
CHAPTER 4

Free and surface groups

In this chapter we study scl in free groups, and some related groups. The
methods are largely geometric and depend on realizing the groups in question as
fundamental groups of particularly simple low-dimensional manifolds.

The first main theorem proved in this chapter is the Rationality Theorem (The-
orem 4.24), which says that in a free group F , the unit ball of the scl norm on
BH1 (F ) is a rational polyhedron; i.e. scl is a piecewise linear rational function on
finite dimensional rational subspaces of BH1 (F ). It follows that scl takes on only
rational values in free groups. The method of proof is direct: we show how to explic-
itly construct extremal surfaces bounding finite linear combinations of conjugacy
classes. As a byproduct, we obtain a polynomial-time algorithm to calculate scl in
free groups, which can be practically implemented, at least in some simple cases.
This algorithm gives an interesting conjectural picture of the spectrum of scl on
free groups, and perhaps some insight into the spectrum of scl on word-hyperbolic
groups in general.

The polyhedrality of the unit ball of the scl norm is related to certain rigidity
phenomena. Each nonzero element in BH1 (F ) projectively intersects the boundary
of the unit ball of the scl norm in the interior of some face. The smaller the codi-
mension of this face, the smaller the space of quasimorphisms which are extremal
for the given element. The situations displaying the most rigidity are therefore
associated to faces of the unit ball of codimension one. It turns out that for a free
group, such faces of codimension one exist, and have a geometric meaning. In § 4.2
we discuss the Rigidity Theorem (Theorem 4.78), which says that if F is a free
group, associated to each isomorphism F → π1(S) (up to conjugacy), where S is a
compact oriented surface, there is a top dimensional face πS of the unit ball of the
scl norm on F , and the unique homogeneous quasimorphism φS dual to πS (up to
scale and elements of H1) is the rotation quasimorphism associated to a hyperbolic
structure on S.

Finally, in § 4.3, we discuss diagrammatic methods to study scl in free groups.
In particular, we discuss a technique due to Duncan–Howie which uses left-invariant
orders on one-relator groups to obtain sharp lower bounds on scl in free groups.

Some of the material in this chapter is developed more fully in the papers
[47, 43, 45, 46].

4.1. The Rationality Theorem

The goal of this section is to prove the Rationality Theorem for free groups.
Essentially, this theorem says that the unit ball in the scl norm on BH1 (F ) is a
rational polyhedron. Polyhedral norms occur in other contexts in low-dimensional
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topology, and the best-known example is that of the Thurston norm on the 2-
dimensional homology of a 3-manifold. We briefly discuss this example.

4.1.1. Thurston norm. Let M be a 3-manifold. Thurston [196] defined a
pseudo-norm on H2(M,∂M ; R) as follows.

For each properly embedded surface S in M , define ‖S‖T = −χ−(S). For each
relative class A ∈ H2(M,∂M ; Z), define

‖A‖T = inf
S
−χ−(S)

where the infimum is taken over all properly embedded surfaces S for which [S]
represents the class A. Thurston shows that this function satisfies the following
two crucial properties:

• it is linear on rays; that is, ‖nA‖T = n‖A‖T for any integral class A and
any non-negative integer n
• it is subadditive; that is, ‖A+B‖T ≤ ‖A‖T +‖B‖T for all integral classes
A,B.

By the first property, ‖·‖T can be extended by linearity to all ofH2(M,∂M ; Q).
By the second property, it can be extended to a unique continuous function on
H2(M,∂M ; R), which is linear on rays and subadditive. Such a function satisfies
the axioms of a (pseudo)-norm, and is called the Thurston norm on homology.
Note that this function is generally only a pseudo-norm; it takes the value 0 on the
span of integral classes which can be represented by surfaces of non-negative Euler
characteristic. If M is irreducible and atoroidal, ‖ · ‖T is a genuine norm.

By construction, ‖A‖T ∈ Z for all A ∈ H2(M,∂M ; Z). A norm on a finite
dimensional vector space which takes integer values on integer vectors (with respect
to some basis) can be characterized in a finite amount of data, as follows.

Lemma 4.1. Let ‖ · ‖ be a norm on Rn which takes integer values on the lattice
Zn. Then the unit ball of ‖ · ‖ is a finite sided polyhedron whose faces are defined
by integral linear equalities.

Proof. Let U be any open set in Rn containing 0. We claim that there are
only finitely many integral linear functions φ on Rn such that the subspace φ ≤ 1

contains U . Let φ be such a linear function.
Then there is a (unique) integral vector vφ
such that φ(w) = 〈vφ, w〉 where 〈·, ·〉 denotes
the ordinary inner product on Rn. Since U
is open, there is some positive number ǫ such
that the ball of radius ǫ in the (ordinary) L1

norm is contained inside U . Hence if φ is as
above, every co-ordinate of vφ has absolute
value at most 1/ǫ. On the other hand, since
vφ is integral, there are only finitely many
functions φ with this property (the adjacent
Figure shows all level sets φ = 1 in 2 dimen-
sions for ǫ = 1/5). This proves the claim.

Let B denote the unit ball in the ‖ · ‖ norm. For the remainder of the proof
we assume n = 3 (the general case is not significantly more complicated). For
each integral basis {v1, v2, v3}, there is a unique integral linear function on R3 that
agrees with ‖·‖ on the elements of the basis. Pick some primitive integral vector v1,
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and then extend v1 to an integral basis {v1, v2, v3}. For each pair of integers i, j let

vi2 = v2+iv1 and vi,j3 = v3+iv1+jv2, and let φi,j denote the integral linear function

that agrees with ‖ · ‖ on the basis {v1, vi2, vi,j3 }. Fix a small open set U containing
0 as above, whose closure is contained in the interior of B. For each sufficiently
large fixed j, the functions φi,j for i big compared to j satisfy φi,j ≤ 1 on U . By
convexity of B and the discussion above, for each fixed j there is a ψj such that
ψj = φi,j for all sufficiently large i (depending on j). The plane ψj = 1 intersects

∂B in two straight lines joining v1/‖v1‖ to each of vi2/‖vi2‖ and vi,j3 /‖vi,j3 ‖. Since
ψj ≤ 1 on U for each j, there are distinct j, j′ for which ψj = ψj′ . Consequently
the plane ψj = 1 intersects ∂B in three straight lines meeting at acute angles,
and therefore (by convexity of B) intersects ∂B in a subset with nonempty interior
whose closure contains v1/‖v1‖.

Since v1 was arbitrary, we conclude that B is the intersection of the half spaces
φ ≤ 1 where φ is integral and linear and satisfies φ ≤ 1 on B. Since there are only
finitely many such φ, the lemma follows. �

Remark 4.2. The proof of Lemma 4.1 is Thurston’s proof of the polyhedrality of his
norm. Oertel’s proof [162], using branched surfaces, is closer in spirit to the methods in
this chapter, but requires more prerequisites from 3-manifold topology.

There is a similar definition of a norm on H2(M), defined by restricting at-
tention to closed embedded surfaces representing absolute homology classes. Note
that the value of ‖ · ‖T on any absolute class in H2(M ; Z) is an even integer.

The crucial property of the Thurston norm, for our purposes, is its relation
to the (Gromov) L1 norm ‖ · ‖1 on H2(M,∂M ; R). Thurston already showed that
a compact leaf of a taut foliation is minimizing in its homology class in both the
Thurston and the Gromov norms, and therefore the two norms are proportional on
the projective homology classes realized by such surfaces. Conversely, Gabai [84]
showed that every Thurston norm minimizing surface is a compact leaf of a taut
foliation. From this he deduced the following proportionality theorem, conjectured
by Thurston:

Theorem 4.3 (Gabai, Corollary 6.18. [84]). Let M be a compact oriented
3-manifold. Then on H2(M) or H2(M,∂M),

‖ · ‖T =
1

2
‖ · ‖1

From this we can deduce the following fact:

Proposition 4.4. Let M be a compact oriented 3-manifold. Let γ ⊂ ∂M be
an embedded, oriented loop. Let a be the conjugacy class in π1(M) represented by
γ. Suppose a ∈ [π1(M), π1(M)]. Then scl(a) ∈ Q. Furthermore, if H2(M ; R) = 0
then scl(a) ∈ 1

2 + Z.

Proof. Let A be a regular annulus neighborhood of γ, and let N be obtained
by doubling M along A. We write N = M ∪M where M ∩M = A. By Mayer–
Vietoris there is an exact sequence

0→ H2(M)⊕H2(M)→ H2(N)
∂−→ H1(A)→ 0

where exactness at the last term follows because the inclusion map of H1(A) into
both H1(M) and H1(M) is zero, because a ∈ [π1(M), π1(M)]. Let V ⊂ H2(N) be
the integral affine subspace V = ∂−1([γ]) where [γ] ∈ H1(A) is the generator. If C
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is a 2-chain in M with the support of ∂C mapping into γ, and [∂C] = [γ] in H1(A),
then C −C is a 2-cycle in N representing an element of V . It follows that there is
an inequality

2 fill(a) ≥ inf
v∈V
‖v‖1

Conversely, let S be a Thurston norm minimizing surface in N representing an
integral class which is projectively close to an element of V . By making S transverse
to A, and isotoping it so that no component of S∩M or S∩M is a disk, one obtains
an inequality

scl(a) ≤ 1

4
inf
v∈V
‖v‖T

Using scl(a) = 1
4fill(a) one therefore obtains an equality

scl(a) =
1

4
inf
v∈V
‖v‖T

Since the Thurston norm takes even integral values on integer lattice points, and
since V is an integral affine subspace, the infimum is rational.

In the special case that H2(M ; R) = 0, the subspace V is 0 dimensional, and
consists of a single integral class v. If S is a norm minimizing surface representing
v, make S transverse to A and efficient. If S1 and S2 are the intersections S1 ∩M1

and S2 ∩ M2 then χ(S1) = χ−(S1) = χ−(S2) = χ(S2) or else by replacing S1

by S2 (for example) one could reduce the norm. Since each Si is embedded, the
intersection S1∩A consists of a union of embedded loops. Norm minimizing surfaces
are incompressible, so each oriented boundary component of S1 is isotopic in A
to γ or γ−1. Moreover by the definition of ∂, there is an equality [∂S1] = [γ]
in H1(A). It follows that S1 has an odd number of boundary components, and
therefore ‖v‖T = 4n+ 2 for some integer n. Consequently in this case we have an
equality

scl(a) =
1

4
‖v‖T ∈

1

2
+ Z

�

Example 4.5. A word w in a free group F is geometric if there is a handlebody
H with π1(H) = F such that a loop γ in H in the conjugacy class of w is homotopic
to an embedded loop in ∂H . For such a w, one has scl(w) ∈ 1

2 + Z (if w ∈ [F, F ]).
A word w in F is virtually geometric if there is a finite cover H ′ → H such that

the total preimage of γ in H ′ is homotopic to a union of embedded loops in ∂H ′.
If w is virtually geometric, then scl(w) ∈ Q.

Example 4.6 (Gordon–Wilton [94]). In F2 = 〈a, b〉, the Baumslag–Solitar
words w = b−1apbaq are virtually geometric (but not geometric).

Example 4.7 (Manning [144]). Jason Manning gives a criterion to show that
certain words in free groups are not virtually geometric. For example, in F3 =
〈a, b, c〉, many words, including b2a2c2abc and ba2bc2a−1c−1b−2c−1a−1, are not vir-
tually geometric. Similar examples exist in nonabelian free groups of any rank.

A corollary of Theorem 4.3 is that the unit ball of the dual Thurston norm is
the convex hull of the set of cohomology classes which are in the image of elements
of H2

b whose (L∞) norm is equal to 1/2. It is natural to try to find explicit bounded
2-cocycles whose cohomology classes correspond to the vertices of the dual norm,
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and which therefore can be used to certify that a given surface is Thurston norm
minimizing. It is a highly nontrivial fact that for every irreducible, atoroidal 3-
manifold, one may find a finite collection of classes [e] ∈ H2 in the image of H2

b ,
whose convex hull is equal to the unit ball of the dual norm, and such that every
[e] is obtained by pulling back the Euler class (i.e. the generator of H2) from the
group Homeo+(S1) under some faithful homomorphism π1(M)→ Homeo+(S1).

In fact, this characterization of the Thurston norm is unfamiliar even to many
people working in 3-manifold topology, and deserves some explanation. A homo-
morphism π1(M) → Homeo+(S1) is the same thing as an action of π1(M) on a
circle. Gabai’s main theorem from [84] (Theorem 5.5) says that every embedded
surface S realizing ‖·‖T in its homology class is a leaf of a finite depth taut foliation
F on M . To every taut foliation of an atoroidal 3-manifold one can associate a uni-
versal circle S1

univ, which monotonely parameterizes the circle at infinity of every

leaf of F̃, the pullback of F to the universal cover M̃ . See [40] Chapter 7 for a proof,
and an extensive discussion of universal circles. The construction of S1

univ is natu-

ral, so the action of π1(M) as the deck group of M̃ induces an action on S1
univ by

homeomorphisms, and therefore a representation ρuniv : π1(M)→ Homeo+(S1
univ).

Associated to this representation there is a foliated circle bundle E over M , which
one can show is isomorphic (as a circle bundle) to the unit tangent bundle to the
foliation UTF. In particular, the pullback [e] of the Euler class is the obstruction
to finding a section of UTF, and [e](S) = ±χ(S) by construction. On the other
hand, the Milnor–Wood inequality (Theorem 2.52) implies that ‖[e]‖∞ = 1/2, so
this class is in the boundary of the convex hull of the dual norm.

In light of this fact, it is natural to wonder whether the unit ball of the scl norm
on BH1 (π1(M)) for M an irreducible, atoroidal 3-manifold is cut out by hyperplanes
determined by rotation quasimorphisms. In fact, it turns out that this is not the
case. A counterexample is the Weeks manifold W , which can be obtained by
(5/1, 5/2) surgery on the components of the Whitehead link in S3, and is known (see
e.g. Milley [153]) to be the smallest volume closed orientable hyperbolic 3-manifold.
In [48] it is shown that every homomorphism π1(W ) → Homeo+(S1) must factor
through Z/5Z, and therefore there are no nontrivial rotation quasimorphisms on
π1(W ). To reconcile this with the assertions in the previous paragraph, note that
W is a rational homology sphere, so H2(W ) is trivial.

It should be clear from this example that the relationship between the scl
norm and rotation quasimorphisms (at least in 3-manifold groups) cannot be as
straightforward as one might naively guess, based on familiarity with the Thurston
norm (also, see Example 4.35). Thus, although in the next few sections we give
a direct proof that the scl norm on free groups is piecewise rational linear, our
argument does not suggest a natural family of extremal quasimorphisms which
define the faces of the unit ball (however, see § 4.2).

4.1.2. Branched surfaces. It is convenient to introduce the language of
branched surfaces. For a reference, see [160] or § 6.3 of [40].

Definition 4.8. A branched surface B is a finite, smooth 2-complex obtained
from a finite collection of smooth surfaces by identifying compact subsurfaces.

The branch locus of B, denoted br(B), is the set of points which are not 2-
manifold points. The components of B−br(B) are called the sectors of the branched
surface. The set of sectors of B is denoted S(B). A simple branched surface is a
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branched surface for which the branch locus is a finite union of disjoint smoothly
embedded simple loops and simple proper arcs.

In a simple branched surface, local sectors meet along segments of the branch
locus. The local sheets approach the branch segment from one of two sides (distin-
guished by the smooth structure along br(B)). In a generic branched surface, three
sheets meet along each component of the branch locus, two on one side and one
on the other. However, the branched surfaces we consider in this section are not
generic, and any (positive) number of sheets may meet a segment of branch locus
on either side. See Figure 4.1 for an example.

Figure 4.1. An example of a local model for a simple branched
surface. In this example, five sheets meet along the branch locus,
two on one side and three on the other.

Branched surfaces can have boundary or not. The branched surfaces considered
in this section have boundary. We require that the branched locus intersect the
boundary transversely. Note that the sectors of a simple branched surface B are
themselves surfaces, perhaps with boundary, and possibly with corners where arcs
of the branch locus intersect ∂B. A branched surface B is oriented or not according
to whether the sectors can be compatibly oriented. We are exclusively interested
in oriented branched surfaces.

Definition 4.9. Let B be a simple branched surface. A weight on B is a
function w : S(B) → R such that for each component γ of br(B), the sum of the
values of w on the sectors which meet γ on one side is equal to the sum of the
values of w on the sectors which meet γ on the other side. A weight is rational if
it takes values in Q, and integral if it takes values in Z.

It follows from Definition 4.9 that the set of weights on B is a subspace of
R|S(B)| defined by a finite family of integral linear equalities, one equality for each
component of br(B).

Notation 4.10. Let W (B) denote the (finite dimensional) real vector space
of weights on B, and W+(B) the convex cone of weights which take non-negative
values on every sector. If B is understood, abbreviate these spaces by W and W+.

There is a close relationship between (non-negative integral) weights on a
branched surface B and surfaces mapping to B in a particularly simple way. Since
B has a smooth structure, it makes sense to say that a map f : S → B is an
immersion, when S is a smooth surface.
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Definition 4.11. Let B be an oriented simple branched surface, possibly with
boundary. A carrying map is a proper, orientation-preserving immersion f : S → B
from some compact oriented surface S (possibly with boundary) to B. By abuse of
notation we say that B carries S.

A carrying map f : S → B determines a non-negative integral weight w(f),
whose value on each sector σ ∈ S(B) is the local degree of f along σ. Since
a carrying map is an orientation-preserving immersion, the local degree along a
sector σ is equal to the number of preimages of any point in the interior. In other
words,

w(f)(σ) = #{f−1(p)} for p ∈ σ
Lemma 4.12. Let B be a simple branched surface. Every non-negative integral

weight on B is represented by a carrying map. Conversely, if f : S → B represents
a weight w, then χ(S) depends only on w, and is a rational linear function of the
co-ordinates of w ∈W .

