# Part 2.10 Detailed study of elements of $\Gamma$ with parabolic and elliptic real parts; the general formula for $\zeta_{\Gamma}(u)$ .

Let  $\Gamma$  be a discrete subgroup of  $G = G_{\mathbb{R}} \times G_{\mathfrak{p}} = PSL_2(\mathbb{R}) \times PSL_2(k_{\mathfrak{p}})$  with finite volume quotient  $G/\Gamma$  and with dense image of projection in each component of G. In the previous part of this chapter, we defined the  $\zeta$ -function

$$\zeta_{\Gamma}(u) = \prod_{P \in o(\Gamma)} (1 - u^{\deg P})^{-1}$$

for such a group  $\Gamma$  (§6) and carried out its computation under the two assumptions: (a)  $G/\Gamma$  is compact, (b)  $\Gamma$  is torsion-free. (See Theorems 1, 2).

In the following Part 2, we shall drop the above two assumptions (a), (b), and after studying in detail the elements of  $\Gamma$  with parabolic real parts (§25 ~ §28, Theorem 3) and those with elliptic real parts (including in particular the torsion elements of  $\Gamma$ ; §29~ §34, Theorems 4 ~ 6), we shall proceed to prove a general formula for  $\zeta_{\Gamma}(u)$  by generalizing the previous computations (§35 ~ §38, Theorem 7). The main results are as follows:

1. Let  $\gamma \in \Gamma$  be such that  $\gamma_R$  is parabolic.<sup>11</sup> Let  $H^0$  be the centralizer of  $\gamma$  and let H be the normalizer of  $H^0$  (both considered in  $\Gamma$ ). Then (i)  $k_p = \mathbb{Q}_p$  holds, (ii) H is conjugate in  $G_R \times PL_2(\mathbb{Z}_p)$  to the group

(102) 
$$B^{(d)} = \left\{ \begin{pmatrix} p^{dk} & b \\ 0 & p^{-dk} \end{pmatrix} \middle| k \in \mathbf{Z}, b \in \mathbf{Z}^{(p)} \right\}$$

(where d is a positive integer well-defined by H), and by this,  $H^0$  corresponds to the subgroup  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$  of  $B^{(d)}$  (Theorem 3, §25). By this theorem we can derive everything we need about such elements  $\gamma$ .

- 2. Let  $\gamma \in \Gamma$  be such that  $\gamma_{\mathbf{R}}$  is elliptic.<sup>12</sup> Put  $\Gamma^0 = \Gamma \cap (G_{\mathbf{R}} \times V)$  with  $V = PSL_2(O_{\mathfrak{p}})$ , and for each  $l \geq 0$  put  $T^l = \Gamma \cap \left\{ G_{\mathbf{R}} \times V \begin{pmatrix} \pi^l & 0 \\ 0 & \pi^{-l} \end{pmatrix} V \right\}$ ,  $\pi$  being a prime element of  $k_{\mathfrak{p}}$ . Then our results here are the following:
  - (i) we parametrize the set of all  $\Gamma^0$ -conjugacy classes contained in  $\{\gamma\}_{\Gamma}$  in a nice way as, say,

$$\{\gamma\}_{\Gamma}=\bigcup_{k,\mu}\{\gamma_{k\mu}\}_{\Gamma^0};\quad k=0,1,2,\cdots;\quad \mu=1,\cdots,n_k;$$

The author regrets that, despite his promise, he has failed to give a computation of L-functions  $L_{\Gamma}(u,\chi)$  here. The reason is that when  $\chi$  is not a real character, his definition of  $L_{\Gamma}(u,\chi)$  was not adequate, and it still remains for him to find its best definition.

<sup>&</sup>lt;sup>11</sup>An element  $x \in G_R$  is called parabolic if its eigenvalues are  $\pm \{1, 1\}$  and  $x \ne 1$ .

<sup>&</sup>lt;sup>12</sup>An element  $x \in G_R$  is called elliptic if its eigenvalues are imaginary.

(ii) for each  $\{\gamma_{k\mu}\}_{\Gamma^0}$ , we express its length  $l(\gamma_{k\mu})$  (i.e., the number l for which  $\gamma_{k\mu} \in T^l$ ) by means of its major parameter k and by some invariants of  $\{\gamma\}_{\Gamma}$  (such as the order of the centralizer of  $\gamma$  in  $\Gamma$ , or  $\deg\{\gamma\}_{\Gamma}$  when it is defined, etc.).

As a corollary, we shall compute the following quantity  $A_l\{\gamma\}_{\Gamma}$  for each  $l \geq 1$ , which are used later in the computation of  $\zeta_{\Gamma}(u)$ :

(118) 
$$A_{l}\{\gamma\}_{\Gamma} = \sum_{k,\mu} e\{\gamma_{k\mu}\}_{\Gamma^{0}}^{-1},$$

where the summation is over all  $k, \mu$  with  $l(\gamma_{k\mu}) = l$ , and  $e\{\gamma_{k\mu}\}_{\Gamma^0}$  denotes the order of the group  $\Gamma^0 \cap \Gamma_{\gamma_{k\mu}}$ ,  $\Gamma_{\gamma_{k\mu}}$  being the centralizer of  $\gamma_{k\mu}$  in  $\Gamma$ . These are given in Theorems 4, 5, 6 (and their corollaries), separated according to the difference in the types of  $\{\gamma\}_{\Gamma}$ . Namely, in Theorem 4 (§30), we deal with the case where the centralizer  $\Gamma_{\gamma}$  of  $\gamma$  is infinite, and in Theorem 5 (§31) (resp. Theorem 6 (§32)), we deal with the cases where  $\Gamma_{\gamma}$  is finite and the quadratic extension  $k_p(\gamma_p)$  of  $k_p$  is ramified (resp. unramified). We note here that the corollary of Theorem 4 generalizes Lemma 3 (§13, Part 1) with a much simpler proof; hence eliminates previous complicated and tedious sections (§18, §19) needed for the proof of Lemma 3. On the other hand, the proofs of Theorems 5, 6 are again complicated, chiefly because of the p-power torsions of  $\Gamma_{\gamma}$ , where p|p.

3. The formula for  $\zeta_{\Gamma}(u)$  in the general cases is given in Theorem 7 (§35). It reads as:

(169) 
$$\zeta_{\Gamma}(u) \times \prod_{P \in \wp_{\infty}(\Gamma)} (1 - u^{\deg P})^{-1} = \frac{P(u)(1 + qu)^{g'-g}}{(1 - u)(1 - q^2u)} \times (1 - u)^H,$$

where  $\wp_{\infty}(\Gamma)$  is a certain finite set defined from parabolic elements of  $\Gamma_{\mathbf{R}}$ , g is the genus of  $\Gamma_{\mathbf{R}}^{0}$ ,

$$P(u) = \prod_{i=1}^{g} (1 - \pi_i u)(1 - \pi'_i u) \in \mathbf{Z}[u]$$

with some equalities and inequalities between  $\pi_i, \pi'_i$  and q, and H is a positive integer given explicitly. This number H is proportional to the volume of  $G/\Gamma$  if  $\Gamma$  has no second-type torsions (i.e., if for every  $\gamma \in \Gamma$  its centralizer  $\Gamma_{\gamma}$  is infinite). For some examples of  $\Gamma$ , H is equal to the class number of some definite quaternion algebra (see §38). Finally g' is the genus of a certain fuchsian group "twisted" from  $\Gamma^0_R$ . We have g' = g if  $\Gamma$  has no second type torsions, and conjecturally, always so.

## Study of elements of $\Gamma$ with parabolic real parts.

§25. Let  $\Gamma$  be a discrete subgroup of  $G = G_{\mathbb{R}} \times G_{\mathfrak{p}}$  such that  $\Gamma_{\mathbb{R}}, \Gamma_{\mathfrak{p}}$  are dense in  $G_{\mathbb{R}}, G_{\mathfrak{p}}$  respectively and that the quotient  $G/\Gamma$  has finite invariant volume. Let p be the characteristic of the residue class field of  $k_{\mathfrak{p}}$ . We shall study here those elements  $\varepsilon \in \Gamma$  for which  $\varepsilon_{\mathbb{R}} \in G_{\mathbb{R}} = PSL_2(\mathbb{R})$  is parabolic. For each such  $\varepsilon$ , denote by z the fixed point

 $(\in \mathbb{R} \cup \{i\infty\})$  of  $\varepsilon_{\mathbb{R}}$  and define the two groups  $H^0$ , H by

(99) 
$$H^{0} = \{ \gamma \in \Gamma \mid \gamma_{R} z = z, \gamma_{R} : \text{parabolic} \} \cup \{1\}$$
$$= \text{the centralizer of } \varepsilon \text{ in } \Gamma,$$

(100) 
$$H = \{ \gamma \in \Gamma \mid \gamma_{\mathbb{R}} z = z \} = \text{the normalizer of } H^0 \text{ in } \Gamma.$$

Now our main result here is the following theorem:

THEOREM 3. Let  $\varepsilon \in \Gamma$  be such that  $\varepsilon_{\mathbb{R}}$  is parabolic. Then (i)  $k_{\mathfrak{p}} = \mathbb{Q}_p$ , (ii)  $H^0$ , H being as above, there is a positive integer d and an element  $t \in G_{\mathbb{R}} \times PL_2(\mathbb{Z}_p)$  such that

$$(101) H = t^{-1}B^{(d)}t,$$

where

(102) 
$$B^{(d)} = \left\{ \begin{pmatrix} p^{dk} & b \\ 0 & p^{-dk} \end{pmatrix} \middle| k \in \mathbb{Z}, b \in \mathbb{Z}^{(p)} \right\}$$

(considered as a subgroup of G by the diagonal embedding). In particular, it follows that

(103) 
$$H^0 = t^{-1} \begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix} t.$$

Before proving this, we shall give some of its immediate corollaries.

Corollary 1.  $G/\Gamma$  is non-compact if and only if  $\Gamma_{\mathbf{R}}$  contains a parabolic element, and in this case  $k_{\mathbf{p}} = \mathbf{Q}_{\mathbf{p}}$ .

PROOF. In fact, let V be any open compact subgroup of  $G_p$  and put  $\Gamma^V = \Gamma \cap (G_R \times V)$ . Then  $\Gamma_R^V$  is a fuchsian group, and  $G/\Gamma$  is compact if and only if  $G_R/\Gamma_R^V$  is so (Prop.2, §2). Hence, if  $G/\Gamma$  is non-compact,  $\Gamma_R^V$  contains a parabolic element. Conversely, if  $\Gamma$  contains  $\varepsilon$  for which  $\varepsilon_R$  is parabolic, we see immediately by Theorem 3 that  $\varepsilon^{p^N} \in G_R \times V$  for some N > 0; hence  $\varepsilon_R^{p^N} \in \Gamma_R^V$ . But then  $G_R/\Gamma_R^V$  is non-compact; hence  $G/\Gamma$  is non-compact. That  $K_p = \mathbb{Q}_p$  is contained in Theorem 3.

Corollary 2.<sup>13</sup> If  $\varepsilon \in \Gamma$  is such that  $\varepsilon_{\mathbf{R}}$  is parabolic, there is a positive integer m and an element  $\delta \in \Gamma$  such that  $\delta^{-1}\varepsilon\delta = \varepsilon^{p^m}$ .

Proof. This follows immediately from Theorem 3.

Corollary 3. The notations being as in Theorem 3, let  $\Gamma'$  be any subgroup of  $\Gamma$  of finite index, and put  $H^{0'} = H^0 \cap \Gamma'$ . Then the group index  $(H^0 : H^{0'})$  is not divisible by p.

PROOF. By Theorem 3,  $H^0 \cong \mathbb{Z}^{(p)}$ ; hence  $(H^0: H^{0'})$  cannot be divisible by p.

<sup>&</sup>lt;sup>13</sup>This fact will be used in the proof of the Theorem given in Supplement §6.

**§26.** The definition of  $\wp_{\infty}(\Gamma)$ . A point  $z \in \mathbb{R} \cup \{i\infty\}$  is called a *cusp* of  $\Gamma$  if there is some  $\varepsilon \in \Gamma$  such that  $\varepsilon_{\mathbb{R}}$  is parabolic and  $\varepsilon_{\mathbb{R}}z = z$ . Two cusps z, z' will be called  $(\Gamma$ -)equivalent if there is some  $\gamma \in \Gamma$  such that  $\gamma_{\mathbb{R}}z = z'$ . By

(104) 
$$\wp_{\infty}(\Gamma)$$

we shall denote the set of all  $\Gamma$ -equivalence classes of all cusps of  $\Gamma$ . For each  $P \in \wp_{\infty}(\Gamma)$ , we shall define its *degree*, deg P, as follows. Let z be a cusp representing P, and let H be the group defined by (100), for this z. Then by Theorem 3, we have  $H = t^{-1}B^{(d)}t$  for some t and some positive integer d. It is clear that this integer d is well-defined by P, which we shall call the degree of P. Thus deg P is always a positive integer.

On the other hand, put  $G_p = PSL_2(\mathbf{Q}_p)$ ,  $V = PSL_2(\mathbf{Z}_p)$ , let x be any element of  $G_p' = PL_2(\mathbf{Q}_p)$ , and put  $\Delta = \Gamma \cap (G_{\mathbf{R}} \times x^{-1}Vx)$ . Then  $\Delta_{\mathbf{R}}$  is a fuchsian group, and by Theorem 3, a point  $z \in \mathbf{R} \cup \{i\infty\}$  is a cusp of  $\Gamma$  if and only if it is a cusp of  $\Delta_{\mathbf{R}}$  (see the proof of Corollary 1). Since the number of  $\Delta_{\mathbf{R}}$ -equivalence classes of cusps of  $\Delta_{\mathbf{R}}$  is finite, the set  $\varphi_{\infty}(\Gamma)$  is a priori finite, and each  $P \in \varphi_{\infty}(\Gamma)$  consists of finitely many  $\Delta_{\mathbf{R}}$ -equivalence classes. We shall prove:

Proposition 7. The set  $\wp_{\infty}(\Gamma)$  is finite, and each  $P \in \wp_{\infty}(\Gamma)$  consists of exactly deg P distinct  $\Delta_{\mathbf{R}}$ -equivalence classes.

PROOF. The first assertion is already proved above. To prove the second assertion, let z be a cusp representing P, put  $d = \deg P$ , and let H be the group (100) defined for this z. Then  $\Delta_{\mathbb{R}}$ -equivalence classes contained in P are in one-to-one correspondence with the double coset  $\Delta \setminus \Gamma/H$ ; hence it is enough to prove  $|\Delta \setminus \Gamma/H| = d$ ; or equivalently  $|x^{-1}Vx \setminus G_p/H_p| = d$ . But by Theorem 3,  $H_p = t_p^{-1}B^{(d)}t_p$  with  $t_p \in PL_2(\mathbb{Z}_p)$ ; hence  $|x^{-1}Vx \setminus G_p/H_p| = |V \setminus G_p/y^{-1}B^{(d)}y|$  with  $y = t_px^{-1}$ . Thus our proposition is reduced to the following lemma:

LEMMA 12. Let d be a positive integer, and put

$$B^{(d)} = \left\{ \begin{pmatrix} p^{dk} & b \\ 0 & p^{-dk} \end{pmatrix} \middle| k \in \mathbf{Z}, b \in \mathbf{Z}^{(p)} \right\}.$$

Put  $G_p = PSL_2(\mathbf{Q}_p)$ ,  $V = PSL_2(\mathbf{Z}_p)$ , and let y be any element of  $G_p' = PL_2(\mathbf{Q}_p)$ . Then (105)  $|V \setminus G_p/y^{-1}B^{(d)}y| = d.$ 

Proof. Let  $\overline{B}^{(d)}$  be the closure of  $B^{(d)}$  in  $G_p$ , so that

$$\overline{B}^{(d)} = \left\{ \begin{pmatrix} p^{dk} & b \\ 0 & p^{-dk} \end{pmatrix} \middle| k \in \mathbf{Z}, b \in \mathbf{Q}_p \right\}.$$

Put  $\overline{B} = \overline{B}^{(1)}$ . We shall first check  $G_p = V \cdot y^{-1}\overline{B}y$ . It is well-known that  $G_p = V \cdot \overline{B}$  and  $G'_p = V' \cdot \overline{B'}$ , where  $V' = PL_2(\mathbf{Z}_p)$  and  $\overline{B'}$  is the upper triangular subgroup of  $G'_p$ . Put  $y^{-1} = v'b'$  with  $v' \in V'$ ,  $b' \in \overline{B'}$ . Then

$$G_p = V \cdot \overline{B} = v' V \overline{B} v'^{-1} = V v' b' \overline{B} b'^{-1} v'^{-1} = V y^{-1} \overline{B} y.$$

Since  $\overline{B}$  is the closure of  $B^{(1)}$  and V is open, we obtain  $G_p = V \cdot y^{-1}B^{(1)}y$ . Therefore by  $(B^{(1)}:B^{(d)})=d$ , we obtain  $|V\backslash G_p/y^{-1}B^{(d)}y|\leq d$ .

To prove the opposite inequality, put  $\pi = \begin{pmatrix} p & 0 \\ 0 & p^{-1} \end{pmatrix}$ , and suppose that  $\pi^j \in (yVy^{-1})\pi^i B^{(d)}$ , with  $i, j \in \mathbb{Z}$ . Put  $\pi^j = yvy^{-1}\pi^i b$ , with  $v \in V$ ,  $b \in B^{(d)}$ . Then we obtain  $yvy^{-1} = \pi^j b^{-1}\pi^{-i}$ ; hence by comparing the eigenvalues of both sides, we obtain  $i \equiv j \pmod{d}$ . Therefore,  $1, \pi, \dots, \pi^{d-1}$  belong to the distinct  $yVy^{-1}\backslash G_p/B^{(d)}$  double cosets. Therefore,  $|V\backslash G_p/y^{-1}B^{(d)}y| = |yVy^{-1}\backslash G_p/B^{(d)}| \geq d$ ; hence the proof is completed.

Corollary (of Proposition 7). Let  $\Delta = \Gamma \cap (G_{\mathbb{R}} \times x^{-1}Vx)$ , with  $x \in PL_2(\mathbb{Q}_p)$ ,  $V = PSL_2(\mathbb{Z}_p)$ . Then the number of  $\Delta_{\mathbb{R}}$ -equivalence classes of cusps of  $\Delta_{\mathbb{R}}$  is given by  $\sum_{P \in \wp_{\infty}(\Gamma)} \deg P$ . In particular, this number is independent of x.

REMARK. This second assertion is non-trivial because of the following circumstance. Put  $\Delta^{(x)} = \Gamma \cap (G_{\mathbf{R}} \times x^{-1}Vx)$ . Then  $\Delta^{(x)}_{\mathbf{R}}$  and  $\Delta^{(x')}_{\mathbf{R}}$  are conjugate in  $\Gamma_{\mathbf{R}}$  (and hence in  $G_{\mathbf{R}}$ ) provided  $x^{-1}x' \in PSL_2(\mathbf{Q}_p) \cdot PL_2(\mathbf{Z}_p)$ , but in general, they are not conjugate in  $G_{\mathbf{R}}$ . So, it does not follow trivially that they have the equal number of non-equivalent cusps.

These facts are used later in the computation of  $\zeta_{\Gamma}(u)$ .

**§27.** Lemmas for the proof of Theorem 3. The following Lemma 13 is for the proof of Lemma 14.

LEMMA 13. Let  $\Delta$  be a fuchsian group and let  $\delta = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  run over all elements of  $\Delta$ . Then the following two conditions are equivalent:

- (i) (0,0) is not an accumulating point of (c,d);
- (ii)  $\Delta$  contains a translation.

Remark. In the following, we need only the implication (i)  $\Rightarrow$  (ii), and this proof is the less easier; so here we shall prove only this, and leave the other (which is easier and rather well-known) to the readers.

