7”

We then put

om(®)(Z) = > h(4Z).

rezZm /2Zm

Then Ibukiyama [8] showed the following:
Proposition 6.1. Let I be an even positive integer. Then o, gives a C-linear isomorphism

Om JZ?TSP(F(W)’J) = 6;1/2(F(§m)(4))~
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We call o, the Ibukiyama correspondence. We note that we have

om(@) = Y c((A+'rara)/4,ra)e(tr(AZ)),

AeSymm(Z)>o

where r = r4 denote an element of Z™ such that A+trar4 € 4L,,. This r4 is uniquely determined
up to modulo 2Z™, and ¢((A + 'rara)/4,74) does not depend on the choice of the representative
of r4 mod 2Z™. Furthermore, we have

c trr) /4, 7)|?

e(A) det A3 ’
A€L,o/SLm(Z)

and therefore we have
R(s, ¢) = 2" R(s, om(9))-
By using the Rankin-Selberg method, we can prove the following analytic properties of R(s, ¢):

Proposition 6.2. Let | be a positive integer. Let ¢(Z,z) € J\P(I0). Put

[m/2]
R(5,0) = Ym(s)€(2s + m+2—21) ] €(4s+2m +4 — 41 — 2i)R(s, ¢),
i=1
where .
Ym(s) =272 [[Tr(2s —i + 1),
i=1
Then R (s, ¢) has a meromorphic continuation to the whole s-plane, and has the following functional

equation:

R(2l—3/2—m/2 —s,¢) =R(s,d).
Furthermore it has a simple pole at s =1 — 1/2 with the residue

[m/2]
2™t [T €2i+ 1)(6, 9).

i=1

Now let [ be a positive even integer. For F' € 6;:1/2(['57”)(4)) put

m
R(s, F)=][[Tr(2s—i+1)
i=1
[m/2]
x€(2s +m —21+2) [] €(4s+2m — 4l +4—2i)R(s, F).
i=1
We note that
R(s,0m()) =27 'R(s,)
for ¢ € JYP(r™-7). Thus we have
Corollary. In addition to the notation and the assumption as Proposition 6.2, assume that [

is even. R(s,om(¢)) has a meromorphic continuation to the whole s-plane, and has the following
functional equation:

R(20 —3/2 —m/2 — 5,0:m(¢)) = R(5,0m(9)).
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Furthermore it has a simple pole at s =1 — 1/2 with the residue

[m/2]
2™ ] €(2i +1)(¢, 9).

i=1

Now we recall the following diagram of liftings:

& I W) 3 ——  feSy (1)
In(f) € &(r™)
&1 (18" V(@) 3 00 a(d) +—— ¢1 € ST

Under the above notation, we propose a conjecture:

Conjecture B.
n/2—1
Res,_1/2R(s,0n-1(¢1)) = 2°(F, ) T €(20)€(2i + )A@2i+ 1, f, Ad),
i=1
where B(n, k) is a certain integer depending only on n and k.

Then, by Corollary to theorem 5.2, we can rewrite Conjecture A as follows:

Theorem 6.3. Under the above notation and the assumption Conjecture A is equivalent to
Conjecture B.

To prove Conjecture B, we give an explicit formula for R(s,oy,—1(¢1)) for the first Fourier-Jacobi
coefficient of I,,(f). To do this, we reduce the problem to local computations. Let

Ly ={A€Lny| A= —"rr mod 4L, , for some r € Z"}.

Furthermore we put Symm(Zp)e = 2Ly, p. We note that we have ﬁin,p = Symm(Zp)e = Lnp =
Symm(Zy) if p # 2. Let m be a positive even integer. Let T € L], ;. Then there exists an
1 TT/Q
t’f'T/Q (T + t’I‘TTT)/4
define b7 and f7 as dpa1y and frq), respectively. These do not depend on the choice of r7. We define

a polynomial Fzgl)(T, X) and a Laurent polynomial FISI)(T, X) by

element rp € Z;’“l such that 7(1) = < ) belongs to L, . Thus we can

1 TT/2

Fp(l)(T,X) = Fp(< trp /2 (T + trpry) /4 >7X)7

and

Fzgl)(T7 X) = X*Vp((r)ngl)(T7p*(n+1)/2x)_
where r = 77 is an element of Z~! such that T + ‘rr € 4L, 1. Let B be a half-integral matrix
over Z, of degree n. Now let m and [ be positive integers such that m > I. Then for non-degenerate
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symmetric matrices A and B of degree m and [ respectively with entries in Z, we define the local
density o, (A, B) and the primitive local density (,(A, B) representing B by A as

ap(A, B) =271 lim p*CmHEED/2 4 A (A, B),

e—00
and
5p(A7B) _ 2767,” lgn pe(fmlJrl(lel)/Z)?#EBE(A’B)7
where
Ac(A,B) ={X € Mml(zp)/peMml(Zp) | AX]-Be peSyml(Zp)e},
and

B.(A, B) = {X € A(A, B) | rankg, ;7 X = }.