Proof. Let w be a non-negative integral weight. For each sector σ ∈ S(B),
take w(σ) copies of σ. At each γ ∈ br(B), the sum of the weights on the sectors
on one side is equal to the sum of the weights on sectors on the other side. Choose
a bijection between the two sets of copies of sectors, and glue the copies according
to this bijection along their edges corresponding to γ. The result of this gluing
is a surface S, which comes together with a tautological orientation-preserving
immersion to B, realizing the weight w. Moreover, all surfaces representing w arise
this way, for various choices of bijections as above.

Each sector σ ∈ S(B) can be thought of as a surface with corners. The corners
are the points where arcs of br(B) run into ∂B. Each such surface σ has an orbifold
Euler characteristic χo(σ) defined by the formula

χo(σ) = χ(σ)− c(σ)/4

where χ(·) denotes ordinary Euler characteristic of the underlying surface, and c(·)
denotes the number of (boundary) corners. If a smooth surface S is obtained by
gluing surfaces Si with corners, then χ(S) =

∑
i χo(Si). Hence if S is a surface with

weight w, then χ(S) =
∑

σ w(σ)χo(σ), which depends only on w, as claimed. �

Remark 4.13. Lemma 4.12, though simple to state and prove, is actually surprisingly
delicate. The reader whose intuitions have been honed by exposure to train-tracks in
surfaces, or embedded branched surfaces in 3-manifolds, may not appreciate how subtle
such objects really are.

In great generality, a compact Riemann surface lamination is carried by an abstract
branched surface, and the space of weights on such a surface is finite dimensional (see
[160]). For a branched surface embedded in a 3-manifold, a non-negative integral weight
determines a unique embedded surface which maps to the branched surface by an immer-
sion. However the construction of such a surface depends on the local transverse order
structure on branches inherited by codimension 1 objects in a 3-manifold.

If B is an abstract (not necessarily simple) branched surface, and w a non-negative
integral weight on B, then from w one can construct a surface S mapping to B, but
the map is in general a branched immersion, branched over the vertices of br(B), and χ
depends not only on w but on the way S branches at each such point.

To associate an (unbranched) carrying map to a weight one must solve a holonomy
problem. Moreover, it might be the case that this holonomy problem can be solved for
nw but not for w, where w is a non-negative integral weight, and n is a positive integer.
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A similar, and completely analogous phenomenon occurs when one tries to do im-
mersed normal surface theory in 3-manifolds.

By contrast, the function χ− might well depend on the choice of a surface S
representing a weight w. For, the number of disk components of S might depend
on the way in which sectors are glued up. This motivates the following definition.

Definition 4.14. An oriented simple branched surface is essential if it does
not carry a disk or sphere.

Example 4.15. If every sector satisfies χo(σ) ≤ 0 then χ(S) ≤ 0 for any surface
carried by B. Consequently in this case, B is essential.

If S is carried by an essential simple branched surface, then every component of
S has non-positive Euler characteristic. Consequently χ(S) = χ−(S), and therefore
we obtain the following corollary:

Corollary 4.16. Let B be an essential simple branched surface. Then −χ−(S)
is a linear function of w, where S is a surface realizing a (non-negative integral)
weight w.

4.1.3. Alternating words. As a warm-up, we prove rationality of scl on
certain special elements in the free group of rank 2, where the argument is especially
transparent. Throughout the sequel we fix notation F = 〈a, b〉.

Definition 4.17. A word w ∈ F is alternating if it has even length, and the
letters alternate between one of a±1 and one of b±1.

Every alternating word is cyclically reduced. An alternating word is in [F, F ]
if there are the same number of a’s as a−1’s, and similarly for b’s and b−1’s. Hence
an alternating word in [F, F ] has length divisible by 4.

Example 4.18. aba−1b−1 and aba−1b−1a−1bab−1 are examples of alternating
words in [F, F ].

Example 4.19. A word is alternating if and only if in the graphical calculus
(see § 2.2.4) it is represented by a loop without backtracks in which every straight
segment has length 1.

In what follows, let H be a handlebody of genus 2. We think of H as the union
of two solid handles H+, H−, glued along a disk E which we call the splitting disk.
For psychological convenience, we think of H embedded in R3 in such a way that
E is horizontal, H+ is above, and H− is below. Let D± be compressing disks for
the meridians of H±; psychologically, we think of these disks as vertical.

Identify π1(H) with F in such a way that b is represented by the core of the
handle H+ and a is represented by the core of the handle H−. An alternating word
is represented by a particularly simple free homotopy class of loop in H , namely as
a union of arcs from E to itself which wind once around either H+ or H−, crossing
D+ or D− transversely in a single point; say that such a representative is in bridge
position. By convention we assume that a loop in bridge position is embedded in H .
This is mainly for psychological rather than logical convenience; the isotopy class
of γ in H is not relevant in the sequel, only its homotopy class.

In what follows, fix an alternating word w and let γ be a corresponding loop
in H in bridge position. Without loss of generality, we can write

w = ae1bf1ae2bf2 · · · aembfm
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where each ei, fi is ±1, and m is even, and equal to half the word length of w. Then
γ is a union of arcs

γ = α1 ∪ β1 ∪ · · · ∪ βm
where αi is properly embedded in H−, and winds in the positive direction if e1 = 1,
and the negative direction otherwise, and βi is properly embedded in H+ and winds
similarly according to the sign of fi. Note that the αi, βi are oriented arcs, and the
end point of αi is equal to the initial point of βi for each i, while the end point of
βi is equal to the initial point of αi+1 (indices taken cyclically) for each i.

Let f : S, ∂S → H, γ satisfy f∗[∂S] = n[γ]. Recall, by Proposition 2.10 that
scl(w) is equal to the infimum of −χ−(S)/2n(S) over all such surfaces. We will
show that after possibly replacing S with a simpler surface S′ with n(S′) = n(S)
and −χ−(S′) < −χ−(S), we can homotope f into a particularly simple form.

Assume without loss of generality that S has no disks or closed components,
or simple compressing loops, or else −χ− could be reduced without affecting n.
If some boundary component of S maps to γ with degree 0, we can compress it,
reducing −χ−. So assume that every boundary component maps with nonzero
degree, and homotope f so that the restriction of f to each component of ∂S is
a covering map to γ. Then perturb f rel. boundary to an immersion in general
position with respect to D±.

After this perturbation, the preimage f−1(D+) ∩ S is a union of disjoint, em-
bedded proper arcs and loops in S. Since by hypothesis S has no simple compressing
loops, all the loops are inessential in S, and can be pushed off D+ by a homotopy of
f . Since the restriction of f to ∂S is a covering map, there are no inessential arcs in
f−1(D+), so we may assume that f−1(D+) consists of a union of disjoint essential
embedded proper arcs in S. Do the same for f−1(D−). After this modification,
f−1(D+ ∪D−) is a union δ of disjoint essential embedded proper arcs. Let R be a
union of (relatively) open regular neighborhoods in S of the components of δ. The
components of R are called rectangles.

The complement of tubular neighborhoods of theD± in H deformation retracts
down to the splitting disk E. In fact, there is a deformation retraction of pairs

H −N(D±), γ − (γ ∩N(D±))→ E,E ∩ γ
Drag f by this deformation retraction, so that after a homotopy, R is exactly equal
to f−1(H − E).

Now consider the components of S −R. Each such component P is a compact
surface, whose boundary is broken up into vertices (points in ∂S in the closure of
a rectangle of R) and two different kinds of edges: components of P ∩ ∂S, and
components of P in the closure of a rectangle. We refer to the first kind of edges
as boundary edges and the second kind as branch edges. After the homotopy, each
boundary edge maps by f to a single point of γ ∩E, and each branch edge maps to
an arc in E. Since E is a disk, if P is not a disk, it contains an essential embedded
loop which maps to a null-homotopic loop in E and can therefore be compressed.
Since by hypothesis S contains no simple compressing loops, every component P of
S−R is topologically a disk. Since its boundary has a natural cellulation into edges
and vertices, we think of P as a polygon, whose edges alternate between boundary
edges and branch edges. Let P denote the union of these polygons, and let Pi
denote a typical polygon.
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For each Pi, let |Pi| denote the number of branch edges of Pi. Observe that
the branch edges alternate between arcs bounding rectangles mapping to H+ and
rectangles mapping to H−. Consequently, each Pi has an even number of branch
edges; denote this number by |Pi|. Say that a branch edge of Pi faces up if it bounds
a rectangle mapping to H+, and it faces down otherwise. There are twice as many
corners of Pi as branch edges, hence 2|Pi| corners.

Since each Pi is topologically a disk, we can compute χo(Pi) = 1− |Pi|/2 ≤ 0.
Similarly, each rectangle of R has χo = 0. Hence

−χ−(S) = −χ(S) =
∑

i

|Pi| − 2

2

Now fix a single polygon Pi. Suppose that there is a point p of γ ∩ E and two
distinct boundary edges e1, e2 of Pi which both map to p. Let β be an embedded
arc in Pi joining e1 to e2. Doing a boundary compression along β reduces −χ−
by 1. Hence after repeatedly performing such compressions, we can assume (at
the cost of replacing the original surface with another of smaller −χ−) that every
polygon Pi has at most |w| boundary edges, which map to distinct points of γ ∩E.

Notice what we have achieved in this discussion. Starting with an arbitrary
map f : S, ∂S → H, γ we obtained (after homotopy, compression and boundary
compression) a new surface and a new map (which by abuse of notation we still
denote S, f) such that S is decomposed into two kinds of pieces: rectangles which
map over the handles of H , and which run between a pair of arcs of γ, and polygons
which map to the splitting disk E. Each rectangle is determined, up to homotopy,
by the pair of arcs of γ that it runs between. Each polygon is determined up to
homotopy by a cyclically ordered list of distinct elements of γ∩E that the boundary
edges map to in order, and by the data of whether each branch edge faces up or
down. There are only finitely many combinatorial possibilities for each rectangle
and for each polygon. Thus the surface S is built from finitely many pieces, all
drawn from a finite set of combinatorial types.

This last observation is crucial, and reduces the computation of scl(w) to a
finite integer linear programming problem. We explain how.

Build an oriented essential simple branched surface B as follows. The sectors of
B are the disjoint union of all possible polygons (with boundary edges mapping to
distinct points of E∩γ) and all possible rectangles. Glue up rectangles to polygons
in all possible orientation-preserving ways, ensuring that branch edges that face up
and down are only glued to rectangles in H+ and H− respectively. The result is
an abstract branched surface B and a homotopy class of map ι : B → H taking ∂B
to γ.

There are two components of the branch locus for each pair of distinct points
in E ∩ γ, distinguished by whether such components bound rectangles in H+ or in
H−. In particular, the branch locus is a 1-manifold, and therefore the branched
surface is simple. Furthermore, each polygon contributes non-positively to χo and
each rectangle contributes 0, so the branched surface is essential.

Since every surface f : S, ∂S → H, γ can be compressed, boundary compressed
and homotoped until it is made up of rectangles and polygons, we conclude the
following:
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Lemma 4.20. Let B denote the essential simple branched surface, constructed
as above. Then every f : S, ∂S → H, γ can be compressed, boundary compressed
and homotoped without increasing −χ−, to a map which is carried by B.

Notice that the branched surface B can be constructed effectively from the
word w. Let w ∈ W+ be a non-negative integral weight on B. Let f : S → B
be a carrying map with weight w. The composition ι ◦ f : S → H takes ∂S → γ.
Define ∂(w) = n(S), and extend by linearity and continuity to a rational linear
map ∂ : W+ → R. By construction,

scl(w) = inf
w∈W+∩∂−1(1)

−χ−(w)

2

But W+ ∩ ∂−1(1) is a closed rational polyhedron, and −χ− is a rational linear
function which is non-negative on the cone W+, and therefore achieves its infimum
on a closed rational polyhedron Q in W+∩∂−1(1). It follows that scl(w) is rational.
Moreover, given W+ and the functions −χ− and ∂, computing the polyhedron Q is
a finite linear programming problem which can be solved by any one of a number
of methods. Thus there is an effective algorithm to compute scl(w).

4.1.4. Bridge position. We extend the arguments in § 4.1.3 in several ways:
to free groups of arbitrary rank, and to arbitrary finite integral linear combinations
of arbitrary elements.

Let F be a free group with generators ai. For each i, let Hi denote a solid
torus with a marked disk Ei in its boundary, and let H be obtained from the Hi

by identifying the Ei with a single disk E. If the rank of F is 2, this is an ordinary
genus 2 handlebody, and H1, H2 are H+, H− from the last section. For each i, let
Di be a decomposing disk for the handlebody Hi, disjoint from E, and denote the
union of the Di by D. Let w ∈ F be cyclically reduced. The conjugacy class of w
determines a free homotopy class of loop in H ; we will choose a representative γ in
this free homotopy class whose intersection with E and D is simple.

A vertical arc is an arc with endpoints on E whose interior is properly embedded
in some Hi − E. A horizontal arc is an arc embedded in E. The representative γ
will have one vertical arc in Hi for each appearance of a±i in w, and one horizontal
arc between any two consecutive appearances of a±i (notice, since w is cyclically
reduced, that consecutive appearances of a±i have the same sign). This uniquely
determines the homotopy class of γ.

Definition 4.21. A representative γ in the free homotopy class corresponding
to the conjugacy class of w, constructed as above, is said to be in bridge position.

Remark 4.22. For rank 2 and for alternating words, this agrees with the definition from
§ 4.1.3.

Let w1, · · · , wn be a finite collection of elements which are cyclically reduced
in their conjugacy class, and γ1, · · · , γn loops in bridge position in H . Denote the
union of the γi by Γ. Let f : S, ∂S → H,Γ be given, and assume that S has
no disk or closed components, or simple compressing loops. As in § 4.1.3, after a
homotopy we can assume that f−1(D) is a union of disjoint essential embedded
proper arcs, and R = f−1(H − E) is a union of disjoint embedded rectangles with
the components of f−1(D) as their cores. Since S has no simple compressing loops,
as in § 4.1.3 we can conclude that every component Pi of S − R is a polygon.
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The branch edges of the Pi are edges in the closure of components of R, but
there are two kinds of boundary edges: those which map to a single endpoint of a
vertical arc of some γi, and those which map to a horizontal edge. As before, if some
polygon has boundary edges ei, ej mapping to the same point or horizontal arc of
E ∩ Γ, we can do a boundary compression of S to reduce −χ−. So without loss
of generality, we conclude that distinct boundary edges ei, ej of the same polygon
map to different points or arcs of E ∩ Γ.

Let |Pi| denote the number of branch edges of Pi. As a surface with corners,
we have c(Pi) = 2|Pi| so χo(Pi) = 1− |Pi|/2. Rectangles contribute 0 to χo, so

−χ−(S) = −χ(S) =
∑

i

|Pi| − 2

2

One can build a simple essential branched surface B as before, together with a
homotopy class of map ι : B → H with ι(∂B) = Γ. Every map f : S, ∂S → H,Γ
can be compressed, boundary compressed and homotoped until it factors through
a carrying map to B.

Let K be ker : H1(Γ) → H1(H) induced by inclusion. The vector space K
is isomorphic to the intersection B1(F ) ∩ 〈w1, · · · , wn〉. The inclusion map on
homology is defined over Z, so K is a rational subspace of H1(Γ). With notation
as in § 4.1.3, there is a surjective rational linear map ∂ : W+ → K. For each k ∈ K
there is an equality

scl(k) = inf
w∈W+∩∂−1(k)

−χ−(w)

2

Now, W+ is a finite dimensional rational convex polyhedron with finitely many
extremal rays, each passing through a rational point vi, and −χ− is a rational
linear function. Therefore

scl(k) = inf

∑
i−tiχ−(vi)

2

where the infimum is taken over all non-negative ti for which
∑

i ti∂(vi) = k.
Explicitly, each basis S of elements vi determines a rational linear function fS on
W+ whose value is −χ−(vi)/2 on vi ∈ S, and scl ◦ ∂ is the minimum of this finite
collection of functions. In other words, scl◦ ∂ is a piecewise rational linear function
on W+ and therefore scl is piecewise rational linear on K.

Recall that a map f : S → H is extremal if it realizes the infimum, over all
surfaces without closed or disk components, of −χ−(S)/2n(S). If w is a non-
negative rational weight realizing the infimum of −χ−(w)/2 on ∂−1(k) for some
rational class k ∈ BH1 (F ), then some integral multiple of w is integral. Any carrying
map realizing this weight gives rise to an extremal surface, and all extremal surfaces
arise in this way.

We have now completed the proof of the Rationality Theorem. In order to
state the theorem precisely, we must first say what we mean for a function on an
infinite dimensional vector space to be piecewise rational linear.

Definition 4.23. Let V be a real vector space. A function φ on V is piecewise
linear if for every finite dimensional subspace W of V , the restriction of φ to W
is piecewise linear. If V = VQ ⊗ R where VQ is a (given) rational vector space, a
subspace W ⊂ V is rational if it is of the form W = WQ ⊗ R for some subspace
WQ = VQ ∩W . A function φ on V is piecewise rational linear if for every finite
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dimensional rational subspace W of V , the restriction of φ to W is piecewise linear,
and rational on WQ.

Recall from § 2.6.2 that for any group G, the space B1(G) is the vector space of
real (group) 1-boundaries, and BH1 (G) is the quotient of B1(G) by the subspace H
spanned by elements of the form gn−ng and g−hgh−1. In general, scl is a pseudo-
norm on BH1 , but when G is hyperbolic, scl is a genuine norm (Corollary 3.57).

The results of this section prove the following theorem.

Theorem 4.24 (Rationality Theorem). Let F be a free group.

(1) scl(g) ∈ Q for all g ∈ [F, F ].
(2) Every g ∈ [F, F ] bounds an extremal surface.
(3) The function scl is a piecewise rational linear norm on BH1 (F ).
(4) Every nonzero finite rational linear chain A ∈ BH1 (F ) projectively bounds

an extremal surface
(5) There is an algorithm to calculate scl on any finite dimensional ratio-

nal subspace of BH1 (F ), and to construct all extremal surfaces in a given
projective class.

Remark 4.25. Note by Proposition 2.104 that every extremal surface as above is π1-
injective.