Proof of (i)  $\Rightarrow$  (ii). Let  $\mathfrak{H}$  be the complex upper half plane, let  $\tau \in \mathfrak{H}$ , and put  $f_0(\tau) = \inf_{\delta} |c\tau + d|^2$ . Then  $|c\tau + d|^2 > \varepsilon_{\tau}(c^2 + d^2)$ , where  $\varepsilon_{\tau}$  is a positive number depending only on  $\tau$  and not on c, d; hence (i) implies  $f_0(\tau) > 0$ . Since Im  $(\delta \tau) = \frac{\operatorname{Im}(\tau)}{|c\tau + d|^2}$ , we have  $f(\tau) = \sup_{\delta} \operatorname{Im}(\delta \tau) = \frac{\operatorname{Im}(\tau)}{f_0(\tau)} < \infty$ . Moreover,  $f(\tau)$  is a continuous function of  $\tau$ . In fact, since  $f(\tau)$  is the supremum of the continuous functions Im  $(\delta \tau)$ , it is lower semi-continuous. On the other hand, if  $\delta$  runs over  $\Delta$  and  $\tau$  runs over any compact subset K of  $\mathfrak{H}$ , then  $|c\tau + d|^2$  has a positive lower bound (by (i)); hence Im  $(\delta \tau)$  has a finite upper bound. But then there is a positive constant C such that if  $d(\tau, \tau_1)$  is the geodesic distance of  $\tau$ ,  $\tau_1$  by an invariant metric of  $\mathfrak{H}$ , we have

$$|\operatorname{Im}(\delta\tau_1) - \operatorname{Im}(\delta\tau)| \le C \cdot d(\delta\tau_1, \delta\tau) = C \cdot d(\tau_1, \tau)$$

for all  $\delta \in \Delta$  and  $\tau, \tau_1 \in K$  (recall that an invariant metric of  $\mathfrak{H}$  is given by  $ds^2 = \frac{dx^2 + dy^2}{y^2}$  for  $x + yi \in \mathfrak{H}$ ). Therefore, the functions Im  $(\delta \tau)$  ( $\delta \in \Delta$ ) are equicontinuous on K; hence  $f(\tau)$  is also upper semi-continuous. Therefore,  $f(\tau)$  is a continuous function which is

obviously  $\Delta$ -invariant. On the other hand, since  $f(\tau) \ge \text{Im } (\tau)$ ,  $f(\tau)$  is unbounded (on  $\mathfrak{H}$ ). Thus we conclude first, that the quotient  $\mathfrak{H}/\Delta$  cannot be compact.

Now let F be a fundamental domain of  $\Delta$ . Then since  $f(\tau)$  is unbounded in F and is bounded in any compact subset of F, we conclude that F has a cusp:  $\tau = \alpha \in \mathbb{R} \cup \{i\infty\}$  at which  $f(\tau)$  is unbounded. Now if  $\alpha = i\infty$ , there is nothing more to be proved. So let us assume  $\alpha \in \mathbb{R}$  and prove that  $\alpha$  is  $\Delta$ -equivalent to  $i\infty$ . We may also assume without loss of generality, that  $\alpha = 0$  (since we may conjugate  $\Delta$  by a translation, if necessary).



Now put  $\inf_{\delta}(c^2+d^2)=m$  (> 0 by (i)), and let  $\tau=x+yi\in F$  with  $|x|\leq |y|$ . Then

$$|c\tau + d|^2 = (cx + d)^2 + c^2y^2 = (x^2 + y^2)c^2 + 2cdx + d^2$$
$$= (x^2 + y^2)(c + \frac{x}{x^2 + y^2}d)^2 + \frac{y^2d^2}{x^2 + y^2} \ge \frac{y^2d^2}{x^2 + y^2} \ge \frac{d^2}{2}.$$

Hence  $f_0(\tau) \ge \frac{1}{2} \inf_{\delta} (d^2)$ . But since  $f(\tau) = \frac{\operatorname{Im}(\tau)}{f_0(\tau)}$  is unbounded in this region (near  $\tau = 0$  in F), we obtain

$$\inf_{\xi} |d| = 0.$$

Now suppose that there is no  $\delta \in \Delta$  with d=0. Then by (106) there must be a sequence  $\{\delta_n\}_{n=1}^{\infty}$  in  $\Delta$  with  $\delta_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$ ,  $d_n \neq 0$ , and  $\lim_{n\to\infty} d_n = 0$ . On the other hand since  $\tau = 0$  is a cusp,  $\Delta$  contains an element  $\delta_0 = \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}$  with some r > 0. Put  $\delta_n^{(k)} = \delta_n \delta_0^k = \begin{pmatrix} a_n^{(k)} & b_n^{(k)} \\ c_n^{(k)} & d_n^{(k)} \end{pmatrix}$  for each  $k \in \mathbb{Z}$ ; so that  $c_n^{(k)} = c_n + d_n r k$ ,  $d_n^{(k)} = d_n$ . Now for each n, choose  $k = k_n$  so that  $|c_n^{(k_n)}| < |d_n| r$ , and put  $\delta_n' = \delta_n^{(k_n)} = \begin{pmatrix} a_n' & b_n' \\ c_n' & d_n' \end{pmatrix}$ . Then  $d_n' = d_n$ ,  $|c_n'| < |d_n| r$ . But then  $\lim_{n\to\infty} c_n' = \lim_{n\to\infty} d_n' = 0$ , which is a contradiction to (i). Therefore, by (106) there must be some  $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta$  with d = 0. But then  $\gamma(0) = i\infty$ ; hence  $i\infty$  is a cusp of  $\Delta$ ; hence  $\Delta$  contains a translation (namely,  $\gamma \delta_0 \gamma^{-1} = \begin{pmatrix} 1 & -b^2 r \\ 0 & 1 \end{pmatrix}$ ).

Lemma 14. Let  $\Delta$  be a fuchsian group and let  $\gamma \in G_{\mathbb{R}}$  be a parabolic element such that  $\gamma^{-1}\Delta\gamma \sim \Delta$  (commensurable). Then the fixed point of  $\gamma$  (on  $\mathbb{R} \cup \{i\infty\}$ ) is a cusp of  $\Delta$ .

PROOF. We may assume without loss of generality that  $\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ , so that the fixed point of  $\gamma$  is  $i\infty$ . Suppose on the contrary that  $i\infty$  is not a cusp of  $\Delta$ , or equivalently that  $\Delta$  contains no translation. Then by Lemma 13 applied for the fuchsian group  $\Delta \cap \gamma^{-1}\Delta \gamma$ , we can find a sequence  $\{\xi_n\}_{n=1}^{\infty}$  in  $\Delta \cap \gamma^{-1}\Delta \gamma$  such that  $\lim_{n\to\infty} c_n = \lim_{n\to\infty} d_n = 0$ , where  $\xi_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$ . Put  $\eta_n = \xi_n^{-1} \gamma \xi_n \gamma^{-1} = \begin{pmatrix} 1 + c_n d_n & d_n^2 - c_n d_n - 1 \\ -c_n^2 & c_n^2 - c_n d_n + 1 \end{pmatrix}$ . Then  $\eta_n \in \Delta$ , and  $\lim_{n\to\infty} \eta_n = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ . But since  $\Delta$  is discrete, this implies  $\eta_n = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \gamma^{-1}$  for all sufficiently large n. But this is impossible since this would imply  $\xi_n^{-1} \gamma \xi_n \gamma^{-1} = \gamma^{-1}$  (for such n); hence  $\gamma = 1$ , which is a contradiction. Therefore,  $i\infty$  must be a cusp of  $\Delta$ .

The following two lemmas are also needed for the proof of Theorem 3.

LEMMA 15. The quotient  $G_{\mathfrak{p}}/A_{\mathfrak{p}}$  by an abelian closed subgroup  $A_{\mathfrak{p}}$  is non-compact.

PROOF. If  $A_{\mathfrak{p}} = \{1\}$ , our assertion is trivial; so assume  $A_{\mathfrak{p}} \neq \{1\}$ . Let  $1 \neq x \in A_{\mathfrak{p}}$  and let  $T_{\mathfrak{p}}$  be the centralizer of x in  $G_{\mathfrak{p}}$ , so that  $A_{\mathfrak{p}} \subset T_{\mathfrak{p}}$ . Then  $T_{\mathfrak{p}}$  is conjugate in  $PL_2(k_{\mathfrak{p}})$  to either (i) the diagonal subgroup of  $G_{\mathfrak{p}}$ , or (ii) a compact torus in  $G_{\mathfrak{p}}$ , or (iii) the group  $\begin{pmatrix} 1 & k_{\mathfrak{p}} \\ 0 & 1 \end{pmatrix}$ . But in any case, it can be checked easily that  $G_{\mathfrak{p}}/T_{\mathfrak{p}}$  is non-compact. Therefore,  $G_{\mathfrak{p}}/A_{\mathfrak{p}}$  is non-compact.

LEMMA 16. Consider the group

(107) 
$$\mathcal{B}_p = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbf{Q}_p^{\times}, \ b \in \mathbf{Q}_p \right\} / \pm 1$$

as a subgroup of  $G_{\mathfrak{p}} = PSL_2(k_{\mathfrak{p}})$ . Then if  $k_{\mathfrak{p}} \neq \mathbb{Q}_p$ ,  $G_{\mathfrak{p}}/\mathcal{B}_p$  is non-compact.

Proof. Put

$$\mathcal{B}_{\mathfrak{p}} = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \alpha^{-1} \end{pmatrix} \mid \alpha \in k_{\mathfrak{p}}^{\times}, \ \beta \in k_{\mathfrak{p}} \right\} / \pm 1.$$

It is enough to show that if  $k_p \neq \mathbf{Q}_p$ ,  $\mathcal{B}_p/\mathcal{B}_p$  is non-compact. Put  $V_p = \mathcal{B}_p \cap PSL_2(O_p)$ . Then since  $V_p$  is an open compact subgroup of  $\mathcal{B}_p$ ,  $\mathcal{B}_p/\mathcal{B}_p$  is non-compact if and only if  $V_p \backslash \mathcal{B}_p/\mathcal{B}_p$  is infinite. We shall show that  $|V_p \backslash \mathcal{B}_p/\mathcal{B}_p| = \infty$  if  $k_p \neq \mathbf{Q}_p$ . Let  $k_p \neq \mathbf{Q}_p$  and let e resp. f be the ramification index resp. the relative degree of the extension  $k_p/\mathbf{Q}_p$ , so that by  $ef = [k_p : \mathbf{Q}_p] > 1$ , either e > 1 or f > 1. If e > 1, let e > 1 be a prime element of e > 1 and put e > 1 be any element of e > 1. If e > 1, let e > 1 be any element of e > 1 be and put e > 1 be any element of e > 1 be any element of e > 1. Then in either case the series e > 1 be any element of e > 1 be any el

§28. Proof of Theorem 3. The notations being as in §25, let  $G_{\mathbf{R},z}$  be the parabolic stabilizer of z in  $G_{\mathbf{R}}$ . Then  $G_{\mathbf{R},z} \cong \mathbf{R}$  and  $H^0 = \{ \gamma \in \Gamma \mid \gamma_{\mathbf{R}} \in G_{\mathbf{R},z} \}$ ; hence  $H^0$  is abelian, and if  $\xi$  is any element of  $H^0$  with  $\xi \neq 1$ , then  $H^0$  is the centralizer of  $\xi$  in  $\Gamma$ . We shall prove

$$(108) (H:H^0) = \infty.$$

For this purpose, let V be an open compact subgroup of  $G_p$  and put  $\Gamma^V = \Gamma \cap (G_R \times V)$ . Then by Lemma 14 applied to  $\Delta = \Gamma_R^V$  and  $\gamma = \varepsilon_R$ , we conclude that z is a cusp of  $\Gamma_R^V$ ; hence for any  $\gamma \in \Gamma$ ,  $\gamma_R z$  is also a cusp of  $\Gamma_R^V$ . But since there are only finitely many non-equivalent cusps of  $\Gamma_R^V$ , we have

$$(109) |\Gamma^{V} \setminus \Gamma/H| < \infty.$$

Suppose that, contrary to (108), we had  $(H:H^0)<\infty$ . Then by (109),  $|\Gamma^V \setminus \Gamma/H^0|<\infty$ ; hence  $|V \setminus G_\mathfrak{p}/H^0|<\infty$ . Let  $A_\mathfrak{p}$  be the closure of  $H^0_\mathfrak{p}$  in  $G_\mathfrak{p}$ . Then  $A_\mathfrak{p}$  is abelian and  $|V \setminus G_\mathfrak{p}/A_\mathfrak{p}|<\infty$ ; hence  $G_\mathfrak{p}/A_\mathfrak{p}$  is compact. But this is impossible by Lemma 15. Therefore  $(H:H^0)=\infty$ .

Now put  $H^{0V} = H^0 \cap \Gamma^V = H^0 \cap (G_{\mathbf{R}} \times V)$ . Since z is a cusp of  $\Gamma^V_{\mathbf{R}}$ , and  $H^{0V}_{\mathbf{R}}$  is the (parabolic) stabilizer group of z in  $\Gamma^V_{\mathbf{R}}$ , we have  $H^{0V} \cong \mathbf{Z}$ . Let  $\xi$  be a generator of  $H^{0V}$ . Then the centralizer of  $\xi$  in  $\Gamma$  is  $H^0$ , and hence by (108) there is an element  $\delta \in H$  such that  $\delta^{-1}\xi\delta \neq \xi^{\pm 1}$ . But since  $\delta^{-1}\xi\delta \in H^0 \cap (G_{\mathbf{R}} \times \delta^{-1}_{\mathfrak{p}} V \delta_{\mathfrak{p}})$ , there is a positive integer m such that  $\delta^{-1}\xi^m\delta \in H^{0V}$ . Put  $\delta^{-1}\xi^m\delta = \xi^n$   $(n \in \mathbf{Z})$ . Now since  $H^0_{\mathbf{R}} \subset G_{\mathbf{R},z} \cong \mathbf{R}$ ,  $H^0$  can be considered as a subgroup of  $\mathbf{R}$ , and in this sense we have  $\delta^{-1}\xi\delta = \xi^{n/m}$ ; hence  $m \neq \pm n$ . Therefore,  $\delta^{-1}_{\mathfrak{p}}\xi^m_{\mathfrak{p}}\delta_{\mathfrak{p}} = \xi^n_{\mathfrak{p}}$  with  $m \neq \pm n$ ;  $m, n \neq 0$ . Let  $\pm \{\lambda_{\mathfrak{p}}, \lambda_{\mathfrak{p}}^{-1}\}$  be the eigenvalues of  $\xi_{\mathfrak{p}}$ . Then  $\pm \lambda^{\pm m}_{\mathfrak{p}} = \pm \lambda^{\pm n}_{\mathfrak{p}}$ ; hence  $\lambda_{\mathfrak{p}}$  is a root of unity. But since  $\xi$  is of infinite order, we conclude  $\lambda_{\mathfrak{p}} = \pm 1$ ; hence there is an element  $t_{\mathfrak{p}} \in PL_2(k_{\mathfrak{p}})$  such that  $t_{\mathfrak{p}}^{-1}\xi_{\mathfrak{p}}t_{\mathfrak{p}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$  (up to the sign). But  $H^0_{\mathfrak{p}}$  centralizes  $\xi_{\mathfrak{p}}$ ; hence  $t_{\mathfrak{p}}^{-1}H^0_{\mathfrak{p}}t_{\mathfrak{p}} \subset \begin{pmatrix} 1 & k_{\mathfrak{p}} \\ 0 & 1 \end{pmatrix}$ . Since  $t_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}$  if  $t_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}$  is generated by  $t_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}Vt_{\mathfrak{p}}^{-1}V$ 

(110) 
$$t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}^{0}t_{\mathfrak{p}} \subset \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbf{Z}^{(p)} \right\}.$$

But since the centralizer of  $H^0$  in H is  $H^0$  itself,  $H/H^0$  acts effectively on  $H^0$ , and by  $(H:H^0)=\infty$ , the automorphism group of  $H^0$  is infinite. In particular,  $H^0 \not\cong \mathbb{Z}$ . But this and (110) show at once that the two groups in (110) must be equal;

$$(111) t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}^{0}t_{\mathfrak{p}} = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbf{Z}^{(p)} \right\}.$$

Therefore  $t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}t_{\mathfrak{p}}$  normalizes  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$ , and on the other hand, the centralizer of  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$  in  $t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}t_{\mathfrak{p}}$  coincides with  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$ . From this follows immediately that  $t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}t_{\mathfrak{p}}$  is generated by  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$  and an element of the form  $\begin{pmatrix} p^d & \beta \\ 0 & p^{-d} \end{pmatrix}$ , with some positive integer d and some  $\beta \in k_{\mathfrak{p}}$ . Now replace  $t_{\mathfrak{p}}$  by  $t_{\mathfrak{p}}\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$ , with  $c = \frac{-\beta}{p^d - p^{-d}}$ . Then (110) remains valid, and  $t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}t_{\mathfrak{p}}$  is generated by  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$  and  $\begin{pmatrix} p^d & 0 \\ 0 & p^{-d} \end{pmatrix}$ ; hence

(112) 
$$t_{\mathfrak{p}}^{-1}H_{\mathfrak{p}}t_{\mathfrak{p}} = \left\{ \begin{pmatrix} p^{dk} & b \\ 0 & p^{-dk} \end{pmatrix} \middle| k \in \mathbb{Z}, \ b \in \mathbb{Z}^{(p)} \right\}.$$

On the other hand, since  $\xi_{\mathbf{R}}$  is parabolic, there is an element  $t_{\mathbf{R}} \in G_{\mathbf{R}}$  such that  $t_{\mathbf{R}}^{-1}\xi_{\mathbf{R}}t_{\mathbf{R}} = \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}$ . By taking  $\xi^{-1}$  instead of  $\xi$  if necessary, we may assume that  $t_{\mathbf{R}}^{-1}\xi_{\mathbf{R}}t_{\mathbf{R}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ . Let  $\gamma$  be any element of  $H^0$  and put  $t_{\mathbf{p}}^{-1}\gamma_{\mathbf{p}}t_{\mathbf{p}} = \pm \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$  with  $b \in \mathbf{Z}^{(p)}$ . Then  $t_{\mathbf{R}}^{-1}\gamma_{\mathbf{R}}t_{\mathbf{R}} = \pm \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ . In fact, since  $H^0$  is abelian,  $t_{\mathbf{R}}^{-1}\gamma_{\mathbf{R}}t_{\mathbf{R}}$  commutes with  $t_{\mathbf{R}}^{-1}\xi_{\mathbf{R}}t_{\mathbf{R}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ , and hence is of the form  $t_{\mathbf{R}}^{-1}(t_{\mathbf{R}}) = t_{\mathbf{R}}^{-1}(t_{\mathbf{R}}) = t_{$ 

$$H^{0} = \left\{ t \delta t^{-1} \mid \delta \in \begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix} \right\}, \text{ with } t = t_{\mathbf{R}} \times t_{\mathfrak{p}}.$$

Now take  $\eta \in H$  such that  $t_p^{-1}\eta_p t_p = \begin{pmatrix} p^d & 0 \\ 0 & p^{-d} \end{pmatrix}$ , so that  $H^0$  and  $\eta$  generate H. Then  $t_{\mathbf{R}}^{-1}\eta_{\mathbf{R}}t_{\mathbf{R}}$  normalizes  $\begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix}$ , and hence is of the form  $\begin{pmatrix} p^l & \beta \\ 0 & p^{-l} \end{pmatrix}$   $(l \in \mathbf{Z}, \beta \in \mathbf{R})$ . But by  $\eta_p \xi_p \eta_p^{-1} = \xi_p^{p^{2d}}$ , we get the same relation on the real part, and hence l = d. Now replace  $t_{\mathbf{R}}$  by  $t_{\mathbf{R}} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$ , with  $c = -\frac{\beta}{p^d - p^{-d}}$ . Then since

$$\begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^d & \beta \\ 0 & p^{-d} \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^d & 0 \\ 0 & p^{-d} \end{pmatrix},$$

and since  $H^0$  and  $\eta$  generate H, we obtain

(113) 
$$H = tB^{(d)}t^{-1}, \quad H^0 = t \begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix} t^{-1},$$

with 
$$t = t_{\mathbf{R}} \times t_{\mathbf{p}}$$
,  $B^{(d)} = \left\{ \begin{pmatrix} p^{dk} & b \\ 0 & p^{-dk} \end{pmatrix} \middle| k \in \mathbf{Z}, b \in \mathbf{Z}^{(p)} \right\}$ .

