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Part 2. Full G,-subfields over algebraic number fields.

The readers are suggested to recall the definitions of full G,-subfield (§4) and quasi-
irreducibility (§16) of a G,-field over C. Throughout the following, an algebraic number
field always means a finite algebraic extension of the field of rational numbers Q.

Main results.

- §18. Our main purpose in Part 2 of this chapter is to prove the following two theo-
rems, Theorem 4 and Theorem 5. Later, we shall give some supplementary results (see
§32 ~ §36).

THEOREM 4. Every G -field over C contains a full G,-subfield over an algebraic num-
ber field

If we impose quasi-irreducibility condition on a G,-field over C, then we get an es-
sentially stronger result, as follows.

THEOREM 5. Every quasi-irreducible G,-field L over C contains a unique full G,-
subfield Ly, over an algebraic number field k, satisfying the following properties; namely,
if k is any subfield of C, then there is a full G,-subfield L over k if and only if k contains
ko, and moreover if k is such a field, then Ly is unique and is given by Ly = Ly, - k.

In short, every quasi-irreducible G,-field over C contains a smallest full G,-subfield
over an algebraic number field, and all other full G,-subfields are its constant field ex-
tensions. This will be referred to as the existence and essential uniqueness of a full G-
subfield over an algebraic number field of a quasi-irreducible G,-field over C. Some
variations of Theorem 5 will be given in §32, §33.

Although Theorem 5 is essentially stronger (and hence more noteworthy) than The-
orem 4, it is almost a formal consequence of Theorem 4. Thus, our first task is to show
this.

Reducing Theorem 5 to Theorem 4.

§19. In general, if L O K, K; are overfields of a field & such that L = K; K, and that
K, K; are linearly disjoint over £, and if oy, o, are automorphisms of Kj, K; respectively
such that 01|k = o[k, then there is a unique automorphism of L whose restrictions to
K, K; coincide with oy, o, respectively. This automorphism of L will be denoted by
01 ® 0. The identity automorphism of a field K will be denoted by 1.
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LemMA 2. Let L be a G,-field over C, and let L be a full G,-subfield of L over a field k
(c C). Then Ly is the fixed field of the group of all automorphisms of L of the form 1;, ® o
(o € Au;, C).

Proor. Put G = {1, ® olo € Aut; C}, and let L’ be the
fixed field of G. Thenitisclearthat L’ > Lyand L'nC =k. » —
Moreover, since Ly is G,-invariant, elements g, of G, acting
on L are of the form gy, ® 1¢. Therefore, elements of /
G commute with all elements of G,. Therefore, L' is G,- [
invariant. Hence by Proposition 2, L’ and C are linearly
disjoint over k. Therefore, L’ and L; - C must be linearly
disjoint over L;. But Ly - C = L. Thereforewe get L’ = j — ¢
Ly. a

Let L be a G,-field over C, and let o be any automorphism of C. An automorphism
o of L will be called a G,-extension of o if o|c = o and if o commutes with the actions
of all elements of G,. We shall say that o has a G,-extension when such ¢ exists. In this
case, all G,-extensions of o~ are given by 7 - z with z € 3, where J is the centralizer of G,
in Autc L. Recall that 3 is always finite and 3 = {1} if and only if L is quasi-irreducible
(Corollary 3 of Theorem 3).

Now, let L be quasi-irreducible. Then if o € AutC has a G,-extension o, it is the
unique Gy-extension of o-; hence o~ always has a unique meaning. By this it is clear that
if o, T € Aut C have G,-extensions, then o7 and o' also have G,-extensions given by

L=Lk'C

k

41) Gr=o7, ol=g

Now let us look at Lemma 2 again, assuming now that L is quasi-irreducible. Then we
see that for each o € Aut; C, 1;, ® o gives the unique G,-extension of o. In fact, as has
been shown before, 1;, ® o commutes with all elements of G,. Put, therefore, o = 1, ® o
for each o € Aut, C. Then by this lemma, L; is the fixed field of the group of all & with
o € Aut; C. But since the group of o depends only on k and does not depend on L;, we
conclude that L; is uniquely determined by k. We have therefore proved:

ProposITION 5. Let L be a quasi-irreducible G,-field over C, and let k be a subfield of
C. If L contains a full G,-subfield L, over k, then it is unique; moreover, every o € Aut, C
has a unique G,-extension o, and Ly is the fixed field of the group of all o with o € Aut; C.

§20. Now we shall prove that Theorem 5 is reduced to Theorem 4. Let L be a
quasi-irreducible G,-field over C, and assume that L contains a full G,-subfield L; over
an algebraic number field k. Then every element of Aut; C has a unique G,-extension.
Therefore, if we denote by H the group ® of all & € AutC which have G,-extensions
o, we have AutC > H > Aut;C. But [k: Q] is finite, and hence H is of the form
H = Aut;, C with some intermediate field ky; Q C ko C k. Put

(42) gko = {El(f € Autko C),
9See (41).
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and let L, be the fixed field of the group G;,. We shall prove that Ly, is the desired
smallest full G,-subfield of L over k. First, it is clear that L, is G,-invariant and that
Ly, N C = ky. Secondly, Gy, contains

G = {0lo € Aut, C}, and (Gy, : Gi) = [k : ko] < 0.
Moreover, Ly is the fixed field of G, (Proposition 5). Therefore, if we put

d
G =) 56k (d=(Gn: G =Ik:k)),
i=1

then for every x € L, the elementary symmetric functions of o(x),-- - ,04(x) are
contained in L. Therefore we get [Ly(x): Ly,] < d for all x € L, and hence
[Ly : Ly,] < d. But by Proposition 2, Ly and C are linearly disjoint over ko; hence
[Li, -k : Ly,] = [k: k] = d. Therefore, Ly, - k = Ly, and hence Ly, - C = L. There-
fore, Ly, is a full G,-subfield of L over k,. Now let L}, be an arbitrary full G,-subfield of L
over a field ¥’ ¢ C. Then by Proposition 5, every element of Auty C has a G,-extension,
and hence k' > k. Moreover, by the same proposition, L; is unique, and hence it must
coincide with Ly, - k’. Conversely, if £’ is a subfield of C containing ko, then L, - k’ gives
the (unique) full G,-subfield of L over k’. Therefore, L, has all the properties stated in
Theorem 5. That such L, is unique is obvious. So, Theorem 5 is reduced to Theorem 4.

RemARk . Consider the group of all automorphisms of L that commute with the actions
of all elements of G,. Then since C is the fixed field of G,, such automorphisms leave C
invariant (as a whole). Therefore, by the definitions of ky and Gy,, this group coincides
with Gy,. Therefore, Ly, is the fixed field of the centralizer of G, in Aut L. (The centralizer
of G, in Autc L is trivial because of the quasi-irreducibility assumption on L.)

Preliminaries for the proof of Theorem 4.

