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Part 2.° Detailed study of elements of I" with parabolic and elliptic
real parts; the general formula for {r(u).

Let I be a discrete subgroup of G = Gr X G, = PSLy(R) x PSLy(k,) with finite
volume quotient G/T" and with dense image of projection in each component of G. In the
previous part of this chapter, we defined the £ -function

&= [ ] a-uey

Pep(T)

for such a group I' (§6) and carried out its computation under the two assumptions: (a)
G/T is compact, (b) I' is torsion-free. (See Theorems 1, 2).

In the following Part 2, we shall drop the above two assumptions (a), (b), and after
studying in detail the elements of I" with parabolic real parts (§25 ~ §28, Theorem 3) and
those with elliptic real parts (including in particular the torsion elements of T'; §29~ §34,
Theorems 4 ~ 6), we shall proceed to prove a general formula for {r(u) by generalizing
the previous computations (§35 ~ §38, Theorem 7). The main results are as follows:

1. Let y € I be such that yg is parabolic!' Let H° be the centralizer of y and let H be
the normalizer of H® (both considered in I'). Then (i) k, = Q, holds, (ii) H is conjugate
in Gr X PL,(Z,) to the group

o _ [(pP* b ®
(102) B —{(0 p_dk)|k€Z,b€Z }

(where d is a positive integer well-defined by H), and by this, H° corresponds to the
@)
subgroup ((1) Zl ) of B (Theorem 3, §25). By this theorem we can derive everything

we need about such elements vy.
2. Let y € I' be such that yy is elliptic!2 Put I'® = I' N (Gg x V) with ¥ = PSL;(0y),

0

and for each / > O put 7/ = I'N {GR X V(O ﬂ_,) V}, 7 being a prime element of k.

Then our results here are the following:

(i) we parametrize the set of all I'°-conjugacy classes contained in {y}r in a nice way as,
say,

e = Jordres k=0,1,2,--+5 =1, ,ng
ku

1%The author regrets that, despite his promise, he has failed to give a computation of L-functions Lr(u, x)
here. The reason is that when y is not a real character, his definition of Lr(u, y) was not adequate, and it
still remains for him to find its best definition.

1 An element x € Gy is called parabolic if its eigenvalues are +{1, 1}and x # 1.

12An element x € Gy is called elliptic if its eigenvalues are imaginary.
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(i) for each {yx,}ro, We express its length I(y,) (i.., the number / for which vy, € T by
means of its major parameter k and by some invariants of {y}r (such as the order of
the centralizer of y in ', or deg{y}r when it is defined, etc.).

As a corollary, we shall compute the following quantity A,{y}r for each / > 1, which are
used later in the computation of {r(u):

(118) Ayl = ) elymdps»

ku

where the summation is over all k, ;2 with I(yy,) = [, and e{yy,}ro denotes the order of the
group ' NT,, ,T,, being the centralizer of yy, inI'. These are given in Theorems 4, 5, 6
(and their corollaries), separated according to the difference in the types of {y}r. Namely,
in Theorem 4 (§30), we deal with the case where the centralizer I', of v is infinite, and in
Theorem 5 (§31) (resp. Theorem 6 (§32)), we deal with the cases where I', is finite and
the quadratic extension k,(y,) of k, is ramified (resp. unramified). We note here that the
corollary of Theorem 4 generalizes Lemma 3 (§13, Part 1) with a much simpler proof;
hence eliminates previous complicated and tedious sections (§18, §19) needed for the
proof of Lemma 3. On the other hand, the proofs of Theorems 5, 6 are again complicated,
chiefly because of the p-power torsions of I',,, where p|p.
3. The formula for /r(u) in the general cases is given in Theorem 7 (§35). It reads as:

(169) {l"(u) x l_l (1 degP)- P(u)(l + qu)g'—g g (1 _ u)H,

Al T

where p..(I) is a certain finite set defined from parabolic elements of I'g, g is the genus
of IR,

g
- P@) =] [( = ma)(1 - 7w € Z{u]
i=1 .

with some equalities and inequalities between x;, 7 and g, and H is a positive integer
given explicitly. This number H is proportional to the volume of G/T" if " has no second-
type torsions (i.e., if for every y € I its centralizer I', is infinite). For some examples of
T, H is equal to the class number of some definite quaternion algebra (see §38). Finally
g’ is the genus of a certain fuchsian group “twisted”” from I'y. We have g = g if " has no
second type torsions, and conjecturally, always so.

Study of elements of I with parabolic real parts.

§25. Let I be a discrete subgroup of G = Ggr X G, such that I'y, I'; are dense in
Gr, G, respectively and that the quotient G/T" has finite invariant volume. Let p be the
characteristic of the residue class field of k,. We shall study here those elements £ € I'
for which egr € Gg = PSL,(R) is parabolic. For each such &, denote by z the fixed point
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(€ R U {ico)) of eg and define the two groups H°, H by

(99) H® = {y e T'| yaz = z,yg : parabolic} U {1}
= the centralizer of £ in T,
(100) H = {y e T'| yrz = 2} = the normalizer of H° inT..

Now our main result here is the following theorem:

THEOREM 3. Let £ € T be such that ey is parabolic. Then (i) k, = Q,, (ii) H°, H being
as above, there is a positive integer d and an element t € Gr X PLy(Z,) such that

(101) ‘ H=1'B9
where
dk
(102) B9 = {(”0 pf’dk) ez be zw}

(considered as a subgroup of G by the diagonal embedding). In particular, it follows that

(1 Z©
(103) H°=t‘(0 l)t.

Before proving this, we shall give some of its immediate corollaries.

CoroLLARY 1. G/T is non-compact if and only if T'r contains a parabolic element, and
in this case k, = Q,,.