Now we shall prove  $k_{\mathfrak{p}} = \mathbf{Q}_{p}$ . By (109), we have  $|V \setminus G_{\mathfrak{p}}/H_{\mathfrak{p}}| < \infty$ ; hence by (112),  $|V \setminus G_{\mathfrak{p}}/t_{\mathfrak{p}}\mathcal{B}_{p}t_{\mathfrak{p}}^{-1}| < \infty$ , where  $\mathcal{B}_{p} = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbf{Q}_{p}^{\times}, b \in \mathbf{Q}_{p} \right\}$ . But then  $G_{\mathfrak{p}}/t_{\mathfrak{p}}\mathcal{B}_{p}t_{\mathfrak{p}}^{-1}$ , and hence  $G_{\mathfrak{p}}/\mathcal{B}_{p}$  is also compact. Therefore by Lemma 16, we obtain  $k_{\mathfrak{p}} = \mathbf{Q}_{p}$ . Finally, put

(114) 
$$B' = \left\{ \begin{pmatrix} p^k & b \\ 0 & p^l \end{pmatrix} \middle| k, l \in \mathbb{Z}, b \in \mathbb{Z}^{(p)} \right\} \middle| p\text{-powers.}$$

Then  $B^{(d)}$  is a normal subgroup of B', and  $PL_2(\mathbf{Q}_p) = PL_2(\mathbf{Z}_p) \cdot B'$ . Put  $t_p = \tilde{t}_p b'$  with  $\tilde{t}_p \in PL_2(\mathbf{Z}_p)$ ,  $b' \in B'$ , and put  $t_{\mathbf{R}} = \tilde{t}_{\mathbf{R}} b'$  ( $\tilde{t}_{\mathbf{R}} \in G_{\mathbf{R}}$ ). Then  $H = tB^{(d)}t^{-1} = \tilde{t}B^{(d)}\tilde{t}^{-1}$ , where  $\tilde{t} = \tilde{t}_{\mathbf{R}} \times \tilde{t}_p \in G_{\mathbf{R}} \times PL_2(\mathbf{Z}_p)$ . This completes the proof of Theorem 3.

### Study of elements of $\Gamma$ with elliptic real parts.

§29. In the following, we shall study in detail such element  $\gamma \in \Gamma$  that  $\gamma_R$  is elliptic, i.e.,  $\gamma_R$  has imaginary eigenvalues, or equivalently, has a fixed point on  $\mathfrak{H}$ . Let  $z \in \mathfrak{H}$ , and put  $\Gamma_z = \{ \gamma \in \Gamma \mid \gamma_R z = z \}$ . Call  $z, z' \in \mathfrak{H}$  " $\Gamma$ -equivalent" if there exists  $\gamma \in \Gamma$  with  $z' = \gamma_R z$ . As before, let  $\wp(\Gamma)$  be the set of all  $\Gamma$ -equivalence classes of points  $z \in \mathfrak{H}$  with  $|\Gamma_z| = \infty$  (§3); on the other hand, denote by

$$(115) Q(\Gamma)$$

the set of all  $\Gamma$ -equivalence classes of z with  $1 < |\Gamma_z| < \infty$ . Put

(116) 
$$\begin{cases} V = PSL_{2}(O_{\mathfrak{p}}), & T_{\mathfrak{p}}^{l} = V \begin{pmatrix} \pi^{l} & 0 \\ 0 & \pi^{-l} \end{pmatrix} V (l \geq 0), & l(x) = l \text{ for } x \in T_{\mathfrak{p}}^{l}; \\ \Gamma^{0} = \Gamma \cap (G_{\mathbf{R}} \times V), & T^{l} = \Gamma \cap (G_{\mathbf{R}} \times T_{\mathfrak{p}}^{l}), & l(\gamma) = l \text{ for } \gamma \in T^{l}, \end{cases}$$

where  $\pi$  is a prime element of  $k_p$ . For each  $P \in \wp(\Gamma)$  (resp.  $Q \in Q(\Gamma)$ ), denote by

(117) 
$$P/\Gamma^0 \quad (\text{resp. } Q/\Gamma^0)$$

the set of all  $\Gamma^0$ -equivalence classes contained in P (resp. Q). Then our purpose is to parametrize the set  $P/\Gamma^0$  (resp.  $Q/\Gamma^0$ ) in a nice way, and for each element of  $P/\Gamma^0$  (resp.  $Q/\Gamma^0$ ) with a representative  $z \in \mathfrak{H}$ , to compute  $l(\gamma)$  for each  $\gamma \in \Gamma_z$  (expressed by  $\deg\{\gamma\}_{\Gamma}$ , the parameters of  $P/\Gamma^0$  (resp.  $Q/\Gamma^0$ ), etc.) (Theorems 4, 5, 6). This will enable us to compute, for each  $\gamma \in \Gamma$  with elliptic  $\gamma_R$ , the following quantity;

(118) 
$$A_{l}\{\gamma\}_{\Gamma} = \sum_{[\delta]_{\Gamma^{0}}} \frac{1}{e\{\delta\}_{\Gamma^{0}}} \qquad (l \geq 1),$$

where  $\{\delta\}_{\Gamma^0}$  runs over all  $\Gamma^0$ -conjugacy classes contained in  $\{\gamma\}_{\Gamma} \cap T^l$ , and  $e\{\delta\}_{\Gamma^0}$  is the order of the group  $\Gamma_{\delta} \cap \Gamma^0$ ,  $\Gamma_{\delta}$  being the centralizer of  $\delta$  in  $\Gamma$ . This computation is used essentially in the succeeding part of our study: the computation of  $\zeta_{\Gamma}(u)$  for the general  $\Gamma$  (without the assumptions that  $\Gamma$  is torsion-free or  $G/\Gamma$  is compact).

 $\wp(\Gamma)$  and  $Q(\Gamma)$ . Let  $z \in \mathfrak{H}$  and put  $\Gamma_z = \{ \gamma \in \Gamma \mid \gamma_R z = z \}$ . Then  $\Gamma_z$  is abelian (§3). Moreover,

PROPOSITION 8. Let  $\gamma \in \Gamma_z$  with  $\gamma \neq 1$ , and  $\delta \in \Gamma$ . If  $\delta^{-1}\gamma\delta \in \Gamma_z$  then  $\delta \in \Gamma_z$ .

PROOF. We have  $(\delta_{\mathbf{R}}^{-1}\gamma_{\mathbf{R}}\delta_{\mathbf{R}})z=z$ ; hence  $\delta_{\mathbf{R}}z$  is also fixed by  $\gamma_{\mathbf{R}}$ , and  $\delta_{\mathbf{R}}z\in\mathfrak{H}$ . Hence  $\delta_{\mathbf{R}}z=z$ ; hence  $\delta\in\Gamma_z$ .

Corollary. Let  $\gamma \in \Gamma_z$  with  $\gamma \neq 1$ . Then

- (i)  $\Gamma_z$  is the centralizer of  $\gamma$  in  $\Gamma$ .
- (ii)  $\gamma$  is not  $\Gamma$ -conjugate to any other element of  $\Gamma_z$ .
- (I)  $\Gamma_z$  for  $P_z \in \wp(\Gamma)$ . Let  $P \in \wp(\Gamma)$  be represented by z (hence we may denote  $P = P_z$ ), so that  $|\Gamma_z| = \infty$ . We denote by  $\Gamma_z^e$  the torsion subgroup of  $\Gamma_z$ , and by  $e(P) = e_0(P)p^{r(P)}$  its order <sup>14</sup> where  $e_0(P) \not\equiv 0 \pmod{p}$ .

PROPOSITION 9. Let  $W(k_p)$  be the group of all roots of unity contained in  $k_p$ . Then  $\Gamma_z^e$  is isomorphic to a subgroup of  $W(k_p)/\pm 1$ .

Proof. By Proposition 3 (§4), there is some  $x_p \in G_p$  such that  $x_p^{-1}\Gamma_{z,p}x_p$  is diagonal. Therefore,  $\Gamma_z$  is isomorphic to a subgroup of  $k_p^{\times}/\pm 1$ .

COROLLARY.  $\Gamma_z^e$  is finite cyclic, and  $e_0(P)$  divides  $\frac{q-1}{2}$  (if  $\mathfrak{p} \nmid 2$ ) or q-1 (if  $\mathfrak{p} \mid 2$ ). Moreover  $k_{\mathfrak{p}}$  contains primitive 2e(P)-th roots of unity.

We shall show later (§34) that e(P) = 1 holds for almost all  $P \in \wp(\Gamma)$ .

(II)  $\Gamma_z$  for  $Q_z \in Q(\Gamma)$ . Let  $Q(\Gamma)$  be the set of all  $\Gamma$ -equivalence classes  $Q = Q_z$  of points  $z \in \mathfrak{H}$  for which  $\Gamma_z$  is finite but  $\neq \{1\}$ . For each  $Q = Q_z \in Q(\Gamma)$ , let  $e(Q) = e_0(Q)p^{r(Q)}$  be the order of  $\Gamma_z$ , with  $e_0(Q) \not\equiv 0 \pmod{p}$ .

Proposition 10. Let  $Q = Q_z \in Q(\Gamma)$  and let  $\gamma \in \Gamma_z$  with  $\gamma \neq 1$ . Let  $\pm \{\zeta, \zeta^{-1}\}$  be the eigenvalues of  $\gamma_p$ . Then

- (i)  $K_p = k_p(\zeta)$  is a quadratic extension which depends only on Q.
- (ii)  $\Gamma_z$  is isomorphic to a subgroup of  $W(K^1_{\mathfrak{p}})/\pm 1$ , where  $W(K^1_{\mathfrak{p}})$  is the group of all roots of unity contained in  $K^1_{\mathfrak{p}} = \{x \in K_{\mathfrak{p}} \mid N_{K_{\mathfrak{p}}/k_{\mathfrak{p}}}x = 1\}$ . In particular,  $e_0(Q)$  divides  $\frac{1}{2}(q+1)$  (if  $\mathfrak{p} \nmid 2$ ), or q+1 (if  $\mathfrak{p} \mid 2$ ).
- (iii) If  $K_p/k_p$  is ramified,  $e_0(Q) = 1$ ; i.e., e(Q) is a power of p.

Remark. On the other hand, r(Q) may not be zero even if  $K_p/k_p$  is unramified.

PROOF. Let  $G_{\gamma} = G_{\gamma R} \times G_{\gamma p}$  be the centralizer of  $\gamma$  in G. Then by the assertion (b) (§29 of Chapter 2, Part 2),  $G_{\gamma}/\Gamma_{\gamma}$  is compact. Since  $\Gamma_z$  is finite, this implies that  $G_{\gamma}$  is compact; hence  $G_{\gamma p}$  is also compact. But  $G_{\gamma p}$  is the centralizer of  $\gamma_p$  in  $G_p$ ; hence  $\zeta$  cannot be contained in  $k_p$  (see the proof of Proposition 3 (§4)). Now since  $\Gamma_z \cong \Gamma_{zR} \subset G_{\gamma R} \cong R/Z$ ,  $\Gamma_z$  is cyclic. Let  $\delta$  be a generator of  $\Gamma_z$  and let  $\pm \{\eta, \eta^{-1}\}$  be the eigenvalues of  $\delta_p$ . Put  $K_p = k_p(\eta)$ . Then  $[K_p : k_p] = 2$ , and since  $\zeta$  is a positive power of  $\pm \eta$ , we have  $\zeta \in K_p$ . But since  $\zeta \notin k_p$ , we have  $K_p = k_p(\zeta)$ . The second assertion follows immediately from

<sup>&</sup>lt;sup>14</sup>By the corollary below, e(P) is finite.

this. Now suppose that  $e_0(Q) \neq 1$ , and assume that  $\gamma$  is of order  $e_0(Q)$ . Then  $K_p = k_p(\zeta)$  is unramified; hence (iii).

By Proposition 10, to each  $Q \in Q(\Gamma)$ , we can attach a quadratic extension  $K_{\mathfrak{p}}/k_{\mathfrak{p}}$ . Put

(119) 
$$\begin{cases} Q_{u}(\Gamma) = \{Q \in Q(\Gamma) \mid K_{p}/k_{p} \text{ is unramified }\}, \\ Q_{r}(\Gamma) = \{Q \in Q(\Gamma) \mid K_{p}/k_{p} \text{ is ramified }\}, \end{cases}$$

so that  $Q(\Gamma) = Q_u(\Gamma) \cup Q_r(\Gamma)$  (disjoint), and we have  $e_0(Q) = 1$  (hence  $e(Q) = p^{r(Q)}$ ) for  $Q \in Q_r(\Gamma)$ .

The finiteness of the set  $Q(\Gamma)$  will be shown in §34.

REMARK. In each case  $Q \in Q_u(\Gamma)$  or  $\in Q_r(\Gamma)$ , the field  $K_p$  does not (even) depend on Q. In fact, if  $Q \in Q_u(\Gamma)$ ,  $K_p$  must be the unique unramified quadratic extension and if  $Q \in Q_r(\Gamma)$ , it is clear by Proposition 10 that  $K_p$  must coincide with the field obtained by adjoining primitive p-th roots of unity to  $k_p$ . (Even then,  $K_p$  may contain higher p-powerth roots of unity.)

§30. 
$$P/\Gamma^0$$
 for  $P \in \wp(\Gamma)$ . Let  $P = P_z \in \wp(\Gamma)$ . For each  $\gamma \in \Gamma_z$ , put (120) 
$$\deg\{\gamma\}_{\Gamma} = |\operatorname{ord}_{\mathfrak{p}} \lambda_{\mathfrak{p}}|,$$

where  $\pm\{\lambda_{\mathfrak{p}}, \ \lambda_{\mathfrak{p}}^{-1}\}$  denote the eigenvalues of  $\gamma_{\mathfrak{p}}$ . Thus,  $\deg\{\gamma\}_{\Gamma}$  is a multiple of  $\deg P$ , they are equal if and only if  $\gamma$  generates  $\Gamma_z$  modulo  $\Gamma_z^e$ , and  $\deg\{\gamma\}_{\Gamma} = 0$  if and only if  $\gamma \in \Gamma_z^e$  (see §5). As defined in §29, let  $P/\Gamma^0$  be the set of all  $\Gamma^0$ -equivalence classes of points on  $\mathfrak{S}$  that are  $\Gamma$ -equivalent to z. The following theorem (and its corollary) generalizes Lemma 3 (§13) (with a considerably simpler proof).

THEOREM 4. Let  $P \in \wp(\Gamma)$ , and put  $d = \deg P$ , e = e(P),  $e_0 = e_0(P)$ , r = r(P) (hence  $e = e_0 p^r$ ), and  $c(p^r - p^{r-1}) = \operatorname{ord}_p p^{.15}$  Then

- (i) the set  $P/\Gamma^0$  is described as follows;
  - (a)  $P/\Gamma^0$  contains special d elements;

$$(121) R_1, \cdots, R_d.$$

(b) All other elements of  $P/\Gamma^0$  are parametrized as

(122) 
$$R_{k\mu} \begin{cases} k = 1, 2, 3 \cdots; \\ 1 \le \mu \le d \frac{q^k - q^{k-1}}{e_0 p^{\nu_k}}; \end{cases}$$

where  $v_k$  is an integer defined by  $^{16}$ 

$$v_{k} = \begin{cases} 0 & \cdots 0 < k \leq c, \\ v & \cdots cp^{v-1} < k \leq cp^{v} & (1 \leq v \leq r-1), \\ r & \cdots cp^{r-1} < k. \end{cases}$$

<sup>&</sup>lt;sup>15</sup>Since  $k_p$  contains primitive  $p^r$ -th root of unity, c is a positive integer.

<sup>&</sup>lt;sup>16</sup>Thus for r = 0,  $v_k = 0$ .

(ii)

(a) Let  $z_i \in \mathfrak{H}$  represent  $R_i$   $(1 \le i \le d)$ , and let  $\delta \in \Gamma_{z_i}$   $(\delta \ne 1)$ . Then

(123) 
$$l(\delta) = \deg\{\delta\}_{\Gamma}.$$

(b) Let  $z_{k\mu} \in \mathfrak{H}$  represent  $R_{k\mu}$  and let  $\delta \in \Gamma_{z_{k\mu}}$  with  $\delta \neq 1$ . Then

(124) 
$$l(\delta) = \begin{cases} \deg\{\delta\}_{\Gamma} + k & \cdots \begin{cases} \text{if } \deg\{\delta\}_{\Gamma} > 0; \text{ or } \\ \text{if } \deg\{\delta\}_{\Gamma} = 0, \\ \text{but the order of } \delta \text{ is not a power of } p. \end{cases}$$

$$\left( \max(0, k - cp^{\nu}) \cdots \text{ if the order of } \delta \text{ is } p^{r-\nu} \right) (0 \le \nu \le r - 1).$$

In particular, the order of  $\Gamma_{z_{k\mu}} \cap \Gamma^0$  is given by  $p^{r-\nu_k}$ , and the order of  $\Gamma_{z_i} \cap \Gamma^0$   $(1 \le i \le d)$  is always e; i.e.,  $\Gamma_{z_i} \cap \Gamma^0$  (coincides with) the torsion subgroup of  $\Gamma_{z_i}$ .

PROOF. It is enough to parametrize the double coset  $\Gamma^0 \setminus \Gamma/\Gamma_z$  and for each  $\Gamma^0 g \Gamma_z$ , to compute  $l(\delta)$  for each  $\delta \in g \Gamma_z g^{-1}$ . By the embedding into  $G_{\mathfrak{p}}$ , it is the same thing to do it for  $V \setminus G_{\mathfrak{p}}/\Gamma_{z\mathfrak{p}}$ . Take  $x \in G_{\mathfrak{p}}$  such that  $T = x^{-1}\Gamma_{z\mathfrak{p}}x$  is diagonal, and for each  $\delta \in \Gamma_z$  ( $\delta \neq 1$ ) put

(125) 
$$x^{-1}\delta_{\mathfrak{p}}x = t = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \qquad (a \in k_{\mathfrak{p}}^{\times}),$$

so that  $\deg\{\delta\}_{\Gamma} = |\operatorname{ord}_{\mathfrak{p}} a|$ . Now  $g \mapsto g' = gx$  induces a bijection of  $V \setminus G_{\mathfrak{p}}/\Gamma_{z\mathfrak{p}}$  onto  $V \setminus G_{\mathfrak{p}}/T$ , and for each  $Vg\Gamma_{z\mathfrak{p}}$ , we have  $l(g\delta_{\mathfrak{p}}g^{-1}) = l(g'tg'^{-1})$ ; hence it is enough to parametrize  $V \setminus G_{\mathfrak{p}}/T$  and for each Vg'T, to compute  $l(g'tg'^{-1})$ .