§21. Before describing the method for the proof of Theorem 4, we need some def-
initions. Let L be a G,-field over C. Let Vy,---, ¥V, be any finite set of open compact
subgroups of G, which generate G,. Put ¥, = N, ¥}, and let L; (0 < i < n) be the fixed
field of V; in L. Then it is clear that L, contains L,,--- ,L, and is generated by them.
Moreover,

(#) L is the smallest algebraic extension of L, that is normal over all

Li(l1<i<n).
In fact, if M is any algebraic extension of L, with this property, then M N L also satisfies
this property. But since L > M N L > Ly, M n L corresponds to a compact subgroup A of
Vy. Since M N L/L; are normal, A is a normal subgroup of V; foralli. But V; (0 <i<n)
generate G,. Therefore, A is a normal subgroup of G,. But A is compact and G, is
simple. Hence A = (1}, so that M N L = L, hence M > L. Therefore, L is characterized
as the smallest algebraic extension of L, which is normal over all L; (0 < i < n). This
characterization will be used later.
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Let V; and L; (0 < i < n) be as above, and let k be a subﬁeld of C. We shall call

a system {L{|0 < i < n} of subfields of L, a k-form of {L;j0 < i < n} if the following

conditions are satisfied:
L

(i)L;-C:L,-,L;ﬁC:k(OSiSn) L' /7Lo\
@) Lo L (1<i<n) / "\

(iii) L and C are linearly disjoint over . /’T':/T/ /
| - \ /

/

§22. Now our method for the proof of Theorem 4 is as follows. First, we shall prove
that if & is a subfield of C such that {L;/0 < i < n} has a k-form, then L contains a full
G,-subfield over a finite extension of k. The method is algebraic, and is applicable to
G,-fields over any constant field. Secondly, we put

n=2, V= PSLZ(OP)’ V= w—lVlw where w = (?f (1))

and r is a prime element of k,, and prove that the corresponding {L;/0 < i < 2} has a
k-form for some algebraic number field k. Here, the method is analytic, i.e., it is based
on the one-to-one correspondence between L and I' (Theorem 1, §9). The reason for this
particular choice of ¥; and V; is that G, is a free product of ¥, and ¥, with amalgamated
subgroup ¥, N ¥, (see Lemma 7, §28). This fact is an essential point in our proof.

§23. Thus, our first step is to prove the following proposition.

PropostTiON 6. Let L be a G,-field over C, and let k be a subfield of C. Let V; (1 <i <
n) be a set of open compact subgroups of G, which generate G,,,‘ andput Vo = N, Vi
Let L; (0 < i < n) be the fixed fields of V; in L. Then if {L{0 < i < n} has a k-form, L
contains a full G,-subfield over a finite extension of k.

To prove this, we need several lemmas.
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§24.

Lemma 3. Let V be an open compact subgroup of G, = PS Ly(k,), and let °V be the set
of all subgroups of G, of the form (i, x;'Vx; withn > 1 and x,,--+ , X, € G,. ThenV
forms a basis of neighborhoods of the identity of G,.

Proor. Let y1,y2,--- ,yn, -+ be a set of representatives of the coset space V\G,
(which is clearly countable). Put ¥, = N, y;'Vy; (n > 1). Then we get a descend-
ing sequence of open compact subgroups ¥, > V2 D ---. Since (,2; Vs = Nieq, xWxis
a compact normal subgroup of G, and since G, is a simple group, we get (2, V,, = {1}.
Since all ¥, are compact, this implies that for any open subset U of G, containing 1, there
exists some » such that V,, c U. o

COROLLARY . Let ¢ be an automorphism, as an abstract group, of G,. If there is an
open compact subgroup V of G, such that V¥ = V, then y is bicontinuous.

Proor. Let V be as in Lemma 3. Then ¢ and ¢! leave V invariant. O

LemMa 4. There exists a finite set of open compact subgroups V1,--- ,V, of G, such
that V1, -+ , V, generate G, and that every automorphism ¢ of G, satisfying V{ =V, for
alli (1 < i < n) is an inner automorphism by some element of ., V.

Proor. Let o € Auty, k,. Then o acts on PLy(k,) in a natural manner, and leaves
G, = PSLy(k,), U, = PLy(0,) and G, N U, = PS L,(0,) invariant. First, let us check:

_ {1} ---o=1,
43 1U.x" =
@ Oroe=f) 2

Let p be the chéracteristic of O,/p, and put z,, = (p() p(“)’") (m € Z). So, 25, = z,,, and

_ a b
z,,,1 Upizm N U, = {(C d) e U,

bp*™ cp™*" € 09}.

Hence

[e+]

() 7' Uz = ﬁ 2 Uz = {(g g) € Up}.

m=-oo m=—co

Let this last group be denoted by #, and pﬁt Ym = (p (_) ‘I;— m ) for m > 0. Then

~ -1 O a0 —
Wn”Qym U = {(o a) € U,,} ={1}.

Hence Nyeq, x"'U,x“ is either {1} or ¢. If o = 1, then 1 is contained in the intersection;
hence Mye, X' Upx” = {1} for o = 1. If 0 # 1, take @ € O, such that o” # e.

Then, there exists m > 0 such that ” — a £ 0 (mod p™). Putz = (p 0 p(f’”)' Then
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-
2.z = ((l) Pl'" ) ¢ U,; hence z7'U,z" 3 1. Hence Nyeq, X' Upx” = ¢ for o # 1;
which settles (43).

Now since x~!U,x° are compact, and since Autq, k, is finite and PSL,(O,) is an
open set of PL,(k,) containing 1, (43) implies that we can choose a finite set of elements
1=ux,---,x, of G, such that

4 Ny X7 Upx? = ¢ forall o € Autg, k, witho # 1, and
" x1U,x ¢ PSLy(O)).

i=1 %

Put V] = PSLz(op) = x;'PSLz(O,,)xl, and V, = x,.‘lPSLz(Op)x,- = xl.‘l lei (1 <i<
n). They are open compact subgroups of G,. Now let ¢ be an automorphism of G,
satisfying V¥ = ¥; for all i (1 < i < n). By the Corollary of Lemma 3, ¢ is a topological
automorphism of G,; hence by Lemma 1 (ii) (iii), ¢ is of the form o - ¢, = ¢, o o, with
o € Autq, k;, x € PLy(ky), where ¢.(y) = x~yx for all y € G,. Since V7 = V1, and since
the normalizer of ¥, = PSL,(0,) in PLy(k,) is U, = PL,(O;) (as can be easily checked),
V¢ = ¥, implies x € U,. Now since ¥} = V;, we get x”'(x{) ' V1x7x = x;'V1x; ; hence
xx7'(x7)! € U, ; hence x™! € x;'U,x? for all i (1 < i < n). Therefore, by (44) we get
o =1landx e "L, x'Uyx; c V. Since V; N x'Upx C x7'Vyx for any x € G,, we get
x € Ny x'ix; = N, Vi. Hence ¢ = ¢, with x € N, V;. Finally, it is clear by (44)
that x; ¢ U, for some i; hence V; # V; for some i. Hence the subgroup of G, generated by
Vi,--- , V, contains ¥V; = PSL,(0,) as a proper subgroup. But by Lemma 11 of Chapter
1, ¥; is a maximal subgroup of G,. Therefore, V7, --- , ¥, generate G,; which completes
the proof of Lemma 4. 0

§25. The following lemma gives a criterion for the existence of a full G,-subfield
(of a G,-field) over a given field k c C. ’

LemMma 5. Let Vy,--- , V, be as in Lemma 4, and put Vo = (., Vi. Let L be a G,-field
over C, let L; (0 < i < n) be the fixed field of V; in L, and let k be a subfield of C. Suppose
that {L;|0 < i < n} has a k-form {L}|0 < i < n}. Then L contains a full G,-subfield L’ over
k, satisfying L' N L; = L forall i (0 < i < n).
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Proor. For each o € Aut; C, put op = 1;; ® 0. Then o7 is an automorphism of
Loy, and we have oo(L;) = L; forall i (0 < i < n). Let o be any extension of o to
an isomorphism of L. Then, since L is the smallest algebraic extension of L, which is
normal over Ly,--- , L, (see §21), the field oo(L) is the smallest algebraic extension of
oo(Ly) = Lo which is normal over oy(L;) = L; for all i. Therefore, we get oo(L) = L;
hence o is an automorphism of L. Now & defines an automorphism of the group Autc L

by
(45) _ Autc L 3 7 0,10 € Autc L.