Proor. In fact, let ¥ be any open compact subgroup of G, and putI'” = I'n (Gg x V).
Then T K is a fuchsian group, and G/T” is compact if and only if GR/I‘K is so (Prop.2, §2).
Hence, if G/T" is non-compact, I‘K contains a parabolic element. Conversely, if I' contains
¢ for which &y, is parabolic, we see immediately by Theorem 3 that &” € Ggx V for some
N > 0; hence eﬁg € I‘K. But then GR/I’K is non-compact; hence G/I" is non-compact.
That k, = Q,, is contained in Theorem 3. S s

CoroLLARY 2.!® If € € T is such that ey is parabolic, there is a positive integer m and
an element 6 € T such that 57'e6 = £7".

Proor. This follows immediately from Theorem 3. m]

CoroLLARY 3. The notations being as in Theorem 3, let I be any subgroup of T of
finite index, and put H* = H® NT". Then the group index (H° : H®) is not divisible by p.

Proor. By Theorem 3, H° = Z®); hence (H® : H") cannot be divisible by p, o

BThis fact will be used in the proof of the Theorem given in Supplement §6.
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§26. The definition of p.(I). A point z € R U {ioo} is called a cusp of I if there
is some & € T such that eg is parabolic and egz = z. Two cusps z,z’ will be called
(I"-)equivalent if there is some y € I such that ygz = z’. By

(104) P()

we shall denote the set of all I'-equivalence classes of all cusps of I'. For each P € ("),
we shall define its degree, deg P, as follows. Let z be a cusp representing P, and let H be
the group defined by (100), for this z. Then by Theorem 3, we have H = " B9t for some
t and some positive integer d. It is clear that this integer d is well-defined by P, which we
shall call the degree of P. Thus deg P is always a positive integer.

On the other hand, put G, = PSLy(Q,), V = PSLy(Z,), let x be any element of
G, = PLy(Qp), and put A = T N (Gr x x7'Vx). Then Ag is a fuchsian group, and by
Theorem 3, a point z € R U {ico} is a cusp of ' if and only if it is a cusp of Ag (see
the proof of Corollary 1). Since the number of Ag-equivalence classes of cusps of Ag
is finite, the set () is a priori finite, and each P € ©o() consists of finitely many
Agr-equvalence classes. We shall prove:

ProposITION 7. The set p(T') is finite, and each P € p.(T) consists of exactly deg P
distinct Ar-equivalence classes.

Proor. The first assertion is already proved above. To prove the second assertion,
let z be a cusp representing P, put d = deg P, and let H be the group (100) defined for
this z. Then Agr-equivalence classes contained in P are in one-to-one correspondence
with the double coset A\I'/H; hence it is enough to prove |A\I'/H]| = d; or equivalently
Ix"'Vx\G,/H,| = d. But by Theorem 3, H, = ' B9t, with 1, € PLy(Z,); hence
X 'Vx\Gp/H,| = |V\Gp/y ' B9y| with y = tpx Thus our proposition is reduced to

the following lemma: ‘ m]
Lemma 12. Let d be a positive integer, and put

dk
% b
‘ B9 = {( 0 P-dk) Z(p)}.

Put G, = PSLy(Q,), V = PSLy(Z,), and let y be any element of G, = PLy(Qp). Then
(10s) IN\G,/y™ BV = d

PRooE. Let B be the closure of B® in G, so that
— dk o
o= {7 L)|kezsea,).
Put B = B®. We shall first check G, = ¥ - 5! By. It is well-known that G, = ¥ - B and
G, = V' - B', where V' = PL,(Z,) and B’ is the upper triangular subgroup of G,,. Put
y! =vb withv' € V', b’ € B’. Then
‘ G,=V-B=vVB/™ =Vvb'Bb v = Vy ' By.
Since B is the closure of B® and ¥ is open, we obtain Gp = V. y 1By, Therefore by
(BY : B9) = d, we obtain |V\G,/y™' B9y < d.
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To prove the opposite inequality, put 7 = (f), p(f | ), and suppose that 7/ € (yVy )'B9D,

with i,j € Z. Put &/ = yoy~'2'b, with v € ¥, b € B?. Then we obtain yoy™! =
7/b~'x7%; hence by comparing the eigenvalues of both sides, we obtain i = j (mod d).
Therefore, 1,7, --- , 77! belong to the distinct yVy~!\G,/B® double cosets. Therefore,
IN\G,/y'BDy| = lyVy'\G,/B?| > d; hence the proof is completed. o

CororLaRY (of Proposition 7). Let A = T' N (Gr x x7'Vx), with x € PLy(Q,),
V = PSLy,(Z,). Then the number of Ar-equivalence classes of cusps of Ar is given
by Y pep..a) deg P. In particular, this number is independent of x.

Remark . This second assertion is non-trivial because of the following circumstance.
Put A® =T N (Gg X x"'¥x). Then AD and AS” are conjugate in [y (and hence in Gg)
provided x'x’ € PSL,(Q,) - PLy(Z,), but in general, they are not conjugate in Gg. So, it
does not follow trivially that they have the equal number of non-equivalent cusps.

These facts are used later in the computation of {r-(u).

§27. Lemmas for the proof of Theorem 3. The following Lemma 13 is for the proof
of Lemma 14.

LemMa 13. Let A be a ﬁzchsiaﬁ group and let § = (i Z) run over all elements of A.

Then the following two conditions are equivalent.

(i) (0, 0) is not an accumulating point of (c, d),
(ii) A contains a translation.

ReMARK . In the following, we need only the implication (i) = (ii), and this proof is
the less easier; so here we shall prove only this, and leave the other (which is easier and
rather well-known) to the readers.