Now we shall use the following set of representatives of  $V \setminus G_p$ ;

(126) 
$$x_{n\alpha} = \begin{pmatrix} \pi^{-n} & \alpha \\ 0 & \pi^{n} \end{pmatrix}; \begin{array}{l} n = 0, \pm 1, \pm 2, \cdots; \\ \alpha : \text{representatives of } k_{\mathfrak{p}} \mod \mathfrak{p}^{n}; \\ \text{Choose } \alpha = 0 \text{ for } \alpha \equiv 0 \mod \mathfrak{p}^{n}. \end{array}$$

Since T is generated by two elements  $\begin{pmatrix} b & 0 \\ 0 & b^{-1} \end{pmatrix}$ ,  $\begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$  where  $b \in k_p$  with  $\operatorname{ord}_p b = d$  and where  $\zeta$  is a primitive 2e-th root of unity in  $k_p^{\times}$ , we can choose the following set of representatives for  $V \setminus G_p/T$ ;

(127) 
$$\begin{cases} \sigma^{\mu} = \begin{pmatrix} \pi^{-\mu} & 0 \\ 0 & \pi^{\mu} \end{pmatrix}; & \mu = 0, 1, 2, \dots, d-1; \\ \tau^{\mu}_{k\rho} = \begin{pmatrix} \pi^{-\mu} & \alpha_{k\rho}\pi^{\mu-k} \\ 0 & \pi^{\mu} \end{pmatrix}; & \mu = 0, 1, 2, \dots, d-1; \\ k = 1, 2, 3, \dots; \\ \rho = 1, 2, 3, \dots, n'_{k}, \end{cases}$$

where  $\alpha_{k\rho}$  runs over a set of representatives of  $\mathcal{U}_{\mathfrak{p}}/E(1+\mathfrak{p}^k)$ , and where E is the group of all e-th roots of unity contained in  $k_{\mathfrak{p}}$ ; hence  $n'_{k} = (\mathcal{U}_{\mathfrak{p}} : E(1+\mathfrak{p}^k))$ . Now let us compute  $l(\sigma^{\mu}t\sigma^{-\mu})$  and  $l(\tau^{\mu}_{k\rho}t(\tau^{\mu}_{k\rho})^{-1})$ . We have  $\sigma^{\mu}t\sigma^{-\mu} = t$ ; hence  $l(\sigma^{\mu}t\sigma^{-\mu}) = l(t)$ ; hence for these

d elements  $\sigma^{\mu}$ ,  $l(\sigma^{\mu}t\sigma^{-\mu}) = \deg\{\delta\}_{\Gamma}$ . Therefore if we denote by  $R_{\mu}$   $(1 \le \mu \le d)$  the elements of  $P/\Gamma^0$  corresponding to  $\sigma^{\mu}$ , we have (i)(a) and (ii)(a). As for  $\tau^{\mu}_{ko}$ , we have

(128) 
$$y = \tau_{k\rho}^{\mu} t (\tau_{k\rho}^{\mu})^{-1} = \begin{pmatrix} a & \alpha_{k\rho} (a^{-1} - a) \pi^{-k} \\ 0 & a^{-1} \end{pmatrix};$$

hence if  $\deg\{\delta\}_{\Gamma} = |\operatorname{ord}_{\mathfrak{p}} a| > 0$ , we have  $l(y) = |\operatorname{ord}_{\mathfrak{p}} a| + k = \deg\{\delta\}_{\Gamma} + k$ . Also if  $\deg\{\delta\}_{\Gamma} = 0$  but the order of  $\delta$  (i.e., the order of  $a^2$  as a root of unity) is not a power of p, we have  $\operatorname{ord}_{\mathfrak{p}}(a^{-1} - a) = 0$ ; hence  $l(y) = k = \deg\{\delta\}_{\Gamma} + k$ . Finally if  $\delta$  is of p-power order, then  $l(y) = \operatorname{Max}(0, k - \operatorname{ord}_{\mathfrak{p}}(1 - a^2))$ . So there only remains to compute  $n'_k$  and  $\operatorname{ord}_{\mathfrak{p}}(1 - a^2)$ . For this purpose let  $\eta_{\nu} \in k_{\mathfrak{p}}$   $(0 \le \nu \le r - 1)$  be a primitive  $p^{r-\nu}$ -th root of unity. Then

$$\operatorname{ord}_{\mathfrak{p}}(1-\eta_{\nu}) = \operatorname{ord}_{\mathfrak{p}} p \cdot \operatorname{ord}_{p}(1-\eta_{\nu}) = c \frac{p^{r}-p^{r-1}}{p^{r-\nu}-p^{r-\nu-1}} = c p^{\nu}.$$

This shows that

$$n'_k = (\mathcal{U}_{\mathfrak{p}} : E(1 + \mathfrak{p}^k)) = (\mathcal{U}_{\mathfrak{p}} : (1 + \mathfrak{p}^k))|E \cap (1 + \mathfrak{p}^k)|/e = \frac{q^k - q^{k-1}}{e_0 p^{\nu}}$$

for  $cp^{\nu-1} < k \le cp^{\nu}$ , and  $n'_k = (q^k - q^{k-1})/e$  for  $cp^{r-1} < k$ .<sup>17</sup> Therefore, by using one index  $\mu'$  instead of  $\mu$  and  $\rho$ , and by denoting  $R_{k\mu'}$  the element of  $P/\Gamma^0$  corresponding to  $\tau_k^{\mu'} = \tau_{k\rho}^{\mu}$ , we arrive at the end of the proof.

Corollary. Let  $\gamma \in \Gamma$  be such that  $\gamma_{\mathbf{R}}$  is elliptic and that the centralizer  $\Gamma_{\gamma}$  is infinite. Let  $A_{l}\{\gamma\}_{\Gamma}$   $(l \geq 1)$  be as defined by (118). Then

(129) 
$$A_{l}\{\gamma\}_{\Gamma} = \begin{cases} 0 & l < \deg\{\gamma\}_{\Gamma}, \\ d/e & l = \deg\{\gamma\}_{\Gamma}, \\ d(q^{k} - q^{k-1})/e & \cdots & l = \deg\{\gamma\}_{\Gamma} + k, \ k \ge 1; \\ & \deg\{\gamma\}_{\Gamma} > 0 \\ & or \ if = 0, \gamma \ is \ not \ of \ p\text{-power order}. \\ dq^{cp^{\nu}}(q^{l} - q^{l-1})/e & \cdots & \deg\{\gamma\}_{\Gamma} = 0, \\ & \gamma \ is \ of \ order \ p^{r-\nu} \ (0 \le \nu \le r - 1). \end{cases}$$

where P is the element of  $\varphi(\Gamma)$  defined by the fixed point of  $\gamma_R$ , and  $d = \deg P$ , e = e(P), r = r(P), and c is as in Theorem 4.

Remark. This generalizes Lemma 3 (§13), since in Lemma 3,  $\Gamma$  is assumed to be torsion-free; hence  $e\{\delta\}_{\Gamma^0} = 1$ .

Proof. By the Corollary (ii) of Proposition 8, the set of all  $\Gamma^0$ -conjugacy classes contained in  $\{\gamma\}_{\Gamma}$  is in one-to-one correspondence with the set  $P/\Gamma^0$ . Now our corollary is a direct consequence of Theorem 4.

<sup>&</sup>lt;sup>17</sup>Here, for v = 0,  $cp^{v-1}$  should be replaced by 0.

**§31.**  $Q/\Gamma^0$  for  $Q \in Q_r(\Gamma)$ . Now we are going to study in detail the elements Q of  $Q(\Gamma)$ . For convenience' sake, we shall first deal with  $Q \in Q_r(\Gamma)$ , i.e.,  $Q \in Q(\Gamma)$  for which  $K_p/k_p$  is ramified. Thus, let  $Q = Q_z \in Q_r(\Gamma)$ , put  $e(Q) = p^{r(Q)}$ , and let  $Q/\Gamma^0$  be, as before, the set of all  $\Gamma^0$ -equivalence classes of points on  $\mathfrak S$  that are  $\Gamma$ -equivalent to z. We shall treat the two cases  $p \neq 2$  and p = 2 separately;

The case  $p \neq 2$ .

THEOREM 5  $(p \neq 2)$ . Let  $p \neq 2$ ,  $Q = Q_z \in Q_r(\Gamma)$ , and put e = e(Q), r = r(Q), so that  $|\Gamma_z| = e = p^r$ . Put  $\frac{1}{2}c(p^r - p^{r-1}) = \operatorname{ord}_p p$ . Then c is an odd integer, and

(i) we can parametrize the elements of  $Q/\Gamma^0$  in the following way;

(130) 
$$R_{k\mu} \qquad \left(k = 0, 1, 2, \dots; \ 1 \le \mu \le \frac{q^k}{p^{\nu_k}}\right)$$

where  $v_k$  is an integer defined by

(131) 
$$v_k = \begin{cases} 0 & \cdots 0 \le k \le \frac{1}{2}(c-1) \\ v & \cdots \frac{1}{2}(cp^{v-1}-1) < k \le \frac{1}{2}(cp^v-1) & (1 \le v \le r-1) \\ r & \cdots \frac{1}{2}(cp^{r-1}-1) < k. \end{cases}$$

(ii) Let  $z_{k\mu} \in \mathfrak{H}$  represent  $R_{k\mu}$ , and let  $\delta \in \Gamma_{z_{k\mu}}$  with  $\delta \neq 1$ . Let  $p^{r-\nu}$  be the order of  $\delta$ . Then

(132) 
$$l(\delta) = \text{Max}(0, k - \frac{1}{2}(cp^{\nu} - 1)).$$

In particular, the order of the group  $\Gamma_{z_{ku}} \cap \Gamma^0$  is given by  $p^{r-\nu_k}$ .

Proof. Let  $\zeta$  be a primitive  $p^r$ -th root of unity, and put  $K_{\mathfrak{p}} = k_{\mathfrak{p}}(\zeta)$ . Then  $K_{\mathfrak{p}}$  is a ramified quadratic extension of  $k_{\mathfrak{p}}$  (see §29). Since  $k_{\mathfrak{p}} \cap \mathbf{Q}_p(\zeta) = \mathbf{Q}_p(\zeta + \zeta^{-1})$ , we have  $(\zeta - \zeta^{-1})^2 \in k_{\mathfrak{p}}$  and  $K_{\mathfrak{p}} = k_{\mathfrak{p}}(\sqrt{(\zeta - \zeta^{-1})^2})$ . Since  $K_{\mathfrak{p}}/k_{\mathfrak{p}}$  is ramified and  $\mathfrak{p} \nmid 2$ ,

$$\operatorname{ord}_{\mathfrak{p}}(\zeta - \zeta^{-1})^{2} = \operatorname{ord}_{\mathfrak{p}} p \times \operatorname{ord}_{p}(\zeta - \zeta^{-1})^{2} = \frac{2 \operatorname{ord}_{\mathfrak{p}} p}{p^{r} - p^{r-1}} = c$$

must be an odd integer. Now let  $\pi$  be a prime element of  $k_p$  such that  $K_p = k_p(\sqrt{\pi})$ . Then  $a + b\sqrt{\pi}$   $(a, b \in k_p)$  is integral if and only if  $a, b \in O_p$ . Let  $\gamma$  be an element of  $\Gamma_z$  such that the eigenvalues of  $\gamma_p$  are  $\pm(\zeta, \zeta^{-1})$ , and let  $\delta = \gamma^n$   $(1 \le n \le p^r - 1)$  be any element  $(\ne 1)$  of  $\Gamma_z$ . Let  $\pm(\eta, \eta^{-1})$  be the eigenvalues of  $\delta_p$ , so that we may assume  $\eta = \zeta^n$ . Put  $\eta = a + b\sqrt{\pi}$   $(a, b \in O_p)$  and  $t' = \begin{pmatrix} a & b \\ \pi b & a \end{pmatrix}$ . Then there is some  $x' \in GL_2(k_p)$  such that  $x'^{-1}\delta_p x' = t'$  for all  $\delta \in \Gamma_z$   $(\delta \ne 1)$ . Since  $K_p/k_p$  is ramified,  $\operatorname{ord}_p(N_{K_p/k_p}K_p^\times) = \mathbb{Z}$ ; hence if  $X_{t'}$  is the centralizer of t' in  $GL_2(k_p)$ , we have  $(\det X_{t'})\mathcal{U}_p = k_p^\times$ ; hence there is some  $y \in X_{t'}$  such that  $\det y \in \mathcal{U}_p \det x'$ . Put  $\varepsilon = \det(x'y^{-1}) \in \mathcal{U}_p$ ,  $\omega = \begin{pmatrix} \varepsilon & 0 \\ 0 & 1 \end{pmatrix}$ , and  $x = x'y^{-1}\omega^{-1}$ , so that  $x \in G_p$  and  $x^{-1}\gamma_p x = \omega t'\omega^{-1} = \begin{pmatrix} a & b\varepsilon \\ \pi b\varepsilon^{-1} & a \end{pmatrix}$ . Call this element t and put  $T = x^{-1}\Gamma_{zp}x = \{t\}$ .

Now by the same argument as in the beginning of the proof of Theorem 4, we see immediately that it is enough to parametrize  $V\backslash G_p/T$  and for each VgT, to compute  $l(gtg^{-1})$ . Let  $x_{n\alpha}$  be as in (126). Then

(133) 
$$y = x_{n\alpha}tx_{n\alpha}^{-1} = \begin{pmatrix} a + b\varepsilon^{-1}\alpha\pi^{n+1}, & \pi b\varepsilon(\pi^{-2n-1} - \alpha^2\varepsilon^{-2}) \\ b\varepsilon^{-1}\pi^{2n+1}, & a - b\varepsilon^{-1}\alpha\pi^{n+1} \end{pmatrix}.$$

Hence

(134) 
$$l(y) = \begin{cases} \operatorname{Max}(0, 2l - \operatorname{ord}_{\mathfrak{p}} b) & \cdots n \geq 0, \operatorname{ord}_{\mathfrak{p}} b \geq -n; \\ \operatorname{Max}(0, 2l - 1 - \operatorname{ord}_{\mathfrak{p}} b) & \cdots \text{ otherwise;} \end{cases}$$

where  $l = l(x_{n\alpha})$ . Here note that

$$\operatorname{ord}_{\mathfrak{p}} b = \operatorname{ord}_{\mathfrak{p}} \frac{\eta - \eta^{-1}}{2\sqrt{\pi}} = \frac{1}{2}(cp^{\nu} - 1),$$

where  $p^{r-\nu}$  is the order of  $\delta$ . First (134) shows that if  $x_{n\alpha}$ ,  $x_{n'\alpha'}$  belong to the same  $V \setminus G_{\mathfrak{p}}/T$ coset and if  $n \geq 0$  and  $\operatorname{ord}_{\mathfrak{p}} \alpha \geq -n$  hold, then we have  $n' = n \geq 0$  and  $\operatorname{ord}_{\mathfrak{p}} \alpha' \geq -n'$ . In
fact if  $x_{n\alpha}tx_{n\alpha}^{-1} \in V$  for all  $t \in T$ , then  $x_{n'\alpha'} = x_{n\alpha}$ ; hence there is no problem. On the other
hand, if  $l(x_{n\alpha}tx_{n\alpha}^{-1}) > 0$  for some t, then  $l(x_{n\alpha}tx_{n\alpha}^{-1}) = 2l(x_{n\alpha}) - \operatorname{ord}_{\mathfrak{p}} b$ , and  $l(x_{n'\alpha'}tx_{n'\alpha'}^{-1}) =$   $l(x_{n\alpha}tx_{n\alpha}^{-1}) > 0$ . But since  $T \subset V$ , we have  $l(x_{n\alpha}) = l(x_{n'\alpha'})$ ; hence  $l(x_{n'\alpha'}tx_{n'\alpha'}^{-1}) = 2l(x_{n'\alpha'}) \operatorname{ord}_{\mathfrak{p}} b > 0$ . But by (134) this implies  $n' \geq 0$  and  $\operatorname{ord}_{\mathfrak{p}} \alpha' \geq -n'$ . But then  $n' = l(x_{n'\alpha'}) =$   $l(x_{n\alpha}) = n$ ; hence our assertion.

Now for each  $l \ge 0$ , let  $R_{2l,\mu}$   $(1 \le \mu \le n_{2l})$  be all the distinct double cosets  $Vx_{n\alpha}T$  with  $n = l \ge 0$  and  $\operatorname{ord}_{\mathfrak{p}} \alpha \ge -n$ ; and for each  $l \ge 1$ , let  $R_{2l-1,\mu}$   $(1 \le \mu \le n_{2l-1})$  be all the distinct double cosets  $Vx_{n'\alpha'}T$  with  $l(x_{n'\alpha'}) = l$  that are not any one of  $R_{2l,\mu}$ . Then by (134) and by the above formula for  $\operatorname{ord}_{\mathfrak{p}} b$ , it follows immediately that  $n_0 = 1$ ,  $n_k = \frac{q^k}{p^{\nu_k}}$  (k > 0), and that (132) holds.

The case p=2. This case is more delicate than the case  $p\neq 2$ . We begin with the following lemma.

LEMMA 17. Let  $\mathfrak{p}|2$ , and let  $\tau \in \mathcal{U}_{\mathfrak{p}}$ . Suppose that  $K_{\mathfrak{p}} = k_{\mathfrak{p}}(\sqrt{\tau})$  is a ramified quadratic extension, and put  $\kappa = \max_{u \in \mathcal{U}_{\mathfrak{p}}} \{ \operatorname{ord}_{\mathfrak{p}}(u^2 - \tau) \}$ . Then

- (i)  $\kappa$  is an odd integer satisfying  $1 \le \kappa \le \operatorname{ord}_{\mathfrak{p}} 4 1$ ;
- (ii) If  $0 \le k < \kappa$ , there is some  $u \in \mathcal{U}_p$  with  $\operatorname{ord}_p(u^2 \tau) = k$  if and only if k is even.
- (iii) For any  $u \in \mathcal{U}_{\mathfrak{p}}$ ,

$$\operatorname{ord}_{\mathfrak{p}}(u^2 - \tau) = \operatorname{ord}_{\mathfrak{P}}(u - \sqrt{\tau}) = \operatorname{ord}_{\mathfrak{P}}(u + \sqrt{\tau})$$

holds, where  $\mathfrak{P}$  is the prime factor of  $\mathfrak{p}$  in  $K_{\mathfrak{p}}$ .

PROOF. That  $\kappa \leq \operatorname{ord}_{\mathfrak{p}} 4 - 1$ : Let  $\kappa'$  be the critical exponent for the quadratic residues in  $k_{\mathfrak{p}}$ ; i.e., the largest exponent such that  $u \in \mathcal{U}_{\mathfrak{p}}$  is a square in  $\mathcal{U}_{\mathfrak{p}}$  if and only if it is a square mod  $\mathfrak{p}^{\kappa'}$ . Then, by the general estimation formula for  $\kappa'$ , we have

$$\kappa' \leq \left[\frac{\operatorname{ord}_{\mathfrak{p}} p}{p-1}\right] + \operatorname{ord}_{\mathfrak{p}} p + 1 = \operatorname{ord}_{\mathfrak{p}} 4 + 1.$$

Hence if  $u \in \mathcal{U}_p$  is a square mod 4p, then u is a square in  $\mathcal{U}_p$ . But since  $\tau$  is not a square we have  $\kappa < \kappa' \le \operatorname{ord}_p 4 + 1$ ; hence  $\kappa \le \operatorname{ord}_p 4$ . Now we shall show that there is no  $u \in \mathcal{U}_p$  with  $u^2 \equiv \tau \pmod{4}$ , which would prove  $\kappa \le \operatorname{ord}_p 4 - 1$ . Suppose on the contrary that we had  $u^2 \equiv \tau \pmod{4}$  for some u. Put  $u^{-2}\tau = 1 + 4a$   $(a \in O_p)$ . Then  $a \not\equiv b^2 + b \pmod{p}$  for any  $b \in O_p$ . In fact  $a \equiv b^2 + b \pmod{p}$  would imply  $\tau \equiv u^2(1 + 2b)^2 \pmod{4p}$ , which contradicts  $\kappa \le \operatorname{ord}_p 4$ . Consider the equation  $X^2 + X = a$ . Then this is irreducible mod p; hence it is also irreducible on  $k_p$  and its splitting field  $k_p(\sqrt{1+4a}) = k_p(\sqrt{\tau}) = K_p$  must be unramified, which contradicts our assumption. Therefore,  $u^2 \not\equiv \tau \pmod{4}$ ; hence  $\kappa \le \operatorname{ord}_p 4 - 1$ .