Since G, is a characteristic subgroup of Autc L (Corollary 2 of Theorem 3), G, is invari-
ant by this action of o°y. Moreover, since oo(L;) = L; holds for all i, we get oo Vo, 1=y,
for all i (this also shows that G, is og-invariant). Therefore, o induces an automorphism
¢ of G, which leaves all V; invariant. Therefore, by Lemma 4, ¢ must be an inner auto-
morphism by some element p of ¥V, = N, V;. Therefore, o5'707 = p~l7p for all 7 € G,.
Now put & = cgp~!. Then & is an automorphism of L which commutes with all ele-
ments of G, and whose restriction to L, coincides with o7. Since the centralizer of G, in
Aut(L/Ly) = Vj is trivial, such o is uniquely determined by o7, and hence also by o (and
Ly). Therefore, we have o7 = o7 and o1 = 5! forall o, 1 € Aut; C. Let G be the group
of all & (o € Aut; C), and let L’ be the fixed field of G in L;

G={0loeAu;C}
L'={xeL|o(x)=x, Vo € G}.

Then (since o commutes with all elements of G,) it is clear that L’ is G,-invariant, L'NC =
k, and that L’ contains all L} (0 < i < n). Put M = L’ - C. Then M is G,-invariant, and
M > L - C = Ly. Therefore, M is the fixed field of some compact subgroup U of V.
But since M is G,-invariant, U must be a normal subgroup of G,; hence U = {1}; hence
M = L. Therefore, L’ is a full G,-subfield of L over £.

Finally, since L’ contains L}, the inclusion L’ N L; > L} is obvious. But L’ and C are
linearly disjoint over k; hence L’ N L; and C are also linearly disjoint over k. Therefore,
by L; - C = L;, we get L’ N L; = L}; which completes the proof of Lemma 5. o

ReMARK . A full G,-subfield L’ over £ satisfying L' N L; = L} forall i (0 < i < n) is
moreover unique. In fact, if L” is another such field, then it is the fixed field of the group
of all 1;» ® o with o0 € Aut; C (Lemma 2). But since such 1;» ® o commute with all
elements of G,, and since the restriction to L, of such 1,» ® o is obviously 1 L, ® 0, we
get o = 1» ® o, o being as in the proof of the above Lemma. Therefore, L”” must be the
fixed field of G; hence L” = L’. Therefore, L’ is uniquely determined by {L; | 0 < i < n}.

Conversely, if L’ is any full G,-subfield of L over £, then by the Corollary of Propo-
sition 2, it is clear that {L' N L;|0 < i < n} gives a k-form of {L;|0 < i < n}. Therefore,
k-forms {L}|0 < i < n} of {L}|0 < i < n} and full G,-subficlds L’ of L over k correspond in
a one-to-one manner by L, = L’ N L; (0 < i < n). In particular, if L is quasi-irreducible,
then L’ is unique (if exists at all) by Proposition 5; hence {L}|0 < i < n} is also unique (if
exists at all). Of course, we must not forget that these are under the assumption that the
subgroups V; (1 < i < n) of G, satisfy the properties stated in Lemma 4.

(46)
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§26.

ProoF or ProposrTion 6. Now we shall prove Proposition 6 (§23). Let L; (0 < i < n)
be as in Proposition 6, and let {L{|0 < i < n} be a k-form of {L,|0 < i < n}. Let M be
the algebraic closure of L{) in L. We shall show that M is a full G,-subfield of L over
the algebraic closure k of k. First, let i be any index with 1 < i < n,and let x € M.
Take any v; € V;. Then since x is algebraic over L;, v;(x) is also algebraic over vi(L)) = L;.
Therefore, M is invariant by ¥;. But since G, is generated by ¥; (1 < i < n), M is invariant
by G,. Secondly, since L; and C are linearly disjoint over k, we get M N C = k. Finally,
M- C is a Gy-subfield of L over C, and M - C contains Lo. Therefore, M - C = L; so that
M is a full G,-subfield of L over k. ,

Now take (a set of) open compact subgroups of G, satisfying the properties stated in
Lemma 4, and call them W,,--- , W,,. Put Wy = (I, W;, and let M; (0 < j < m) be
the fixed field of #; in M. Then by the Corollary of Proposition 2 (§3), M;C is the fixed
field of W;in L, and {M; | 0 < j < m} is a k-form of {M;C | 0 < j < m}. Now let C;
(0 < j < m) be some affine models of M; defined over £, and let f; (1 < j < m) be the
rational maps of Cy onto C; defined by the inclusion My D M;. Thus f; are also defined
over k. Now, C; and f; are all defined over a subfield of k which is finitely generated over
Q, and therefore, they are defined over a finite extension &’ of k. Let M, (0 < j < m)be
the field of &’-rational functions on C;. Then it is clear that { M 10<j<m is a k’-form
of {M;C|0 < j < m}, and hence by Lemma 5 there is a full G,-subfield of L over k. This -
proves Proposition 6. a

More lemmas.

§27. Now by Proposition 6, Theorem 4 is reduced '° to the following:
Lemma 6 (Main lemma). Put Vi = PSLy(O,), V2 = w ' Viwand Vy = Vi N Py,

where w = 2 (1) andnis a primé element of k,. Let L be a G,-field over C, and let L;
(0 < i < 2) be the fixed field of V. Then {L;|0 < i < 2} has a k-form for some algebraic
number field k.

For the proof of this, the following two lemmas, Lemma 7 (§28) and Lemma 8 (§29),
are basic. ‘

§28.

Levma 7. Let ¥, (0 < i < 2) be as in Lemma 6. Then G, is the free product of V, and
V> with amalgamated subgroup V.

101t is clear that ¥; and ¥, generate G,, since ¥ is a maximal subgroup of G, (see Chapter 1, Lemma
11). o : '



CHAPTER 2. 2. FULL Gg-SUBFIELDS OVER ALGEBRAIC NUMBER FIELDS. 91

0y

‘ . —1
Proor. Since V; consists of all elements of G, that are contained in ( g ) we
P

have
ab _
V°={(c d)e " Ic:O(modp)}.
by

Therefore, (V; : V) = (V3 : ;) = g + 1 (note that w™! Vow = V1, since ? = (0 g) ). Put
X = PLy(k,), U, = PLy(0,) and

B,,:{(‘cz z)eUp’CEO(modp)}.

Then (U, : B,) = g+1 and B,NV; = V,, and hence we have U, = B, V. Therefore, if M, =
1, M,,---, M, is a set of representatives of 7\ V7, then it is also a set of representatives of
B,\U,. But since B, = U, N w ! U,w, we see immediately that oM, = w, wM,--- ,wM,
is a set of representatives of U,\U,wU,. Now for each x € X, let /(x) be the length of
x (see Chapter 1, §15), and let X; (/ = 0,1,2,---) be the set of all elements of X with
length /. Then X, = U,, X; = U,wU,, and therefore, wMy = w,wM,,--- ,wM, is a set of
representatives of Xo\X;. Put 7; = wM; (0 < i < g), and look at Lemma 5 of Chapter 1,
§16. Then since mom; = M; € U, = X, for all i, we see immediately by this Lemma that
elements x of X are expressed uniquely in the form

x = upwM,wM,;, --- wM,,

withu, € Uyand i, # 0 forv=1,2,--- /- 1. Butsince U, = },? | B, M, this shows that
every element x of X is expressed uniquely in the form :

47 x=b,MwM,wM, - -wM,, b,eB, i,#0(1<v<iI-1).