Proor oF (i) = (ii). Let $ be the complex upper half plane, let T € $, and put fo(7) =
infs et + di*. Then |t + d? > &(c® + d*), where &, is a positive number depending
only on 7 and not on ¢, d; hence (i) implies f4(7) > 0. Since Im (67) = Ilc%d%, we have

S() = sup;Im (67) = %‘:éf)) < oo. Moreover, f(7) is a continuous function of 7. In

fact, since f() is the supremum of the continuous functions Im (67), it is lower semi-
continuous. On the other hand, if 6 runs over A and T runs over any compact subset X
of §, then |ct + d]? has a positive lower bound (by (i)); hence Im (67) has a finite upper
bound. But then there is a positive constant C such that if d(7, ;) is the geodesic distance
of 7, 7; by an invariant metric of $, we have ‘

lIm (671) — Im (67)| < C - d(671,67) = C - d(11,T)

for all 6 € A and 7, 7; € K (recall that an invariant metric of § is given by ds? = ds’+d

for x + yi € $). Therefore, the functions Im (67) (6 € A) are equicontinuous on K; hence
f(7) is also upper semi-continuous. Therefore, f(7) is a continuous function which is
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obviously A-invariant. On the other hand, since f(7) > Im (7), f(7) is unbounded (on $).
Thus we conclude first, that the quotient $/A cannot be compact.

Now let F be a fundamental domain of A. Then since f(7) is unbounded in F and is
bounded in any compact subset of F, we conclude that F has a cusp: 7 = @ € RU {ico} at
which f(t) is unbounded. Now if a = ico, there is nothing more to be proved. So let us
assume o € R and prove that o is A-equivalent to ico. We may also assume without loss
of generality, that o = 0 (since we may conjugate A by a translation, if necessary).

y
A

- _ f(7): unbounded here.

> X

0
Now put ir‘%f(c2 +d*) =m (> 0by (i), and let 7 = x + yi € F with |x]| < |y|. Then
ICT+d|2 =(cx+d)2+c2y2 =(x2+y2)c2+2cdx+d2
2 yvd &

= y

=@t APt A A T
Hence fy(7) > %ing(cﬂ). But since f(7) = 1;1_0(%2 is unbounded in this region (near 7 = 0 in
F), we obtain
(106) il}f |d = 0.

x2 + y?

Now suppose that there is no § € A with d = 0. Then by (106) there must be a
n b"), d, # 0, and lim, ,.d, = 0. On the other

sequence {6,);Z, in A with &, = (cn dn

hand since 7 = 0 is a cusp, A contains an element § = (i (1)) with some » > 0. Put

a® p®

oW = 6,,6’5 = ( ® d?")) for each k € Z; so that P = ¢, +d,rk, d® = d,. Now for each n,
cn n

a, b,

choose k = k, so that |c*)| < |d,|r, and put &, = 6% = (c, &

). Thend, = d,, |c}| < |d,Ir.
But then lim,,_,, ¢, = lim,, d,, = 0, which is a contrad'i'ctio:l to (i). Therefore, by (106)

there must be some y = (Z cbl) € A with d = 0. But then y(0) = ioo; hence ico is a cusp

« —h2 .
of A; hence A contains a translation (namely, yd,y~! = ((1) ? r)). 0
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LemMa 14. Let A be a fuchsian group and let y € Gy be a parabolic element such that
y~'Ay ~ A (commensurable). Then the fixed point of y (on R U {ico)) is a cusp of A.

(1) i), so that the fixed
point of y is ico. Suppose on the contrary that ico is not a cusp of A, or equivalently that
A contains no translation. Then by Lemma 13 applied for the fuchsian group A Ny~ 1Ay,
we can find a sequence {£,)%2, in A N y~!Ay such that lim,_,, ¢, = lim, ., d, = 0, where

= [ O _ ptpart o [+ Cds E—cudy—1
&n —( dn). Put n, = & v&y “( _ci Cﬁ—Cndn+l . Then 5, € A, and

Cn
1

lim, 0 775 = (0 _11) But since A is discrete, this implies 7, = ((1) _ll) =y~ for all

Proor. We may assume without loss of generality that y = (

sufficiently large n. But this is impossible since this would imply &,!v€,y™! = y~! (for
such n); hence y = 1, which is a contradiction. Therefore, ico must be a cusp of A. O

The following two lemmas are also needed for the proof of Theorem 3.
LemMma 15. The quotient G,/A, by an abelian closed subgroup A, is non-compact.

Proor. If 4, = {1}, our assertion is trivial; so assume 4, # {1}. Let 1 # x € 4, and let
T, be the centralizer of x in Gy, so that 4, c T,. Then T, is conjugate in PL,(k,) to either

(i) the diagonal subgroup of G, or (ii) a compact torus in G, or (iii) the group ((l) I;p)

But in any case, it can be checked easily that G, /T, is non-compact. Therefore, G,/A, is
non-compact. a

Lemma 16. Consider the group

(107) B,,:{(g a’fl) 'aeQ", ber}/:tl

as a subgroup of G, = PS Ly(k;). Then ifk, # Q,, G,/ B, is non-compact.

oef 2)

It is enough to show that if k, # Q,, B,/B, is non-compact. Put ¥, = B, N PSL,(0,).
Then since V, is an open compact subgroup of B,, B,/8B, is non-compact if and only if
Ve\B,/B, is infinite. We shall show that [V,\B,/B,| = oo if k, # Q,. Let k, # Q, and
let e resp. f be the ramification index resp. the relative degree of the extension ky/Qp, 50
thatby ef = [k, : Q,] > 1, eithere > 1 or f > 1. If e > 1, let 7 be a prime element of &,
and put w; = 77¢¢*Y (i > 1);ife = 1 and f > 1, let w be any element of O, outside p + Z,,
and put w; = wp™ (i > 1). Then in either case the series w; (i > 1) has the property:
if w; — uw; € O, + Q, for some u € U, then i = j. From this follows immediately

Proor. Put

aek;‘,ﬁekp}/j:l.

that the elements ((1) al)i) (i 2 1) belong to the different double cosets ¥;\B,/B,; hence
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* §28. Proof of Theorem 3. The notations being as in §25, let Gg, be the parabolic
stabilizer of z in Gg. Then GR, =Rand H° = {y € ' | yg € Ggr.}; hence HO is abelian,
and if £ is any element of H° with £ # 1, then H° is the centralizer of £ in . We shall
prove '

(108) | (H: H% = oo

For this purpose, let ¥ be an open compact subgroup of G, and putI” =N (Gg x V).
Then by Lemma 14 applied to A = T and y = g, we conclude that z is a cusp of I'y;
hence for any y € T, yrz is also a cusp of ['}. But since there are only finitely many
non-equivalent cusps of '}, we have

(109) |rV\r/H] < oo.