The rest of (i) and (iii). Let  $u \in \mathcal{U}_{\mathfrak{p}}$  and put  $k = \operatorname{ord}_{\mathfrak{p}}(u^2 - \tau)$ . Let  $\mathfrak{P}$  be the prime factor of  $\mathfrak{p}$  in  $K_{\mathfrak{p}}$ , so that  $\mathfrak{p} = \mathfrak{P}^2$ . Then

$$\operatorname{ord}_{\mathfrak{p}}(u^{2}-\tau)=\frac{1}{2}\{\operatorname{ord}_{\mathfrak{P}}(u-\sqrt{\tau})+\operatorname{ord}_{\mathfrak{P}}(u+\sqrt{\tau})\}=k;$$

hence either (a)  $\operatorname{ord}_{\mathfrak{P}}(u-\sqrt{\tau})\geq k$  or (b)  $\operatorname{ord}_{\mathfrak{P}}(u+\sqrt{\tau})\geq k$ . But  $\operatorname{ord}_{\mathfrak{P}}(2\sqrt{\tau})=\operatorname{ord}_{\mathfrak{P}}2=\operatorname{ord}_{\mathfrak{P}}4>\kappa\geq k$ ; hence (a) implies (b) and conversely. Therefore,  $\operatorname{ord}_{\mathfrak{P}}(u-\sqrt{\tau})=\operatorname{ord}_{\mathfrak{P}}(u+\sqrt{\tau})=k$ . (This settles (iii)). Now assume that k is even, and put  $u'=u+\pi^{k/2}\cdot\alpha$  ( $\alpha\in O_{\mathfrak{P}}$ ). Then  $\frac{u'-\sqrt{\tau}}{\pi^{k/2}}=\frac{u-\sqrt{\tau}}{\pi^{k/2}}+\alpha$ ; hence if we choose  $\alpha$  so that  $\alpha\equiv -\frac{u-\sqrt{\tau}}{\pi^{k/2}}\mod \mathfrak{P}$  (this is possible since  $K_{\mathfrak{P}}$  and  $k_{\mathfrak{P}}$  have the same residue class field), we have  $u'\equiv\sqrt{\tau}\mod\mathfrak{P}^{k+1}$ . But by  $k\leq\operatorname{ord}_{\mathfrak{P}}4-1$ , we have  $2\sqrt{\tau}\equiv 0\pmod{\mathfrak{P}^{k+1}}$ ; hence  $u'^2-\tau\equiv 0\pmod{\mathfrak{P}^{k+1}}$ ; hence  $\operatorname{ord}_{\mathfrak{P}}(u'^2-\tau)\geq k+1$ . This shows that if  $k=\operatorname{ord}_{\mathfrak{P}}(u^2-\tau)$  is even, then  $k<\kappa$ . Therefore  $\kappa$  must be odd. In particular,  $1\leq\kappa$ .

(ii) Take  $u_0 \in u_p$  such that  $\operatorname{ord}_p(u_0^2 - \tau) = \kappa$ . Let  $u \in \mathcal{U}_p$  with  $k = \operatorname{ord}_p(u^2 - \tau) < \kappa$ . Then

$$k = \operatorname{ord}_{p}(u^{2} - u_{0}^{2}) = \operatorname{ord}_{p}(u - u_{0}) + \operatorname{ord}_{p}(u + u_{0}).$$

But since (say)  $\operatorname{ord}_{\mathfrak{p}}(u-u_0) \leq \frac{k}{2} < \operatorname{ord}_{\mathfrak{p}} 2 = \operatorname{ord}_{\mathfrak{p}}(2u_0)$ , we have  $\operatorname{ord}_{\mathfrak{p}}(u+u_0) = \operatorname{ord}_{\mathfrak{p}}(u-u_0)$ ; hence  $k = 2 \operatorname{ord}_{\mathfrak{p}}(u-u_0) \equiv 0 \pmod{2}$ . Conversely, let k be even with  $0 \leq k < \kappa$ , and take  $u \in \mathcal{U}_{\mathfrak{p}}$  such that  $\operatorname{ord}_{\mathfrak{p}}(u-u_0) = \frac{k}{2}$ . Then it follows immediately that  $\operatorname{ord}_{\mathfrak{p}}(u^2-\tau) = k$ .  $\square$ 

Now let  $\mathfrak{p}|2$ , let  $Q=Q_z\in Q_r(\Gamma)$ , and let  $K_{\mathfrak{p}}$  be the corresponding ramified quadratic extension of  $k_{\mathfrak{p}}$ . Let  $\xi$  be an element of  $\Gamma_z$  of order 2. Then  $K_{\mathfrak{p}}$  is generated over  $k_{\mathfrak{p}}$  by the eigenvalues of  $\xi_{\mathfrak{p}}$ ; hence  $K_{\mathfrak{p}}=k_{\mathfrak{p}}(\sqrt{-1})$ . By the above lemma this shows that if  $Q_r(\Gamma)$  is non-empty, the number  $\kappa=\mathrm{Max}_{u\in\mathcal{U}_{\mathfrak{p}}}\,\mathrm{ord}_{\mathfrak{p}}(u^2+1)$  is a finite odd integer satisfying  $\kappa\leq\mathrm{ord}_{\mathfrak{p}}\,4-1$ .

Now we shall prove the following Theorem 5 (p = 2);

THEOREM 5 (p = 2). Let p = 2,  $Q = Q_z \in Q_r(\Gamma)$ , and put e = e(Q), r = r(Q), so that  $|\Gamma_z| = e = 2^r$ . Put  $2^{r-2}c = \operatorname{ord}_{\mathfrak{p}} 2$ ,  $\kappa = \operatorname{Max}_{u \in \mathcal{U}_{\mathfrak{p}}} \operatorname{ord}_{\mathfrak{p}} (u^2 + 1)$ . Then c is an even integer,  $\kappa$  is odd, and  $\operatorname{ord}_{\mathfrak{p}} 4 - c + 1 \le \kappa \le \operatorname{ord}_{\mathfrak{p}} 4 - 1$ . Moreover,

(i) we can parametrize the elements of  $Q/\Gamma^0$  in the following way;

(135) 
$$R_{k\mu} \qquad (k=0,1,2,\cdots;\ 1\leq \mu \leq \frac{q^k}{2^{\nu_k}}),$$

where  $v_k$  is an integer defined by

(136) 
$$v_{k} = \begin{cases} 0 & \cdots 0 \leq k \leq (\frac{\kappa}{2} - \operatorname{ord}_{\mathfrak{p}} 2) + \frac{1}{2}(c - 1), \\ v & \cdots (\frac{\kappa}{2} - \operatorname{ord}_{\mathfrak{p}} 2) + \frac{1}{2}(c 2^{\nu - 1} - 1) < k \leq (\frac{\kappa}{2} - \operatorname{ord}_{\mathfrak{p}} 2) + \frac{1}{2}(c 2^{\nu} - 1), \\ r & \cdots \frac{\kappa - 1}{2} < k. \end{cases}$$

(ii) Let  $z_{k\mu} \in \mathfrak{H}$  represent  $R_{k\mu}$ , and let  $\delta \in \Gamma_{z_{k\mu}}$  with  $\delta \neq 1$ . Let  $2^{r-\nu}$  be the order of  $\delta$ . Then

(137) 
$$l(\delta) = \text{Max}(0, \kappa - \frac{1}{2}(c2^{\nu} - 1) + \text{ord}_{\mathfrak{p}} 2 - \frac{\kappa}{2}).$$

In particular, the order of the group  $\Gamma_{z_{ku}} \cap \Gamma^0$  is given by  $2^{r-\nu_k}$ .

PROOF. Let  $K_{\mathfrak{p}}$  be the corresponding ramified extension of  $k_{\mathfrak{p}}$ . Then  $K_{\mathfrak{p}} = k_{\mathfrak{p}}(\sqrt{-1})$ , and  $K_{\mathfrak{p}}$  contains the group E of  $2^{r+1}$ -th roots of unity. This shows that c is an even integer. That  $\kappa$  is odd and  $\kappa \leq \operatorname{ord}_{\mathfrak{p}} 4 - 1$  is a direct consequence of Lemma 17. To prove  $\kappa \geq \operatorname{ord}_{\mathfrak{p}} 4 - c + 1 = (2^{r-1} - 1)c + 1$ , let  $\zeta \in E$  be a primitive  $2^{r+1}$ -th root of unity and put  $\zeta = a_0 + b_0 \sqrt{-1} (a_0, b_0 \in k_{\mathfrak{p}})$ . If r = 1, the assertion is trivial; so assume r > 1. Then

$$\operatorname{ord}_{\mathfrak{p}} b_0 = \operatorname{ord}_{\mathfrak{p}}(\zeta - \zeta^{-1}) - \operatorname{ord}_{\mathfrak{p}} 2 = -(2^{r-1} - 1)\frac{c}{2} < 0;$$

hence  $\operatorname{ord}_{\mathfrak{p}} a_0 = \operatorname{ord}_{\mathfrak{p}} b_0$ , and  $\sqrt{-1} \equiv -\frac{a_0}{b_0} \pmod{\mathfrak{p}^{(2^{r-1}-1)\frac{c}{2}}}$ . Therefore, by Lemma 17 (iii),  $\kappa \geq (2^{r-1}-1)c$ . But since  $\kappa$  is odd, we obtain  $\kappa \geq (2^{r-1}-1)c+1$ ; hence our assumption on  $\kappa$ .

Now there is an onto isomorphism  $\Gamma_z \to E/\pm 1$  such that if  $\delta \mapsto \pm \eta$ , then  $\pm \{\eta, \eta^{-1}\}$  are the eigenvalues of  $\delta_{\mathfrak{p}}$ . For each  $\delta \in \Gamma_z$ , put  $\eta = a + b\sqrt{-1}$   $(a, b \in k_{\mathfrak{p}})$  and  $t' = \pm \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G_{\mathfrak{p}}$ . Then as in the case of  $\mathfrak{p} \nmid 2$  we see easily that there exist some  $\varepsilon \in \mathcal{U}_{\mathfrak{p}}$ 

and  $x \in G_p$  such that  $t = x^{-1}\delta_p x = \begin{pmatrix} a & b\varepsilon \\ -b\varepsilon^{-1} & a \end{pmatrix}$  for all  $\delta \in \Gamma_z$ . Put  $T = x^{-1}\Gamma_{zp}x = \{t\}$ . Then our problem is reduced to parametrizing  $V \setminus G_p / T$ , and for each VgT computing  $l(gtg^{-1})$ . Now let  $x_{n\alpha}$  be as in (126). Then

(138) 
$$y = x_{n\alpha}tx_{n\alpha}^{-1} = \begin{pmatrix} a - \varepsilon^{-1}b\alpha\pi^{-n}, & \varepsilon b\pi^{-2n}(1 + \varepsilon^{-2}\alpha^2\pi^{2n}) \\ -\varepsilon^{-1}b\pi^{2n}, & a + \varepsilon^{-1}b\alpha\pi^{n} \end{pmatrix},$$

and  $\operatorname{ord}_{\mathfrak{p}} b = 2^{\nu-1}c - \operatorname{ord}_{\mathfrak{p}} 2$ , where  $2^{r-\nu}$  is the order of  $\delta$ . Put  $l = l(x_{n\alpha})$ , and  $m = m(x_{n\alpha}) = 0$  (if  $\operatorname{ord}_{\mathfrak{p}} \alpha \neq -n$ ),  $= \operatorname{Min}(4l, \operatorname{ord}_{\mathfrak{p}}(u^2 + 1))$  (if  $\operatorname{ord}_{\mathfrak{p}} \alpha = -n$  and  $u = \varepsilon^{-1}\alpha\pi^n$ ). Then by (138), we obtain directly

(139) 
$$l(y) = Max(0, 2l - m - ord_p b).$$

Moreover, by the definition of  $\kappa$ , we have  $0 \le m \le \min(4l, \kappa)$ , and by Lemma 17 (ii), m must be even unless  $m = \kappa$ .

Now for each integer k, let  $n'_k$  be the number of  $x_{n\alpha}$  such that  $2l - m + \frac{\kappa - 1}{2} = k$ . Then by a straightforward computation, we obtain  $n'_k = q^k$   $(k \ge 0)$ , = 0 (k < 0). Moreover if  $x_{n\alpha}$ ,  $x_{n'\alpha'}$  belong to the same  $V \setminus G_p/T$ -coset, then  $k(x_{n\alpha}) = k(x_{n'\alpha'})$ . In fact, if  $l(x_{n\alpha}tx_{n\alpha}^{-1}) = k(x_{n'\alpha'})$ 

<sup>&</sup>lt;sup>18</sup>In this case, n > 0 and l = n.

0 for all  $t \in T$ , then  $x_{n'\alpha'} = x_{n\alpha}$ ; hence there is no problem. If, on the other hand,  $l(x_{n\alpha}tx_{n\alpha}^{-1}) > 0$  for some t, then by (139),

$$l(x_{n\alpha}tx_{n\alpha}^{-1})=k(x_{n\alpha})-\frac{\kappa-1}{2}-\operatorname{ord}_{\mathfrak{p}}b>0.$$

But  $l(x_{n'\alpha'}tx_{n'\alpha'}^{-1}) = l(x_{n\alpha}tx_{n\alpha}^{-1}) > 0$ ; hence

$$l(x_{n'\alpha'}tx_{n'\alpha'}^{-1})=k(x_{n'\alpha'})-\frac{\kappa-1}{2}-\operatorname{ord}_{\mathfrak{p}}b;$$

hence  $k(x_{n\alpha}) = k(x_{n'\alpha'})$ . So, let  $n_k$  be the number of distinct  $Vx_{n\alpha}T$  such that  $k(x_{n\alpha}) = k$ . Then since the number of  $t \in T$  such that  $Vx_{n\alpha}t = Vx_{n\alpha}$  is  $2^{t-\nu_k}$  by (139), we obtain  $n_k = \frac{n'_k}{2^{\nu_k}} = \frac{q^k}{2^{\nu_k}}$  ( $k \ge 0$ ). Therefore, by putting  $R_{k\mu}$  ( $1 \le \mu \le n_k$ ) all the double cosets  $Vx_{n\alpha}T$  such that  $k(x_{n\alpha}) = k$ , we arrive at the end of the proof.

By Theorem 5, we obtain immediately:

Corollary. Let  $Q = Q_z \in Q_r(\Gamma)$ , put  $|\Gamma_z| = p^r$ , and let  $\gamma \in \Gamma_z$  with  $\gamma \neq 1$ . Then

(140) 
$$A_{l}\{\gamma\}_{\Gamma} = \begin{cases} \frac{1}{p^{\gamma}} q^{l + \frac{1}{2}(cp^{\gamma} - 1)} & \cdots p \neq 2, \\ \frac{1}{2^{\gamma}} q^{l + \frac{1}{2}(c2^{\gamma} - 1) + \frac{p}{2} - \operatorname{ord}_{\mathfrak{p}} 2} & \cdots p = 2, \end{cases}$$

where  $p^{r-\nu}$  is the order of  $\gamma$ ,  $c = \frac{2}{p^r - p^{r-1}}$  ord<sub>p</sub> p, and  $\kappa$  is as in Theorem 5 (p = 2).

§32.  $Q/\Gamma^0$  for  $Q \in Q_u(\Gamma)$ .

THEOREM 6. We can decompose the set  $Q_u(\Gamma)$  into the disjoint union

(141) 
$$Q_u(\Gamma) = Q_u^+(\Gamma) \cup Q_u^-(\Gamma) \qquad (disjoint)$$

in a unique way so that the following assertions (i)  $\sim$  (ii) are satisfied.

(i) For each  $Q \in Q_u(\Gamma)$ , put  $e(Q) = e = e_0 p^r$  with  $e_0 \not\equiv 0 \pmod{p}$ . Put  $\operatorname{ord}_{\mathfrak{p}} p = c(p^r - p^{r-1})$ , so that c is a positive integer and  $c \equiv 0 \pmod{2}$  if  $\mathfrak{p}|2^{19}$ . Then we can parametrize the elements of  $Q/\Gamma^0$  as

(142) 
$$R_{k\mu} \begin{cases} k = 0, 2, 4, \cdots, & \text{if } Q \in Q_{u}^{+}(\Gamma), \\ = 1, 3, 5, \cdots, & \text{if } Q \in Q_{u}^{-}(\Gamma); \\ 1 \leq \mu \leq \begin{cases} 1 & \cdots k = 0 \\ \frac{q^{k} + q^{k-1}}{e_{0}p^{\nu_{k}}} & \cdots k > 0; \end{cases}$$

where  $v_k$  is an integer defined by <sup>20</sup>

(143) 
$$v_k = \begin{cases} 0 & \cdots 0 < k \le c, \\ v & \cdots cp^{\nu-1} < k \le cp^{\nu} \quad (1 \le \nu \le r-1) \\ r & \cdots cp^{r-1} < k. \end{cases}$$

<sup>&</sup>lt;sup>19</sup>Since if  $\mathfrak{p}|2$ , then  $K_{\mathfrak{p}}$  contains primitive  $2^{r+1}$ -th root of unity.

<sup>&</sup>lt;sup>20</sup>Thus if r = 0, then  $v_k = 0$  for all k > 0.

(ii) Let  $z_{k\mu} \in \mathfrak{H}$  represent  $R_{k\mu}$  and let  $\delta \in \Gamma_{z_{k\mu}}$  with  $\delta \neq 1$ . Then

(144) 
$$l(\delta) = \begin{cases} k & \cdots \text{ if the order of } \delta \text{ is} \\ & \text{not a power of } p, \\ \max(0, k - cp^{\nu}) & \cdots \text{ if the order of } \delta \text{ is} \\ & p^{r-\nu} & (0 \le \nu \le r - 1). \end{cases}$$

In particular, the order of the group  $\Gamma_{z_{ku}} \cap \Gamma^0$  is given by e (if k = 0), and by  $p^{r-v_k}$  (if k > 0).

PROOF. Put  $K_{\mathfrak{p}} = k_{\mathfrak{p}}(\sqrt{\tau})$  ( $\tau \in \mathcal{U}_{\mathfrak{p}}$ ). Then since  $K_{\mathfrak{p}}/k_{\mathfrak{p}}$  is unramified, the basis 1,  $\sqrt{\tau}$  of  $K_{\mathfrak{p}}/k_{\mathfrak{p}}$  has the following properties;

- (i) if  $p \nmid 2$ ,  $a + b \sqrt{\tau}$   $(a, b \in k_p)$  is integral if and only if a, b are so, and  $\tau$  is a quadratic non-residue mod p;
- (ii) if  $\mathfrak{p}|2$ ,  $\tau$  is a quadratic residue mod 4 but non-residue mod  $4\mathfrak{p}$  (see the proof of Lemma 17) <sup>21</sup>; hence we may assume  $\tau \equiv 1 \pmod{4}$ . Then  $\frac{1}{2}(a+b\sqrt{\tau})$   $(a, b \in k_{\mathfrak{p}})$  is integral if and only if a, b are integral and  $a \equiv b \pmod{2}$ .

Now let E be the group of all 2e-th roots of 1 contained in  $K_p$ . Then there is an onto isomorphism  $\Gamma_z \to E/\pm 1$  such that if  $\delta \mapsto \pm \eta$ , then  $\pm \{\eta, \eta^{-1}\}$  are the eigenvalues of  $\delta_p$ .

For each  $\delta \in \Gamma_z$  put  $\eta = a + b\sqrt{\tau}$   $(a, b \in k_p)$  and  $t = \begin{pmatrix} a & b \\ b\tau & a \end{pmatrix} \in G_p$ . Then there is some

$$x' \in PL_2(k_p)$$
 such that  $x'^{-1}\delta_p x' = t$  (for all  $\delta \in \Gamma_z$ ). Put  $\omega = \begin{pmatrix} 0 & \pi \\ 1 & 0 \end{pmatrix}$  so that

$$PL_2(k_{\mathfrak{p}}) = G_{\mathfrak{p}} \cdot PL_2(O_{\mathfrak{p}}) \cup G_{\mathfrak{p}}\omega PL_2(O_{\mathfrak{p}}).$$

Since the centralizer  $X_t$  of t in  $PL_2(k_p)$  is identified with  $K_p^{\times}/k_p^{\times}$  in a natural manner, and since  $K_p/k_p$  is unramified and hence  $N_{K_p/k_p}K_p^{\times}\supset \mathcal{U}_p$ , we have  $\det X_t\supset \det PL_2(O_p)$ ; hence we can replace x' by either  $x\in G_p$  or by  $x\omega$   $(x\in G_p)$ . Therefore, either of the following two cases may happen:

(145) 
$$\begin{cases} (\text{Case 1}) & \exists x \in G_{\mathfrak{p}}; x^{-1} \delta_{\mathfrak{p}} x = \begin{pmatrix} a & b \\ b\tau & a \end{pmatrix} = t & (\forall \delta \in \Gamma_{z}), \\ (\text{Case 2}) & \exists x \in G_{\mathfrak{p}}; x^{-1} \delta_{\mathfrak{p}} x = \begin{pmatrix} a & b\tau\pi \\ b\pi^{-1} & a \end{pmatrix} = t' & (\forall \delta \in \Gamma_{z}). \end{cases}$$

However, since  $\det X_t = N_{K_{\mathfrak{p}}/k_{\mathfrak{p}}} K_{\mathfrak{p}}^{\times}$  does not contain prime elements of  $k_{\mathfrak{p}}$ , only one of the two cases can happen.