In particular we write oy (A) = (A, A). Furthermore put

M= Y 2

/
wegia €A)

for a positive definite symmetric matrix A of degree n—1 with entries in Z, where G(A) denotes the
set of SL,_1(Z)-equivalence classes belonging to the genus of A. Then by Siegel’s main theorem
on the quadratic forms, we have

M(A) = ep—1n—_1det An/2 H ozp(A)_1

P
where e,_1 = 1 or 2 according as n = 2 or not, and
n—1
- 227n7_l_7n(n71)/4 H 1—\(1/2)
i=1

(cf. [20], Theorem 6.8.1.) Let { = 1. Then put
Fp={do € Zy | vp(do) < 1}
if p is an odd prime, and

Fa={do € Zs | dy =1 mod 4 or dp/4 = —1 mod 4 or v»(dy) = 3}.

X

For dy € F,, and a GL,,_1(Z),-invariant function w, on £n717p

put

(1 (1
tt/p(detA) Flg )(AaX)FIS )(A7 Y)

Hn—l,p(dﬂ;wpvxvxt) = Z wp(A) o (A) )
P

ALl (do)/CLn—1(Zp)

where
n—1p(do) = {A € L3 1, [0 _1yn/24e04 = do}-

Let ¢, be the constant function of £,  taking the value 1, and ¢, the function of £,
the Hasse invariant of A for A € 5;714}- Let F denote the set of fundamental discriminants, and for
I =41, put FO = {dy € F | ldy > 0}. It is easily shown that the Fourier coefficient Conr(¢0)(T)

of 0,,—1(¢1) is uniquely determined by the genus to which T belongs. Thus, by using the same

X_, . assigning
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method as in Theorem 2.2 of [13], similarly to [11], Theorem 3.3, (1), and [12], Theorem 3.2, we
have

Theorem 6.4. Under the same notation and the assumption as Conjecture A, we have

En— —(k—n/2— n—
R(s,0n_1(¢1)) = 21,.@"712 (k—n/2-1/2)(n—-2)

x> lep(do)Pldo[* R
doeF(-1)™?)

X (H Hyy—1,p(dos by, 0, 0, p*TF712) H Hy1p(do; €, vy, i, p~5TE71/2)),
p p

It is rather elaborate to compute H,,—1 ,(do; wp, ap, ap,p_5+k_1/2)

we get the following explicit formula for them. For details, see [18].

for wy = tp,ep. But anyway

Theorem 6.5. Let dy € F, and put & = (%).

(1). We have '
Hn—l,p(d(]; lp, Xv K t)
n/2—1
_ (2—(n—1)(n—2)/2tn—2)52,p¢(n_2)/2(p—2)—1(p—lt)u(do)(1 7p—nt2) H (1 _ p—2n+2zt4)
i=1

y (1 +p_2t2)(1 +p_5£3t2) *p_5/2t2£0(X +X_1 LY + Y—l)
(1—p2XY2)(1 —p2XY " 12)(1 —p2X 1Y 2)(1 — p2X 1Y 142)
« 1
H?ﬁ_l(l — pEIXY2)(1 — p2-IXY L2)(1 — p 21X 1Y 2)(1 — p2i-1X -1y —112) ’
(2). We have

Hn—lp(dm 5p7X7 Kt) _ ((_1)n(n72)/827(n71)(n72)/2tn72)52,p

n/2—1
X((il)n/Z’ (71)n/2d0)p¢(n_2)/2(p72)71(1 N pintz) H (1 i p72n+21t4)(tp7n/2)u(do)

i=1
y (1 +p7nt2)(1 +p7n71§gt2) 7p71/27nt2§O(X +X71 LY + Yfl)
{1 =pXY2)(1 —p XY 1#2)(1 —p X -1Y#2)(1 — p "X ~1Y ~1#2)
» 1
[ = p 2XY2) (1 —p 2 XY - U2)(1 - p 2 X 1Y) (1 — p2X -1y —12)
where (a,b), is the Hilbert symbol of a,b € Q.

The following result can be easily proved.
Proposition 6.6. Let f be a normalized Hecke eigenform in GQk,n(F(D). Then we have
R(s,[)=L2s—2k+n+1,£,Ad) > |ef(|do])|do|*
doe}_((fl)n/Q)
do

X H((l + p—25+2k—n—1)(1 +p—2s+2k_n_2( .
p

) = 2728 D).
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Now by Theorems 6.4 and 6.5, and Proposition 6.6, we get the following result.

Theorem 6.7. For a normalized Hecke eigenform f € Sop_n(I'MV), let f € 6;1”/2“/2(['0(4))
2-1 5

and ¢1 = ¢, ()1 € J,:JlSp(F("fl)vJ) be as above. Put \, = <%+ H?z/l &(2i). Then, we have

n—2

2
R(s,0n-1(¢1)) = M2 V2072025 4 — 2k + 1)~ ] C(4s + 2n — 4k + 2 — 2) 7!
i=1
n;Z
<{R(s —n/2+1, f)(2s — 2k + 3) [ [ L(2s — 2k + 2i + 2, f, Ad)((2s — 2k + 2i + 2)

i=1

nT—Z
H(=1)" IR, F)C(25 — 2k +n+ 1) [[ L(2s — 2k + 20+ 1, £, Ad)¢(2s — 2k + 20+ 1)}

=1

Now by taking the residues of the both sides of Theorem 6.7, we have

Theorem 6.8. Conjecture B holds true for any even positive integer n.
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