Suppose that, contrary to (108), we had (H : H°) < c. Then by (109), [I"\I'/H°| < oo;
hence |\G,/H°| < oo. Let 4, be the closure of H° in G,. Then 4, is abelian and
IV\GP /Ay | < oo; hence G, /4, is compact. But this is 1mp0351ble by Lemma 15. Therefore

~ Now put HW H° NI = H' N (Gr X V). Since z is a cusp of Ty, and HY” is the
(parabolic) stabilizer group of z in I'}, we have H% = Z. Let £ be a generator of HY,
Then the centralizer of £ in I is H°, and hence by (108) there is an element § € H such
that 57145 # £*!. But since 67'£6 € H° N (Ggr X 6;1V6,), there is a positive integer m
such that 671¢m6 € HY . Put 6~'¢"6 = ¢" (n € 7). Now since H} C Gr, = R, H® can be
considered as a subgroup of R, and in this sense we have 6“55 = £"™; hence m # xn.
Therefore, 6,'£76, = & with m # +n; m, n # 0. Let £{1,, A;'} be the eigenvalues of
&y. Then +A7™ = +A."; hence 4, is a root of unity. But since £ is of infinite order, we

- conclude 4, = +1; hence there is an element #, € PL,(k,) such that #;'¢,t, = ((l) 1) (up
.y , . ) 1 k& | -}
to the sign). But HY centralizes &,; hence ;' Hot, C 0o 1) . Since 0 1] € 1, Vt, ifbis

sufficiently near 0, we conclude that for any y € H° there is a positive integer m such that
y?" € H'. But since H% is generated by £, we see now that

1 b
(110) t;ngtpc{(O 1)|beZ(1’)}.

But since the centralizer of H? in H is HP itself, H/H® acts effectively on H°, and by
(H : H°) = oo, the automorphism group of H° is infinite. In particular, H® # Z. But this
and (110) show at once that the two groups in (110) must be equal;

(111) £ H), = {((1) ’1’) l b e,Z(P)}.
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. y A . 1 Z®
Therefore ¢, 1 H,t, normalizes ( ), and on the other hand, the centralizer of ( )

0 1 0 1

. L e (1
in £;' Hyt, coincides with (

0 1 ) From this follows immediately that ! H,z, is gener-

1 7@ P B\ . e
ated by 0 1 and an element of the form 0 pf with some positive integer 4 and

some S8 € k,. Now replace z, by ¢, ((1) T

), with ¢ = 75;%. Then (110) remains valid, and

_ . 1 Z® p? 0
1;' Hyt, is generated by (O 1 ) and ( 0 p'd); hence

dk
(112) 1 Hyt, = {(”0 pf’dk) | keZ, beZ® } :

On the other hand, since &g is parabolic, there is an element zg € Ggr such that

tlértr = ((1) ill) By taking ¢! instead of £ if necessary, we may assume that 15! &ptg =

((1) i) Let y be any element of H? and put £;'y,t, = i((l) ?) with b € Z®. Then

YRR = ((1) l;) In fact, since H° is abelian, 5! yrtr commutes with t5! &gt = (1 1),

01
and hence is of the form ((l) I; (¥ € R). But since v2' = £, where b = b'[p™ (b € Z,

m > 0), we get the same relation on the real part; hence ' = b. Therefore,

@
H°={t6t"l 66((1) Zl )},Witht:tnxt,,.

d
Now take n € H such that £,'n,t, = 4 9 , so that H° and n generate H. Then
p Telp 0 p d

-1 . 1 zZ® : P B
Iz nrir normalizes o 1/} and hence is of the form 0 p (Il € Z,B € R). But by

méen,! = fﬁu , we get the same relation on the real part, and hence / = d. Now replace tg

1 ¢\ . .
by tr (0 1), with ¢ = —F-_qu. Then since

1 =\(p? B\[1 ¢\_(p? O
0 1Jlo p™J\0 1)7\0 p)
and since H° and n generate H, we obtain
(p)
(113) H = tB9¢!, H°=t((1) Zl )rl,
dk

with t = IR X1, B9 = {(po pi)‘”‘) | keZ, be Z(p)}.
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Now we shall prove k, = Q,. By (109), we have [F'\G,/H,| < oo; hence by (112),

[P\G,/1,B,t,"| < oo, where B, = {(g ab ) acQ be Qp}. But then G, /#,B,1,', and

hence G,/B, is also compact. Therefore by Lemma 16, we obtain k, = Q,,.
Finally, put

(114) B = {(1(’; ;’,) I kleZ be z<P>} /p-powers.

Then B is a normal subgroup of B’, and PLy(Q,) = PLy(Z,) - B'. Putt, = f,b’ with
i, e PLz(Zp), b € B, and put tg = 7xh’ (fx € Gr). Then H = tB9r! = [BOF! where
f = fg X T, € Gr X PLy(Z,). This completes the proof of Theorem 3. m]

Study of elements of I" with elliptic real parts.