In this situation, moreover, / is the length of x (see Lemma 5 of Chapter 1). It is clear that
x is contained in G, = PS L,(k,) if and only if / = 0 (mod 2) and b, € V5.

Now let G, be the free product of V; and ¥, with amalgamated subgroup V,. Then
since My = 1, My, , M, tesp. w ' Myw = 1, o' Mo, - ,0 ' Myw are the sets of
representatives of Vo\V; resp. Vo\V,, every element x’ of G, is expressed uniquely in the
form

¥ = o My(w™ My )My (™ Myw) M, - - (™ My )M,

withvg € Vpandi, #0forv=1,2,-.. /-1 Butsince w? = 1 (when w is considered as
an element of X) and since the expression (47) of the element of X is unique, the natural
homomorphism of G, onto G, is injective. Therefore, G, is the free product of V; and V;
with amalgamated subgroup V5. m]

ReMark . In the same manner by using the uniqueness of the expression (47), we can
prove that X = PL,(k,) is the free product of U, and B,UB,w with amalgamated subgroup
B,.

et Kurosh [22].
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CoroLLARY . Let T, be a dense subgroup of G, and put r*,;’ = VNI, (i = 0, 1,2), where
V; are as in Lemmas 6, 7. Then T, is the free product of r‘,‘) and I‘g) with amalgamated
subgroup I'f,o) .

Proor. Since I, is dense in Gy, it is clear that l"f,l) and I‘ﬁ,z) generate I'y. Let M =
1, My,--- ,M, tesp. Ny = 1, Ny,---, N, be sets of representatives of I"\['{" resp.
rﬁ?’\ﬁ:). Then they are at the same time sets of representatives of Vo\V; resp. Vo\V>,
and hence by Lemma 7, every element x of G, is expressed uniquely in the form x =

oM, Ny M,N;, --- N, M, withvy € Vyand i, # 0 forv = 1,2,---,] - 1. It is clear that
x € T, if and only if vy € r§,°). Therefore, I', is the free product of l'f,') and l'(,z) with
amalgamated subgroup I(po). o

§29. This is the most crucial lemma in the proof of Theorem 4.

LemMa 8.'2 Let T be a discrete subgroup of G = Gr X G, whose quotient G|T is of
finite invariant volume and whose projections T'r, T, are dense in Gg, G, respectively.
Let ¢ be a homomorphism (as abstract groups) of I'r into Gg such that for some open
compact subgroup V of G, ¢lry is injective, @(T}) is discrete in Gg, and the quotient
Gr/¢(Ty) is of finite invariant volume. Then, there is an element x € G = PLy(R) such
that (yr) = x 'yrx for all yg € Tg.

Proor. The proof of Lemma 8 is divided into four steps, as follows.
(i) To prove that ¢ is injective, and that if we put

(48) F={p(y) Xy, €GlyrXy, =y €T}
then I is also a discrete subgroup of G satisfying the same conditions as I'.
(ii) To prove that (yg) is elliptic !* if and only if yy is elliptic.
(iii) To prove that if ¢ is any injective homomorphism (as abstract groups) of I'g into Gg
satisfying the property (ii), then ¢ : I'r — ¢(I'r) is bicontinuous.
(iv) To show that such ¢ as in (iii) are induced by some inner automorphisms of G =
PL,(R).

Proof of (i). Let Ag be the kernel of ¢. Then Ag is normal in I'y, and since <p||-; is
injective, ARNI'g = {I). Let A, be the subgroup of T, corresponding to Ag by the canonical
identification 'y = I',. Then A, is normal in I'; and A, N ¥V = {I}; hence A, is a discrete
normal subgroup of the topological closure of I';, i.e., G,. But G, is simple. Therefore,
A, = {I}; hence Ag = {I}, so that ¢ is injective. Since (I'g : l"l’;) = (G, : V) = o0, we get
(p(TR) : ¢(T})) = oo; and since (TR) is a discrete subgroup of Gr whose quotient has
finite invariant volume, ¢(I'y) must be dense '* in Gg. Now (i) is a direct consequence of
Proposition 2 (Chapter 1, §2).

Proof of (ii). This is a direct consequence of the following lemma.

1255 is shown later (§30), if the quotient G/T" is compact, then all small deformations ¢ of ' in Gg
satisfy the conditions given in the lemma.

13 A5 in Chapter 1, an element gg of Gr is called elliptic if | tr gr| < 2.

l4gee Supplement §1.
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LemMA 9. Let T be as in Lemma 8, and let y = yr X v, € I. Then vy is elliptic if and
only if the centralizer of 'y, in T, is discrete in G,

It is clear that Lemma 9 implies (ii) at once. In fact, by applying Lemma 9 to I" and
I, we see immediately that yg or ¢(yg) is elliptic if and only if the centralizer of y, in T,
is discrete in G, (note that I, = I';). Therefore, ¢(yg) is elliptic if and only if yg is so.

Proor or LEMMA 9. In general, for any element x of any group X, we denote by X, the
centralizer of x in X. Lety’ = y, Xy, be any element of T'. Then since the projections I —
I'r and I’ — T, are injective (Proposition 1 of Chapter 1, §2), we see that ¥’ commutes
with vy if and only if y; commutes with yg, and if and only if y, commutes with y,. Hence
we get

TR = Cr 2Ty = T,), = @), (canonically).
Now let yg be elliptic. Then (GR),y is compact; hence (I'))r is relatively compact in Gr.
Therefore, by the discreteness of I, in G, (I',), must be discrete in G,.

To prove the converse, we need the following assertion:

(b) Ify € T, then G, /T, has finite invariant volume. Moreover, ify # 1, then G, /T, is
compact.

The second assertion follows immediately from the first because of the special simple
structure of G,.. The proof of (b) is simple if G/T is compact. In fact, put G = K - T with
some compact subset K of G. Letyp e FT'andg € G,,. Putg=k-ywithke K,y € T.
Then, by gyo = vog we get klyok = yyoy™! € K'yK. Since K~ 'yoK is compact, the
intersection I' N K1y, K is finite, and hence the intersection {yo}r N K~'yoK is also finite.
Put

{yolr N K~'yoK = {yivoy;' 1vi€ L, i=1,2,-- ).
Then yyoy™! = vyiyoy;! for some i (1 < i < n), and hence y is contained in y.I'yo.
Therefore, g € Ky,I'y,. Hence we get Gy, c Ui, KyiI'yo; hence G,, /T, is compact.
On the other hand, if G/T is non-compact, the proof of (b) is not so simple (but it is
elementary, because we know much about discrete subgroups of Gg whose quotients are
of finite invariant volume). This is left to the readers.

Now suppose that (T,), is discrete in G,. Then y # 1, and hence G, /T’, is compact.
Put, therefore, G, = X - I', with some compact subset X of G,. Take any g, r € (G))r =
(GR)yz, and put g, g X 1, = x - § with x € X and § € I',,, where 1, is the identity element
of G,. Then we have x,6, = 1,, and hence 6, € X,'. But since (I,), is discrete, the
intersection X !N (T,), must be finite, so that we can put

X;l N(@y) = {S1ps- -+, Ompl

with some 6; € ', (1 < i < n). Then g,gr = xrém with some i (1 < i < n), and hence
(G,)r € UL Xrér. Therefore, (G,)r is compact, and hence yr is elliptic. o

Proof of (iii). This is a direct consequence of the following lemma.