4.1.5. PQL groups. Motivated by the results of the previous section, we
define the following class of groups.

Definition 4.26. A group G is PQL (pronounced “pickle”) if scl is piecewise
rational linear on BH1 (G).

Example 4.27. An amenable group is trivially PQL, by Theorem 2.47 and
Theorem 2.79.

Example 4.28. Theorem 4.24 implies that finitely generated free groups are
PQL. Suppose F is an infinitely generated free group. Since any finite subset of
BH1 (F ) is contained in the image of BH1 (Fn) for some finitely generated summand
Fn, we conclude that F is also PQL.

There are a few basic methods to derive new PQL groups from old.

Proposition 4.29. Let H be a subgroup of G of finite index. Then if H is
PQL, so is G.

Proof. Let X be a space with π1(X) = G. Let g1, · · · , gm be elements of G

whose conjugacy classes are represented by loops γ1, · · · , γm. Let X̂ be a finite cover

of X with π1(X̂) = H . For each i, let βi,j be the preimages of γi in X̂ , and let hi,j ∈
H be elements whose conjugacy classes represent the βi,j . By Proposition 2.80, for
any integers n1, · · · , nm we have

sclG(
∑

i

nigi) =
1

[G : H ]
· sclH(

∑

i,j

nihi,j)

and the proposition follows. �

Hence virtually free groups are PQL. This class of groups includes fundamental
groups of non-compact hyperbolic orbifolds.
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Proposition 4.30. Let A
i−→ G

q−→ H → 1 be an exact sequence, where A is
amenable and H is PQL and satisfies H2(H ; R) = 0. Then G is PQL.

Proof. Since A is amenable, Theorem 2.47 says that the bounded cohomology
of A vanishes in each dimension. By Theorem 2.50 and Theorem 2.49 one obtains a
commutative diagram as in Figure 4.2 with exact rows and columns. Let α ∈ Q(G)

H1(A)

H1(G)

H1(H)

Q(A)

Q(G)

Q(H)

0

H2
b (G)

H2
b (H)

H2(G)

0

.................................................................... ............ .......................................................................................... ............

.................................................................... ............ .................................................................... ............
δ

.................................................................... ............

.................................................................... ............ .................................................................... ............
δ

.......................................................................................... ............

.....................................................................
......
......
......

.....................................................................
......
......
......

.....................................................................
......
......
......

q∗

.....................................................................
......
......
......

.....................................................................
......
......
......

q∗

.....................................................................
......
......
......

Figure 4.2. This diagram has exact columns (by Theorem 2.49)
and exact rows (by Theorem 2.50).

be given. Then δα ∈ H2
b (G) is equal to q∗β for some β ∈ H2

b (H), since H2
b (H)→

H2
b (G) is surjective. Since H2(H) is zero, there is some γ ∈ Q(H) with δγ = β,

and therefore α− q∗γ ∈ Q(G) is in the image of H1(G). Since α was arbitrary, this
says that the composition Q(H)→ Q(G)→ Q(G)/H1(G) is surjective.

It is a general fact that for any surjection of groups q : G → H , and any
quasimorphism φ on H , there is an equality D(φ) = D(q∗φ) where the left side is
the defect of φ on H , and the right side is the defect of q∗φ on G. For,

D(q∗φ) = sup
a,b,∈G

|φ(q(a)) + φ(q(b))− φ(q(ab))| = D(φ)

where the second equality follows from the definition of D(φ) and surjectivity. By
Theorem 2.79, for any

∑
tiai ∈ BH1 (G) we have

sclG(
∑

tiai) =
1

2
sup

φ∈Q(G)/H1(G)

∑
i tiφ(ai)

D(φ)

=
1

2
sup

φ∈Q(H)/H1(H)

∑
i tiq

∗φ(ai)

D(q∗φ)

=
1

2
sup

φ∈Q(H)/H1(H)

∑
i tiφ(q(ai))

D(φ)

= sclH(
∑

tiq(ai))

It follows that G is PQL if H is, as claimed. �

Remark 4.31. If H2(H) is nonzero, there might be elements in Q(G)/H1(G) which are
not in the image of Q(H). If H is finitely presented, H2(H) is finitely generated, so
Q(G)/(H1(G) + q∗Q(H)) is finite dimensional and is generated by a finite number of
quasimorphisms φ1, · · · , φn. If one can find generators φi as above which take on rational
values on rational elements of BH1 (G), then if H is PQL, so is G.
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Corollary 4.32. Let M be a noncompact Seifert-fibered 3-manifold. Then
π1(M) is PQL.

Proof. For M as above there is a central extension Z → π1(M) → G where
G is the fundamental group of a noncompact surface orbifold. If G is amenable, so
is π1(M), and π1(M) is trivially PQL. Otherwise G is virtually free. In this case
there is a finite index subgroup H of π1(M) which is a product Z⊕ F where F is
free. By Proposition 4.30, the group H is PQL, and therefore by Proposition 4.29,
so is π1(M). �

Example 4.33. Let M be homeomorphic to S3−K where K is the trefoil knot.
Then M is Seifert fibered and noncompact, so π1(M) is PQL. It is well-known that
π1(M) is isomorphic to the braid group B3 (see e.g. [16]).

4.1.6. Implementing the Algorithm. In this section we discuss in more
explicit terms the algorithm described implicitly in the last few sections. Propo-
sition 2.13 implies that we can restrict attention to monotone admissible maps in
order to calculate scl. If f : (S, ∂S)→ (H, γ) is monotone, the restriction ∂S → γ
is orientation-preserving. This reduces the number of rectangle types that must
be considered by roughly a factor of 4, and concomitantly reduces the number of
polygon types.

We show how the algorithm runs in practice. For convenience, we restrict
attention to alternating words in F2. In what follows, for the sake of legibility, we
denote a−1 by A and b−1 by B.

Example 4.34. Let w = abABAbaB. The loop γ is a union of 8 arcs, each
arc corresponding to a letter in w. The initial vertex of each arc is a point on
E; denote these points v0, v1, · · · , v7. An admissible arc is an arc that might be
contained in a polygon in a monotone extremal surface. Such an arc is given by an
ordered pair (vi, vj) where vi is the initial vertex of an arc corresponding to some
letter x or X and vj is the terminal vertex of an arc corresponding to a letter X or
x. Since w is alternating, there are |w|/4 = 2 copies of each of the letters a,A, b, B
and consequently there are |w|2/4 = 16 admissible arcs (the arc (vi, vj) is denoted
ij for brevity):

03, 21, 14, 32, 05, 41, 10, 72, 27, 63, 54, 36, 47, 65, 50, 76

A polygon is a cyclically ordered list of vertices, where no vertex appears more
than once, and each consecutive pair of vertices is an admissible arc. There are 18
polygons:

03214765, 0321, 03276541, 032765, 036541, 03654721, 0365, 2147, 214763,

210547, 21054763, 14, 3276, 0541, 05, 72, 63, 5476

(note that each polygon has an even number of vertices). Each rectangle bounds two
admissible arcs, but there is a relation between these two arcs: if a rectangle bounds
ij at one end, it bounds (j − 1)(i + 1) at the other end. The linear programming
problem takes place in the vector space P ∼= R18 spanned by a basis pi whose
co-ordinates count the number of polygons of type i. Each rectangle imposes one
equation, of the form

∑
pk =

∑
pl where the left hand side counts the number

of polygons that contain an admissible edge ij and the right hand side counts the
number of polygons that contain an admissible edge (j − 1)(i + 1) (note that a
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polygon type might contain both or neither). There are twice as many admissible
edges as equations, and hence |w|2/8 = 8 equations:

p0 + p1 + p2 + p3 + p4 + p5 + p6 = p0 + p1 + p5 + p7 + p8 + p9 + p10

p0 + p7 + p8 + p11 = p0 + p1 + p2 + p3 + p8 + p10 + p12

and so on.
Restricting to geometrically sensible answers imposes the conditions that each

pi ≥ 0. For each i, let li denote the number of branch edges in the polygon of type
i. In this example, li is equal to the length of the corresponding string of vertices;
hence l0 = 8, l1 = 4, l2 = 8, l3 = 6 and so on. To normalize the solution so that
the boundary represents [γ] in homology, we need to impose the equation

∑

i

lipi = |w| = 8

Subject to this list of constraints, scl(w) is the minimum of the objective function

−χ−
2

=
∑

i

(li − 2)pi
4

This linear programming problem can be solved using exact arithmetic, for
instance using the GNU package glpsol ([140]) and Masashi Kiyomi’s program
exlp ([128]), returning the answer scl(w) = 0.5. Moreover, an extremal solution
describes how to construct an extremal surface consisting of one 4-gon and two
bigons 0541 + 72 + 63 and four rectangles. This exhibits γ as the boundary of a
once-punctured torus, and shows that w is a commutator (which is easily seen in
any case: abABAbaB = [a, bAB]).

See e.g. Dantzig [62] for an introduction to linear programming.

Example 4.35. Bavard [8] p. 148 asked whether scl in the commutator sub-
group of free group takes on values in 1

2Z. This should be viewed in some sense as
the natural analogue of the fact that in a 3-manifold M , the (Gromov-)Thurston
norm takes on values in 2Z on the integral lattice H2(M ; Z) (also compare with
Proposition 4.4). In fact, the answer to Bavard’s question is negative: there are
many elements in free groups whose scl is not a half-integer. One explicit example
is w = baBABAbaBabA; the identity

[abaB,ABAbaBabAbaBABAbaBababABB] · [ABAba,BabAbaBABAbba]
· [BabABababA, aaBAAb] = a(baBABAbaBabA)3A

expresses a conjugate of w3 as a product of three commutators, and defines an
extremal surface virtually bounding w. Consequently scl(w) = 5/6. On the other
hand, it turns out that elements in free groups with half-integral scl are very com-
mon; see § 4.1.9 and § 4.2.

The algorithm as described above is hopelessly inefficient for all but a handful
of words. In the next section we will describe a much more dramatic improvement,
resulting in a polynomial time algorithm.
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4.1.7. A polynomial time algorithm to calculate scl in free groups. An
extremal surface is built from rectangles and polygons. The number of rectangle
types is quadratic in the length of w, but the number of polygon types is usually
of the order |w|! so a naive implementation of the algorithm described in § 4.1.6 is
useless for words of length 20 or more. The problem is the explosion of combinatorial
types of polygons with large numbers of sides.

A polygon with many sides is the combinatorial analogue of a critical point of
high index — a region in a surface with a high concentration of negative curvature.
The basic idea is that a polygon with more than 4 branch edges can be split up,
in a natural way, into polygons with 4 or fewer branch edges. For simplicity, in
this section we restrict attention to alternating words in F2, so that the cores of
rectangles attached to consecutive branch edges alternate between a± or b±. As an
added simplification, shrink boundary edges to points, so that every (remaining)
edge is a branch edge. Hence all polygons in question have an even number of sides.

split−−−→

Figure 4.3. A hexagon can be split up into two quadrilaterals

Let P be a polygon. The (oriented) rectangles attached to P come in four
kinds, depending on whether the core of the rectangle, when it moves away from
P , wraps around a,A, b, B; hence if P has more than 4 sides, there are at least two
pairs of rectangles of the same kind attached to P . Two (nonadjacent) rectangles of
the same combinatorial kind cobound a quadrilateralQ in P . The basic idea is that
the polygon P can be split up into Q and (the components of) P−Q; see Figure 4.3
for an example. Since the two rectangles which attach to Q wrap around the same
handle of the handlebody H , we can “slide” the quadrilateral Q one third of the
way around H . After a judicious sequence of slides of this kind, every remaining
polygon is a quadrilateral or a bigon.

More precisely, let P be a polygon. The edges of P are labeled by a,A, b, B.
All but at most one of the a edges can be paired up, resulting in a union of pairwise
disjoint a-quadrilaterals Qa ⊂ P . Do this pairing in such a way that each region
of P − Qa has at most two boundary edges in ∂Qa, or else one boundary edge in
∂Qa and at most one unpaired a edge, then slide the Qa quadrilaterals 1/3 of the
way around the a handle. For each component P ′ of P −Qa, pair up all but one of
the A edges, resulting in a union of pairwise disjoint A-quadrilaterals Q′A ⊂ P ′. Do
this pairing in such a way that each region of P ′ −Q′A has at most two boundary
edges in ∂Q′A, or else one boundary edge in ∂Q′A and at most one unpaired A edge,
then slide the Q′A quadrilaterals 1/3 of the way around the A handle.
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By construction, each component P ′′ of P ′ −Q′A has at most 8 edges, half of
which are b or B edges. If P ′′ has 4 or 2 edges, we leave it alone. If it has 6 edges,
there are (without loss of generality) at least 2 b edges which span a quadrilateral
Q′′b . In this case, slide the Q′′b quadrilateral 1/3 of the way around the b handle
and observe that P ′′ −Q′′b is the union of a quadrilateral and a bigon. Otherwise,
suppose P ′′ has 8 edges. Suppose there are a pair of antipodal b or B edges. Then
these span a quadrilateral Q′′b or Q′′B, and the complement in P ′′ is a union of
two quadrilaterals. Otherwise, there are a pair of adjacent b edges and a pair of
adjacent B edges spanning disjoint quadrilateralsQ′′b and Q′′B so that P ′′−Q′′b −Q′′B
is a single quadrilateral and two bigons. In every case, after sliding Q′′b and Q′′B
quadrilaterals 1/3 of the way around the b and B handles, we have achieved the
desired reduction.

The final result is a surface (homotopic to the original extremal surface) made
up of quadrilaterals and bigons in E, quadrilaterals 1/3 or 2/3 of the way around
the handles, and (parts of) rectangles joining them up. The number of combina-
torial types of (sub-) rectangles is still quadratic in |w|, but now the number of
polygon types is of order O(|w|4). This data can be turned into a linear program-
ming problem in O(|w|4) variables, with O(|w|2) equations. Each equation is linear
in the variables, with coefficients in the finite set {±1,±1/2, 0}, so the data of the
problem can be encoded with O(|w|6) bits. There are several well-known polyno-
mial time methods of exactly solving a linear programming problem. For example,
Karmarkar’s projective method [122] takes time O(n3.5L) to exactly solve a linear
programming problem in n variables encoded in L bits.

For non-alternating words, or free groups of higher rank, one must allow a larger
(but still finite) set of combinatorial polygon types; the details are very similar to
the alternating case. Hence we have the following:

Proposition 4.36. Let F be a free group. There is an algorithm to compute
scl(w) for w ∈ F whose running time is polynomial in the word length |w|.

4.1.8. Foldings. In fact, for alternating words, even more simplification is
possible. The basic idea is as in the previous section. Suppose S is an extremal
surface with boundary on γ which contains a polygon P with more that 4 sides
(after collapsing boundary edges). Then we can split off a quadrilateral and slide it
around a handle. Instead of sliding it only a third of the way, slide the quadrilateral
all the way around the handle. The fact that S is π1-injective ensures that the
quadrilateral does not run into another polygon when it gets all the way around
the handle. However it might easily join up with some other polygon P ′ along an
edge, and it is not clear that the result of this quadrilateral slide has made things
less complicated rather than more.

The problem can be simplified using graphs, and a procedure due to Stallings
[191] called folding. We replace the map of spaces f : S → H by a map of graphs
g : Γ → X where X is a wedge of two circles (i.e. the core of the handlebody H)
and Γ is the graph with one vertex for every polygon in S and one edge for every
rectangle. The map g is simplicial, taking edges to edges and vertices to vertices.
Let X ′ → X be the two-fold covering which unwraps each handle, and g′ : Γ′ → X ′

the map induced by g on a suitable covering space Γ′ of Γ. Note that Γ and X are
homotopy equivalent to S and H respectively; since extremal maps are π1-injective,
the map g is π1-injective, and so is g′.
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The graph X ′ is 4-valent, with two vertices. Make X ′ a directed graph in the
following way. At each vertex of X ′ there are four edges, labeled a,A, b, B. Orient
the edges of X ′ so that at one vertex, the a,A edges are outgoing, and at the other
vertex the b, B edges are outgoing.

Stallings calls a simplicial map between graphs an immersion when it is injective
on the star of every vertex. If p : G1 → G2 is a simplicial map between graphs
which is not an immersion, Stallings shows how to modify G1 by a sequence of
moves called folds which do not change the image of π1(G1) under p∗, so at the
end of the sequence of folds the resulting map is an immersion. If p is π1-injective,
each fold is an elementary collapse: two edges of G1 which share one endpoint in
common, and map to the same edge of G2, are identified. The result of a maximal
sequence of folds is well-defined independent of the choice of the sequence of folds.
In fact, let G̃2 denote the universal cover of G2, which is a tree. Then p∗(π1(G1))

acts on G̃2, and there is a unique minimal invariant subtree, whose quotient is
isomorphic to the maximal folding of G1.

In our case, since the map g′ : Γ′ → X ′ is already π1-injective, each fold is an
elementary collapse. There are two kinds of folds, distinguished by the orientation
on X ′: graphically, we can perform a fold when a ∨ subgraph of Γ′ maps to a single
edge of X ′, by identifying the two edges of the ∨. If the vertex of the ∨ maps to
the initial vertex of the directed edge of X ′, we say this is a positive fold, otherwise
a negative fold; by abuse of notation, we say that a ∨ admits a positive fold, and
a ∧ admits a negative fold. Since g′ is π1-injective, a ∨ and a ∧ can share at most
one edge in common, and therefore consecutive positive and negative folds can be
performed in either order. Hence we can arrange to perform all positive folds first,
then all negative folds, in some maximal sequence of folds.

Let f ′ : S′ → H ′ be the associated maps of double covers. Note that the
composition S′ → H ′ → H is extremal if S is. The orientation on X ′ gives an
unambiguous sense to what it means to slide a quadrilateral of S′ over a handle
of H ′ in the positive direction. If S′ has a polygon P with at least 6 edges, then
we can slide some sub-quadrilateral Q of P in the positive direction. The effect
of this on the graph X ′ is to perform a positive fold and then the inverse of a
negative fold. In other words, after sliding finitely many quadrilaterals of S′, we
can arrange matters so that the graph Γ′ admits a maximal folding sequence with
no positive folds. But such a graph admits no positive folds at all, and therefore
Γ′ represents a surface S′ in which no polygon has more than 4 edges. In words: if
w is an alternating word in F2, some extremal monotone surface for w contains no
polygons with more than 4 branch edges.