§29. In the following, we shall study in detail such element y € I that yy is elliptic,
i.e., yr has imaginary eigenvalues, or equivalently, has a fixed point on . Let z € $, and
putl; = {y e T | yrz = z}. Call z, 2’ € § “T'-equivalent” if there exists y € I' with 2’ = ygz.
As before, let p(I') be the set of all '-equivalence classes of points z € $ with [I;] = o
(§3); on the other hand, denote by | '

(115) Q)
the set of all I'-equivalence classes of z with 1 < |I;| < co. Put

0
(116) V=PSL,O,;), T.= [0 - )V(l >0), I(x)=IforxeT.

P=TNGrxV), T'=TNn(GrxT)), ly)=lforyeT,
where 7 is a prime element of k,. For each P € p(I') (resp. Q € Q(I")), denote by
(117) P/T® (resp. Q/T°)

the set of all I'’-equivalence classes contained in P (resp. Q). Then our purpose is to
parametrize the set P/T? (resp. Q/I'®) in a nice way, and for each element of P/ (resp.
Q/T°) with a representative z € $, to compute /(y) for each y € I, (expressed by deg{ylr,
the parameters of P/T® (resp. Q/I'?), etc.) (Theorems 4, 5, 6). This will enable us to
compute, for each y € I with elliptic yg, the following quantity;

(119) Abk=Y = (2D,

e e{d}ro

where {6} runs over all I'*-conjugacy classes contained in {y}r N T", and {6} is the
order of the group T'; N I', I's being the centralizer of & in I'. This computation is used
essentially in the succeeding part of our study: the computation of {r-(«) for the general r
(without the assumptions that I is torsion-free or G/I" is compact).
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o) and Q). Letz € Hand putI'; = {y € I' | yrz = z}. Then I}, is abelian (§3).
Moreover,

ProposITION 8. LetyeI‘ wzth'y'-#l andéeI‘ If6' ydel‘ thené'eI‘

Proor. We have (63! yror)z = z; hence gz is also fixed by yg, and 6gz € $. Hence
O6rZ = z;, hence § € T,. ‘v O

CoroLLARY . Lety € T, withy # 1. Then

(1) T, is the centralizer of v inT.
(ii) y is not I'-conjugate to any other element of T',.

(T for P, € p(I). Let P € p(I') be represented by z (hence we may denote P = P),
so that |I";| = co. We denote by I'¢ the torsion subgroup of I';, and by e(P) = eo(P)p’? its
order ! where eo(P) # 0 (mod p).

ProrostTioN 9. Let W(k,) be the group of all roots of unity contained in k,. Then T¢ is
isomorphic to a subgroup of W(k,)/ + 1.

- Proor. By Proposition 3 (§4), there is some x, € G, such that x;'T, ;x, is d1agona1
Therefore, I'; is isomorphic to a subgroup of &/ + 1. m]

CoroLLARY . T is finite cyclic, and ey(P) divides 5—— (ifr 1 2)org-1 (zf p|2). Moreover
k, contains primitive 2e(P)-th roots of unity.

We shall show later (§34) that e(P) = 1 holds for almost all P € p(I).

D) I for O; € QI'). Let Q) be the set of all I'-equivalence classes Q = Q, of
points z € $ for which I, is finite but # {1}. Foreach Q = Q, € Q(I"), lete(Q) = eo(Q)p" D
be the order of I',, with eo(Q) # 0 (mod p).

ProposiTioN 10. Let Q = Q, € Q) and let y € T, withy # 1. Let +{{,{'} be the
eigenvalues of y,. Then
(1) K, = ky({) is a quadratic extension which depends only on Q. v
(i) T, is isomorphic to a subgroup of W(K!)/ + 1, where W(K?}) is the group of all roots
of unity contained in K}, = {x € K, | Nx,jx,x = 1). Inparticular, e,(Q) divides 2(q+ 1)
(fv12), 0rq+1(1f912) :
(iii) If K, /k, is ramified, eo(Q) = 1, i.e., e(Q) is a power of p.

RemARK . On the other hand, 7(Q) may not be zero even if K, /k; is unramified.

Proor. Let G, = G,r X G,, be the centralizer of y in G. Then by the assertion (b) (§29
of Chapter 2, Part 2), G, /T’, is compact. Since I', is finite, this implies that G, is compact;
hence G,; is also compact. But G,, is the centralizer of v, in G,; hence ¢ cannot be
contained in k; (see the proof of Proposition 3 (§4)). Now since I'; = 'z c G,r = R/Z,
1" is cyclic. Let & be a generator of I, and let +{n,n™'} be the eigenvalues of 6,. Put

= ky(n). Then [K; : k] = 2, and since { is a positive power of +n, we have { € K,.
But since { ¢ k,, we have K, = k). The sccond assertion follows 1mmedxately from

14By the corollary below, e(P) is finite.
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this. Now suppose that eo(Q) # 1, and assume that y is of order e,(Q). Then K, = k,({)
is unramified; hence (iii). ; m]

By Proposition 10, to each Q € Q(I'), we can attach a quadratic extension K, /k,. Put .

119) Q) = {Q € QW) | K, /k, is unramified },
Q) = {Q € Q) | K, /k, is ramified },

so that Q') = Q,(T") U Q.(T) (disjoint), and we have ey(Q) = 1 (hence e(Q) = p"D) for

0 Q.M. |
The finiteness of the set Q(I') will be shown in §34.

ReMARK . In each case Q € Q,(I') or € Q,('), the field K, does not (even) depend on
Q. In fact, if 0 € Q,(I'), K, must be the unique unramified quadratic extension and if
0 € Q(I), it is clear by Proposition 10 that K, must coincide with the field obtained by
adjoining primitive p-th roots of unity to &,. (Even then, K, may contain higher p-powerth
roots of unity. )

§30. P/T° for P € p('). Let P = P, € p(I). For each y € T, put
(120) deg{y}r = |ord, 4,

where +{A,, /I;I} denote the eigenvalues of y,. Thus, deg{yr is a multiple of deg P, they
are equal if and only if y generates I', modulo I'?, and deg{y}r = 0 if and only if y € I’
(see §5). As defined in §29, let P/T be the set of all I'’-equivalence classes of points on §
that are I'-equivalent to z. The following theorem (and its corollary) generalizes Lemma
3 (8§13) (with a considerably simpler proof).