Lemma 10. Let y1,y,,%3,- - be any sequence in Tr. Then, it converges to 1 if and
only if for any elliptic element § € Ty, y, - § are elliptic for all sufficiently large n.
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It is clear that Lemma 10 implies (iii), since the convergence of sequence is charac-
terized in terms of ellipticity of elements, which is invariant by .

Proor oF LEMMa 10. Since gr € Gr is elliptic if and only if |tr gg| < 2, the set of
all elliptic elements of Gr forms an open set. Therefore, if § € I'g is elliptic and if
1,2, converges to 1, then y,6 are elliptic for all sufficiently large n. This proves that
the condition is necessary.

To prove the sufficiency, we first remark that there exist 6,, 82, 83, 54 € I'r such that §;
(1 < i < 4) are elliptic and that they are additively linearly independent over R. In fact,
put
(49) a1 = ((1) 0]) g2 = (} 01)’93 = ((1) 11)’94 = (g 02) .

Then g1, g2, g3, g4 € G are elliptic and are linearly independent over R. Since I'y is dense
in G, we can take 6y, 83, 83, 64 € 'y sufficiently near g, g, g3, g4 respectively. Then, it is
clear that §; (1 < i < 4) satisfy the desired conditions. Put

(50) IMI={xeGr||tr(xs;)] <2fori=1,2,3,4).
Then, since the map
¢ My(R) 3 x — (tr(x6,), - - - , tr(x64)) € R*

gives an isomorphism of the two vector spaces over R, it is clear that IT is relatively
compact in Gg.

Now let y1, 72, - - be a sequence in I'r such that for any elliptic element é € T'y, ¥,6
are elliptic for all sufficiently large n. Since 6; (1 < i < 4) are elliptic, this implies that
¥» are contained in II for all large n. Since the closure IT of II in Gg is compact, the
sequence vy;, y2, - - - must have at least one accumulating point in I1. Let £ € Gy be any
accumulating point of y;,7s,---. If we can show £ = 1, the proof will be completed.
Let 6 € I'g be any elliptic element. Then y,6 are elliptic for all large n, and &6 is an
accumulating point of y,4, 26, - - - . Therefore we get | tr(£6)] < 2. Since I'g is dense in
Gr, this implies that | tr(£gr)| < 2 for any elliptic element gg of Gg. Put

_[a b _ (0 —-y\ . o

§—(C d)’ gR—(i 0) with y € R*.
Then gg is elliptic, and tr(égg) = ’;’ —cy. If b # 0, let |y| be sufficiently small, and if ¢ # 0,
let |yl be sufficiently large. Then in either case, we get a contradiction to | tr(¢gr)| < 2.

Therefore b = ¢ = 0; hence ¢ = (g a?‘)' Now, since | tr(£gr)| < 2 holds for all elliptic

elements gr which are sufficiently near 1, we get |la + a”!| < 2. But this is impossible
unless @ = g! = %1, since a,a! are real. Hence we get & = 1 (as an element of Gg),
which completes the proof of Lemma 10. m]

Proof of (iv). Now, ¢ is a bicontinuous map of I'y onto ¢(I'r). Therefore, ¢ can be
extended to a bicontinuous map p of I'r = Gg onto ¢(T'r) C Ggr. Since every homomor-
phism of a Lie group into another is analytic, so is ; and since g has no kernel (since Gg
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is simple) and Gg is connected, ¢ must be surjective. Therefore, ¢ is an analytic automor-
phism of Gg; hence it is an inner automorphism by some element of Gi = PL;(R). This
completes the proof of Lemma 8. | ‘ w]

§30. We remark here that in the case where G/I" is compact, Lemma 8 has a di-
rect consequence, “the triviality of deformation of I'g in Gr”. This fact, however, is not
necessary for our present purpose.

COROLLARY OF LEMMA 8 . Let T be as in Lemma 8, and assume moreover that the
quotient G /T is compact. Then I'r has no non-trivial deformation in Gg.

Here, by “I'r has no non-trivial deformation in Gr”, we mean the following. In gen-
eral, let X be any topological group, and let A be a finitely generated subgroup of X with
a set of generators 6y, - - - , 6,. By “small deformation of A in X”’, we mean any homomor-
phism ¢ of the abstract group A into X, such that ¢(6,),--- ,¢(6,) are sufficiently near
61, -+ , 6, respectively. We use this terminology only in the form: “if ¢ is a small de-
formation of A in X, then - - - holds;” which implies that there exist some neighborhoods
Uy,---,U, of 61,-- - , 6, respectively such that if o(6;) € U; (1 <i <r), then --- holds. It
is clear that this definition is independent of the choice of the set of generators 61, - - - , ;.
We shall say that A has no non-trivial deformation in X if every small deformation ¢ of A
in X is induced by some inner automorphism of X; i.e., if there exists some neighborhood
Uy,---,U, of 61, ,6, respectively such that every homomorphism ¢ of the abstract
group A into X satisfying ¢(6;) € U; for all i (1 < i < r) is given by ¢(d) = t;16t¢ (for all
6 € A) with some 7, € X.

We must check that I'y is finitely generated before we can speak of the deformation of
I'r. PutI® =I'N(Gg X V1), where ¥y = PSLy(O,). Then T3 is a discrete subgroup of Gr
and the quotient Gr/T% has finite invariant volume; hence I'® = Iy is finitely generated.
On the other hand, since I'° is maximal in I (Corollary of Lemma 11 in Chapter 1), T is
generated by I'® and y, where v is any element of I not contained in I'?. Therefore, by the
isomorphisms I' = T and I'" = I'} (canonically), we get the finite generatedness of I'r.

ProoF oF THE COROLLARY OF LEMMA 8. In general, it is known that if X is a connected
real Lie group and A is a finitely generated discrete subgroup of X with compact quotient,
and if ¢ is a small deformation of A in X, then ¢ is injective, ¢(A) is discrete in X,
and the quotient X/p(A) is compact (cf. A. Weil [36]). Let I" be as in Lemma 8, and
apply this for X = Gg and A = T (note that since G/T" is compact, Gg/T}, is also
compact by Proposition 2 of Chapter 1), where V is any open compact subgroup of G,
and I = ' N (Gr x V). Let ¢ be any small deformation of I'g in Gg. Then <p|,-; is also
a small deformation of Iy in Gg; hence glrv is injective, ¢(I'y) is discrete in G, and the
quotient Gr/¢(I'y) is compact. Therefore, by Lemma 8 there exists x € Gy such that
@(yr) = x !ygrx for all yg € I'r. But since ¢ is a small deformation, x must be near 1;
hence x € Gg, and hence ¢ is a trivial deformation. [w
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Proof of Theorem 4 (Conclusion).

§31. Now we have come to the final stage of the proof of Theorem 4. It is enough
to prove the Main lemma (§27). Let

Vl = PSLz(Op), Vz = w" Vla) (a) = (2 (1))»0977 = p), '

and put ¥, = V; N V5. Let L be a Gy-field over C and let L; (0 < i < 2) be the fixed
field of ¥;in L. Let R; (0 < i < 2) be a complete non-singular model of L;, and let f;
(i = 1, 2) be the rational map of R, onto R; defined by the inclusion Ly > L;. Thus we get
an algebraico-geometric object:

(52) R % {

Let I be the discrete subgroup of G = Gr X G, which corresponds to L by Theorem
1(§9). PutI" =T'Nn(Gr X V;) (0 < i < 2). Then for each i, ®; can be identified with
the normalized and compactified quotient $/T'%, where $ is the complex upper half plane.
To show the idea of proof in a primitive form, let us assume for the time being that I'}, is
torsion-free and Gr /I‘l" (or equivalently G/T’) is compact. So, the natural covering map
9 — Ry (with the covering group r%) is surjective and unramified.