In the case that the rank is bigger than 2, replace H by a union of genus 1 solid
handlebodies glued along their splitting disks as in § 4.1.4. The associated graph
X is a wedge of n circles, and X ′ is a 2n-valent directed graph with two vertices,
at each of which there are n incoming edges and n outgoing edges. If S as above
contains a polygon P with at least 2n+2 edges, we can slide a sub-quadrilateral in
the positive direction, thus performing a positive fold and the inverse of a negative
fold on Γ. After sliding all quadrilaterals as far as they will go in the positive
direction, the resulting graph Γ′ admits no positive folds, and therefore the surface
S′ contains no polygons with more than 2n branch edges.

Hence we have proved:
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Proposition 4.37. Let w be an alternating word in Fn. Then some extremal
surface for w contains no polygons with more than 2n branch edges.

This proposition leads to a further dramatic reduction in the time needed to
compute scl on alternating words, especially in F2. The resulting algorithm has
been implemented in the program scallop, whose source is available from [39]. In
practice the runtime is quite modest, taking on average about 6 seconds on a late
2008 MacBook Pro to compute scl on an alternating word of length 60 in F2.

Remark 4.38. A decomposition of a surface into rectangles and polygons determines a
vector field on the surface with a saddle singularity for every 4-gon, and an n-prong monkey
saddle singularity for every 2n+2-gon. Such data defines a branched Euclidean metric on
the surface where the negative curvature is concentrated at the singularities. Bounding
the number of sides of the polygons is the combinatorial equivalent of finding two sided
curvature bounds for a smooth surface. A closed least area surface in a non-positively
curved 3-manifold has two sided curvature bounds, but for a surface with boundary, there
are no such a priori lower bounds. Thus it is perhaps somewhat surprising that such
uniform lower bounds on the complexity of the polygons in an extremal surface can be
obtained, independent even of γ.

4.1.9. Gaps, limits, tongues. An alternating word in F2 has length 4n for
some n. There are 2 ·(2n!)2/(n!)4 alternating words of length 4n, but after applying
conjugation and anti-involutions a ↔ A and b ↔ B if necessary, we may assume
the word starts with ab.

Computer experiments using scallop reveal unexpected structure in the scl
spectrum of F2.
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Figure 4.4. Values of scl on 50,000 random alternating words
of length 36. The horizontal axis is scl and the vertical axis is
frequency (the spike at 3/2 is attenuated to fit in the figure).

Figure 4.4 is a histogram of values of scl on random alternating words of length
36. There are several conspicuous features of this plot, including:

(1) the existence of a spectral gap between 0 and 1/2 (discussed in § 4.3.4)
(2) the indiscreteness of the set of values attained
(3) the relative abundance of elements whose scl has a small denominator

The self-similarity of the histogram suggests the existence of a power law for the
frequency of elements with scl a given rational, of the form freq(p/q) ∼ q−δ where
δ ∼ 2 in this example. This self-similarity persists on a fine scale (see Figure 4.5).
Co-ordinates of the spikes are obtained by Farey addition of nearest spikes, after
multiplying numerators by 2.

Similar power laws occur in dynamical systems, e.g. in the phenomenon of “fre-
quency locking” for coupled nonlinear oscillators. One of the best-known examples
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Figure 4.5. A stretched scaled excerpt from Figure 4.4.

is that of Arnold tongues (see [2]). For K ∈ [0, 1] and ω ∈ S1 define a function
fK,ω : S1 → S1 by

fK,ω(θ) = θ + ω −K sin 2πθ

This is a homeomorphism for K ≤ 1, and one can look at the rotation number
rot(fK,·) as a function of ω for varying K. In fact, for K > 0, the set of ω for
which this rotation number is a given rational is a nonempty closed interval, and
these intervals expand as K → 1 to completely fill out the circle (in measure).
Following [116] we define ∆(p/q) to be the length of the interval of values ω for
which the rotation number is equal to p/q for K = 1. Jensen et. al. [116] found
experimentally that the heights ∆(p/q) obey a power law, with ∆(p/q) ∼ q−δ for
δ = 2.292± 3.4× 10−3.

The indiscreteness of the spectrum is more evident when one includes non-
alternating words.

Example 4.39. For positive integers n,m define s(n,m) = scl([a, bn][a, b−m]).
Then s(n,m) = s(m,n), and s(n,m) = 1− 1/t(n,m) where t(n,m) = t(n/d,m/d)
if gcd(n,m) = d, and

t(n,m) = max(2n− 2m,n) if gcd(n,m) = 1 and n > m

In particular, every value of Q mod Z is achieved in scl of F2 (and therefore in any
nonabelian free group).

For a proof and a (partial) explanation, see [46]. On the other hand, not every
positive rational number occurs as a value of scl in a free group. As has been
remarked before, scl(w) ≥ 1/2 for all nontrivial w ∈ [F2, F2], and the value of 1/2
is realized on every commutator. Experimentally, there appears to be another gap
in the spectrum between 1/2 and 7/12, then a gap between 7/12 and 5/8, with
the first accumulation point of the set scl([F2, F2]) at 3/4 (of course, each nonzero
value is achieved on infinitely many conjugacy classes; compare with Theorem 3.11).
Finally, experiments suggest that every rational number ≥ 1 is in the scl spectrum.

4.1.10. Injective, extremal, isometric maps. A map f : π1(S) → G of a
surface group into a group G is injective if it is a monomorphism, and extremal if
it realizes the infimum of −χ−(S)/2n(S) for its boundary. Say it is isometric if
scl(f(a)) = scl(a) for all a ∈ [π1(S), π1(S)] (note that injective and isometric maps
make sense between arbitrary groups). There are inclusions

isometric ⊂ extremal ⊂ injective

It is an interesting problem to delineate precisely the difference between these three
natural classes of surfaces.
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Example 4.40. Any automorphism is isometric.

Example 4.41. If an inclusion f : G→ H splits, then f is isometric.

Example 4.42. For any nonzero integers n,m the map F2 → F2 sending a→
an and b→ bm is isometric (see [46] for a proof).

Example 4.43 (once punctured torus). Any map f : F2 → F2 has image which
is either cyclic or injective. Furthermore, since 1/2 is a lower bound on nontrivial
elements for scl in a free group, every injective map from F2 to itself (or to any free
group) is extremal.

Example 4.44 (high distance Heegaard splittings). The following example was
inspired by an idea of Geoff Mess. A Heegaard splitting exhibits a closed 3-manifold
M as a union of two handlebodies H1, H2 glued along a surface S. Recall (Def-
inition 3.69) the definition of the complex of curves C(S). Each handlebody Hi

determines a subcomplex C(Hi) in the complex of curves C(S) consisting of iso-
topy classes of essential simple closed curves in S which bound disks in Hi. The
distance of a Heegaard splitting is the length of the shortest path in the 1-skeleton
of C(S) from a vertex in C(H1) to a vertex in C(H2). 3-manifolds with Heegaard
splittings of arbitrarily high distance and genus exist, and are easy to construct
(see e.g. Hempel [108]). Let M be a 3-manifold with a Heegaard splitting of genus
at least 3 and distance at least 2. Let α ⊂ S bound a disk in H1, and separate
S into two subsurfaces of different genus. Since the distance of the splitting is at
least 2, every simple essential loop in S which bounds a disk in H2 must intersect
α non-trivially. Hence, by the loop theorem (see [107] p. 39) the components of
S − α are π1-injective in H2. Since H2 is a handlebody, π1(H2) is free (of rank
≥ 3). This example shows that there are (many) injective surfaces in free groups
which are not extremal. Note that a free group of any rank can be included into
a free group of rank 2, so there are examples of injective, non-extremal surfaces in
free groups of any rank.

Example 4.45. Another example is due to Justin Malestein, based on Witt
identities. Let F be a free group with generators x1, x2, · · · , xn for some large n.
Define

si =





x1 if i = 1, 2

x2+(i−1)/2x1+(i−1)/2x
−1
2+(i−1)/2 if i > 2 is odd

x1+i/2[[· · · [x1, x2], x3], · · · , x−1+i/2]x
−1
1+i/2 if i > 2 is even

Then one can verify that for each g ≤ n/2, the elements s1, s2, · · · , s2g generate a
free subgroup of F of rank 2g, and moreover that there is an identity

[s1, s2] · · · [s2g−1, s2g] = [[x1, · · · , [xg−1, xg] · · · ], xg+1]

thus exhibiting a genus g surface group and a genus 1 surface subgroup of F with
the same boundary.

For example, if g = 2, one has the identity

[s1, s2][s3, s4] = [x1, x2]x3[x2, x1]x
−1
3 = [[x1, x2], x3]

Since every subgroup of a free group is free, there are no injective maps from
closed surface groups to free groups. However, we can use extremal surfaces to
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construct injective maps from closed surface groups to many groups obtained from
free groups by simple procedures.

A well-known question due to Gromov [98] is the following:

Question 4.46 (Gromov). Does every 1-ended word-hyperbolic group contain
a closed hyperbolic surface subgroup?

This question seems to be far beyond the reach of current technology. Never-
theless, as an application of the Rationality Theorem, we can find such surfaces in
certain groups, obtained as graphs of free groups amalgamated along cyclic sub-
groups (for an introduction to the theory of graphs of groups, see e.g. Serre [187],
especially Chapter 1).

Theorem 4.47. Let G be a finite graph of free groups, amalgamated along
cyclic subgroups.

(1) Every α ∈ H2(G; Z) has a multiple which is represented by a π1-injective
map of a closed surface (which may be disconnected).

(2) The unit ball of the Gromov (pseudo-)norm on H2(G; R) is a finite sided
rational polyhedron.

(3) Let g1, g2, · · · , gn ∈ G be conjugate into (free) vertex subgroups of G. Then
scl is piecewise rational linear on 〈g1, · · · , gn〉∩BH1 (G), and every rational
chain in this subspace rationally bounds an extremal surface.

Remark 4.48. If some homology class in G is represented by a Z⊕Z, the Gromov pseudo-
norm on H2(G; R) is degenerate. In this case, the proposition should be construed as
saying that ‖ · ‖1 is a non-negative convex piecewise rational linear function. On the other
hand, if G is word-hyperbolic, ‖ · ‖1 is a genuine (polyhedral) norm.

Remark 4.49. In contrast with the case of a 3-manifold, the norm ‖·‖1 does not generally
take integral values on H2(G; Z).

We give the sketch of a proof; for details, see [43].

Proof. Since G is a graph of free groups amalgamated along cyclic subgroups,
there is a K(G, 1), denoted X , obtained as a union X = H ∪ A, where H is a
disjoint union of handlebodies, and A is a disjoint union of annuli attached along
their boundary to essential loops inH (in fact, this can be taken to be the definition
of a graph of free groups amalgamated over cyclic subgroups). If Hi is a component
of H , let Fi denote the corresponding (free) vertex subgroup of G. Furthermore,
for each i, let ∂iA denote the components of ∂A attached to Hi. We think of each
∂iA either as a set of free homotopy classes of loops in Hi, or as a set of conjugacy
classes in Fi.

Let α ∈ H1(G; Z) be given, and let f : S → X be a map of a surface representing
α. After compression and a homotopy, we can insist that f−1(A) is a union of
annuli, each of which maps to some component of A by a covering map. Write S
as a union S = T ∪U , where U = f−1(A), and T = ∪iTi where Ti = f−1(Hi). The
image f∗(∂T ) is a chain C which can be written as a formal sum C =

∑
Ci where

each Ci has support in Hi. By construction, Ci ∈ 〈∂iA〉 ∩BH1 (Fi).
For each i, let T ′i be an extremal surface in Hi virtually bounding the chain Ci.

By passing to common covers if necessary, we can assume that T ′ = ∪T ′i virtually
bounds C. We would like to build a surface S′ by gluing up boundary components
of the T ′i along covers of the cores of the annuli A. This can be accomplished by
passing to a further finite cover, by Proposition 2.13. The resulting surface S′ is
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Gromov norm minimizing in its (projective) homology class, and is therefore π1-
injective. This proves bullet (1). Bullet (2) follows from the piecewise rational
linearity of the scl norm on each 〈∂iA〉 ∩BH1 (Fi).

The proof of bullet (3) is similar. Let Γ be a collection of loops representing the
conjugacy classes gi. Any admissible surface f : S, ∂S → X,Γ can be homotoped
and compressed until f−1(A) is a union of annuli, each of which maps to some
component of A by a covering map. Then the claim follows as above by the fact
that scl is piecewise rational linear on each subspace of the form 〈∂iA∪ (Γ∩Hi)〉 ∩
BH1 (Fi). �

Example 4.50. Let F be a free group and Z a nontrivial cyclic subgroup,
contained in [F, F ]. Let G be obtained from two copies of F by amalgamating
them along Z; i.e. G = F ∗Z F . Topologically, if γ is a loop in H representing the
conjugacy class of a generator of Z, the group G is the fundamental group of the
spaceX obtained by gluing two copies ofH together along γ. There is an involution
ι onX which exchanges the two copies ofH , and fixes γ. If f : S → H is an extremal
surface which (rationally) bounds some cover of γ, there is a map Df from the
double DS to X obtained by reflecting f across γ using ι. By construction, the
map is injective, and realizes the Gromov norm on some multiple of the generator
of H2(G; Z).

Example 4.51. Let S be a closed orientable surface, and let A ⊂ S be an
essential annulus in S. Let g1, · · · , gn ∈ π1(S) be conjugacy classes represented by
loops γi in S−A. Then scl is piecewise rational linear on the subspace 〈g1, · · · , gn〉∩
BH1 (π1(S)).

Example 4.52. Let G be a graph of free groups amalgamated along cyclic
subgroups. Then every finite index subgroup G′ is also a graph of free groups
amalgamated along cyclic subgroups. So if some finite index G′ as above has non-
trivial H2, it contains a closed surface subgroup, and therefore so does G. Cameron
Gordon and Henry Wilton [94] have several interesting criteria to guarantee this
condition.

Remark 4.53. Compare the proof of Theorem 4.47 with the proofs of Theorem 2.93 and
Theorem 2.101.

4.2. Geodesics on surfaces

The results of § 4.1 let us compute scl and construct extremal surfaces for
arbitrary elements and chains in BH1 (F ) where F is a free group. Bavard duality
implies the existence of extremal quasimorphisms with rational values and rational
defects, but such quasimorphisms are apparently quite elusive, and it remains a
challenging problem to try to construct them. The most constrained extremal
quasimorphisms (and therefore the easiest to find) should be those dual to top
dimensional faces of the scl polyhedron; but for an infinite dimensional polyhedron,
it becomes complicated even to give a precise definition of a top dimensional face.

However, it turns out that there are some naturally occurring top dimensional
faces of the scl polyhedron for F a free group. More precisely, for each realization
of F as π1(S) where S is an oriented surface (necessarily of negative Euler char-
acteristic), there is a top dimensional face πS of the scl norm ball. Moreover, the
projective class of the chain ∂S in BH1 (F ) intersects this face in its interior, and
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the unique homogeneous quasimorphism dual to this face (up to scale and elements
of H1(F )), is the rotation quasimorphism associated to the natural action of π1(S)
on the circle at infinity of hyperbolic space coming from any choice of hyperbolic
structure on S. This is Theorem 4.78, to be proved in the sequel.

4.2.1. Self-intersections. Fix the following conventions. Let S be an ori-
entable surface of finite type (usually compact and connected with nonempty geo-
desic boundary) with χ(S) < 0. If we fix a hyperbolic structure on S, then every
free homotopy class of loop has a unique (unparameterized) geodesic representa-
tive. If a ∈ π1(S), and [a] denotes the conjugacy class of a, then we let γ(a) denote
the geodesic in the free homotopy class determined by [a]. If we want to refer
specifically to the hyperbolic metric g on S, we write γ(a, g).

We recall from § 3.5.3 the notation cr(a) for the number of self-intersections
of γ(a) in S (i.e. the crossing number). Our discussion in § 3.5.3 was brief and
somewhat sketchy; we are more careful now.

The combinatorics of the geodesic γ(a) in S does not depend on the choice of
hyperbolic structure when cr(a) ≤ 2. But when γ has 3 or more self-intersections
the combinatorics of γ may (and usually will) depend on the geometry of S. In par-
ticular, three local sheets might undergo a “Reidemeister 3” move; see Figure 4.6.

←−−→

Figure 4.6. A Reidemeister 3 move

More subtly, a geodesic representative might not be in general position, and
a “coincidental” triple point might be stable under deformations of the hyperbolic
structure.

Example 4.54 (Hass–Scott [104]). This example is a straightforward variation
on Example 5 from [104]. A hyperbolic once-punctured torus T has an isometric
involution which fixes the boundary and three interior (Weierstrass) points. A
suitable free homotopy class of loop in T invariant by this involution has a geodesic
representative which is forced to go through some or all of these points, an arbitrary
number of times. This example can be inserted into any non-planar hyperbolic
surface.

Self-intersections and crossing number are more properly defined in terms of
linking data at infinity. Let S1

∞ denote the circle at infinity of the hyperbolic plane.
Two disjoint pairs of points in S1

∞ are said to be linked if each separates the other
in S1

∞. Formally, we define a self-intersection of γ as follows. Let s : S1 → γ ⊂ S
be a parameterization of γ. By abuse of notation, we say that a lift of s is a map
s̃ : R→ H2 which intertwines the covering projections R→ S1 and H2 → S. A self-
intersection of γ is an unordered pair of lifts s̃1, s̃2 for which the endpoints of the
geodesics s̃1(R), s̃2(R) are linked in S1

∞, up to the action of the deck group π1(S)
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on such pairs. Then define cr(a) to be the cardinality of the set of self-intersections
of γ(a).

Linking number is well-defined independent of the hyperbolic structure on S,
so this notion is purely topological. For primitive geodesics in general position,
the cardinality of the set of self-intersections agrees with the naive (geometric)
definition of crossing number, and satisfies the desirable property cr(an) = n2cr(a).