TueoreM 4. Let P € p(I'), and put d = deg P, e = e(P), ey = eo(P), r = r(P) (hence
e=ep"), and c(p” — p™') = ord, p1* Then
(i) the set P/T° is described as follows;
(a) P/T° contains special d elements;

(121) Ry,--- Ry
(b) All othér elements of P/T® are parametrized as
k=1,2,3--
(122) Ry, {1 <u< dq" Zan
where v is an integer defined by '¢
0 ---0<k<ec,
Vi =1V ceept <k <cepY (I<vsr-1),

r ccpl <k

SSince k, contains pnm1t1ve D ’-th root of unity, cis a posxtlve integer.
16Thus for r = 0, v =0.
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(ii)
(@) Letz; € Hrepresent R; (1 <i<d), andlets €T, (6 # 1). Then

(123) 1(6) = deg{6)r.
(b) Let zy, €  represent Ry, and let § € T, withé # 1. Then

(

if deg{é}r > 0;0r
deg{é)r + k ---<if deg{d)r = 0,
but the order of 6 is not a power of p.
kMax(O, k—cp’) ---iftheorderoféisp™ (0<v<r-1).

(124)  I(5) = 4

In particular; the order of T, N T is given by p™™, and the order of T,, N T
(1 <i < d)is always e; i.e., T, NI (coincides with) the torsion subgroup of T,.

Proor. It is enough to parametrize the double coset I'°\I'/T, and for each %I, to
compute /(6) for each 6 € gT',g!. By the embedding into G,, it is the same thing to do it
for \G,/T . Take x € G, such that T = x™'T,,x is diagonal, and for each§ e I'; (6 # 1)
put

(125) x“apx=t=(g a‘_’,) (ack),

so that deg{6}r = |ord,al. Now g — g’ = gx induces a bijection of V\G,/I';;, onto
V\G,/T, and for each VgI',,, we have l(gd,g™") = (g’'tg’""); hence it is enough to param-
etrize V\G,/T and for each Vg'T, to compute I(g'tg’"").

Now we shall use the following set of representatives of V\G,;

g\ " 0,+1,+2, S
(126) X =0 g ; « : representatives of k, mod p”;
Choose a = 0 for @ = 0 mod p".

Since T is generated by two elements (3 b(zl)’ (g ;,) where b € k, with ord, b = d

and where { is a primitive 2e-th root of unity in k;, we can choose the following set of
representatives for "'\G, /T

r (n# 0

ot = L ou=0,1,2--,d-1;
(0

(127) | 1=0,1,2,,d—1;

- -k

=T ) kanas
0

p=1’2,3,""nlk9

where ay, runs over a set of representatives of U,/E(1 + p*), and where E is the group of
all e-th roots of unity contained in k,; hence n}, = (U, : E(1 + p*)). Now let us compute
l(c*tc™) and I(‘rﬁpt(r‘,:p)“). We have g*to* = t; hence l(c#tc*) = I(f); hence for these
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d elements o, l(c*tc™) = deg{d}r. Therefore if we denote by R, (1 < p < d) the
elements of P/T? corresponding to o*, we have (i)(a) and (ii)(a). As for Tip, we have

a

(128) t(_rl’:p)— (a. akp(a —: a)ﬂ_k) :

hence if deg{é}r = |ord,a| > 0, we have I(y) = |ord,al + k = deg{d)r + k. Also if
deg(s}r = 0 but the order of § (i.e., the order of a? as a root of unity) is not a power of p,
we have ord,(a~! — a) = 0; hence I(y) = k = deg{d}r + k. Finally if § is of p-power order,
then /(y) = Max(0, k- ord,(1 —a?)). So there only remains to compute 7} and ord,(1 —a?).
For this purpose let , € k, (0 < v < r — 1) be a primitive p"~-th root of unity. Then

ord,(1-7n,)= ord,,p ord,(1 —n,) = C_E_Em = cp.
pr-p
This shows that
/ ke k k ¢ -4
my= (U : EQ+9) = (U : 1L+ PNENQ +95)/e= v

for cp”! < k < cp”, and n, = (¢* — ¢*")/e for cp’! < k! Therefore, by using one index
' instead of 2 and p, and by denoting R;,, the element of P/I"° corresponding to 1“ v,
we arrive at the end of the proof. ‘ O

CoROLLARY . Lety € T be such that yy is elliptic and that the centralizer T',, is infinite.
Let A){y)r (I > 1) be as defined by (118). Then

0 I < degfylr,
dle I = degly}r,
digt-g*"/e - I=deglylr+k kx1;
(129)  Aifyhr =5 deg{y}r >0
or if =0, is not of p-power order.
dg" (¢ —q /e --- deglykr =0,
yisoforderp” (0 <v<r-=1).

where P is the element of p() defined by the fixed point of yr, and d = deg P, e = e(P),
r =¥(P), and c is as in Theorem 4.

Remark . This generalizes Lemma 3 (§13), since in Lemma 3, T" is assumed to be
torsion-free; hence e{6}r = 1.