Now let F be a field of definition for R, i.e., a common field of definition for all ‘R;
and f;. We can assume that F is finitely generated over Q. Let & be the algebraic closure
of Q in F, so that k is an algebraic number field and F is a regular extension of k. Put
F = Kk((®)) with (1) = (11,--- ,1,), and let & be the locus of (¢) over k, so that ¥ is an
irreducible affine algebraic variety in C'.

Let (#) be a point on W which is sufficiently near (7). Then the following geometric
intuition is in fact valid :

(k) The specialization

(52) R . j Q

of R over () — (¢)/k is well-defined, R} (0 < i < 2) are complete non-singular algebraic
curves with the same genus as R; (respectively), and the rational maps f; (1 < i < 2) have
the same types of ramifications as f; (respectively). Moreover, there exist topological
isomorphisms o and ¢g; of Ry onto Ry, and ¢, resp. ¢, of R, onto R} resp. R, onto R,
such that :
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(i) the diagrams

R 5 Ry R, 5 X
(53) Al VA . Al LA
® 35 % R, 5> R

are commutative, and that
(ii) the topological automorphism o, © @] of R}, is “small”, and hence is homotopic to
the identity map.

Now let 7 be the natural covering map $ — R, defined before, and let 7/ : § — R|
be the universal covering map. Moreover, call A} the covering group of 7', and call A
(i = 1,2) the covering group of f! o . Thus we have A} C Ay C Gr = Aut$. Let Ag be
the subgroup of Gg generated by A}, and A2.

9 9
I o
)2 (SR F% 9% cespeeee A%
fi ~N A fi ~N N
(54) LY, L > L e L e
DRy -oooeeeeeeo [‘h / AREITTREPT Ah
I'n C Gr AR C Grn

Now, extend the topological isomorphisms ¢p; (i = 1,2) of R, onto R; to topological
automorphisms ®; (i = 1, 2) of H so that the diagrams

$ 3 9
(55) nl Il (=12
Ro = Ry

are commutative. Since ¢g; o <p511 is homotope 0, we can take ®; and @, such that @, 0 ‘Dfl
commutes with the actions of A}. By (53), ®; defines an isomorphism p; of I, onto A%,
and by the above remark p; and p, coincide on T3, and p1(T'%) = p>(Tq) = A}. But by the
canonical identification of 'y with I', T, (0 < i < 2) are identified with I, respectively,
and hence by the Corollary of Lemma 7 (§28), I'r is the free product of T}, and T} with
amalgamated subgroup I'y. Therefore, there is a homomorphism p of I'r onto Ag such
that ply = p; (i = 1,2). But p([%) = AY is discrete in Gg, and the quotient Gr/AY
is compact. Moreover, plro = pilrg is injective. Therefore by Lemma 8 (§29), there is
an element x € G = PLy(R) such that p(yr) = x“lypx for all yg € Tr. In particular,
we get Ak = x'Tix for 0 < i < 2. Therefore, if x € Gr = PSLy(R), then R and ®’
are isomorphic analytically (and hence algebraically); i.e., there are analytic (and hence
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algebraic) isomorphisms y; of R; onto R; (0 < i < 2) such that the diagram:

Ry — %R
f % 7 $
(56) oY b N
R, %
R, R, ¥

¥

is commutative. On the other hand, if x ¢ G, then R and R’ dre isomorphic analytically,
where R’ is the complex conjugation of R’. But this is impossible (unless R’ = R’), since
(') is sufficiently near (f). Therefore, R and R’ are isomorphic algebraically. Now since
W is defined over k, algebraic points are dense on W, and hence we can choose (') to be
algebraic over k (and hence over Q). Then R’ is defined over an algebraic number field
k. Now, by the isomorphism R’ = R, we identify L; with the field of C-rational functions
on R} (0 < i <2). Now let L; be the field of k’-rational functions on R; (0 < i < 2). Then
it is clear that {L/|0 < i < 2} is a K’-form of {L;/0 < i < 2}. But since ¥’ is an algebraic
number field, this proves the Main lemma (§27) (and hence Theorem 4), in the case where
I’} is torsion-free and Ggr/Tg is compact.

In the general case, we need a slight modification. Let P; (1 < j < m) be the points
on R, that are ramified in the covering 7 : § — Ry, and lete; (1 < j<m; 1 < e; < )
be the ramification index of P; in this covering. Take F large enough so that all P; are
rational over F. Then if (¢') is sufficiently near (¢), we can check without any difficulty
that in addition to the assertions (}), the specialization P of Pjover (f) — (f')/k s defined
for each j, and that we can take ¢o; and o, such that g (P)) = ¢e2(P;) = P} for all j.
Now define 7’ :  — R} to be the maximal covering of R}, with the ramifications e; at
P for all j (and unramified everywhere else). Then with these definitions, we can prove
the general case exactly in the same manner as in the special case. Thus the proof of the
Main lemma, and hence also the proof of Theorem 4, is completed. w|

Variations of Theorems 4, 5.

§32.

CoroLLARY oF THEOREM 5 . Notations and assumptions being as in Theorem 5, Ly, is
the fixed field of the group of all automorphisms of L which commute with the actions of
all elements of G,. If o € AutC, then o has a G,-extension if and only if Ol = 1.

Proor. This follows immediately from Theorem 5 and §20. o

Now let L be any G,-field over C, and let G} be any subgroup of Autc L containing
G,. By a full G;-subfield of L over a field k' (C C), we mean a G,-invariant subfield L’ of
L satisfying L' - C = Land L' N C = k'. Thus, if G, = G,, this definition agrees with the
previous one; and it is also clear that full G}-subfields are a priori full G,-subfields.
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THEOREM 6. Let L be a G,-field over C, and let G, be any group with G, c G, C
Autc L. Then L contains a full G,-subfield over an algebraic number field. Moreover,
if the centralizer of G, in Autc L is trivial, then full G ,-subfields of L are essentially
unique, in the sense that among them there is a smallest one over an algebraic number
field playing the role completely parallekl to that of Ly, in Theorem 5. Finally, if L is
quasi-irreducible, all full G,-subfields of L are full Autc L-subfields.

Proor. Let L, be a full G,-subfield of L over an algebraic number field k. Let 3 be the
centralizer of G, in Autc L, so that 3 is finite (§15, Corollary 3 of Theorem 3). Let M be
the fixed field of 3 in L. For each o € Aut; C, let o be the automorphism of L which is
trivial on L; and which coincides w1th o on C. Put G = {o]o € Aut; C}. Then by Lemma
2 (§19), Ly is the fixed field of G. Let g be the group of all automorphlsms of L which are
trivial on k and which commute with all elements of G,. Then g G-Z, g NZ = {1},
and M, = M N L is the fixed field of G. Therefore, M; depends only on & and does not
depend on the choice of L;; and since (é 1 @) =(Z: 1) <oo,we get[Li : M] < oo.

Now let p € Autc L. Then since G, is a characteristic subgroup of Autc L (Corollary
2 of Theorem 3, §15), p(L;) is also G,-invariant; hence it is a full G,-subfield over k£
(hence if L is quasi-irreducible, then we get p(L;) = L;; which settles the last point of
the Theorem). Therefore, by the above remark on M;, we get p(L;) N M = M, and
[p(Lk) : Mk] < 0;

Since moreover (Aute L : G,) < oo, the composite L =-— (1)
Ly of all p(Ly) (p € Autc L) is a finite extension of Ly; //
hence Ly -C > L,-C =L, Ly nC = k' is a finite o(Ly) - Ly
extension of k, and Ly is obviously Autc L-invariant.
Therefore, L, is a full Autc L-subfield of L over £’ M—
which settles the first point of the Theorem.