If γ is not generic, we distinguish the abstract set of self-intersections (as defined
above) from the support of the self-intersections, which is a finite subset of γ, and
whose cardinality might depend on the hyperbolic structure on S.

4.2.2. Bounding surfaces. Assume now that S is compact, possibly with
boundary. Fix a hyperbolic structure on S and an element a ∈ π1(S), and let γ
denote the (oriented) geodesic corresponding to the conjugacy class of a.

For a given hyperbolic structure, γ decomposes S − γ into a finite collection of
complementary regions Ri. Each region inherits an orientation from S. Moreover,
γ is decomposed by its own self-intersections into a collection of oriented segments
γj . Finally the support of the self-intersections is a collection of oriented points vi.

Definition 4.55. Let C∗(γ) be the chain complex (over Z) generated by the
oriented polyhedra Ri, γi, vi together with the boundary components of S, with
boundary maps the usual boundaries for polyhedra. LetH∗(γ) denote the homology
of this complex.

We let SC denote the element of C2 which is just the sum of the oriented gen-
erators of C2, and γC the element of C1 which is the sum of the oriented generators
of C1, excluding the boundary components.

Fix an open covering of S whose open sets are regular open neighborhoods Ui
of the regions Ri. At least when S is closed, the Čech cohomology of the nerve
of this covering (with constant coefficients) is canonically (because of orientations)
Poincaré dual to C∗. In particular, there is a canonical surjective homomorphism
from ordinary (Čech) homology H∗(S; Z) → H∗(γ), and the classes [SC ], [γC ] ∈
H∗(γ) are the images of the corresponding elements in H∗(S; Z). There is a similar
interpretation of H∗(γ) in Čech homology when S has boundary.

Lemma 4.56. The kernel of ∂ : C2(γ) → C1(γ) is generated by SC if S is
closed, and is zero otherwise.

Proof. This follows by the remarks in the paragraph above, together with
the fact that S is connected and orientable, and therefore H2(S; Z) is at most 1
dimensional, and is 0 dimensional unless S is closed. �

Since γ is closed, γC is a cycle. If a ∈ [π1(S), π1(S)] then [γ] = 0 ∈ H1(S),
so γC = ∂Aγ for some Aγ ∈ C2. If S is not closed, ∂ is injective on C2 by
Lemma 4.56, and therefore Aγ is uniquely defined. For each region Ri, let wi
denote the coefficient of the generator Ri in Aγ , so that Aγ =

∑
i wiRi.

Let T be a compact orientable surface, possibly with multiple boundary com-
ponents, and let f be a map of pairs f : (T, ∂T ) → (S, γ). If we put f in general
position, f restricts to a proper map between open surfaces T − f−1(γ) → S − γ.
The orientations on T and S determine a degree, denoted deg(f), which is an as-
signment of an integer to each region Ri; i.e. an element of C2(γ). If f is smooth,
the degree of f on Ri is the signed sum of preimages of a generic point in Ri. One
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way of thinking of the degree is as the image of the fundamental class of the pair
(T, ∂T ) in a suitable relative homology group.

Enumerate the components of ∂T as ∂iT , and suppose that f(∂iT ) represents
γni in π1(S). We define the degree of f |∂T similarly, and write deg(∂if) = niγC
and deg(∂f) =

∑
i niγC . Write n(T ) =

∑
ni as above. From the definition we

have

∂ deg(f) = deg(∂f)

and so from Lemma 4.56, we deduce

deg(f) = n(T ) ·Aγ
providing S has nonempty boundary.

4.2.3. Area norm. Throughout this section, all surfaces under discussion are
assumed to have nonempty boundary, unless we explicitly say to the contrary.

Definition 4.57. For a ∈ [π1(S), π1(S)] and for a fixed choice of hyperbolic
metric g on S, define the area of γ(a, g) by

area(γ(a, g)) =
∑

i

wiarea(Ri)

where Aγ =
∑
wiRi, and

area+(γ(a, g)) =
∑

i

|wi|area(Ri)

If g and a are understood, we abbreviate this to area(γ) and area+(γ) respectively.

From the definition there is an inequality area+(γ) ≥ |area(γ)| with equality if
and only if all the wi have the same sign.

Definition 4.58. If all the wi have the same sign, then γ is monotone.

Lemma 4.59. Let a, γ be as above. Then for any hyperbolic structure g on S
there is an inequality

scl(a) ≥ area+(γ(a, g))

4π

Proof. For each surface (Si, ∂Si) → (S, γ) we either compress Si along an
essential embedded loop or arc, or else we can find a pleated representative. The
pleated representative defines a hyperbolic structure on Si with totally geodesic
boundary. Moreover, by definition, we have

area(Si) =
∑

i

∫

Ri

#{f−1}darea ≥
∑

i

∫

Ri

| deg(f) on Ri|darea = n(Si)area+(γ)

By Gauss–Bonnet, area(Si) = −2πχ(Si). By Proposition 2.10, scl(a) is the infimum
of −χ(Si)/2n(Si) over all such Si. �

Values of area(γ) are quantized:

Lemma 4.60. For any a ∈ π1(S) and any hyperbolic metric g,

area(γ(a, g)) ∈ 2πZ

In particular, area(γ) does not depend on g.
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Proof. Let (S′, ∂S′) → (S, γ) be a pleated surface for which n(S′) = 1. The
pleated surface structure determines a decomposition of S′ into an even number
of ideal triangles, whose areas sum to area(S′). The Jacobian J(f) is constant on
each ideal triangle, and takes values in ±1. We calculate

area(γ) =
∑

i

∫

Ri

deg(f) on Ri darea =

∫

S′

J(f) darea

which is a sum of an even number of π’s and −π’s. �

In fact, the relationship between area and scl is precise enough to detect a
significant amount of topological information. An immersion f : T → S between
oriented surfaces is positive if it is orientation-preserving on each component, and
negative if it is orientation-reversing on each component. Note that if S and T are
both connected, every immersion between them is either positive or negative.

For the moment we are considering immersed loops in surfaces S. In the sequel
we will consider immersed 1-manifolds. In anticipation therefore, we make the
following definition.

Definition 4.61. An immersed oriented 1-manifold Γ :
∐
i S

1 → S bounds a
positive immersion f : T → S if there is a commutative diagram

T∂T

∐
i S

1 S

................................................................................................................................................................... ............
i

.........................................................
......
......
......

∂f
.........................................................
......
......
......

f

......................................................................................................................................................... ............

Γ

for which ∂f : ∂T → ∐
i S

1 is an orientation-preserving homeomorphism. The
1-manifold Γ virtually bounds (or rationally bounds) a positive immersion as above
if there is a positive integer n so that ∂f : ∂T →∐

i S
1 is an orientation-preserving

covering satisfying ∂f∗[∂T ] = n[
∐
i S

1] in homology.

The property of virtually bounding an immersed surface can be detected by
stable commutator length:

Lemma 4.62. Let a ∈ π1(S) be represented by a geodesic γ ⊂ S. Suppose γ
virtually bounds a positive immersed surface T . Then T is extremal, and

scl(a) = area(γ)/4π = −χ(T )/2n

Conversely, if γ does not virtually bound a positive immersed surface, then scl(a) >
area(γ)/4π.

Proof. Under the hypotheses of the Lemma, narea(γ) = area(T ). If γ virtu-
ally bounds a positive immersed surface T , then scl(a) ≤ −χ(T )/2n. This gives an
upper bound on scl which is equal to the lower bound in Lemma 4.59.

Conversely, let T be extremal for a (such a T exists by Theorem 4.24). If T is
not homotopic to an immersion, then a pleated representative of T maps at least one
ideal triangle with degree −1 and therefore scl(a) = −χ−(T )/2n > area(γ)/4π. �

Remark 4.63. By changing the orientation on γ, one sees that γ virtually bounds a
negative immersed surface if and only if scl(a) = −area(γ)/4π.

Remark 4.64. We will see in Example 4.72 that there are examples of curves γ which
do not bound an immersed surface, but have finite (disconnected) covers which do bound
immersed surfaces.



4.2. GEODESICS ON SURFACES 115

Remark 4.65. One direction of Lemma 4.62 is easy: an immersed surface is evidently
extremal, by Bavard duality. The other direction of the proof really uses the existence of
extremal surfaces, and therefore depends on Theorem 4.24.

Corollary 4.66. Let a ∈ π1(S) be represented by a geodesic γ. Suppose a
finite cover of γ bounds a (positive or negative) immersed surface in S. Then
scl(a) ∈ 1

2Z.

Proof. By Lemma 4.62, there is an equality scl(a) = |area(γ)|/4π. On the
other hand, by Lemma 4.60, area(γ) ∈ 2πZ. �

Remark 4.67. Although area(γ) does not depend on the hyperbolic metric g, the quantity
area+(γ(a, g)) might. By Gauss–Bonnet, the area of a hyperbolic polygon P is

area(P ) = π(n− 2)−
X

i

αi

where n is the number of vertices, and the αi are the internal angles. Summing contribu-
tions of this kind, we see that area+(γ(a, g)) is an integral linear combination

area+(γ(a, g)) =
X

p

n(p, g)α(p, g) + topological term

where the topological term is in πZ, where the sum is taken over points p at which γ
crosses itself, where α(p, g) is the angle γ makes with itself at p, and where each n(p, q) is
an integer. The n(p, q) are not constant, since they might change sign under a deformation
in which some (necessarily simply-connected) region becomes degenerate and changes
orientation.

It would be interesting to study area+(γ(a, ·)) for each a ∈ π1(S) as a function on
Teichmüller space, and to characterize its range algebraically.

4.2.4. Area and rotation number. We give a reinterpretation of area(γ) in
terms of rotation numbers which gives another explanation of the quantization of
area proved in Lemma 4.60.

A hyperbolic structure and an orientation on S determines a representation
ρ : π1(S) → PSL(2,R) which is unique up to conjugacy. There is a universal
central extension

0→ Z→ S̃L(2,R)→ PSL(2,R)→ 0

with extension class [e] ∈ H2(PSL(2,R); Z).
If G is any group, and ρ : G → PSL(2,R) is a representation, [e] pulls back

by ρ∗ to define an element ρ∗([e]) of H2(G; Z). If ρ is understood, we abbreviate
this by [e] where no confusion can arise. There is an elegant description of e at
the level of chains, due to Thurston [197]. The group PSL(2,R) acts on S1

∞ by
orientation-preserving homeomorphisms. Let p ∈ S1

∞ be arbitrary. If g1, g2 ∈ G
then define

e(g1, g2) =





1
2 if p, g1(p), g2(g) is positively ordered

− 1
2 if p, g1(p), g2(g) is negatively ordered

0 if p, g1(p), g2(g) is degenerate

More geometrically, e is 1
2π times the (signed) hyperbolic area of the ideal triangle

spanned by p, g1(p), g2(p). Note that e is a bounded 2-cocycle, with norm 1/2.
If f : (S′, ∂S′) → (S, γ) is a pleated surface with n(S′) = 1, then f∗(∂S

′) fixes
points in S1

∞, and therefore there is a well-defined relative cocycle f∗e whose eval-
uation f∗e([S′]) is 1

2π times the signed sum of areas of the ideal triangles of S′; i.e.
f∗e([S′]) = area(γ)/2π.
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If ρ∗e is trivial in H2(G; Z) then ρ lifts to ρ̃ : G→ S̃L(2,R). As in § 2.3.3 there
is a well-defined homogeneous quasimorphism rot on G determined by the choice
of a lift ρ̃. Different lifts are parameterized by choices of H1(G). In particular,
ρ̃ is well-defined on [G,G]. As bounded cohomology classes, −[δ rot] = [e] in
H2
b (G; R). Here the minus sign appears because of the negative curvature of a

hyperbolic surface. In fact, for any closed hyperbolic surface T , there is an equality
e([T ]) = −χ(T ).

Lemma 4.68. With definitions as above, for each a in the commutator subgroup
there is an equality

area(γ(a)) = −2π rot(a)

Proof. Let f : (S′, ∂S′)→ (S, γ) be a pleated surface with n(S′) = 1. Then

area(γ(a))/2π = e(f∗[S
′]) = −(δrot)(f∗[S

′]) = −rot(f∗[∂S
′]) = −rot(γ)

�

Since S is a complete hyperbolic surface, every element is either hyperbolic or
parabolic, and therefore has a fixed point in S1

∞. This implies that rot takes on
only integral values. This explains the quantization observed earlier.

Remark 4.69. Lemma 2.58 says that for any homogeneous quasimorphism φ, there is
an inequality D(φ) ≤ 2‖[δφ]‖∞. The discussion above shows that this inequality is an
equality when φ is the rotation quasimorphism associated to a hyperbolic structure on a
noncompact surface.

In fact, for any group G and any representation ρ : G → Homeo+(S1), we can pull
back the Euler class to obtain [eρ] ∈ H2

b (G; R). After passing to a central extension if nec-
essary, we can assume [eρ] is trivial in ordinary H2, and obtain a rotation quasimorphism
rotρ with [δrotρ] = [eρ].

Proposition 4.70. With notation as above, there is an equality D(rotρ) = 2‖[eρ]‖∞.

Proof. We give the sketch of a proof. If G has a finite orbit, then it preserves an
invariant probability measure concentrated on this orbit, and therefore rotρ is a homo-
morphism, and [eρ] is trivial in H2

b (G; R). Otherwise, the action is semi-conjugate to a
minimal action (i.e. one in which every orbit is dense). A minimal action is either con-
jugate to an action by rotations (in which case rotρ is a homomorphism) or has a finite
cyclic centralizer. Quotienting S1 by the action of the centralizer produces a new minimal
action, and multiplies both [eρ] and rotρ by the same number.

So assume the action is minimal with trivial centralizer. The Milnor–Wood inequality
gives ‖[eρ]‖∞ ≤ 1/2 for any action. On the other hand, such an action has the following
compressibility property: for any closed interval I ⊂ S1 and any nonempty open set
U ⊂ S1, there is g ∈ G for which g(I) ⊂ U ; a proof of this fact (and the nontrivial
assertions in the previous paragraph) follows from Thurston [197], Theorem 2.7. Choose
disjoint nonempty connected open sets U1, U2, V1, V2 for which a pair of points in U1 and V1

link a pair of points in U2 and V2. Let g take S1−V1 into U1, and let h take S1−V2 into U2.
Then the action of 〈g, h〉 is semi-conjugate to an action arising from a hyperbolic structure
on a once-punctured torus. Consequently rotρ([g, h]) = 1 and therefore D(rotρ) ≥ 1.

Hence

1 ≥ 2‖[eρ]‖∞ ≥ D(rotρ) ≥ 1

and the Proposition is proved. �

Note that the method of proof shows that any group acting on a circle either preserves
a probability measure, or contains a nonabelian free subgroup. In the literature this fact
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is frequently attributed to Margulis [145], who seems not to have been aware of the work
of Thurston and others.

Lemma 4.62 and Lemma 4.68 taken together show that an element a in the
commutator subgroup of π1(S) is represented by a geodesic which virtually bounds
an immersed surface in S if and only if rot is an extremal quasimorphism for a. It
is convenient to extend this observation to rational chains in BH1 .

Let F = π1(S), and let C =
∑
tiai be a chain in BH1 (F ). Each ai is represented

by a geodesic γi in S, so the chain C is represented by a “weighted” union Γ of
geodesics in S. The support of Γ decomposes S into regions Ri. For each region Ri,
choose an arc αi from ∂S to Ri, and look at the (weighted) algebraic intersection
αi ∩ Γ. The condition that C is homologically trivial implies that this algebraic
intersection number is independent of the choices involved. In the special case that
C consists of a single element a, this intersection number is equal to the weight wi
as defined in Definition 4.57. Then define

area(Γ) =
∑

i

(αi ∩ Γ)area(Ri)

Then one has the analogue of Lemma 4.68, namely area(Γ) = −2π
∑
tirot(ai). If

the coefficients of C are rational, then after multiplying through by a large integer
we can assume that the coefficients are integers, and we can think of Γ as a signed
sum of simple geodesics. Lemma 4.62 holds for such Γ, and with the same proof;
i.e. a weighted union of geodesics Γ representing a chain C virtually bounds a
positive immersed surface if and only if 4π area(Γ) = scl(C). Putting these two
facts together gives the following proposition:

Proposition 4.71. Let S be an oriented surface with boundary. Let C be a
rational chain in BH1 (F ) represented by a weighted sum of geodesics Γ. Then Γ
virtually bounds a (positive or negative) immersed surface in S if and only if rotS
is an extremal quasimorphism for C; i.e. if and only if scl(C) = |rotS(C)|/2.

Example 4.72. “Virtually bounds” in Proposition 4.71 cannot in general be
improved to “bounds”. Consider the immersed curve γ ⊂ S in Figure 4.7, where S
is a once-punctured surface of genus 2. The curve γ can be realized by a geodesic
in any hyperbolic structure on S.

γ

Figure 4.7. The loop γ does not bound an immersed surface, but
two copies of γ do

The disconnected cover consisting of two copies of γ bounds an immersed sur-
face of genus 4 with two boundary components, which each wrap once around γ.
By Lemma 4.62 there is an equality scl([a1, b1]

2[a2, b2]) = 2 in F4 (note that this
also follows as a special case of the (free) product formula, i.e. Theorem 2.93). Since
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the value of scl is not of the form 1/2 + integer, γ does not bound an immersed
surface.

4.2.5. Rotation number and counting quasimorphisms. In this section,
let S1,1 denote a once-punctured torus, so that π1(S1,1) = F2, with standard gen-
erators a, b. The function rot1,1 : F2 → Z is defined as above, with respect to some
complete hyperbolic structure on S1,1, and some choice of lift on the generators.
Since different lifts agree on the commutator subgroup, the function rot1,1 is well-
defined in Q/H1. One way to fix a lift is to insist that the lifts of a and b fix points,
and therefore satisfy rot1,1(a) = rot1,1(b) = 0. We follow this convention in the
sequel.

It turns out that we can give a simple formula for rot1,1 in terms of the Brooks
counting quasimorphisms (see § 2.3.2). Recall that for each string σ, the function
Hσ counts the number of copies of σ minus the number of copies of σ−1, and Hσ

denotes its homogenization.