Case 1. Put  $T = x^{-1}\Gamma_{zp}x = \{t\}$ . Then our problem is to parametrize  $V\backslash G_{\mathfrak{p}}/T$ , and for each VgT, to compute  $l(gtg^{-1})$ . Let  $x_{n\alpha}$  be as in (126). Then,

(146) 
$$y = x_{n\alpha} t x_{n\alpha}^{-1} = \begin{pmatrix} a + b \tau \alpha \pi^n, & b \pi^{-2n} (1 - \alpha^2 \pi^{2n} \tau) \\ b \tau \pi^{2n}, & a - b \tau \alpha \pi^n \end{pmatrix}.$$

<sup>&</sup>lt;sup>21</sup>That  $\tau$  is a quadratic residue mod 4 follows from the argument used in the proof of Lemma 17 combined with the fact that the unramified quadratic extension is unique.

Put  $l = l(x_{n\alpha})$  and now assume that  $t \neq 1$ . Then we can check by a direct computation <sup>22</sup> that

(147) 
$$l(y) = \text{Max}(0, 2l - 2m - \text{ord}_{n} b, 2l - \text{ord}_{n} 4 - \text{ord}_{n} b),$$

where  $m = m(Vx_{n\alpha})$  is defined as follows:

- (i) if ord<sub>p</sub>  $\alpha \neq -n$ , put m = 0;
- (ii) if  $\operatorname{ord}_{\mathfrak{p}} \alpha = -n$  (then n > 0, l = n), put  $u = \alpha \pi^n$  (so that u runs over  $\mathcal{U}_{\mathfrak{p}} \mod \mathfrak{p}^{2l}$ ) and put  $m = \operatorname{ord}_{\mathfrak{p}}(u 1)$ .

Here we put m = 2l when  $u \equiv 1 \pmod{\mathfrak{p}^{2l}}$ . (Note, in computing out (147), that we have  $\operatorname{ord}_{\mathfrak{p}}(1 - u^2\tau) = 2m$  if  $m \leq \operatorname{ord}_{\mathfrak{p}} 2$ , and  $= \operatorname{ord}_{\mathfrak{p}} 4$  if  $m \geq \operatorname{ord}_{\mathfrak{p}} 2$ .) Moreover, we have

$$\operatorname{ord}_{\mathfrak{p}}(2b) = \begin{cases} \operatorname{ord}_{\mathfrak{p}}(\eta - \eta^{-1}) = 0 & \text{(if the order of } \delta \text{ is not a power of } p), \\ cp^{\nu} & \text{(if the order of } \delta \text{ is } p^{r-\nu}, \text{ with } 0 \leq \nu \leq r-1). \end{cases}$$

Now put

(148) 
$$k' = \text{Max}(l - m, l - \text{ord}_{p} 2), \qquad k = 2k' + \text{ord}_{p} 2.$$

Then since  $2k' \ge (l-m) + (l-\operatorname{ord}_{\mathfrak{p}} 2) \ge -\operatorname{ord}_{\mathfrak{p}} 2$ , we have  $k \ge 0$  and  $k \equiv \operatorname{ord}_{\mathfrak{p}} 2 \pmod{2}$ . By (147), we have

(149) 
$$l(y) = \text{Max}(0, k - \text{ord}_{p}(2b))$$

$$= \begin{cases} k & \text{order of } \delta \text{ is not a power of } p, \\ \text{Max}(0, k - cp^{\nu}) & \text{order of } \delta \text{ is } p^{r-\nu} \text{ } (0 \le \nu \le r - 1). \end{cases}$$

Now for a given integer  $k \ge 0$  with  $k \equiv \operatorname{ord}_{\mathfrak{p}} 2 \pmod{2}$ , let  $n'_k$  be the number of distinct  $Vx_{n\alpha}$  for which (148) (and hence also (149)) holds. Then by a straightforward computation we obtain  $n'_0 = 1$  or 0 according to  $\operatorname{ord}_{\mathfrak{p}} 2 \equiv 0$  or  $\equiv 1 \pmod{2}$ , and  $n'_k = q^k + q^{k-1}$  (k > 0,  $k \equiv \operatorname{ord}_{\mathfrak{p}} 2 \pmod{2}$ ). Now we can show exactly in the same manner as in the proof of Theorem 5 (p = 2) that k, a function of  $x_{n\alpha}$ , depends only on the double coset  $Vx_{n\alpha}T$ . So, let  $n_k$  be the number of distinct  $Vx_{n\alpha}T$  for which (148) holds. Then since  $Vx_{n\alpha}t = Vx_{n\alpha}$  if and only if l(y) = 0, we can obtain easily by (149) that  $n_0 = n'_0$ ,  $n_k = \frac{n'_k}{e_0 p'_k}$  (k > 0), where  $v_k$  is given by (143). Thus if we denote by

$$R_{k\mu}$$
  $\left(k \ge 0, \ k \equiv \text{ord}_{p} \ 2 \pmod{2}; \quad 1 \le \mu \le \begin{cases} 1 & (k=0) \\ \frac{q^{k}+q^{k-1}}{e_{0}p^{\nu_{k}}} & (k>0) \end{cases}\right)$ 

all the distinct  $Vx_{n\alpha}T$  with  $k(x_{n\alpha}) = k$ , then we have (144) for such  $R_{k\mu}$ .

Case 2. This case is treated exactly in the same manner, and the result is as follows. Put  $y' = x_{n\alpha}t'x_{n\alpha}^{-1}$ . Then, for  $t' \neq 1$ , we have

$$l(y') = \text{Max}(0, 2l - 2m' - 1 - \text{ord}_{p} b, 2l - \text{ord}_{p} 4 - 1 - \text{ord}_{p} b)$$

where m' is given as follows:

- (i) if ord,  $\alpha + n 1 < 0$ , put m' = -1;
- (ii) if ord<sub>p</sub>  $\alpha + n 1 > 0$ , put m' = 0;

Note that  $a + b\tau\alpha\pi^n = \eta + b\tau(\alpha\pi^n - 1)$ ; hence  $\operatorname{ord}_p(a + b\tau\alpha\pi^n)$  is either  $\geq 0$  or  $= \operatorname{ord}_p\{b(\alpha\pi^n - 1)\}$ .

(iii) and if  $\operatorname{ord}_{\mathfrak{p}} \alpha + n - 1 = 0$  (then n > 0, l = n), then put  $u = \alpha \pi^{n-1}$  (so that u runs over  $\mathcal{U}_{\mathfrak{p}} \mod \mathfrak{p}^{2l-1}$ ) and put  $m' = \operatorname{ord}_{\mathfrak{p}}(u - 1)$ .

Here we put m = 2l - 1 when  $u \equiv 1 \mod p^{2l-1}$ ). Put

$$k' = \text{Max}(l - m', l - \text{ord}_{v} 2), \qquad k = 2k' + \text{ord}_{v} 2 - 1 \ge 0,$$

so that  $l(y') = \text{Max}(0, k - \text{ord}_{p}(2b))$ . Then k depends only on  $Vx_{n\alpha}T'$  (where  $T' = \{t'\}$ ), and for each  $k \ge 0$  with  $k \equiv \text{ord}_{p} 2 - 1 \pmod{2}$ , the number  $n_k$  of distinct  $Vx_{n\alpha}T'$  such that  $k(Vx_{n\alpha}T') = k$  is given by

$$n_0 = 1$$
 (if ord<sub>p</sub>  $2 \equiv 1 \pmod{2}$ ),  $n_k = \frac{q^k + q^{k-1}}{e_0 p^{\nu_k}}$   $(k > 0, k \equiv \text{ord}_p 2 - 1 \pmod{2})$ .

Thus denoting by

$$R_{k\mu} \quad \left(k \ge 0, \ k \equiv \operatorname{ord}_{\mathfrak{p}} 2 - 1 \pmod{2}; \quad 1 \le \mu \le \begin{cases} 1 & (k = 0) \\ \frac{q^k + q^{k-1}}{e_0 p^{\nu_k}} & (k > 0) \end{cases}\right)$$

all the distinct  $Vx_{n\alpha}T'$  with  $k(x_{n\alpha}) = k$ , we have (144) for such  $R_{k\mu}$ .

Now let  $Q_u^+(\Gamma)$  be the set of all  $Q \in Q_u(\Gamma)$  which belong to Case 1 (resp. Case 2) according to  $\operatorname{ord}_{\mathfrak{p}} 2 \equiv 0 \pmod{2}$  (resp.  $\equiv 1 \pmod{2}$ ), and let  $Q_u^-(\Gamma)$  be that of all Q which belong to Case 2 (resp. Case 1) according to  $\operatorname{ord}_{\mathfrak{p}} 2 \equiv 0 \pmod{2}$  (resp.  $\equiv 1 \pmod{2}$ ).

(150) 
$$\begin{array}{c|cccc} & \text{Case 1} & \text{Case 2} \\ & \text{ord}_{\mathfrak{p}} \, 2 \equiv 0 \pmod{2} & Q_{\mathfrak{u}}^{+}(\Gamma) & Q_{\mathfrak{u}}^{-}(\Gamma) \\ & \text{ord}_{\mathfrak{p}} \, 2 \equiv 1 \pmod{2} & Q_{\mathfrak{u}}^{-}(\Gamma) & Q_{\mathfrak{u}}^{+}(\Gamma) \end{array}$$

Then by what we have shown, Theorem 6 (i) (ii) holds for this definition of  $Q_u^+(\Gamma)$  and  $Q_u^-(\Gamma)$ . On the other hand, it is clear that the decomposition (141) is characterized by the equality (144) (even if  $e_0 = 1$ ).

COROLLARY. Let  $Q = Q_z \in Q_u(\Gamma)$  and let  $\gamma \in \Gamma_z$  with  $\gamma \neq 1$ . Put  $e(Q) = e = e_0 p^r$  with  $e_0 \not\equiv 0 \pmod{p}$ , and let c be as in Theorem 6. Then

(i) if 
$$Q \in Q_u^+(\Gamma)$$
,

(151) 
$$A_{l}\{\gamma\}_{\Gamma} = \begin{cases} \frac{1}{e}(q^{l} + q^{l-1}) & \cdots \text{ the order of } \gamma \text{ is not} \\ & a \text{ power of } p \text{ ; } l \text{ : even,} \\ 0 & \cdots \text{ the order of } \gamma \text{ is not} \\ & a \text{ power of } p \text{ ; } l \text{ : odd,} \\ \frac{1}{e}q^{cp^{\nu}}(q^{l} + q^{l-1}) & \cdots \text{ the order of } \gamma \text{ is } p^{r-\nu} \text{ ;} \\ & cp^{\nu} \equiv l \pmod{2}, \\ 0 & \cdots \text{ the order of } \gamma \text{ is } p^{r-\nu} \text{ ;} \\ & cp^{\nu} \not\equiv l \pmod{2}. \end{cases}$$

(ii) if  $Q \in Q_u^-(\Gamma)$ ,

(152) 
$$A_{l}\{\gamma\}_{\Gamma} = \begin{cases} 0\\ \frac{1}{e}(q^{l} + q^{l-1})\\ 0 \end{cases}; \text{ the same condition}\\ (same order) \text{ as above.} \end{cases}$$

§33. The results of §32 suggest us to consider not only the group  $\Gamma^0$  and the length  $l(\gamma)$  but also the following group  $\Gamma^{0'}$  and the length  $l'(\gamma)$ . Fix any element  $\omega \in V\begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}V$ , and put

(153) 
$$\begin{cases} V' = \omega^{-1}V\omega, & T_{\mathfrak{p}}^{l'} = V'\begin{pmatrix} \pi^{l} & 0\\ 0 & \pi^{-l} \end{pmatrix}V' = \omega^{-1}T_{\mathfrak{p}}^{l}\omega, \\ \Gamma^{0'} = \Gamma \cap (G_{\mathbb{R}} \times V'), & T^{l'} = \Gamma \cap (G_{\mathbb{R}} \times T_{\mathfrak{p}}^{l'}) & (l \ge 0). \end{cases}$$

Further, put l'(x) = l for  $x \in T_{\mathfrak{p}}^{l'}$ , and  $l'(\gamma) = l$  for  $\gamma \in T^{l'}$ . Note here that for any  $x \in PL_2(k_{\mathfrak{p}})$ ,  $x^{-1}Vx$  is conjugate in  $G_{\mathfrak{p}}$  to either V or V'; hence up to  $\Gamma$ -conjugacy, it is enough to consider only the two functions  $l(\gamma)$  and  $l'(\gamma)$ .

Theorem 4'. Theorem 4 is also valid if we replace  $\Gamma^0$  by  $\Gamma^{0'}$  and  $l(\delta)$  by  $l'(\delta)$ .

Theorem 5'. Theorem 5 is also valid if we replace  $\Gamma^0$  by  $\Gamma^{0'}$  and  $l(\delta)$  by  $l'(\delta)$ .

PROOF. They are reduced to the same problems (as Theorem 4 resp. 5) at the first steps of imitating the proofs of Theorem 4 resp. 5. Namely, they are also reduced to the problems of parametrizing  $V\backslash G_\mathfrak{p}/T$  and for each VgT, computing  $l(gtg^{-1})$  (not  $l'(gtg^{-1})$ ). The reason is that if  $X_T$  is the centralizer of T in  $PL_2(k_\mathfrak{p})$ , then  $X_T$  contains an element  $\xi$  for which  $\operatorname{ord}_\mathfrak{p}(\det \xi) \equiv 1 \pmod 2$ . (This is in fact the case, since in the case of Theorem 4,  $X_T$  is the diagonal subgroup of  $PL_2(k_\mathfrak{p})$ , and in the case of Theorem 5,  $X_T$  is identified with  $K_\mathfrak{p}^{\times}/k_\mathfrak{p}^{\times}$ , but since  $K_\mathfrak{p}/k_\mathfrak{p}$  is ramified, there is some  $\xi \in K_\mathfrak{p}$  such that  $\operatorname{ord}_\mathfrak{p} N_{K_\mathfrak{p}/k_\mathfrak{p}}(\xi) \equiv 1 \pmod 2$ .)

On the other hand, as for Theorem 6, the circumstance is quite different. In fact, we obtain an "opposite" result, as follows.

THEOREM 6'. Theorem 6 is also valid if we replace  $\Gamma^0$  by  $\Gamma^{0'}$ ,  $l(\delta)$  by  $l'(\delta)$  and if we invert  $Q_u^+(\Gamma)$  and  $Q_u^-(\Gamma)$ .

**Proof.** In the proof of Theorem 6, the two cases of (145) appear inverted for  $l'(\delta)$ .  $\Box$ 

§34. The signatures of  $\Gamma_{\mathbf{R}}^0$  and  $\Gamma_{\mathbf{R}}^{0'}$ . Let  $\Delta$  be any fuchsian group, let g be the genus of  $\mathfrak{H}/\Delta$ , let s be the number of cusps of  $\Delta$  (counted up to  $\Delta$ -equivalence), and let  $e_1, \dots, e_t$ 

be the orders of the stabilizers of elliptic points of  $\Delta$  (counted up to  $\Delta$ -equivalence). In this situation, the data

(154) 
$$\{g; \underbrace{\infty, \cdots, \infty}_{s}; e_1, \cdots, e_t\}$$

is called the signature of  $\Delta$ . It is well-known that

(155) 
$$v(\Delta) = \frac{1}{2\pi} \int_{\Delta \setminus S} \frac{dxdy}{y^2} = 2g - 2 + s + \sum_{i=1}^{t} (1 - \frac{1}{e_i}) > 0,$$

where  $x + iy \in \mathfrak{H}(x, y \in \mathbf{R})$ .

Now let us consider the signatures of  $\Gamma^0_{\mathbf{R}}$  and  $\Gamma^0_{\mathbf{R}}$ . First, since  $(V:V\cap V')=(V':V\cap V')=q+1$ , we have  $(\Gamma^0_{\mathbf{R}}:\Gamma^0_{\mathbf{R}}\cap\Gamma^0_{\mathbf{R}}')=(\Gamma^0_{\mathbf{R}}:\Gamma^0_{\mathbf{R}}\cap\Gamma^0_{\mathbf{R}}')$ ; hence

(156) 
$$v(\Gamma_{\mathbf{R}}^{0}) = v(\Gamma_{\mathbf{R}}^{0}').$$

Let

(157) 
$$\{g; \underbrace{\infty, \cdots, \infty}_{s}; e_{1}, \cdots, e_{a}; e_{11}, \cdots, e_{1b}; e_{21}, \cdots, e_{2c}\}$$

be the signature of  $\Gamma_{\mathbf{R}}^0$ , where  $\{e_1, \dots, e_a\}$  resp.  $\{e_{11}, \dots, e_{1b}\}$  resp.  $\{e_{21}, \dots, e_{2c}\}$  are associated with those elliptic points z of  $\Gamma_{\mathbf{R}}^0$  that belong to  $\wp(\Gamma)$  resp.  $Q_u(\Gamma)$  resp.  $Q_r(\Gamma)$ . In the same manner, denote by

$$\{g'; \underbrace{\infty, \cdots, \infty}_{s'}; e'_{1}, \cdots, e'_{a'}; e'_{11}, \cdots, e'_{1b'}; e'_{21}, \cdots, e'_{2c'}\}$$

the signature of  $\Gamma_{\mathbf{R}}^{0}$ .