Proor. By the Corollary (ii) of Proposition 8, the set of all I'’-conjugacy classes con-
tained in {y}r is in one-to-one correspondence with the set P/I"°. Now our corollary is a
direct consequence of Theorem 4. o

"Here, for v = 0, cp”! should be replaced by 0.
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§31. Q/T° for QO € Q.(I'). Now we are going to study in detail the elements Q of
Q(I'). For convenience’ sake, we shall first deal with O € Q,(I), i.e., Q € Q(I') for which
K, /k, is ramified. Thus, let O = Q, € Q,("), put e(Q) = p" D, and let Q/I" be, as before,
the set of all I'’-equivalence classes of points on § that are I'-equivalent to z. We shall
treat the two cases p # 2 and p = 2 separately;

The case p # 2. '

THEOREM 5 (p # 2). Letp # 2, O = Q. € Q(), and put e = &(Q), r = r(Q), so that
IC;l = e = p". Put yc(p” — p™') = ord, p. Then c is an odd integer; and
(i) we can parametrize the elements of Q/T? in the following way;

g
(130) Rk# (k=0,1,2,---;1£[1$;v:
where vy is an integer defined by
0 ---ngs%(c—l)
(131) V=4V ---%(cp"‘l—l)<ks%(cp"—1) (I<svsr-1)
r ---%(cp”"—l)<k.‘

(ii) Let zy, € $ represent Ry, andlet 6 €T, with$ # 1. Let p"™ be the order of 5. Then
(132) I(6) = Max(0, k — -;—(cp" -1).

In particular, the order of the group T, N T is given by p™™*.

Proor. Let £ be a primitive p”-th root of unity, and put X, = k,({). Then X is a
ramified quadratic extension of k, (see §29). Since k, N Q,(0) = Q (£ + £!), we have

(£ - {7') € ky and K;, = ky({/(¢ - £1)?). Since K, /k; is ramified and p £ 2,

2ord
ordy(¢ - ') = ordy pxord, (¢ ~ £ = 22 =
r-r
must be an odd integer. Now let 7 be a prime element of &, such that K, = k,( /7). Then
a+ b+m(a,b € k,) is integral if and only if a,b € O,. Let v be an element of I', such
that the eigenvalues of y, are (¢, '), and let 6 = ¥ (1 < n < p” — 1) be any element
(# 1) of T,. Let (i, n7!) be the eigenvalues of &,, so that we may assume n = ("
Putp=a+byr(a,beO)and? = (sz z) Then there is some x’ € GLz(kp) such
that x’~'6,x’ = ¢ forall 6 € T, (6 # 1). Since K, /k, is ramified, ordy (N, 1, KX) = Z;
hence if X, is the centralizer of # in GL,(k,), we have (det X, )U, = k; hence there

is some y € Xy such that dety € U,detx’. Put &= det(xy™') € U, w = (g (1)), and

x=xylwl,sothatx € G, and x ly,x = wfw™ = ( a

) bs)' Call this element ¢ and
nbe a

put T = x'T,x = {1}.
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- Now by the same argument as in the beginning of the proof of Theorem 4, we see im-
mediately that it is enough to parametrize V\G,/T and for each VgT, to compute l(gtg™").
Let x,, be as in (126). Then : : _ :

) == (0T )

Heﬁce |

(134) fl(y)#{Max(O,Zl—-ordpb) ---n20,<?rd,,b2—n;
Max(0, 2/ -1 — ord, b) - - - otherwise;

where I = I(x,,). Here note that

-1
ord, b = ord, %—\—/-n_’;— = %(cp" -1),
where p”™ is the order of §. First (134) shows that if x,,, X,»,» belong to the same V\G,/T-
coset and if n > 0 and ord, @ > —» hold, then we have n’ = n > 0 and ord, @’ > —n’. In
fact if x,,tx,} € V for all t € T, then X, = X,,; hence there is no problem. On the other
hand, if /(x,.2x;}) > O for some t, then I(x,,x;}) = 2/(x,,) — ord, b, and Ixwartx;)) =
I(xnotx;}) > 0. But since T ¢ ¥, we have I(X,,) = I(X,vo); hence (X ) = 21(x,,,a ) -
ord, b > 0. But by (134) this implies »’ > 0 and ord, o’ > —r’. But then n=Il(xpy) =
I(x,2) = n; hence our assertion. '

- Now foreach /> 0, let Ry, (1 < pt < my)) be all the distinct double cosets Vx,, T with
n=120andord,@ > —»; and foreach / > 1, let Ry, (1 < p1 < ny;) be all the distinct
double cosets Vx,y, T with I(x,,/) = I that are not any one of Ry;,,. Then by (134) and by
the above formula for ord, b, it follows immediately that ny = 1, n; = ;Ti (k > 0), and that
(132) holds. o

The case p = 2. This case is more delicate than the case p # 2. We begin with the
following lemma. :

Lemma 17. Let p|2 and let T € U,. Suppose that K, = k,(\7) isa ramzﬁed quadratic
extension, and put x = Max{ordp u* - 1)). Then

() « is an odd integer satzsﬁzzng l<k<ord,4-1; ,
(il) If 0 < k < «, there is some u € U, with ord,(u* — 1) = k if and only zf kis even.
(iii) For anyu € U,, "

ord,(u* — 1) = ordp(u — V7) = ordgp(u + V1)
holds, where B is the prime factor of p in K,
Proor. That k < ord,4—1: Let &’ be the critical exponent for the quadratic residues in

k,; i.e., the largest exponent such that € U, is a square in U, if and only if it is a square
mod p¥. Then, by the general estimation formula for «’, we have

;rdpf]+ordpp+ 1=ord, 4+1.

¢
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Hence if u € U, is a square mod 4p, then u is a square in U,. But since 7 is not a square
we have k < ¥’ < ord, 4 + 1; hence « < ord, 4. Now we shall show that there is no u € U,
with #? = T (mod 4), which would prove « < ord, 4 — 1. Suppose on the contrary that we
had #? = t (mod 4) for some u. Putur = 1+4a(a € O,). Thena # b* + b (mod p)
for any b € O,. In facta = b* + b (mod p) would imply 7 = »?(1 + 2b)* (mod 4p), which
contradicts x < ord, 4. Consider the equation X?> + X = a. Then this is irreducible mod
p; hence it is also irreducible on k, and its splitting field k,( V1 + 4a) = k(V7) = K,
must be unramified, which contradicts our assumption. Therefore, 4* # 7 (mod 4); hence
k<ord,4-1.