Remark 4.73. In fact, in this section we only consider strings σ of length 2 with distinct
letters. For such strings, the “little” and the “big” counting functions and their associated
quasimorphisms hσ and Hσ are equal.

Lemma 4.74.

rot1,1 =
1

4

(
Hab +Hba−1 +Ha−1b−1 +Hb−1a

)

Proof. The proof is a modification of Klein’s ping-pong argument, lifted from
the circle to the line. The disk D can be decomposed into 5 regions, one of which,
P , is an ideal square which is a fundamental domain for F2, and the other 4 are
neighborhoods of the attracting fixed points of the elements a, b, a−1, b−1 respec-
tively. Call these neighborhoods Na, Nb, NA, NB. Given a reduced word σ ∈ F2,
and a point p ∈ P , the image σ(p) ∈ Nw where w is the last letter of σ. We can
glue Z copies of each of the regions Na etc. onto R in such a way that the union of
R with these regions is the universal cover of D − P . Denote this union by E. See
Figure 4.8.

These lifted neighborhood regions break up R into “units”, with four units to
each lift of a fundamental domain for S1. We can lift the itinerary of p (except for
p itself) under the subwords of σ to an itinerary in E. One sees that every time
the letter b appears in σ, the itinerary moves up one unit if the preceding letter
was a, and down one unit if the preceding letter was a−1, and similarly for other
allowable 2-letter combinations. The rotation number is 1/4 the number of units,
proving the formula. �

This has a particularly simple and interesting interpretation in terms of the
graphical calculus introduced in § 2.2.4. A cyclically reduced element in [F2, F2]
determines a loop in the square lattice without backtracking. Such a loop may be
“smoothed” at the corners to determine an immersed curve in the plane. Every an-
ticlockwise turn contributes 1/4 to rot1,1, whereas every clockwise turn contributes
−1/4. Hence rot1,1 is just the winding number of the immersed curve associated to
an element.

The following corollary illustrates the power of this technique.

Corollary 4.75. Let g ∈ F2 be a commutator, and let γg be the geodesic
representative of the conjugacy class of g in T , a hyperbolic once-punctured torus.
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PNa NA

Nb

NB

Ña

Ñb

ÑB

ÑA

ÑA

a

a

a−1

a−1

a−1

a−1

Figure 4.8. a moves points in Ñb regions up one unit, and a−1

moves such points down one unit. Furthermore, a moves points
in ÑB regions down one unit, and a−1 moves such points up one
unit. A similar relation holds with a and b interchanged.

Let wg be the loop in the square lattice in R2 corresponding to the (cyclically) reduced
representative of g. Then γg bounds an immersed surface in T if and only if the
winding number of wg is ±1.

Proof. Since g is a commutator, there is a map f : T → T taking the bound-
ary to γg. Replace f by a pleated representative. The (algebraic) area of f(T )
is −2π rot1,1(g) = −2π wind(wg), so if the winding number is ±1, this pleated
representative is an immersion. Conversely, if wind(wg) = 0, the algebraic area is
zero, so no map f as above can be an immersion. �

A similar argument lets one give a formula for rotation numbers associated to
a hyperbolic structure on any noncompact hyperbolic surface in terms of Brooks
functions on the associated (free) fundamental group. As before, let P be a fun-
damental domain for the surface, so that D− P decomposes into regions on which
the generators do ping-pong. Then each allowable pair xy of distinct letters in a
reduced word moves up some fixed number nxy of units. If Sg,p is the surface of
genus g with p punctures, then π1(Sg,p) is free of rank 2g+p−1 and we can take as
generators a1, b1, · · · , ag, bg, c1, · · · , cp−1. We thereby obtain the following theorem.

Theorem 4.76 (Rotation number formula). Let C denote the following cycli-
cally ordered set:

C = (a1, b1, a
−1
1 , b−1

1 , · · · , ag, bg, a−1
g , b−1

g , c1, c
−1
1 , · · · , cp−1, c

−1
p−1)
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For each pair x, y in C with x 6= y, y−1 let mxy be the integer 0 < mxy < 4g+2p−2
such that y is mxy elements to the right of x in C. Define

nxy =

{
mxy if (y−1, x, y) is positive in the circular order

mxy − (4g + 2p− 2) otherwise

Then there is an equality

rotg,p =
1

4g + 2p− 2


 ∑

x 6=y or y−1

nxyCxy




where for each string σ, we let Cσ denote the counting function that counts copies
of σ, and Cσ denotes its homogenization.

For example, let S0,3 be the thrice punctured sphere, and let π1(S0,3) = 〈a, b〉
where a and b are loops around the punctures. Then if rot0,3 denotes the homoge-
neous quasimorphism associated to the hyperbolic structure, there is a formula

rot0,3 =
1

2

(
Ha−1b +Hba−1

)

Remark 4.77. In fact, the formula from Theorem 4.76 gives (after collecting terms)

rot0,3 =
1

4

`
2Ha−1b + 2Hba−1 + Cab + Cb−1a−1 − Ca−1b−1 − Cba

´

However, the function Cab+Cb−1a−1−Ca−1b−1−Cba is uniformly bounded on any reduced
word, as can be verified by a calculation, and therefore its homogenization is trivial.

Theorem 4.76 gives similar necessary and sufficient criteria in terms of counting
quasimorphisms for geodesics in hyperbolic surfaces S corresponding to commuta-
tors in π1(S) to bound an immersed surface.

4.2.6. Rigidity Theorem. The content in the next few sections is taken
largely from [45]. The main goal is to prove the following theorem:

Theorem 4.78 (Rigidity Theorem). Let F = π1(S) where S is a compact
oriented surface with χ(S) < 0 and nonempty boundary.

(1) The projective class of the chain ∂S in BH1 (F ) intersects the interior of a
codimension one face πS of the unit ball in the scl norm.

(2) The unique element of Q(F )/H1 dual to πS (up to scale) is the rotation
quasimorphism associated to the action of π1(S) on the ideal boundary of
the hyperbolic plane, coming from a hyperbolic structure on S.

Theorem 4.78 reveals how surface topology and hyperbolic geometry are man-
ifested in the bounded cohomology of a free group.

The proof is entirely elementary modulo Proposition 4.71, and depends only
on constructing immersed surfaces in S with prescribed boundary. Technically, the
result we prove is the following:

Theorem 4.79 (Immersion Theorem). Let S be a compact oriented hyperbolic
surface with (possibly empty) geodesic boundary. Let C be a homologically trivial
rational chain, represented by a weighted union Γ of geodesics. Then for all suffi-
ciently large N (depending on Γ), the chain Γ +N∂S virtually bounds a (positive)
immersed surface.

We show how to deduce Theorem 4.78 from Theorem 4.79.
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Proof. Let C be any rational chain in BH1 (F ). By Theorem 4.79 and Propo-
sition 4.71, for all sufficiently large N the chain C +N∂S in BH1 (F ) satisfies

scl(C +N∂S) = rotS(C +N∂S)/2

Hence the ray through ∂S intersects the interior of an edge of the unit ball of the
scl norm restricted to the subspace 〈C, ∂S〉. Since C was arbitrary, the projective
class of ∂S intersects the interior of a codimension one face πS of the unit ball in
the scl norm. By construction, this face is dual to rotS (up to scale and H1). �

Remark 4.80. Proposition 4.71 says that a rational chain C virtually bounds a positive
immersed surface in S if and only if scl(C) = rot(C)/2. By Theorem 4.78, this holds if
and only if the projective class of C intersects the face πS. If the support of C does not
include ∂S, then C− ǫ∂S cannot virtually bound a positive immersed surface in S for any
positive ǫ. Consequently the projective class of such a C does not intersect the interior of
πS, but only its boundary.

Remark 4.81. One still has a version of the Rigidity Theorem for closed surfaces. Let S
be a closed, oriented hyperbolic surface. The hyperbolic structure lets us think of π1(S)

as a subgroup of PSL(2,R). Denote by G the preimage of this subgroup in fSL(2,R). The
group G is isomorphic to the fundamental group of the unit tangent bundle of S. There
is a nontrivial central extension

Z→ G→ π1(S)

associated to the class of the generator of H2(S; Z). Let rotZ denote the pullback of the

rotation quasimorphism on fSL(2,R) to G, and let Z denote the generator of the center of
G. Theorem 4.79 and some elementary homological algebra implies that for any element
g ∈ [G,G], the quasimorphism rotZ is extremal for g+nZ whenever n is sufficiently large.
Hence there is a codimension one face πZ of the unit ball of the scl norm on BH1 (G), and
the projective class of Z intersects the interior of this face.

By continuity, for any g ∈ [G,G], the projective class of g + nZ also intersects the
interior of πZ whenever n is sufficiently large (depending on g). Since Z is central, scl(g+
nZ +C) = scl(Zng+C) for any g and any chain C. Consequently, the projective class of
the element Zng also intersects the interior of πZ whenever n is sufficiently large. Dually,
rotZ is the unique extremal homogeneous quasimorphism for Zng, up to scale and elements
of H1.

4.2.7. Proof of the immersion theorem. In this section we fix a surface S
with π1(S) = F and a chain C ∈ BH1 (F ) represented by a weighted sum of geodesics
Γ(C). Where there is no confusion, we abbreviate Γ(C) to Γ. By LERF for surface
groups (see Example 2.108) we can pass to a finite cover in which each component
of the preimage of Γ is embedded (though of course the union will typically not
be embedded). Let Γ′ be the total (weighted) preimage of Γ in the cover S′. If Γ′

cobounds a positively immersed surface with some multiple of ∂S′, this immersed
surface projects to S and shows that the same is true of Γ. So without loss of
generality, we can assume that every component of Γ is embedded.

If Γ1 and Γ2 virtually bound positive immersed surfaces, the same is true of
Γ1+Γ2, by Proposition 4.71 and the linearity of rotS onBH1 . The only homologically
trivial chains in BH1 represented by weighted sums of geodesics supported in ∂S
are the multiples of ∂S, so to prove the theorem, it suffices to find any weighted
collection of geodesics ∂ with support in ∂S so that Γ+∂ virtually bounds a positive
immersed surface. By abuse of notation, we say that Γ + ∂ virtually bounds a
positive immersed surface if there is some (unspecified) ∂ with this property.
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Suppose Γ1 and Γ2 are such that Γ1 − Γ2 + ∂ virtually bounds a positive
immersed surface for some ∂. Let i : T → S be such an immersed surface. Then
(again by LERF for surface groups) there are finite covers T ′, S′ so that i′ : T ′ → S′

is an embedding. The difference S′− i′(T ′) projects to S and shows that Γ2−Γ1 +∂
also virtually bounds a positive immersed surface (here ∂ typically stands for a
different weighted collection of geodesics with support in ∂S). Define a relation ∼
on weighted collections of geodesics, where Γ1 ∼ Γ2 if Γ1−Γ2 + ∂ virtually bounds
a positive immersed surface for some ∂ with support in ∂S. By the arguments
above, this relation is reflexive, symmetric and transitive, and is consequently an
equivalence relation. To prove the theorem therefore, we need only show that Γ =
Γ(C) satisfies Γ ∼ 0.

Lemma 4.82. Let S′ ⊂ S be a subsurface with geodesic boundary, and let S′′ be
obtained from S′ (topologically) by adding disks to close up some of the boundary
components. Suppose that every boundary component of S′ is either a boundary
component of S, or is separating in S. Suppose further that γ and γ′ are simple
geodesics in S′ that are homotopic in S′′. Then γ ∼ γ′.

Proof. Homotopic simple loops in S′′ are isotopic in S′′. Such an isotopy can
be taken to be a sequence of simple moves which “push” γ over a single boundary
component of S′. The result is realized at each stage by an embedded geodesic in
S′. Every boundary component ∂i of S′ is either a boundary component of S, or
is separating, and in either case ∂i ∼ 0. Hence γ ∼ γ′ as claimed. �

Let δ be a family of pairwise disjoint essential separating geodesics which de-
compose S into a union of genus one subsurfaces Si. There is a graph dual to this
decomposition, with one vertex for each component of S− δ, and one edge for each
component of δ. Since each δ is separating, this dual graph is a tree. There are
several possible such decompositions; for concreteness, choose a decomposition for
which this dual graph is an interval. Note that a separating geodesic δi necessarily
satisfies δi ∼ 0.

Lemma 4.83. Let γ be an embedded geodesic in S, and let δ as above separate
S into genus 1 subsurfaces. Suppose γ intersects δ. Then there is an embedded
geodesic 1-manifold γ′ with at most two components, such that γ ∼ γ′, and such
that γ′ intersects δ in fewer points than γ.

Proof. Every component of δ satisfies δi ∼ 0, so without loss of generality
we can assume γ intersects δ transversely. There is at least one component Si of
S − δ such that γ intersects exactly one boundary component δi of Si. Since δi
is separating, the algebraic intersection number of γ with δi is zero, and therefore
γ must intersect δi in at least two points with opposite signs. Let α be an arc of
δi whose interior is disjoint from γ, and whose endpoints intersect γ with opposite
signs. Build an embedded thrice punctured sphere in S by thickening γ, and at-
taching a 1-handle with core α. Isotope the boundary components of this thrice
punctured sphere until they are (embedded, disjoint) geodesics. One component is
γ; the other two components are γ′. �

By repeatedly applying Lemma 4.83, we can construct Γ′ with Γ ∼ Γ′, such
that each geodesic in Γ′ is embedded and contained in a genus one subsurface
S′ of S satisfying the hypothesis of Lemma 4.82. Let S′′ be obtained from S′

topologically by filling in all but one boundary component. Fix a standard basis
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α, β of embedded geodesics in S′ generating the homology of S′′. Then γ represents
pα+ qβ in homology. Since γ is embedded, p, q are coprime. We would like to show
γ ∼ pα + qβ. By induction, it suffices to show that the chain a + b + a−1b−1 ∼ 0
in a once-punctured torus, or equivalently that the chain a + b + a−1b−1 + [a, b]n

virtually bounds a positive immersed surface for some n. This can be proved by an
explicit construction.

Example 4.84. The chain a+ b+ a−1b−1 + [a, b]2 bounds an immersed surface
in a once-punctured torus. One way to see this is to compute, using scallop to
show scl(a+b+a−1b−1+[a, b]2) = 1 and then verifying equality in Proposition 4.71,
using the formula in Lemma 4.74 for rot. Another way is by explicit construction.
There is an immersed four-holed sphere, found by Matthew Day, whose boundary
is the chain a+ b+a−1b−1 +[a, b]2. This surface is depicted in Figure 4.9 (compare
with Figure 5 from [45]).

a b

A B a b

B
b a

A

A B

Figure 4.9. A 4-holed sphere that immerses in a once-punctured
torus, with four boundary components (indicated by thin curves)
in the conjugacy classes of a, b, a−1b−1 and [a, b]2.

We now explain how to put these pieces together to prove the theorem.

Proof. Let Γ in S be homologically trivial, with every component embedded.
Decompose S along embedded separating geodesics δ as above into genus one sub-
surfaces. By Lemma 4.83, we can find Γ′, a weighted sum of embedded geodesics,
such that Γ ∼ Γ′, and Γ′ is disjoint from δ. For each component S′ of S − δ,
let Γ′(S′) be the components of Γ′ in S′. For each γ in Γ′(S′) there are coprime
integers p(γ) and q(γ) so that γ ∼ p(γ)α + q(γ)β. But Γ is homologically trivial,
and therefore the same is true of Γ′ and Γ′(S′). Hence

∑
γ p(γ) =

∑
γ q(γ) = 0

and therefore Γ′(S′) ∼ 0. Since S′ was arbitrary, Γ′ ∼ 0 and therefore Γ ∼ 0. This
completes the proof of Theorem 4.79 (and of Theorem 4.78). �

See [45] for more details and discussion.

4.2.8. Infinite dimensional faces. Theorem 4.78 can be “bootstrapped” in
an interesting way. Let C be a rational chain in BH1 (F ). The chain C is rep-
resented by a weighted collection Γ of geodesic loops in S where π1(S) = F .
By Theorem 4.24, there is an extremal surface T for C, i.e. a π1-injective map
f : T, ∂T → S,Γ realizing the infimum of −χ−(T )/2n(T ). Now, let C′ be an arbi-
trary chain in BH1 (π1(T )), and Γ′ a weighted collection of geodesic loops in T that it
represents. By Theorem 4.78, for sufficiently large m the chain Γ′ +m∂T virtually
bounds an immersed surface. That is, there is an immersion g : U, ∂U → T,Γ′∪∂T
for which g(∂U) = n′(Γ′ +m∂T ) for some n′.
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Lemma 4.85 (Bootstrap Lemma). The surface f ◦ g : U, ∂U → S, f(Γ′) ∪ Γ is
extremal for some multiple of the chain f(C′) +mC in BH1 (F ).

Proof. By LERF, there are finite covers T ′ → T and U ′ → U so that g
lifts to an embedding g′ : U ′ → T ′. Clearly, it suffices to show that f ′ ◦ g′ is
extremal for some multiple of f(C′) +mC. Since g′ is an embedding, we can write
T ′ as a union T ′ = g′(U ′) ∪ T ′′. If f ′ ◦ g′ is not extremal, there is some other
h : V, ∂V → S, f(Γ′) ∪ Γ which is extremal for a (possibly different) multiple of
f(C′) + mC, and satisfies −χ−(V )/2n(V ) < −χ(U ′)/2n(U ′). By the argument
of Proposition 2.13, suitable covers of V and T ′′ can be glued up to produce a
surface W which is extremal for Γ but satisfies −χ−(W )/2n(W ) < −χ−(T )/2n(T ),
contrary to the hypothesis that T is extremal. This contradiction shows that no
such surface V exists, and therefore f ◦ g is extremal, as claimed. �

The following corollary is immediate:

Corollary 4.86. Let F be a free group, and C ∈ BH1 (F ) a rational chain.
The projective class of C in BH1 (F ) intersects the interior of an infinite dimensional
face πC of the unit ball in the scl norm. If f : π1(T )→ F is any extremal surface
for C, then f∗(πT )→ πC is isometric, in the sense that sclπ1(T )(C

′) = sclF (f∗(C
′))

for all chains C′ in the cone on πT ⊂ BH1 (π1(T )).