Then by the corollary of Proposition 7 (§26), we have

$$(158) s = s' = \sum_{P \in \wp_{\infty}(\Gamma)} \deg P,$$

and by Theorems 4, 4',

$$a = a';$$

(159) 
$$\{e_1, \dots, e_a\} = \{e'_1, \dots, e'_{a'}\}$$

$$= \{\underbrace{e(P), \dots, e(P)}_{\deg P}; \underbrace{p^{r(P)-\nu}, \dots, p^{r(P)-\nu}}_{a(P,\nu)}; (0 \le \nu \le r(P)-1)\}_{P \in \wp(\Gamma), e(P)>1}$$

with

(160) 
$$a(P,\nu) = \begin{cases} \frac{\deg P}{e_0(P)p^{\nu}} (q^{cp^{\nu}} - q^{cp^{\nu-1}}) & \cdots \nu > 0, \\ \frac{\deg P}{e_0(P)} (q^c - 1) & \cdots \nu = 0, \end{cases}$$

where  $e(P) = e_0(P)p^{r(P)}$  ( $e_0(P) \not\equiv 0 \pmod{p}$ ), and c = c(P) is as in Theorem 4. In particular, we see that e(P) = 1 holds for almost all  $P \in \wp(\Gamma)$ . Moreover, by Theorems 5, 5', we obtain

(161) 
$$c = c'; \quad \{e_{21}, \dots, e_{2c}\} = \{e'_{21}, \dots, e'_{2c'}\}$$

$$= \{\underbrace{p^{r(Q)-\nu}, \dots, p^{r(Q)-\nu}}_{a(Q,\nu)}; (0 \le \nu \le r(Q) - 1)\}_{Q \in Q_r(\Gamma)}$$

where  $e(Q) = p^{r(Q)}$ , and

(162) 
$$a(Q, \nu) = \begin{cases} \frac{1}{p^{\nu}} \frac{q^{\frac{1}{2}(cp^{\nu}+1)} - q^{\frac{1}{2}(cp^{\nu}-1}+1)}{q-1} & \cdots p \nmid 2, \nu > 0, \\ \frac{q^{\frac{1}{2}(c+1)} - 1}{q-1} & \cdots p \nmid 2, \nu = 0, \\ \frac{1}{2^{\nu}} q^{\frac{\kappa}{2} - \operatorname{ord}_{p} 2} \frac{q^{\frac{1}{2}(c2^{\nu}+1)} - q^{\frac{1}{2}(c2^{\nu}-1}+1)}{q-1} & \cdots p \mid 2, \nu > 0, \\ \frac{q^{\frac{\kappa}{2} - \operatorname{ord}_{p} 2 + \frac{1}{2}(c+1)} - 1}{q-1} & \cdots p \mid 2, \nu = 0. \end{cases}$$

Here, c = c(Q) is as in Theorem 5. In particular,  $Q_r(\Gamma)$  is finite. Therefore, by (156), (158), (159) and (161), we obtain

(163) 
$$\frac{1}{2} \sum_{i=1}^{b} (1 - \frac{1}{e_{1i}}) - \frac{1}{2} \sum_{j=1}^{b'} (1 - \frac{1}{e'_{1j}}) = g' - g.$$

As for  $e_{1i}$  and  $e'_{1i}$ , we obtain by Theorems 6, 6':

$$\{e_{11}, \dots, e_{1b}\} = \{e(Q); \ p^{r(Q)-\nu}, \dots, p^{r(Q)-\nu} \ (0 \le \nu \le r(Q) - 1)\}_{Q \in Q_{u}^{+}(\Gamma)}$$

$$\cup \{\underbrace{p^{r(Q)-\nu}, \dots, p^{r(Q)-\nu}}_{b(Q,\nu)} (0 \le \nu \le r(Q) - 1)\}_{Q \in Q_{u}^{-}(\Gamma)}$$

$$(164)$$

$$\{e'_{11}, \dots, e'_{1b'}\} = \{\widehat{p^{r(Q)-\nu}, \dots, p^{r(Q)-\nu}} \ (0 \le \nu \le r(Q) - 1)\}_{Q \in Q_{u}^{+}(\Gamma)}$$

$$\cup \{e(Q); \ \underbrace{p^{r(Q)-\nu}, \dots, p^{r(Q)-\nu}}_{a(Q,\nu)} \ (0 \le \nu \le r(Q) - 1)\}_{Q \in Q_{u}^{-}(\Gamma)},$$

where

$$a(Q, \nu) = \begin{cases} \frac{1}{e_0(Q)p^{\nu}} \frac{q^{2(\frac{ep^{\nu}}{2})+1} - q^{2(\frac{ep^{\nu}-1}{2})+1}}{q-1} & \cdots \nu > 0, \\ \frac{1}{e_0(Q)} \frac{q^{2(\frac{e}{2})+1} - q}{q-1} & \cdots \nu = 0, \end{cases}$$

$$b(Q, \nu) = \begin{cases} \frac{1}{e_0(Q)p^{\nu}} \frac{q^{2(\frac{ep^{\nu}+1}{2})} - q^{2(\frac{ep^{\nu}-1}-1)}}{q-1} & \cdots \nu > 0, \\ \frac{1}{e_0(Q)} \frac{q^{2(\frac{ep^{\nu}-1}{2})} - q}{q-1} & \cdots \nu = 0. \end{cases}$$

Here, c=c(Q) is as in Theorem 6. However, we do not know at present whether  $\{e(Q)\}_{Q\in Q_w^*(\Gamma)}$  and  $\{e(Q)\}_{Q\in Q_w^*(\Gamma)}$ , or  $\{e_{11},\cdots,e_{1b}\}$  and  $\{e_{11}',\cdots,e_{1b}'\}$ , or g and g' are always equal. (We conjecture that they are equal. No counterexamples are known.)

At any rate, by (164),  $Q_u(\Gamma) = Q_u^+(\Gamma) \cup Q_u^-(\Gamma)$  is finite; hence  $Q(\Gamma) = Q_u(\Gamma) \cup Q_r(\Gamma)$  is also finite.

The following formulae, which are obtained directly by the above results, are used later.

(166) 
$$\sigma = \sum_{i=1}^{a} (1 - \frac{1}{e_i})$$

$$= \sum_{P \in o(\Gamma)} \deg P \left\{ 1 - \frac{1}{e_0(P)} + \frac{1}{e(P)} \sum_{\nu=1}^{r(P)} (p^{\nu} - p^{\nu-1}) q^{\frac{\operatorname{ord}_{p} p}{p^{\nu} - p^{\nu-1}}} \right\},$$

(167) 
$$\tau_{r} = (q-1) \sum_{i=1}^{c} (1 - \frac{1}{e_{2i}}) + \sum_{Q \in Q_{r}(\Gamma)} (1 - \frac{1}{e(Q)})$$

$$= \sum_{Q \in Q_{r}(\Gamma)} \frac{1}{e(Q)} \sum_{\nu=1}^{r(Q)} (p^{\nu} - p^{\nu-1}) q^{\frac{\operatorname{ord}_{p} p}{p^{\nu} - p^{\nu-1}} + \frac{1}{2}} \times \begin{cases} 1 & \cdots p \nmid 2, \\ q^{\frac{e}{2} - \operatorname{ord}_{p} 2} & \cdots p \mid 2, \end{cases}$$

where  $\kappa = \text{Max}_{u \in u_p} \text{ ord}_p(u^2 + 1)$  (for  $\mathfrak{p}|2$ , if  $Q_r(\Gamma) \neq \phi$ ).<sup>23</sup>

(168) 
$$\tau_{u} = (q-1) \sum_{i=1}^{b} (1 - \frac{1}{e_{1i}}) + \sum_{Q \in Q_{u}(\Gamma)} (1 - \frac{1}{e(Q)})$$

$$= q \sum_{Q \in Q_{u}^{+}(\Gamma)} \left\{ 1 - \frac{1}{e_{0}(Q)} + \frac{1}{e(Q)} \sum_{\nu=1}^{r(Q)} (p^{\nu} - p^{\nu-1}) q^{2\left[\frac{\text{ord}_{p} p}{2(p^{\nu} - p^{\nu-1})}\right]} \right\}$$

$$+ \sum_{Q \in Q_{u}^{-}(\Gamma)} \left\{ 1 - \frac{1}{e_{0}(Q)} + \frac{1}{e(Q)} \sum_{\nu=1}^{r(Q)} (p^{\nu} - p^{\nu-1}) q^{2\left[\frac{1}{2}\left(\frac{\text{ord}_{p} p}{p^{\nu} - p^{\nu-1}} + 1\right)\right]} \right\}.$$

Here, [] denotes the Gauss symbol.

(168') Equation (168) remains valid if we replace 
$$\sum_{i=1}^{b} (1 - \frac{1}{e_{1i}})$$
 by  $\sum_{i=1}^{b'} (1 - \frac{1}{e'_{1i}})$  and invert  $Q_u^+(\Gamma)$  and  $Q_u^-(\Gamma)$ .

Call this new number  $\tau'_{n}$ .

#### The $\zeta$ function of $\Gamma$ in the general case.

§35. The results. By our above results on parabolic elements and elliptic elements of  $\Gamma$ , we can extend Theorem 1 (§8) and Theorem 2 (§23) to the case of general  $\Gamma$ , as follows.

THEOREM 7. Let  $\Gamma$  be any discrete subgroup of  $G = G_{\mathbb{R}} \times G_{\mathfrak{p}}$  such that  $\Gamma_{\mathbb{R}}$ ,  $\Gamma_{\mathfrak{p}}$  are dense in  $G_{\mathbb{R}}$ ,  $G_{\mathfrak{p}}$  respectively and that  $G/\Gamma$  has finite invariant volume. Let  $\zeta_{\Gamma}(u) = \prod_{P \in \wp(\Gamma)} (1 - u^{\deg P})^{-1}$  be the  $\zeta$ -function of  $\Gamma$  (see §6). Then we have the following formula for  $\zeta_{\Gamma}(u)$ :

(169) 
$$\zeta_{\Gamma}(u) \times \prod_{P \in \wp_{\infty}(\Gamma)} (1 - u^{\deg P})^{-1} = \frac{P(u)(1 + qu)^{g'-g}}{(1 - u)(1 - q^2u)} \times (1 - u)^H,$$

where  $\wp_{\infty}(\Gamma)$  is the (finite) set of all  $\Gamma$ -equivalence classes of cusps of  $\Gamma$  (see §26),  $q = N\mathfrak{p}$ , g and g' are the genus of  $\Gamma^0_{\mathbf{R}}$  and  $\Gamma^0_{\mathbf{R}}$  respectively, where  $\Gamma^0 = \Gamma \cap (G_{\mathbf{R}} \times V)$  and  $\Gamma^0' = \Gamma \cap (G_{\mathbf{R}} \times \omega^{-1}V\omega)$ , with  $V = PSL_2(O_{\mathfrak{p}})$  and  $\omega \in V\begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}V$  ( $\pi$ : a prime element of  $k_{\mathfrak{p}}$ ).

As can be checked, easily, the exponent  $\frac{\operatorname{ord}_{\mathfrak{p}} p}{p^{\mathfrak{p}} - p^{\mathfrak{p}} - 1} + \frac{1}{2} \left( + \frac{\kappa}{2} - \operatorname{ord}_{\mathfrak{p}} 2 \text{ for } \mathfrak{p} | 2 \right)$  is an integer.

P(u) is a polynomial of degree 2g with a form:

(170) 
$$\begin{cases} P(u) = \prod_{i=1}^{g} (1 - \pi_i u)(1 - \pi_i^* u) \in \mathbf{Z}[u], \\ \pi_i \pi_i^* = q^2 \qquad (1 \le i \le g), \end{cases}$$

$$|\pi_i|, |\pi_i^*| \le q^2; \; \pi_i, \; \pi_i^* \ne 1, \; q^2.$$

Now, the positive integer H is given as follows:

(172) 
$$H = \frac{1}{2}(q-1)v(\Gamma_{\mathbf{R}}^{0}) + \frac{1}{2}\sum_{Q \in Q(\Gamma)} (1 - \frac{1}{e(Q)})$$
$$= (q-1)(g-1 + \frac{s}{2} + \frac{\sigma}{2}) + \frac{\tau_{u}}{2} + \frac{\tau_{r}}{2},$$

where

(173) 
$$v(\Gamma_{\mathbf{R}}^{0}) = \frac{1}{2\pi} \int_{\Gamma_{\mathbf{R}}^{0} \setminus \mathfrak{H}} \frac{dxdy}{y^{2}}$$

$$= 2g - 2 + s + \sum_{i=1}^{a} (1 - \frac{1}{e_{i}}) + \sum_{j=1}^{b} (1 - \frac{1}{e_{1j}}) + \sum_{k=1}^{c} (1 - \frac{1}{e_{2k}}),$$

 $\{g; \underbrace{\infty, \cdots, \infty}_{s}; e_{1}, \cdots, e_{a}; e_{11}, \cdots, e_{1b}; e_{21}, \cdots, e_{2c}\}\$  being the signature of  $\Gamma_{\mathbf{R}}^{0}$  in the way of notations given in §34. Thus,  $s = \sum_{P \in p_{\infty}(\Gamma)} \deg P$ , and the numbers  $\sigma$ ,  $\tau_{u}$ ,  $\tau_{r}$  are given by (166), (168), (167) respectively. In particular, if  $\Gamma$  has no elements of order p and g' = g, then we have

(174) 
$$\zeta_{\Gamma}(u) \times \prod_{P \in \rho_{\infty}(\Gamma)} (1 - u^{\deg P})^{-1}$$

$$= \frac{P(u)}{(1 - u)(1 - q^{2}u)} \times (1 - u)^{\frac{1}{2}(q - 1)\nu(\Gamma_{\mathbb{R}}^{0}) + \sum_{j=1}^{b} (1 - \frac{1}{e_{1j}})}$$

(see (163), (164)).

REMARKS. (i) We conjecture that g' = g; to which no counterexamples are known.

(ii) By (169), we see that  $\zeta_{\Gamma}(u)$  was better defined with

$$\prod_{P\in p(\Gamma)\cup p_{\infty}(\Gamma)} (1-u^{\deg P})^{-1}.$$

But to avoid confusion, we shall keep the previous definition.

(iii) Finally, we note that if  $\Gamma$  is torsion-free, then we have g'=g by (163); hence

(175) 
$$\zeta_{\Gamma}(u) \times \prod_{P \in p_{\infty}(\Gamma)} (1 - u^{\deg P})^{-1} = \frac{P(u)}{(1 - u)(1 - q^{2}u)} \times (1 - u)^{(q-1)(g-1 + \frac{1}{2})}$$

and if moreover  $G/\Gamma$  is compact, then  $\wp_{\infty}(\Gamma) = \phi$  and s = 0; hence we have

and the second of the second o

(176) 
$$\zeta_{\Gamma}(u) = \frac{P(u)}{(1-u)(1-q^2u)} \times (1-u)^{(q-1)(g-1)}$$

which is nothing but Theorem 1 (§8).

§36. The Eichler-Selberg trace-formula. Having Theorems  $3 \sim 6$  and their corollaries on hand, we can prove Theorem 7 exactly in the same manner as in the proof of Theorem 1. But, of course, we need here the Eichler-Selberg trace formula (for the Hecke operators acting on the space of holomorphic cusp forms of weight 2) with respect to fuch-sian groups  $\Delta$ , where  $G_R/\Delta$  may not be compact and  $\Delta$  may not be torsion-free. Namely, we make use of the following generalization of Lemma 1 (§9):

Lemma 18 (Eichler-Selberg, Petersson). Let  $\Delta$  be a discrete subgroup of  $G_{\mathbf{R}}$  such that  $G_{\mathbf{R}}/\Delta$  has finite invariant volume, let  $\tilde{\Delta}$  be a subgroup of  $G_{\mathbf{R}}$  containing  $\Delta$  such that  $\gamma^{-1}\Delta\gamma$  is commensurable with  $\Delta$  and  $\Delta\gamma^{-1}\Delta = \Delta\gamma\Delta$  for all  $\gamma \in \tilde{\Delta}$ . Let  $\rho = \rho_2$  be the representation (22) (§9) of the Hecke ring  $\mathcal{H}(\tilde{\Delta}, \Delta)$  in the space of holomorphic cusp forms of weight 2 with respect to  $\Delta$ . Then  $\rho$  is a direct sum of g linear real representations  $\chi_1, \dots, \chi_g$  (g: the genus of  $\Delta$ ). Moreover for each  $\gamma_0 \in \tilde{\Delta}$  with  $\gamma_0 \notin \Delta$ , put

(177) 
$$A(\Delta \gamma_0 \Delta) = \sum_{\nu} \frac{1}{n_{\nu}} + 2 \sum_{\nu} \sum_{h} r_h,$$

where

- (i) v runs over all elliptic  $\Delta$ -conjugacy classes  $\{\gamma\}_{\Delta}$  contained in  $\Delta\gamma_0\Delta$ , and  $n_v$  is the order of the centralizer of  $\gamma$  in  $\Delta$ ; or equivalently,  $n_v$  is the multiplicity of the fixed point of  $\gamma$  as an elliptic point of  $\Delta$ .
- (ii) S runs over all cusps of  $\Delta$  up to  $\Delta$ -equivalence;  $(\Delta \gamma_0 \Delta)_S$  (resp.  $\Delta_S$ ) is the set of all elements of  $\Delta \gamma_0 \Delta$  (resp.  $\Delta$ ) that stabilize  $^{25}$  S. For each S, h runs over a set of representatives of  $\Delta_S$ -double cosets in  $(\Delta \gamma_0 \Delta)_S$ , and  $r_h$  is defined as follows. For each S, fix a generator  $\delta_S$  of  $\Delta_S$ , and define  $r_h$  by:

(178) 
$$\begin{array}{c|c} h & r_h \\ h: parabolic, h = \delta_S^b \ (b \in \mathbf{R}) & \frac{1}{1 - e^{-2\pi i b}} \\ h: hyperbolic, h^{-1} \delta_S h = \delta_S^{\beta/\alpha}, \\ where \ \alpha, \beta \in \mathbf{Z}, > 0, \\ and \ (\alpha, \beta) = 1. \end{array} \quad \begin{cases} 0 & (if \ \alpha > \beta) \\ \alpha & (if \ \alpha < \beta) \end{cases}$$

Then, the summations on the right side of (177) are finite, and we have

(179) 
$$A(\Delta \gamma_0 \Delta) = 2(d(\Delta \gamma_0 \Delta) - \operatorname{tr} \rho(\Delta \gamma_0 \Delta)),$$

where  $d(\Delta \gamma_0 \Delta) = |\Delta \gamma_0 \Delta / \Delta|$ .

- §37. Proof of Theorem 7. First we shall compute the right side of (177) for the case  $\tilde{\Delta} = \Gamma_{\mathbf{R}}$ ,  $\Delta = \Gamma_{\mathbf{R}}^{0}$ , and  $\Delta \gamma_{0} \Delta = T_{m}$   $(m \ge 1)$ .
  - (i) The second term (contribution of parabolic elements).

Fix any cusp S of  $\Gamma^0_{\mathbf{R}}$  and let d be the degree of its  $\Gamma$ -equivalence class (see §26). Put

$$H^0 = \{ \gamma \in \Gamma \mid \gamma_R S = S, \ \gamma_R : \text{parabolic} \} \cup \{1\},$$
  
 $H = \{ \gamma \in \Gamma \mid \gamma_R S = S \}.$ 

<sup>&</sup>lt;sup>24</sup>Cf. M. Eichler [12].

<sup>&</sup>lt;sup>25</sup> Then elements of  $\Delta_S$  are necessarily parabolic, but elements of  $(\Delta \gamma_0 \Delta)_S$  may not be so.

By Theorem 3, there exists  $t \in G_{\mathbb{R}} \times PL_2(\mathbb{Z}_p)$  such that  $H = t^{-1}B^{(d)}t$ , where

$$B^{(d)} = \left\{ \begin{pmatrix} p^{-dk} & b \\ 0 & p^{dk} \end{pmatrix} \mid k \in \mathbb{Z}, \ b \in \mathbb{Z}^{(p)} \right\}.$$

Thus 
$$H^0 = t^{-1} \begin{pmatrix} 1 & \mathbf{Z}^{(p)} \\ 0 & 1 \end{pmatrix} t$$
, and  $H \cap \Gamma^0 = t^{-1} \begin{pmatrix} 1 & \mathbf{Z} \\ 0 & 1 \end{pmatrix} t$ . Put  $\xi = t^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} t$ , so that  $\xi$ 

generates  $H \cap \Gamma^0$ . Let h be any element of H and put  $h = t^{-1} \begin{pmatrix} p^{-kd} & b \\ 0 & p^{kd} \end{pmatrix} t$ . Then

(180) 
$$h \in T^m \leftrightarrow \begin{cases} |k| \cdot d \le m, & b_0 \in \mathbb{Z}; \\ \text{when } |k| \cdot d < m, & b_0 \not\equiv 0 \pmod{p}; \end{cases}$$

where  $b_0 = bp^m$ . Moreover if k and  $b_0$  run over such numbers as above, and  $b_0$  runs only over a set of representatives modulo  $p^{m-|k|\cdot d}$ , then h runs over a set of representatives of the double coset space  $H \cap \Gamma^0 \setminus H \cap T^m/H \cap \Gamma^0$ . For each such representative h, let us compute  $r_h$  (defined in Lemma 18). First, h is parabolic if and only if k = 0, and in this case  $b_h = b = b_0/p^m$  ( $b_0 \not\equiv 0 \pmod{p}$ ). Thus the summation  $\sum r_h$  over such h is given by  $\sum_{\zeta} (1-\zeta)^{-1}$ , where  $\zeta$  runs over all primitive  $p^m$ -th roots of unity; hence is equal to  $\frac{1}{2}(p-1)p^{m-1}$  (use the equality  $\sum_{\zeta} (x-\zeta)^{-1} = \frac{f'(x)}{f(x)}$ , where  $f(x) = (x^{p^m}-1)(x^{p^{m-1}}-1)^{-1}$ ). On the other hand, if h is hyperbolic, i.e., if  $k \neq 0$ , then the numbers  $\alpha, \beta$  defined in (178) are given by  $\alpha = 1$ ,  $\beta = p^{2kd}$  (k > 0), and  $\alpha = p^{-2kd}$ ,  $\beta = 1$  (k < 0). Moreover for each k > 0 with  $kd \leq m$ , the number of k > 0 mod k > 0 mod k > 0 with  $kd \leq m$ , the number of k > 0 mod k > 0 with  $kd \leq m$ . Therefore, the summation k > 0 over the hyperbolic representatives k = 0 is given by

(181) 
$$\begin{cases} (p-1)\sum_{k=1}^{\left[\frac{m}{d}\right]}p^{m-kd-1} & \cdots m \not\equiv 0 \pmod{d} \\ (p-1)\sum_{k=1}^{\frac{m}{d}-1}p^{m-kd-1}+1 & \cdots m \equiv 0 \pmod{d}. \end{cases}$$

Call this number c(m, d). Then, since each  $P \in \wp_{\infty}(\Gamma)$  consists of exactly deg P distinct  $\Gamma_{\mathbb{R}}^0$  equivalence classes (Proposition 7, §26), the second term of the right side of (177) is given by

(182) 
$$s(p-1)p^{m-1} + 2 \sum_{P \in p_{\infty}(\Gamma)} c(m, \deg P) \deg P,$$

where  $s = \sum_{P \in \rho_{\infty}(\Gamma)} \deg P$  is the number of cusps of  $\Gamma_{\mathbb{R}}^0$  (up to  $\Gamma_{\mathbb{R}}^0$ -equivalence).