The proof of the second part is completely paral- }
lel to the argument given in §19, §20; and hence is k—
omitted. The proof of the last point was given above. |

CoROLLARY . If the center of Autc L is trivial, then full Autc L-subfields of L are es-
sentially unique. ‘

§33. Full G,-subfields over Q Let L be an arbitrary G,-field over C. Then, by
Theorem 6, L contains a full Autc L-subfield L; over an algebraic number field k. Let
Q be the algebraic closure of Q, considered as a subfield of C. Then, L - Q is a full
Autc L-subfield of L over Q hence L contains a full Autc L-subfield over Q. We shall
prove that full G,-subfield of L over Q is unique. Then it is clear that the unique full
G,-subfield over Q is also a full Autc L-subfield over Q For that purpose, let p be the set
of all non-trivial (non-equivalent) discrete valuations vp of L over C whose stabilizers in
G, are infinite;

57 » = {vp € X | the group g, € G,, g,(vp) = vp is infinite }.
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We denote by P the place of L over C defined by vp, and put
(58) L'={f e L|P(f}e QU (e}, Yop € p).

On the other hand, let I be the discrete subgroup of G which corresponds to L, and
consider L = |Jy Ly as the union of the fields Ly of automorphic functions f(z) with
respect to I'y = [[' N (Gr X V)]g. Let L” be the subset of L formed of all f(z) € L whose
values at I'r-fixed points !* are all contained in Q U {oo};

(59) L” = {f(z) € L| f(¥Tr-fixed points) € Q U {co}}.

Finally, let L"”” be an arbitrary full G,-subfield of L over 6 We shall prove that L’ = L” =
L’ holds; which, in particular, would prove the uniqueness of L"”’.

First, to prove L’ c L”, note that each point zy € $ defines vp = vp, €%, and that, in
this manner, §) can be considered as a connected component of X (see §5-§10). Moreover,
if f = f(2) € L, then P, {f} = f(zo). Since I, is the stabilizer of the connected component
$ in Gy, it is clear that vp,, is contained in g if and only if z, is a I'r-fixed point. This
proves L’ c L”.

Secondly, we shall prove L’”” c L'. Letvp € p, and let g, € Gy, g, # 1 with
go(vp) = vp. Take f € L such that g,(f) # f. If f is not vp-integral, we replace f
by !, and assume from the beginning that f is vp-integral. Since P is invariant by g,,
we get P{f} = P{g,(f)}; hence P{f — g,(f)} = 0; hence P is non-trivial on L"”. Hence
vplr» gives a non-trivial discrete valuation of L"” over Q; and since dimg L = 1 and Q
is algebraically closed, we get P{f;} € Q U {oo} for all f; € L"”’; which proves L'’ c L'.

(60) |

Finally, we shall prove L” c L. Let f(z) be any element of L”. Since L = L"’ - C,
we can put

f@ =) 4@ ), @)
i=1 i=1

where fi(z), fi(z) € L' (1 < i < n), and A;,---, 4, € C are linearly independent over
Q. Take i = ip such that f;(z) # 0. We shall show that f;(z) = f(2)f;(z). Suppose, on
the contrary, that we have f,(z) # f(2)f; (2). Since I'r-fixed points are dense on $ (see

15As in Chapter 1, a point z € $ is called a I'y-fixed point (or I'-fixed point) if its stabilizer in I'y is
infinite.
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Chapter 1, §3), there exists a ['r-fixed point zy such that all f(zo), fi(zo), f{(20) (1 i< n) |
are finite and £,(z0) # f(20)f; (z0). Therefore, we get

D eki=0  withe = fi(zo) = f(20)f; (z0)-

i=1
Since f(2), fi(2), f;(z) are in L”, we have ¢; € 6 (1 £ i < n), and by our choice of zy, we
also have c;, # 0. But this is a contradiction to linear independence of ¢y, - - - , ¢, over Q.
Therefore, f;,(2) = f(2)f; (2), and hence f{(z) € L'”, which proves L” c L".

Therefore, we have proved L’ = L” = L.

TueoreM 7. Let L be a G,-field over C. Then L contains a unique full G,-subfield Ly
over Q, which is given by (58) and also by (59). Moreover, Lj is invariant by Autc L.

§34.

ExamriE ' Let Gg = PSL,(R), G, = PSLy(Q,), and let ' = PSL,(Z®) be con-
sidered as a discrete subgroup of G = GR X Gp. Let L be the Gp-field over C which
corresponds to I'. So, if we denote as

61 U = {(x e SLy(Z,) | x = 1 (mod p™)}/ + 1

™ =TN(GrxUP) ={xeSLyZ)|x=+1(mod p")}/ £1,
then L is nothing but the union (2, L, of the field L, of automorphic functions with
respect to F(l;‘) (see Example in §2). We have shown (§17) that L is irreducible; hence

there is a unique full G,-subfield Ly, over k, enjoying the property stated in Theorem 5.
Let us find out ky and Ly, for this L.

(n=0,1,2,-)

Put

©62) G, = {x € GL,(Q,) | detx = p-powers}/ + {p-powers}

I™ = {x € GL,(Z®) | detx = p-powers}/ + {p-powers},

P G,=G, I
I“#
2
(63) 2 , AutcL = G}, (see §17).
Gp
G,n*=r —

Let J(z) be the elliptic modular functibn; so that L, = C(J(2)), and J(V-1) = 123,
J((=1+ V=3)) = 0, J(icc) = c0. Put

(64) L'=QU(yraly" €T7).

Then L’ is obviously I’*-invé.riant, and since the action of G}, on L is continuous and I'"
is dense in G, L’ is also G,-invariant; hence a priori Gp-invariant. Therefore, L’ - C is

16gee also §2 and §17.
"Here, T 5 y* ¥y denotes the projection of I into {x € GLy(R)| detx > 0}/R* 2 Gr.
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also Gp-invariant; but since L is irreducible, we get L’ - C = L. Therefore, L’ is a full G,-
subfield of L over &’ = L’ N C. We shall prove, by using known results on elliptic modular
functions, that L, = L', ks = ¥ = Q(vEp) (p # 2, 2p = 1 (mod 4)), = Q(V=1, V2)
(p=2). '

For this purpose, we refer to G. Shimura [30]. Let E be the elliptic curve defined over
K; = Q(J(2)) given by the equation '

2 _ _ 21J(2)

(65) Y2 =4X -tX -1, t_m.
For each positive integer N, let Ky be the Galois extension of K, generated over K, by X-
coordinates of all N-th division points of E. Then by G. Shimura [30] (§2,§4), the Galois
group of Ky /K] is (in some way) isomorphic to Gy = GL,(Z/NZ)/ + 1, the algebraic
closure of Q in K} is the field Q({y) of primitive N-th root of unity {y, the action of
o € Gy on Ky(Ly) is &y > 37, and finally,® if we put

az+b
cz+d

(66) K = K, (J( )

ab
V(C d)eMz(Z), ad—-bc—N),

then K}, is a subfield of K corresponding to the center of Gy:

- {1}

- {a(i)]ac@mzy}/=

(67) K@y <+ (ceGyldeto=1)
yd
K3 0 Ki(¢w) <—> (0 € Gy|deto € (Z/NZ)*)
|
K; <*—> Gy =GLy(Z/NZ)/ 1.