Proof. All that needs to be shown is that πC is infinite dimensional, and to
establish this it suffices to show that the image of BH1 (π1(T )) in BH1 (F ) is infinite
dimensional. Since T is extremal, f∗(π1(T )) is a nontrivial finitely generated free
subgroup of F . By Hall, free groups are virtual retracts (Example 2.107), so one can
find infinitely many elements in f∗(π1(T )) which are independent in BH1 (F ). �

By convexity of the norm, the face πC is well-defined. Note that Corollary 4.86
shows that extremal maps are norm-preserving on a nonempty open subset of BH1
(compare with § 4.1.10).

Remark 4.87. Lemma 4.85 and Corollary 4.86 can also be deduced using quasimorphisms.
Suppose f : T → S is extremal for some chain C. Let φ be an extremal quasimorphism for
C with defect 1. Then f∗φ is an extremal quasimorphism for ∂T with defect 1 because T
is extremal. By Theorem 4.78, f∗φ is equal to rotT on BH1 (π1(T )). But rotT is extremal
on BH1 (π1(T )). Hence for every C′ ∈ πT , we have

sclF (f∗(C
′)) ≤ sclπ1(T )(C

′) = rotT (C′)/2 = φ(f∗(C
′))/2 ≤ sclF (f∗(C

′))

where the first inequality is monotonicity of scl, and the last inequality is Bavard duality.

One might wonder whether every face πC has finite codimension. In fact, this
is not the case. The following example is taken from [45].

Example 4.88. By Bavard duality, the codimension of πC is one less than
the dimension of the space of extremal quasimorphisms for C (mod H1). Hence
to exhibit a rational chain (in fact, an element of [F, F ]) whose projective class
intersects the interior of a face of infinite codimension, it suffices to exhibit a chain
that admits an infinite dimensional space of extremal quasimorphisms.

Let F = F1 ∗ F2 where F1 and F2 are both free of rank at least 2, and let
g ∈ [F1, F1] be nontrivial. Let φ1 ∈ Q(F1) be extremal for g, and let φ2 ∈ Q(F2)
be arbitrary with D(φ2) ≤ D(φ1). By the Hahn–Banach Theorem, there exists
φ ∈ Q(F ) that agrees with φi on Fi, and satisfies D(φ) = D(φ1).
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Example 4.89. Let ρt be a continuous family of (nonconjugate) indiscrete
representations of F2 into PSL(2,R). For a typical family ρt, the image ρt(F2) is
dense in PSL(2,R) for all t, and therefore we can find (many) elements g, h ∈ F2

generating a subgroup Γ so that ρt(Γ) is discrete and purely hyperbolic, and the
axes of ρt(g) and ρt(h) cross, for all t in some nontrivial interval I. Let rott
be the homogeneous quasimorphism on F2 (well-defined up to an element of H1)
associated to the representation ρt. Without loss of generality, we can choose rott
to vary continuously as a function of t on every element of F2. By construction,
rott is an extremal quasimorphism for [g, h], for all t ∈ I. On the other hand, for a
suitable (indiscrete) family of representations ρt, for every nonempty interval I we
can find a subinterval J , a point p ∈ J , and an element f ∈ F2 for which rott(f)
is elliptic for all t ∈ J with t < p, and hyperbolic for all t ∈ J with t > p. The
quasimorphisms rott are constant on f for t > p and nonconstant for t < p, so they
span an infinite dimensional subspace of Q(F2). Hence the codimension of the face
π[g,h] is infinite (compare with Burger–Iozzi [30]).

See [45] for more corollaries and discussion.

4.2.9. Discreteness of linear representations. Theorem 4.78 has applica-
tions to the study of symplectic representations of free and surface groups. For
a basic reference to the theory of symplectic groups and representations, see [31]
(we also return to this subject in more detail in § 5.2.3). We give a new proof of
a relative version of rigidity theorems of [93] and [31], at least in an important
special case. Roughly speaking, Goldman observed (in the case of PSL(2,R)) that
representations of surface groups of maximal Euler class are discrete. Burger–Iozzi–
Wienhard extended this observation to symplectic groups, and characterized such
representations geometrically.

The context is as follows. Let S be a compact oriented surface with bound-
ary, and let ρ : π1(S) → Sp(2n,R) be a symplectic representation for which the
conjugacy classes of boundary elements fix a Lagrangian subspace. This condition
ensures that there is a well-defined relative Euler class (usually called the Maslov
class for n > 1) which we denote eρ ∈ H2(S, ∂S; Z) associated to ρ (compare
with § 4.2.4). The cohomology class eρ is bounded, with norm n/2, and therefore
|eρ([S])| ≤ −nχ(S). A representation is said to be maximal (and eρ is maximal) if
equality is achieved.

The following corollary says that maximal Zariski dense representations are
discrete. We restrict to Zariski dense representations for simplicity; this condition
is not necessary (see [93, 31, 32]).

Corollary 4.90 (Goldman, Burger–Iozzi–Wienhard). Let S be a compact ori-
ented surface with boundary. Let ρ : π1(S)→ Sp(2n,R) be Zariski dense, and sup-
pose that conjugacy classes of boundary elements fix a Lagrangian subspace. If eρ
is maximal, ρ is discrete.

Proof. For the remainder of the proof, denote π1(S) by F and its commutator
subgroup by F ′. Since S has boundary, eρ = [δφ] where φ is in Q(F ), and is unique
up to elements of H1. For each g ∈ F , the value φ(g) (mod Z) is the symplectic
rotation number, and depends only on the image ρ(g). Since eρ is maximal, φ is
extremal for ∂S ∈ BH1 (F ). Hence, by Theorem 4.78, it follows that the symplec-
tic rotation number is zero on every g ∈ F ′; in particular, ρ(F ′) is not dense in
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Sp(2n,R). Since Sp(2n,R) is simple, every Zariski dense subgroup is either dis-
crete or dense (in the ordinary sense). If ρ(F ) is dense, then the closure of ρ(F ′) is
normal in Sp(2n,R). But Sp(2n,R) is simple, and the closure of ρ(F ′) is a proper
subgroup; hence ρ(F ) is discrete. �

Remark 4.91. The condition that boundary element fix Lagrangian subspaces is only
included so that the Corollary can be phrased in terms of an integral Euler (Maslov)
class. If ρ : π1(S)→ Sp(2n,R) is any Zariski dense representation for which the pullback
of the symplectic rotation quasimorphism (i.e. the quasimorphism φ above) is extremal
for ∂S, then ∂S necessarily fixes a Lagrangian subspace.

4.2.10. Character Varieties. Any representation of a free group ρ : F →
PSL(2,R) lifts to S̃L(2,R) and defines an associated homogeneous quasimorphism
rot : F → R unique up to a homeomorphism. Given a ∈ [F, F ] one can ask what
values this function can take as ρ varies over all homomorphisms.

We restrict attention to the case that F is free of rank 2, generated by elements
a, b. The function rot only depends on the conjugacy class of ρ, and therefore we
consider representations up to conjugacy. In fact, since ρ can typically be recovered
just from the traces of elements, it makes sense to consider the character variety,
consisting of the set of functions on F which are traces of some representation.
For simplicity, it makes sense to study the SL(2,R) character variety instead, since
traces are well defined there.

Definition 4.92. Let G be a finitely generated group. The character variety
of G, denoted X(G), is the set of functions χ : G→ R for which χ = tr(ρ) for some
representation ρ : G→ SL(2,R).

Characters with representations in a fixed algebraic group satisfy many non-
trivial (polynomial) relations, and a character is determined by its values on finitely
many elements. This gives X(G) the structure of a (real) algebraic variety. See [60]
for an introduction to SL character varieties, and their applications to 3-manifolds.

Example 4.93. Let G = F2, the free group on generators a, b. Since SL(2,R)
is 3-dimensional, the space of SL(2,R) representations of F2 is 6 dimensional, and
the space of characters is 3-dimensional. If χ is a character, the co-ordinates
(x, y, z) = (χ(a), χ(b), χ(ab)) defines a map from X(F2) to R3. In fact, this map is
an isomorphism onto the subset of R3 consisting of the union of the complement of
the open cube (−2, 2)3 together with the subset of triples inside the cube satisfying

x2 + y2 + z2 − xyz ≥ 4

Theorem 4.94. Let g ∈ [F2, F2]. Then the set of values of rot(g) as one
varies over all SL(2,R) representations of F2 is a closed, connected interval, whose
endpoints have the property that their image under cos(2π·) is algebraic.

Proof. Example 4.93 shows how to identify X(F2) with a semi-algebraic sub-
set of R3. For every g ∈ F2, the value of χ(g) is an integral polynomial in the values
of χ(a), χ(b), χ(ab).

The function χ(g) : X(G) → R is therefore an integral polynomial on R3.
An extremal value is a zero of a system of integral polynomial equations, and is
therefore realized at an algebraic point. Since 2 cos(2π rot(g)) = χ(g), the result
follows. �
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Remark 4.95. A similar theorem can be proved with a similar proof with Sp(2n,R) or
SO0(n, 2) in place of SL(2,R)

4.3. Diagrams and small cancellation theory

The proof of Proposition 4.36 shows that in a fixed free group, every extremal
surface can be built up from pieces (polygons and rectangles) of bounded complex-
ity. A representation of a surface (with prescribed boundary) as a union of simple
pieces drawn from some finite set is sometimes called a diagram. Diagrams can be
represented graphically, and can be combined, composed and manipulated accord-
ing to certain sets of rules. They have psychological value, as a way to represent
algebraic information in geometric terms (e.g. as in Figure 4.9); and computational
value. There are many different conventions for diagrams, depending on function
and context.

Example 4.96. The conjugacy class w = [a2, b2][a, b] has scl = 1 in F2. Let
S be a hyperbolic once-punctured torus with basis a, b, and let γ be the geodesic
associated to w. Then two copies of γ bound an immersed genus 2 surface T
with two boundary components. Figure 4.10 depicts the surface T as a diagram,
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Figure 4.10. The surface T is obtained by thickening a graph
with a cyclic ordering at the vertices. Edges of ∂T on opposite
sides of each edge of the underlying graph are labeled by inverse
elements of F2. Each boundary component of ∂T is labeled by a
cyclic conjugate of w.

obtained by thickening a graph whose vertices correspond to polygons, and edges
to rectangles. The two copies of γ are indicated by thinner lines.

Remark 4.97. Any extremal surface obtained from the proof of Theorem 4.24 retracts
in an obvious way to a graph with one edge for each rectangle, and one vertex for each
polygon. To recover the surface (and therefore its boundary) from the graph, we need to
specify a cyclic ordering of the edges at each vertex. A graph together with the choice of
a cyclic ordering on the edges at each vertex is sometimes called a ribbon graph or a fat
graph. Such objects appear in the study of dynamical systems, Hopf algebras, statistical
mechanics, combinatorics, and many other fields; see [17].

4.3.1. Diagrams. Diagrams (sometimes called van Kampen diagrams) were
introduced by van Kampen in [200].

Let G be a group given by a presentation G = 〈X | R〉. Let F be the free group
on X , and N the normal closure of R in X , so that G = F/N . The set R is said to
have been symmetrized if all elements are cyclically reduced, and R is closed under
taking cyclic permutations and inverses.

Definition 4.98. Let w ∈ F be cyclically reduced. A diagram is a finite
connected planar graph in which directed edges are labeled by elements of F , the
boundary of each interior region is labeled by an element of R, and the boundary
of the exterior region is labeled by a cyclic conjugate of w.
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Since the graph associated to a diagram is assumed to be connected, interior
regions are all homeomorphic to open disks. The boundary of a region is allowed
to bump up against itself.

Note that the boundary label of a region depends on a choice of basepoint and
a choice of orientation, or else the result differs by cyclic permutation or inverse.
However, since R is symmetrized, membership inR is not affected by this ambiguity.

Remark 4.99. A finite connected planar graph together with the regions it bounds is a
simply-connected planar 2-complex. By abuse of notation we sometimes think of this
2-complex as the diagram.

If we assume elements of R are cyclically reduced, a map has no 1-valent ver-
tices. Furthermore, if e1, e2 share a 2-valent vertex in common, we can replace
e1 ∪ e2 by e1e2. Therefore in the sequel we assume every vertex is at least 3-valent.

Lemma 4.100. An element w ∈ F admits a diagram if and only if it is in N .

Proof. There is a tautological cellular map from a diagram (thought of as a
2-complex) to a 2-complex associated to the presentation of G. Since the underlying
2-complex of a diagram is simply-connected, the boundary of the exterior region
maps to a homotopically trivial loop. This exhibits w as an element of N .

Conversely, express w as a product of conjugates of elements of R. Denote
this expression by a bunch of balloons in the plane tied by strings to a common
basepoint, where each balloon is an element of R, and the string is the conjugating
element. Then cancel adjacent edges whenever possible. The result is a finite
connected planar graph whose boundary is a cyclically reduced word which is equal
in F to w (after choosing a suitable basepoint and orientation), and therefore must
be equal to w by uniqueness of reduced representatives in free groups. �

Definition 4.101. A diagram is reduced if no two adjacent regions have bound-
aries which represent inverse elements of R, where the basepoint is taken to be some
common vertex, and the orientations on the boundaries disagree (when compared
with some orientation inherited from the plane).

Any diagram may be replaced by a reduced one, by collapsing nonreduced pairs
of adjacent regions, thereby reducing the number of regions in the diagram until
the process terminates.

Definition 4.102. A word b ∈ F is called a piece (relative to R) if there are
distinct relations ba1, ba2 ∈ R.

An edge of a diagram between adjacent regions is a piece.

4.3.2. Small cancellation theory. In full generality, the theory of van Kam-
pen diagrams is essentially combinatorial. However, when applied to groups with
presentations that obey certain conditions (of a geometric nature), it makes contact
with the theory of hyperbolic groups, negative curvature, regular languages, and
so on. The geometric theory of diagrams arising from groups with presentations
satisfying such conditions is called small cancellation theory.

Small cancellation theory has its origins in the work of Dehn [63], in which he
posed the word and conjugacy problems for finitely presented groups, and solved
these problems for fundamental groups of closed orientable 2-manifolds.

Dehn’s insight was that surface groups have presentations with a single relator
r with the property that for any cyclic conjugate s of r or r−1 with s 6= r−1, the
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product sr has very little cancellation. Thus if a word in a surface group is trivial,
it can be simplified immediately by finding a big subword consisting of more than
half of some s.

It was not until the work of Lyndon [138] and Weinbaum [203] that the impor-
tance of geometry in Dehn’s work was properly appreciated, and small cancellation
theory began to be systematically applied to combinatorial group theory.

The hypotheses of small cancellation theory are conditions which a given sym-
metrized presentation might satisfy. Some of these conditions are as follows:

C′(λ): every piece has length less than λ times the length of a relation it appears
in.

C(p): no relation is a product of fewer than p pieces. Equivalently, every region
in a reduced diagram with no edges in common with the exterior region
has at least p sides.

T (q): any interior vertex in a reduced diagram has at least q incident edges.

Note that C′(λ) implies C(p) for λp < 1.
Let D be a reduced diagram for an element w ∈ G. We can make D into a

metric space by choosing a polygonal structure on each region and gluing these
polygons together. The small cancellation conditions and the Gauss–Bonnet Theo-
rem give upper bounds on the (distributional) curvature in D for a suitable choice
of structure.

Example 4.103. Condition C(6) implies that every polygon has at least 6 sides.
Choose a metric for which each region is a constant curvature regular polygon with
side lengths 1 and all angles 2π/3. If a region has 6 sides, it will be a Euclidean
hexagon with this metric. If it has more than 6 sides, it will be hyperbolic. At every
3-valent vertex these polygons fit together. At every vertex of valence more than
3, there is an “atom” of negative curvature. In particular, D with such a metric is
locally non-positively curved, at least in the interior of D.

Similarly, condition C(7) lets one construct a metric on D which is strictly
negatively curved everywhere.

Remark 4.104. The local curvature conditions satisfied by D in Example 4.103 are some-
times expressed in terms of a (local) CAT(κ) condition, where κ = 0 under the hypothesis
C(6) (at least in the interior of D), and κ = −1 under the hypothesis C(7). See [24] for
a definition, and a discussion of the relationship between CAT(κ) and (δ-)hyperbolicity.

4.3.3. Diagrams on surfaces. Schupp [184] generalized small cancellation
theory to diagrams on closed surfaces.

Definition 4.105. Let Φ be a free group of countably infinite rank. A quadratic
word in Φ is a word w in which every generator which occurs in w occurs exactly
twice (possibly with opposite signs).

If we write this word on the boundary of a polygon, then after gluing edges in
pairs we get a closed (orientable or non-orientable) surface. After composing with
a suitable automorphism of Φ, the word w can be put in a canonical form

w = [a1, b1] · · · [ag, bg]
if the resulting surface is orientable, or

w = a2
1 · · · a2

g
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otherwise, where each ai, bi is a generator in Φ.

Now let F be a free group on a generating set X , and let G be a quotient of
F , given by some presentation G = 〈X | R〉. A solution of the equation w = 1 in
G is a collection of words αi, βi in F for which the image of w under composition
Φ→ F → G sending each ai → αi and bi → βi, is trivial in G.

We restrict attention in what follows only to quadratic words that represent
orientable surfaces. Let w be a quadratic word in Φ, and v a word in the generators
of F representing 1 in G. Let D be a (planar) diagram whose boundary is v,
corresponding to an expression of v as a product of conjugates of relations in R.
After gluing up the boundary of D compatibly with w, we obtain a diagram on a
closed orientable surface. This new diagram may not be reduced, because pairs of
canceling regions which were not adjacent in D may now be adjacent in S. We can
try to cancel regions which become adjacent in S as we did before; the result might
cause the surface to undergo a compression in an essential simple closed curve, and
we will obtain a finite set of simpler surfaces. It is possible that after finitely many
such reductions, the entire surface is compressed away. This happens, for example,
when the word v was already trivial in F . Schupp obtains a kind of converse:

Theorem 4.106 (Schupp [184], Thm. 1). Let w be an orientable quadratic
word in Φ, and let v be a solution to w = 1 in G = 〈X | R〉. If v is nontrivial in
F = 〈X〉, then there is a reduced diagram on an orientable surface defined by some
endomorphic image of w.