(ii) The first term (contribution of elliptic elements).

This is obtained directly from the Corollaries of Theorems 4, 5, 6 (see (118) for the definition of  $A_m\{\gamma\}_{\Gamma}$ ). In fact,  $\sum_{\nu} n_{\nu}^{-1}$  is given by

(183) 
$$\sum_{\langle \gamma \rangle_{\Gamma}} A_m \{ \gamma \}_{\Gamma} = \left( \sum_{\langle \gamma \rangle_{\Gamma}}^{\rho} + \sum_{\langle \gamma \rangle_{\Gamma}}^{Q_u} + \sum_{\langle \gamma \rangle_{\Gamma}}^{Q_r} \right) A_m \{ \gamma \}_{\Gamma},$$

where the summation on the left side is over all  $\Gamma$ -conjugacy classes  $\{\gamma\}_{\Gamma}$  such that  $\gamma_{\mathbb{R}}$  is elliptic, and the summations on the right side are over such  $\{\gamma\}_{\Gamma}$  that the fixed points  $z \in \mathfrak{H}$  of  $\gamma_{\mathbb{R}}$  belong to the elements  $\mathfrak{p}(\Gamma)$ ,  $Q_u(\Gamma)$  and  $Q_r(\Gamma)$  respectively.

<sup>&</sup>lt;sup>26</sup>W. r. t. the generator  $\xi$  of  $H \cap \Gamma^0$ .

By the Corollary of Theorem 4, we have

(184) 
$$\sum_{\{\gamma\}_{\Gamma}}^{\wp} A_{m} \{\gamma\}_{\Gamma} = \sum_{P=P_{z} \in \wp(\Gamma)} \sum_{\gamma \in \Gamma_{z}, \gamma \neq 1} A_{m} \{\gamma\}_{\Gamma}$$

$$= 2\{N_{m} + (q-1) \sum_{k=1}^{m-1} q^{k-1} N_{m-k}\} + (q-1)q^{m-1} \sigma,$$

where  $\sigma$  is given by (166) and

(185) 
$$N_m = \sum_{P \in \wp(\Gamma), \deg P \mid m} \deg P.$$

Note, in computing this out, that for each  $n \ge 0$ , the number of elements  $\gamma$  ( $\gamma \ne 1$ ) of  $\Gamma_z$  with  $\deg\{\gamma\}_{\Gamma} = n$  is given by

$$\begin{cases} 2e(P) & \cdots & n > 0, \ n \equiv 0 \ (\text{mod deg } P), \\ 0 & \cdots & n > 0, \ n \not\equiv 0 \ (\text{mod deg } P), \\ e(P) - 1 & \cdots & n = 0. \end{cases}$$

Note also the Corollary ((ii)) of Proposition 8.

On the other hand, by the Corollary of Theorem 6, we obtain

(186) 
$$\sum_{\{\gamma\}_{\Gamma}}^{Q_{u}} A_{m} \{\gamma\}_{\Gamma} = \begin{cases} (q+1)q^{m-1}\mu & \cdots m : \text{ even,} \\ (q+1)q^{m-1}\mu' & \cdots m : \text{ odd.} \end{cases}$$

where  $\mu$ ,  $\mu'$  are given by the following:

(187) 
$$\mu = \sum_{Q \in Q_{u}^{+}(\Gamma)} \left(1 - \frac{1}{e_{0}(Q)}\right) + \begin{cases} \sum_{Q \in Q_{u}^{+}(\Gamma)} e(Q)^{-1} \sum_{\nu=1}^{r(Q)} (p^{\nu} - p^{\nu-1}) q^{cp^{r(Q)-\nu}} & \cdots c : \text{ even,} \\ \sum_{Q \in Q_{u}^{-}(\Gamma)} e(Q)^{-1} \sum_{\nu=1}^{r(Q)} (p^{\nu} - p^{\nu-1}) q^{cp^{r(Q)-\nu}} & \cdots c : \text{ odd.} \end{cases}$$

(187') the formula for 
$$\mu'$$
 is obtained by inverting  $Q_u^+(\Gamma)$  and  $Q_u^-(\Gamma)$  on the right side of (187).

Here, c is defined by  $\operatorname{ord}_{\mathfrak{p}} p = c(p^{r(Q)} - p^{r(Q)-1})$ . Note, in computing this out, that since c is even when  $\mathfrak{p}|2$  (see Theorem 6), we have c: even  $\Leftrightarrow cp$ : even. Now we can check directly by (168) and (163) that

$$(188) q\mu + \mu' = \tau_u,$$

(189) 
$$\mu - \mu' = 2(g' - g).$$

Finally, we obtain immediately from the Corollary of Theorem 5 that

(190) 
$$\sum_{|\gamma|_{\Gamma}}^{Q_r} A_m \{\gamma\}_{\Gamma} = q^{m-1} \tau_r,$$

 $\tau_r$  being as in (167). Thus by putting these together, we obtain

$$(191)^{27} \frac{1}{2}A(T^m) = A_m + B_m,$$

with

(192) 
$$\begin{cases} A_{m} = N_{m} + (q-1) \sum_{k=1}^{m-1} N_{m-k}, \\ B_{m} = \frac{1}{2} (p-1) s p^{m-1} + \sum_{P \in \varphi_{\infty}(\Gamma)} c(m, \deg P) \deg P \\ + (\frac{q-1}{2} \sigma + \frac{\tau_{r}}{2}) q^{m-1} + \begin{cases} \frac{1}{2} (q+1) q^{m-1} \mu & \cdots m : \text{ even,} \\ \frac{1}{2} (q+1) q^{m-1} \mu' & \cdots m : \text{ odd.} \end{cases}$$

Now, in general, let f(m), F(m) be two functions defined for every positive integer m. Then the following two relations are equivalent:

(193) 
$$F(m) = f(m) - (q-1) \sum_{k=1}^{m-1} f(m-k) \qquad (m \ge 1),$$

(193') 
$$f(m) = F(m) + (q-1) \sum_{k=1}^{m-1} q^{k-1} F(m-k) \qquad (m \ge 1),$$

(see §13). Moreover, we have the following table.<sup>28</sup>

|       |       | f(m)                                                                                                               | F(m)                                                               | Notes               |
|-------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|
| (194) | (i)   | c(m,d)                                                                                                             | $\int 1 \cdots m \equiv 0 \pmod{d}$                                | use (193') to check |
|       |       |                                                                                                                    | $0 \cdots m \not\equiv 0 \pmod{d}$                                 |                     |
|       | (ii)  | $q^{m-1}$                                                                                                          | 1                                                                  | put $d = 1$ in (i)  |
|       | (iii) | $\begin{cases} (q+1)q^{m-1}\mu & \cdots m : \text{ even} \\ (q+1)q^{m-1}\mu' & \cdots m : \text{ odd} \end{cases}$ | $q\mu + \mu' + (-q)^m(\mu - \mu')$<br>= $\tau_u + 2(-q)^m(g' - g)$ |                     |
|       | (iv)  | $A_m$                                                                                                              | $N_m$                                                              | by definition       |

Now define  $L_m$  and  $N'_m$  by:

| (v)  | $B_m$               | $L_m$              |
|------|---------------------|--------------------|
| (vi) | $\frac{1}{2}A(T^m)$ | $N_m' = N_m + L_m$ |

Then by (194) (i) (ii), we obtain

(195) 
$$L_m = \frac{1}{2}(p-1)s + \sum_{\substack{P \in p_{\infty}(\Gamma), \\ \deg P \mid m}} \deg P + \frac{q-1}{2}\sigma + \frac{\tau_r}{2} + \frac{\tau_u}{2} + (-q)^m (g'-g),$$

and

(196) 
$$N_m = N'_m - L_m$$
.

 $<sup>^{27}</sup>A(T^m)$  is the  $A(\Delta\gamma\Delta)$  (of Lemma 18) for  $\Delta\gamma\Delta=T^m$ .

<sup>&</sup>lt;sup>28</sup> Recall that if  $\Gamma$  has a cusp, then  $k_p = \mathbb{Q}_p$ ; hence q = p.

Now, on the other hand, we can compute the right side of (179) for  $\Delta \gamma_0 \Delta = T^m$  by exactly the same computation as in §14. Namely, put

$$\det\{1 - (\rho(T^{1}) - q + 1)u + q^{2}u^{2}\} = \prod_{i=1}^{g}\{1 - (\chi_{i}(T^{1}) - q + 1)u + q^{2}u^{2}\}$$

$$= \prod_{i=1}^{g}(1 - \pi_{i}u)(1 - \pi_{i}^{*}u), \quad (\pi_{i}\pi_{i}^{*} = q^{2}; 1 \leq i \leq g).$$

Then by the same computation as in §14, we obtain

(198) 
$$N'_{m} = q^{2m} + 1 - (q - 1)(g - 1) - \sum_{i=1}^{g} (\pi_{i}^{m} + \pi_{i}^{*m}) \quad (m \ge 1).$$

Now by (195), (196) and (198), we immediately obtain the formula for  $\zeta_{\Gamma}(u) = \prod_{P \in \wp(\Gamma)} (1 - 1)$  $u^{\text{deg }P})^{-1} = \exp(\sum_{m=1}^{\infty} \frac{N_m}{m} u^m)$ ; namely we obtain

(199) 
$$\zeta_{\Gamma}(u) = \exp(\sum_{m=1}^{\infty} \frac{N'_m}{m} u^m) \times \exp(-\sum_{m=1}^{\infty} \frac{L_m}{m} u^m)$$

$$= \frac{\prod_{i=1}^{g} (1 - \pi_i u)(1 - \pi_i^* u)}{(1 - u)(1 - q^2 u)} \times (1 - u)^{(q-1)(g-1)}$$

$$\times \prod_{P \in \wp_{\infty}(\Gamma)} (1 - u^{\deg P}) \times (1 - u)^{\frac{1}{2}(p-1)s + \frac{q-1}{2}\sigma + \frac{\tau_u}{2} + \frac{\tau_v}{2}}$$

$$\times (1 + qu)^{g'-g}.$$

Since  $H = \frac{1}{2}(p-1)s + \frac{1}{2}(q-1)\sigma + \frac{1}{2}\tau_u + \frac{1}{2}\tau_r$ , this proves (169).<sup>29</sup>

That  $P(u) \in \mathbb{Z}[u]$  and  $H \in \mathbb{Z}$ . By (169), we have  $P(u)(1-u)^H \in \mathbb{Z}[[u]]$ , and by definition,  $H \in \mathbb{Q}^{30}$  Put  $H = \frac{m}{n}$   $(m, n \in \mathbb{Z}, > 0)$ . Then  $P(u)^n \in \mathbb{Z}[u]$ ; hence  $P(u) \in \mathbb{Z}[u]$ ? But then  $(1 - u)^H \in \mathbb{Z}[[u]]$ ; hence  $H \in \mathbb{Z}$ .

That (171) holds. This follows exactly in the same manner as in the proof of Theorem 2 (§23), if we use the generalization of Lemma 10 of Chapter 1 given in Supplement §2 instead of Lemma 10. This completes the proof of Theorem 7.

We have also proved:

COROLLARY. With the notations of Theorem 7 and Lemma 18, we have

(200) 
$$P(u) = \det\{1 - (\rho(T^1) - q + 1)u + q^2u^2\}.$$

#### §38. Examples.

Example 1. Let B be a quaternion algebra over  $\mathbf{Q}$ , in which p and  $\infty$  are unramified. Let D be the discriminant of B (so,  $D \not\equiv 0 \pmod{p}$ ). Let O be a maximal order of B, put  $O^{(p)} = \bigcup_{n=0}^{\infty} p^{-n}O$ , and put

(201) 
$$\Gamma = \{x \in O^{(p)} \mid N_{B/\mathbb{Q}}(x) = 1\} / \pm 1.$$

<sup>&</sup>lt;sup>29</sup>Recall that  $s \neq 0$  only if q = p.

<sup>&</sup>lt;sup>30</sup> Hence  $P(u) \in \mathbb{Q}[u]$ .

<sup>&</sup>lt;sup>31</sup>Use Gauss' lemma.

Then by Proposition 1 of Chapter 4,  $\Gamma$  can be considered as a discrete subgroup of  $G = G_{\mathbb{R}} \times G_{\mathbb{P}} = PSL_2(\mathbb{R}) \times PSL_2(\mathbb{Q}_p)$  (with dense image of projection in each component of G, and with finite volume quotient  $G/\Gamma$ ). The quotient is compact if and only if  $D \neq 1$ . For D = 1, we have  $B = M_2(\mathbb{Q})$ , and  $\Gamma = PSL_2(\mathbb{Z}^{(p)})$  up to conjugacy in G.

Now by Eichler's arithmetic of quaternion algebras [11], and by Shimizu [28] (for (203)), we can easily calculate the various invariants of these  $\Gamma$  defined in Theorem 7. The result is as follows:

(202) 
$$g = g' = \frac{1}{12} \prod_{l \mid D} (l-1) - \frac{1}{4} \prod_{l \mid D} (1 - (\frac{-4}{l})) - \frac{1}{3} \prod_{l \mid D} (1 - (\frac{-3}{l})) + 1 - \begin{cases} \frac{1}{2} & \dots D = 1, \\ 0 & \dots D \neq 1; \end{cases}$$

(203) 
$$v(\Gamma_{\mathbf{R}}^{0}) = \frac{1}{6} \prod_{lD} (l-1),$$

(204) 
$$\sum_{Q \in Q(\Gamma)} \left( 1 - \frac{1}{e(Q)} \right) = \frac{1}{2} \prod_{l \mid D_p} (1 - (\frac{-4}{l})) + \frac{2}{3} \prod_{l \mid D_p} (1 - (\frac{-3}{l})).$$

Hence

(205) 
$$H = \frac{1}{12} \prod_{l \mid D_p} (l-1) + \frac{1}{4} \prod_{l \mid D_p} (1 - (\frac{-4}{l})) + \frac{1}{3} \prod_{l \mid D_p} (1 - (\frac{-3}{l})).$$

Thus,

(206) 
$$\zeta_{\Gamma}(u) \times \begin{cases} (1-u)^{-1} & \cdots D = 1\\ 1 & \cdots D \neq 1 \end{cases}$$
$$= \frac{P(u)}{(1-u)(1-p^2u)} \times (1-u)^H,$$

P(u) being a polynomial of degree 2g of the form described in Theorem 7. In particular, if D=1, 6, 10 or 22, then we have g=0; hence P(u)=1. For D=1, i.e.,  $\Gamma=PSL_2(\mathbb{Z}^{(p)})$ , this formula coincides with the one calculated in §7.

Here, we note a rather strange fact: if  $B^*$  denotes the quaternion algebra over  $\mathbb{Q}$  with discriminant  $D^* = Dp$  (hence  $D^*$  is *definite*), then by Eichler's formula for the class number of (definite) quaternion algebras (see Eichler [10] Satz 2), we obtain:

(207) 
$$H$$
 is equal to the class number of  $B^*$ .

However, we do not know what this really implies, except in the case of D = 1. (For D = 1, i.e.,  $\Gamma = PSL_2(\mathbf{Z}^{(p)})$ , H is nothing but the number of supersingular moduli j (Corollary of Theorem 1' in §9 of Chap.5), and if  $E_j$  denotes the elliptic curve with modulus j, then  $j \mapsto \mathcal{R}(E_j)$  (the endomorphism ring of  $E_j$ ) gives a bijection between the set of all supersingular moduli j and that of right orders of the (complete set of) representatives of left  $O^*$ -ideals of  $B^*$ , where  $O^*$  is a given maximal order of  $B^*$ .)

EXAMPLE 2 (See Chap. 5, Part 2 for the details and proofs). Let  $\Gamma = PSL_2(\mathbf{Z}^{(p)})$  and let  $\Gamma'$  be a subgroup of  $\Gamma$  with finite index. Let K' be the finite extension of  $K = \mathbf{F}_{p^2}(j)$  (j: a variable over  $\mathbf{F}_p$ ) corresponding to  $\Gamma'$  in the sense of §16 of Chapter 5 Part 2. Let H' be the number of prime divisors of K' that lie on supersingular prime divisors of K. Then by the results of Chapter 5, Part 2 (esp. §30), we have

(208) 
$$\zeta_{\Gamma'}(u) \times \prod_{P \in \rho_{\infty}(\Gamma')} (1 - u^{\deg P})^{-1} = \zeta_{K'}(u) \times (1 - u)^{H'},$$

where  $\zeta_{K'}(u) = \frac{P'(u)}{(1-u)(1-p^2u)}$  is the congruence  $\zeta$ -function of K' over  $\mathbf{F}_{p^2}$ . Thus we have

$$P'(u) = \prod_{i=1}^{g'} (1 - \pi_i u)(1 - \overline{\pi}_i u) \quad \text{with } |\pi_i| = |\overline{\pi}_i| = p \quad (1 \le i \le g'),$$

where g' is the genus of K' and is at the same time the genus of  $({\Gamma'}^0)_{\mathbb{R}}$ .

As an example, let N > 1,  $N \not\equiv 0 \pmod{p}$  be an integer, and let  $\Gamma' = \Gamma(N)$  be the principal congruence subgroup of  $\Gamma$ ;

(209) 
$$\Gamma(N) = \{ \gamma \in SL_2(\mathbf{Z}^{(p)}) \mid \gamma \equiv \pm 1 \pmod{N} \} / \pm 1 \quad (N > 1).$$

Put

$$n = (\Gamma : \Gamma(N)) = \begin{cases} 6 & (N = 2), \\ \frac{N^3}{2} \prod_{l \mid N} (1 - \frac{1}{l^2}) & (N > 2); \end{cases}$$

put s = n/N, and let d be the smallest positive integer such that  $p^d \equiv \pm 1 \pmod{N}$ . Then we have

(210) 
$$\prod_{P \in \wp_{\infty}(\Gamma')} (1 - u^{\deg P}) = (1 - u^d)^{s/d}.$$

The genus g' of  $\Gamma(N)$  is given by  $g' = \frac{N-6}{12N}n + 1$ , and since  $\Gamma(N)$  is torsion-free, we have  $H' = (p-1)(g'-1+\frac{s}{2}) = \frac{n}{12}(p-1)$ . Hence

(211) 
$$\zeta_{\Gamma'}(u) \times (1-u^d)^{-s/d} = \frac{P'(u)}{(1-u)(1-p^2u)} \times (1-u)^{\frac{n}{12}(p-1)}.$$