Therefore, the algebraic closure of Q in K}, is the maximum (2, - - - , 2) type extension of
Q in Q(¢w). o

Now we have L’ = U;,";OK;,.. Since dimg K}, = dimg K; = 1, we get dimg L’ = 1. On
the other hand, since L’ is a full G,-subfield over ¥, dimy. L’ = 1. Therefore dimg k' = 0;
hence ¥’ c Q; hence &’ = L’ N Q. Therefore, ¥’ is the maximum (2, - - - , 2) type extension
of Qin Q({»In=0,1,2,---); hence

Q(y/P) (p =1 (mod 4)),
k’ ={Q(v/~-P) (p = -1 (mod 4)),
Q(V-1,V2) (p=2).

18This part is not explicitly stated in G. Shimura [30], but it follows directly from the results stated
explicitly. ‘
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- Now since L’ is a full G,-subfield of L over k', we get Q C ko C K and L’ = K’ - Ly,.
To prove that ky = k', we note that (by the above quoted results) L’'/Q(J(2)) is a Galois
extension, its Galois group is PLy(Z,), and by PLy(Z,) > o +— deto € U,/ Ugg G(¥'/Q)
(where U, is the p-adic unit group), all automorphisms of ¥’ /Q are induced from PL,(Z,).
Therefore, together with Auty L' = AutcL = G} (§17 and §32 Theorem 7 (the last
assertion)), we see immediately that

(68) Autg L’ = PLy(Q,).

Since Q € k C X and since X’ is as given above, k' /k, is abelian, and hence L'/L;, =
Ly, - k' /Ly, is also abelian; hence, a priori, normal. Let 3 be the Galois group of L'/L,.
Then, 3 centralizes Autk: L = Gy, hence also G, = PSLy(Q,). But it is clear that the
centralizer of PSL,(Q,) in PL,(Q),) is trivial. Therefore 3 = {1}; hence we finally get:

(69) Li, = L' = QUsIY" €T*) = QU(rrally € T),
‘ Q(+vxp):----- +p = 1(mod4),

70 k() = ’ — k

7 {Q(«/:T,ﬁ)--- p=2. f— Tk

The second formula for L’ is clear by L' =
Unzo Kpr = UnZo K;z,.- '
The fields ko and F = Q((tr yr)*lyr € I'r)-

§35. By Theorem 5, if L is a quasi-irreducible G,-field over C, then L contains
the smallest full G,-subfield Ly, over ky. It is an important problem to determine this
more explicitly. We particularly want to know the relation between kp and k,. As a first
step to this, we shall show that under a certain condition on I" which is satisfied by all
examples of I" that we know at present (i.e., those I' given in Chapter 4), the field ko
contains F = Q((tr yr)*|lyr € I'r).

~ Let gr be an elliptic element of Gg. Then there is an element ¢ € Gy such that r ' ggtis

of the form + | 6 smnd , and such 4 is determined uniquely modulo 7. Put ¥ = +1.
—-smfg coséb

Then, up to the sign, A is an eigenvalue of g, which will be called the first eigenvalue of
gr, while 27! will be called the second eigenvalue of gg. It is easy to check that 26 is the
argument of the rotation induced by gr at its fixed point on $.

Lemma 11. Let L be a G,-field over C with a fixed connected component X, of ¥
and a fixed isomorphism o = §, and let T be the corresponding discrete subgroup of
G = Gr X G, (see §9). Let y = yr X v, € T be such that yy is elliptic, and let Py € X, be
the fixed element of v,. Then for any prime element x, € L of Py, we have

7y ¥ '(xo)/xg = 22 (mod Py),

where +A is the first eigenvalue of yx.
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Proor. Let zy be the point on $ corresponding to Py by the isomorphism %o = $. Then
2 is the fixed point of ygr on $. For each z € §, let P = P, be the correspondmg element
of Xy, and let f(z) € C U {oo} be the residue class of x, at P;

(72) X0 = f(z) mod P; ord, f(2) = 1.
Hence
(73) Yo (x0) = f(yr-2)  (mod P).

Therefore, the residue class of y;(xo)/xo at P = P, is the value of f(yr-2)/f(z) atz = 2o}
hence is equal to €>*, where 20 is the rotation argument of yg at z = z,. Therefore, by the
previous remark, it is equal to A2. n

§36.

LemMma 12. The notations being as in Lemma 11, assume now that T satisfies the
Jollowing condition; ify’, v’ € T are such that vy}, and y, are conjugate in G,, then yg
and yg are conjugate in Gg = PLy(R). Then, for every P € X which is fixed by y,, we
have

74) Yo 'x)/x = 2*2 (mod P),
where x is any prime element of P.
ReMARKk . Here, P need not be an element of X,.

Proor. Let g, be an element of G, such that g, - P is contained in Zo. Put Py = g, - P,
and ¥, = g,¥»g;'. Then y, fixes P;; hence v} - X9 = Zo; hence v, € I, and the element
¥ € I'r corresponding to v, is elliptic. Let +1’ be the first eigenvalue of 5. Then, since

= g,(x) is a prime element of P} = g, P, we get (by Lemma 11)

(75) v, (xp)/xy = A% (mod Py).

But since y, and y, are conjugate in G, v and yr must be conjugate in Gy = PL,(R) by
our assumption on I'. Therefore, we have +1’' = +1*'. Therefore, by (75) we get

v, (xp)/xp = 232 (mod Pp);
hence
9, (¥)/gs(x) = 2*2  (mod g,P).
Therefore y, ~1(x)/x = A*? (mod P), which proves our lemma. O
Now, it is easy to prove:

LemMa 13. Let L, T be as in Lemma 11, and assume that T satisfies the condition
given in Lemma 12. Then, for every elliptic element yg € I'r and for every automorphism
o of L which commutes with all elements of G, we have o((tr yg)?) = (tr yr)>
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Proor. Let y, be the element of I, corresponding to yg, and let Py, xo, +A4 be as in
Lemma 11. Thus, we have

Yy (x0)/x0 = 2> (mod Py).
But since o- commutes with all elements of G, and hence in particular with y,, we get,
¥, o(x0)/o(%0) = o(1)? (mod o Pp).

Now, o P, may not lie on Xy, but it is an element of X which is fixed by y,. Moreover, it
is clear that o-(xy) is a prime element of o-P,. Therefore by Lemma 12, we get

¥, o (x0)/o(x0) = A** * (mod oPy).

Therefore, o-(1)? = 1%2; hence A2 + A2 = (tr yr)? — 2 is invariant by o-. Therefore, (tr yr)
is also invariant by o-. o

TueoreM 8. Let L be a G,-field over C such that the corresponding discrete subgroup
T satisfies the condition given in Lemma 12. Let k be a subfield of C such that there
exists a full G,-subfield of L over k. Then k contains the field F = Q((tr yr)*lyr € I'r).
In particular, if L is moreover quasi-irreducible, then the field ko (defined by Theorem 5)
contains F.

Proor. Let L; be a full G,-subfield of L over k, and for each o € Aut; C, let & be
the automorphism of L which is trivial on L; and which coincides with o on C. Then o .
commutes with all elements of G,,. Therefore by Lemma 13, we have

o((tryr)?) = F((tryr)?) = (tryr)’
for all o € Aut, C and for all elliptic elements yg € I'r. Therefore, k contains (tr yg)?> for
any elliptic element ygr € I'r. But by the Corollary of Proposition 4 (Chapter 3, §11) and
by the Remark (Chapter 3, §14), F is generated over Q by (tr yr)? of all elliptic elements
YR € I'r.
Therefore k contains F. ‘ ' m
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