If the presentation of G satisfies suitable small cancellation conditions, one
obtains an upper bound on the Euler characteristic of any surface containing a
reduced diagram.

Example 4.107 (Culler [59]). Let F be free on a set X , and let g ∈ F be
nontrivial and cyclically reduced. Let n be a positive integer and consider the
group Gn with presentation Gn = 〈X | gn〉.

Suppose some cyclic conjugate of g−1 shares a common initial word v of g of
length more than 1/2 length(g). Write g = vw and g−1 = w−1v−1. Since v is
an initial word of some cyclic conjugate of g−1, it is also a subword of g−2. Since
length(v) > length(w), there must be a nontrivial overlap of v and v−1. Without
loss of generality, v = v1v2 and v−1 = v2v3. By comparing lengths, v2 = v−1

2 which
cannot happen in a free group.

Now, exhibit gn as a product of commutators gn = [b1, c1] · · · [bm, cm] in F .
Let v (not the same v as above) be the (typically non-reduced) word in F obtained
by concatenating words representing the bi, ci and their inverses. Notice that v is
the image of an orientable quadratic word w in Φ. Schupp shows how to obtain
a reduced surface diagram as follows. First start with a single planar region with
boundary labeled by v. The word v is typically not cyclically reduced, so the
boundary of the region can be inductively “folded” until the result is a cactus; i.e. a
single innermost disk region with boundary labeled by gn, and a forest attached to
its outside boundary, so that the outer boundary is labeled by v. This cactus may
be glued up according to the quadratic structure of w. The result is a “cactoid”,
i.e. a finite union of closed oriented surfaces and graphs. Throwing away the graph
pieces, one obtains a surface of genus at most m, with a single tile whose boundary
is labeled by gn (for details, see [184], especially § 3).
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Since the surface is oriented, the only pieces that appear correspond to common
subwords in cyclic conjugates of gn and g−n. By the argument above, each such
piece has length at most half of the length of g. Consequently we obtain a surface,
and a tessellation on it containing one disk region with at least 2n edges, and
with vertices each of valence at least 3. If we denote the number of faces, edges,
vertices in the tessellation by f, e, v then f = 1, e ≥ n, v ≤ 2e/3. In other words,
χ(S) ≤ 1 − 2n/3. On the other hand, the genus of S is at most m which can be
taken to be equal to cl(gn). Taking n→∞, we obtain an estimate scl(g) ≥ 1/6.

Remark 4.108. The methods of § 4.1, especially the proof of Theorem 4.24, gives another
construction of a reduced surface. With notation as in the proof of Theorem 4.24, let
f : S, ∂S → H,γ be a surface with one boundary component wrapping n times around
γ, where γ is in the free homotopy class associated to a cyclically reduced word g. After
compression and homotopy, the surface S is obtained by gluing rectangles and polygons.
A decomposition of S as a union of rectangles and polygons determines a graph Γ ⊂ S to
which S deformation retracts, with one vertex for every polygon, and one edge for every
rectangle (compare with Figure 4.10). One may obtain a reduced oriented surface diagram
as a union P ∪ Γ where P is a disk whose boundary is labeled gn.

Notice that one should not perform boundary compressions, but only compressions
and homotopy. The reason is that boundary compressions might change the number of
boundary components of S (though not the total degree with which they map to γ). So
one can not apply the full power of the arguments of § 4.1 and assume that there is an a
priori bound on the valence of the vertices (equivalent to a bound on the complexity of
polygon types).

4.3.4. Right orderability. The lower bounds from the previous section can
be improved by using orderability properties of free groups and their one-relator
quotients. In fact a sharp lower bound on scl in free groups can be obtained along
these lines, by the method of Duncan–Howie [67].

The proof depends on a well-known theorem of Brodskii:

Theorem 4.109 (Brodskii [26]). Let F be a free group, and let g be a primitive
element of [F, F ]. Then the one-relator group G := 〈F | g〉 is right orderable.

It also makes use of a Lemma of Howie:

Lemma 4.110 (Howie [114] Cor. 3.4). Let g ∈ F be primitive and cyclically
reduced. Then no proper subword h of g represents the identity in G := 〈F | g〉.

We are now in a position to obtain a sharp lower bound on scl in free groups.
Duncan–Howie use the language of reduced pictures, which are very similar to
Schupp’s reduced diagrams (see § 4.3.3). The main theorem of Duncan–Howie,
i.e. Theorem 3.3 [67], is an inequality about the combinatorics of such pictures,
which implies the desired estimate on scl.

The argument given below is essentially a paraphrase of much of the material
on pp. 229–233 of [67], with a few simplifications appropriate for our context.

Theorem 4.111 (Duncan–Howie [67], Thm 3.3). Let F be a free group. Then
scl ≥ 1/2 for every nontrivial element.

Proof. Free groups of every countable rank embed in the free group of rank
2, so by monotonicity of scl it suffices to prove the theorem in rank 2. Fix notation
F = 〈a, b〉. Let g be an element of [F, F ]. Since scl is characteristic, without loss
of generality we take g to be cyclically reduced. Furthermore, we may assume that
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g is not a proper power, since scl is multiplicative under powers. Since g ∈ [F, F ],
the word length of g is at least 4, since both a and a−1 must appear in g with equal
multiplicity, and similarly for b and b−1.

Let G = 〈F | g〉. Fix an integer n, and let Gn = 〈F | gn〉. There is a natural
surjective homomorphism Gn → G. Exhibit gn as a product of commutators in F .
As in Example 4.107 (also see Remark 4.108) we can find a reduced diagram on a
surface S with genus(S) ≤ cl(gn), containing a single tile R. Let P be a polygonal
disk mapping surjectively and cellularly onto R by ϕ : P → R. We think of S as
being obtained from P by gluing up edges in its boundary. The boundary of P is
labeled by gn.

Since g is cyclically reduced and primitive, there is a natural partition of ∂P
into n copies of g. We label the vertices of ∂P by the image of the corresponding
subword of g in G. In other words, if |g| = m, and if id = g0, g1, · · · , gm−1 are the
proper prefixes of g, then each vertex of ∂P is labeled by an element ḡi which is the
image of gi in G, where consecutive vertices are labeled ḡi, ḡi+1 with indices taken
mod m. By Lemma 4.110, the ḡi are all distinct for different values of i. Note that
what is labeled is a vertex of P ; each vertex in R is in the image of at least two
vertices of P , and the labels are typically different.

Let σ be a piece in S, and let σ± be the two preimages in ∂P . The map ϕ
gives an orientation-reversing identification of σ+ and σ−. If there is a vertex v ∈ σ
for which the preimages v+, v− in σ± have the same label ḡi, there is an adjacent
vertex w ∈ σ for which the preimages w+, w− get the labels ḡi+1 and ḡi−1 (labels
taken mod m). But this means ḡ−1

i ḡi+1 = ḡ−1
i ḡi−1 and therefore ḡi−1 = ḡi+1. But

|g| ≥ 4 so this contradicts Lemma 4.110.
By Theorem 4.109, the group G is right orderable. Fix a right ordering <. If

σ is a piece in S, we have seen that the labels of corresponding vertices in σ+ and
σ− are all different. Let u and v be adjacent in σ, and u±, v± the corresponding
adjacent pairs of vertices in σ±. Suppose u+ has the label ḡi and u− has ḡj . Then
(without loss of generality), v+ has the label ḡi+1 and v− has ḡj−1. Moreover,

x := ḡ−1
i ḡi+1 = ḡ−1

j ḡj−1

by the defining property of (surface) diagrams. Since G is right orderable,

ḡi > ḡj if and only if ḡi+1 = ḡix > ḡjx = ḡj−1

in other words, either the labels on vertices of σ+ are all (unambiguously) greater
than the labels on the corresponding vertices of σ−, or they are all less than the
labels on the corresponding vertices of σ−. We may therefore unambiguously define
a co-orientation on σ, pointing from the side corresponding to the edge in P with
bigger labels, to the side corresponding to the edge in P with smaller labels.

Now, suppose v is a vertex at which at least three pieces meet. There are some
finite collection vi of preimages of v in ∂P . There is a connected graph Γv, whose
vertices are the vi, and whose edges correspond to pairs of points in the boundary
of edges in ∂P that map to the same piece in S. Topologically, Γv is homeomorphic
to a circle, which can be thought of as the link of the vertex v. The co-orientation
on pieces determines an orientation on Γv. Since this orientation is compatible with
the ordering on the labels of the vi, there is no oriented cycle in Γv. If vi is neither
a source nor a sink, say that it is a cusp. Notice that for every vertex v, the graph
Γv contains at least one source and one sink, so there are at least two vi that are
not cusps.
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On the other hand, if g+ and g− are the highest and lowest labels which appear
anywhere, then there are n vertices of ∂P labeled g+ and n vertices labeled g−,
appearing in alternating order. The co-orientation on ∂P must change at least once
between consecutive copies of g+ and g−, and therefore ∂P has at least 2n cusps.

Give P the structure of an ideal polygon, with an ideal vertex at each cusp.
At every vertex v of the diagram, at least two of the preimages vi are not cusps. If
exactly two vi are not cusps, then v is a smooth point. Otherwise, v has an atom of
negative curvature of weight (q − 2)π, where q is the number of vi in the preimage
of v which are not cusps. Since P has at least 2n ideal vertices, it has area at least
(2n− 2)π. Atoms of negative curvature reduce the area of S, so by Gauss–Bonnet,
area(P ) = area(S) ≤ −2πχ(S). Hence

(2n− 2)π ≤ area(P ) ≤ −2πχ(S)

where χ(S) = 2− 2 · genus(S), and genus(S) ≤ cl(gn).
Rearranging this and taking the limit as n→∞ gives scl(g) ≥ 1/2. �

Remark 4.112. Duncan–Howie state and prove their theorem in the more general context
of an element g in a free product A ∗ B of locally indicable groups. The analogues of
Theorem 4.109 and Lemma 4.110 are true for products of locally indicable groups, with
essentially the same proofs.

Also compare with the discussion in § 2.7.5.

Corollary 4.113. Let S be an orientable surface. Then scl ≥ 1/2 for every
nontrivial element of π1(S).

Proof. If S is not closed, π1(S) is free, so this follows from Theorem 4.111.
If S is closed of genus 0 or 1, every element is either trivial or essential in H1,
so scl is infinite for nontrivial elements. Closed surface groups of genus at least
2 are residually free; i.e. for any a ∈ S there is a homomorphism to a free group
ϕa : π1(S)→ F for which ϕa(a) is nonzero (see e.g [139] for a proof). Since scl is
monotone under homomorphisms, the corollary follows. �

4.3.5. An example. As explained in Remark 4.108, the construction of ex-
tremal surfaces from branched surfaces in § 4.1 can be reformulated in the language
of surface diagrams. Let w be a cyclically reduced element of a free group F , and
let S be a surface bounding some multiple of w, built from rectangles and poly-
gons. Let T be the surface obtained from S by gluing in a disk to each boundary
component. Then there is an associated diagram on T , whose edges are strings of
consecutive rectangles and bigons in S, whose vertices are polygons in S with at
least 3 ordinary arcs, and whose cells have boundaries which are labeled by finite
powers of w.

We give an explicit construction of extremal surfaces for words of the form
[a, b][a, b−m] for positive integers m. As asserted in Example 4.39, there is an
equality

scl([a, b][a, b−m]) =
2m− 3

2m− 2
for m ≥ 2. An inequality in one direction can be established by an explicit
construction. In fact, for each m ≥ 2 we will construct a genus m − 1 surface
with 2m − 2 boundary components, each of which wraps exactly once around
[a, b][a, b−m]. Hence there is a surface S with −χ− = 4m− 6 and n(S) = 2m− 2,
so scl([a, b][a, b−m]) ≤ (2m− 3)/(2m− 2).
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We begin by defining two tiles. The X tile has bm−1abA on the top, Bm on the
bottom reading from left to right, and bA on the left, Ba on the right reading from
top to bottom. The Y tile has bm on the top, Bm−1aBA on the bottom reading
from left to right, and AB on the left, ab on the right reading from top to bottom.
Note the X tile has m + 2 letters on the top edge and m on the bottom edge,
while the Y tile has m letters on the top edge, and m+ 2 on the bottom edge. See
Figure 4.11.

b b · · · b a b A

B B B · · ·B B B

B

a

b

A

B B · · · B a B A

b b b · · · b b b a

b

A

B

Figure 4.11. The tiles X and Y

Reading clockwise around each tile is a cyclic copy of the word [a, b][a, b−m].
Tiles can be glued by gluing segments of their boundaries with opposite labels
(where a and A are considered opposite labels, and similarly b and B). The left
side of an X tile glues to the right side, and similarly the left side of a Y tile glues
to the right side. Moreover, the bottom of an X tile glues to the top of a Y tile.
Take m− 1 copies of the X tile XXXX · · ·X and glue left to right sides cyclically
to make an annulus. Take a further m − 1 copies of the Y tile Y Y Y Y · · ·Y and
glue left to right sides cyclically to make another annulus. Then glue the bottom
of the X annulus to the top of the Y annulus to make a thicker annulus. The
resulting labels, reading clockwise in each case, are (bm−1abA)m−1 on the top and
(Bm−1ABa)m−1 on the bottom. We glue these two components together in stages.
At each stage, there are two boundary components, and we proceed to the next
stage by gluing two disjoint segments in one component to disjoint segments in the
other component with opposite labels. For clarity, let n = m−1 so that at the first
stage the top is labeled (bnabA)n and the bottom is labeled (BnABa)n.

The result of gluing two segments in the top component to two segments in the
bottom component has the effect of gluing on a four-times punctured sphere to the
surface built so far. We indicate which segments are glued up at each step by using
braces. The first two pairs of segments to be glued are bn ↔ Bn and bAb↔ BaB:

(bnabA)n−2 bn︸︷︷︸ a
︷︸︸︷
bAb bn−1abA and (BnABa)n−2 Bn︸︷︷︸A

︷ ︸︸ ︷
BaB Bn−1ABa

After gluing, this produces a new surface with two boundary components whose
labels are

(bnabA)n−2Abn−1abA and (BnABa)n−2aBn−1ABa

The next two pairs of segments to be glued are:

(bnabA)n−3 bn︸︷︷︸ a
︷ ︸︸ ︷
bAAb bn−2abA and (BnABa)n−3 Bn︸︷︷︸A

︷ ︸︸ ︷
BaaB Bn−2ABa
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which, after gluing, produces a new surface with two boundary components whose
labels are

(bnabA)n−3Abn−2abA and (BnABa)n−3aBn−2ABa

Proceed inductively, gluing up a bn and a bAAb in one boundary component to a
Bn and a BaaB in the other boundary component at each stage, until we are left
with two boundary components labeled AbabA and aBABa which can be glued up
completely. The final result is obtained from an annulus by attaching n−1 = m−2
pairs of 1-handles, and then gluing up a pair of circles at the end. The genus of the
surface is therefore m − 1. Moreover, it is tiled by 2m − 2 tiles, half of which are
X tiles and half are Y tiles.

Example 4.114. Let h denote the following linear combination of (small)
counting quasimorphisms:

h = habAB + haBBB + hAbbb +
1

2
(hbABa + hABaB

+ hBaBB + hBBBA + hBBAb + hBAbb + hbbba + hbbab + hbabA)

A (tedious) computation shows that D(h) = 7/2. It follows that D(h) ≤ 7 for the
homogenization h. Moreover, h([a, b][a, b−m]) = 15/2 for all m ≥ 3, so by Bavard
duality we get a lower bound

scl([a, b][a, b−m]) ≥ 15/28 = 0.535714 . . .

We do not know whether a sharp lower bound can be achieved using counting
quasimorphisms alone.

4.3.6. van Kampen soup, and thermodynamics of DNA. There is a
curious diagrammatic relationship between scl and (a simplified model of) certain
thermodynamic quantities associated to DNA (note that there is no suggestion that
this model is physically realistic).

Deoxiribonucleic acid (DNA) is a nucleic acid that contains the genetic blue-
print for all known living organisms. A molecule of DNA is a long polymer strand
of simple units called nucleotides. The nucleotides in DNA (usually) come in four
kinds, known as Adenine, Thymine, Guanine, and Cytosine (or A, T, G, C for
short). Hence a molecule of DNA can be thought of as a (very) long string in this
4-letter alphabet, typically of length ∼ 108.

C T G T G A C C A G A C T T

G A C A C T G G T C T G A A

A
A
G

T
T
C

Figure 4.12. A 3-valent junction; figure adapted from [186]

These long strands tend to come in tightly bound oppositely aligned pairs,
which match up nucleotides on the two molecules in complementary base pairs.
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Each kind of nucleotide pairs with only one complementary kind: A with T, and
C with G. The bonds joining base pairs are not covalent, and can be broken and
rejoined easily.

Sometimes, “junctions” of three or more strands will form; see Figure 4.12.
Three-valent junctions are the most common, but four-valent “Holliday junctions”
can also form. There is an energy cost to forming such junctions, which in an
idealization can be taken to be of order (valence− 2), and is therefore proportional
to −χ. A reference for this material is [186].

Let F = 〈a, b〉 be the free group on two generators. A word in F can be
“encoded” as a molecule of DNA by the encoding a → T, a−1 → A, b → C,
and b−1 → G. If w is a cyclically reduced word in F , we can imagine preparing
a “soup” of DNA containing many copies of the strand corresponding to ẇ =
· · ·www · · · . In thermodynamic equilibrium, the partition function has the form
Z =

∑
i e
−Ei/kBT where kB is Boltzmann’s constant, T is temperature, and Ei is

the energy of a configuration. At low temperature, minimal energy configurations
tend to dominate; so scl(w) can be computed from the energy per unit volume of a
van Kampen soup at low temperature.
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