The rest of (i) and (iii). Let u € U, and put k = ord,(u* — 7). Let P be the prime factor
of p in K, so that p = B2. Then

ord, (1’ — 1) = %{ord‘n(u — V1) + ordg(u + V?)} =k;

hence either (a) ordg(x — v7) > k or (b) ordg(u + V7) > k. But ordg(2 y7) = ordg 2 =
ord, 4 > k > k; hence (a) implies (b) and conversely. Therefore, ordg(u — 1) = ordg(u +
v7) = k. (This settles (iii)). Now assume that k is even, and put w’ = u + %2 - @ (@ € O,).
Then "—;;,—ﬁ = "—;;}ﬁ + a; hence if we choose @ so that a = —% mod P (this is possible
since K, and k, have the same residue class field), we have #' = 7 mod P*!. But
by k < ord, 4 — 1, we have 27 = 0 (mod P**'); hence w2 — 7 = 0 (mod p**!); hence
ord,(u’> — 1) > k + 1. This shows that if k = ord,(+? — 7) is even, then k < . Therefore «
must be odd. In particular, 1 < «.

(ii) Take ug € u, such that ord,(#2 — 7) = k. Let u € U, with k = ord, (x> — 7) < «.
Then

k = ord,(u? — u2) = ord,(u — uy) + ord,(u + uy).

But since (say) ord, (¥ —up) < § < ord, 2 = ord,(2uy), we have ord,(u +up) = ord,(u —uo);
hence k = 2 ord,(u — uy) = 0 (mod 2). Conversely, let k be even with 0 < k < «, and take
u € U, such that ord, (¥ — ) = § Then it follows immediately that ord,(#> —7) = k. O

Now let p|2, let Q = 0. € Q.(IN), and let K, be the corresponding ramified quadratic
extension of k,. Let £ be an element of I'; of order 2. Then X, is generated over k,
by the eigenvalues of £,; hence K, = k,(V-1). By the above lemma this shows that if
Q,(T) is non-empty, the number k = Max,eq, ord,(«? + 1) is a finite odd integer satisfying
k<ord,4-1.

Now we shall prove the following Theorem 5 (p = 2);

THEOREM 5 (p = 2). Letp = 2, Q = Q; € Q,(I"), and put e = &(Q), r = r(Q), so that
IT.| = e = 2. Put 2"%c = ord, 2, k = MaXyey, 0rd,(u* + 1). Then c is an even integer, « is
odd, andord,4 —c +1 < k < ord, 4 — 1. Moreover,

(i) we can parametrize the elements of Q/T? in the following way;

(135) Ry (=012 1sps ),
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where vy is an integer defined by

0 -0<ks<($—ord,2)+i(c-1),
(136)  vi={v ---(f—ord,2)+ (2 - 1) <k < (& -ord,2) + L(c2" - 1),
x—1
r T<k

(ii) Let z;, € 9 represent Ry, andlet § € T,,, with § # 1. Let 2" be the order of 6. Then
(137) 1(8) = Max(0, k — %(czv —1)+ord,2 - g).
In particular, the order of the group T,,, N T? is given by 2",

Proor. Let K, be the corresponding ramified extension of k,. Then K, = ky( V-1),
and K, contains the group E of 2*!-th roots of unity. This shows that c is an even integer.
That « is odd and ¥ < ord, 4 — 1 is a direct consequence of Lemma 17. To prove k >
ord,4 —c+1 ="' = 1)c+1,let € E be a primitive 2"*!-th root of unity and put
£ =ag+ by V-1 (ag, by € k). If r = 1, the assertion is trivial; so assume r > 1. Then

ord, bo = ord,(¢ — 1) - ord, 2 = —(2"! - 1)% <0;

hence ord, @y = ord, by, and V-1 = -3 (mod p@~'-D%). Therefore, by Lemma 17 (iii),
k > (2! = 1)c. But since « is odd, we obtain « > (2"~! — 1)c + 1; hence our assumption
on «.

Now there is an onto isomorphism I', —» E/ + 1 such that if § — %7, then +{n, 7!}
are the eigenvalues of §,. Foreach§ € I, putnp = a + bV-1(a, bek)and? =
+ (—ab z) € G,. Then as in the case of p { 2 we see easily that there exist some £ € U,
a be
be! a
our problem is reduced to parametrizing V\G,/T, and for each VgT computing I(gtg™").
Now let x,,, be as in (126). Then ‘

—1 —-n —2n -2 n
_ .1 _ [a—¢&tban™, ebn (1 + £ 2?7
(138) Y = XnalXpy = ( —&7 b, a+ & ban” ’

and x € G, such thatt = x16,x = (_ ) forall§ € T,. Put T = x~'T,,x = {¢r}. Then

and ord, b = 2""'c—ord, 2, where 2" is the order of 6. Put ! = I(x,,), and m = m(x,,) = 0
(if ord, @ # —n), = Min(4l, ord,(u? + 1)) (if ord, @ = —n and u = £'an”)."® Then by
(138), we obtain directly

(139) I(y) = Max(0, 2/ — m — ord, b).

Moreover, by the definition of x, we have 0 < m < Min(4/, ), and by Lemma 17 (ii), m
must be even unless m = «.

Now for each integer £, let 7} be the number of x,, such that 2/ —m + %l = k. Then
by a straightforward computation, we obtain 7, = ¢* (k > 0), = 0 (k < 0). Moreover if
Xnas Xwo belong to the same V\G,/T-coset, then k(x,,) = k(Xro). In fact, if I(x,utx;)) =

1814 this case,n>0and !/ =n.
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0 for all ¢ € T, then x,,,» = X,,; hence there is no problem. If, on the other hand,
I(xnotx;}) > 0 for some ¢, then by (139),
—1 | K- 1
I(XnatX,,) = K(Xpa) ~ —2— —ord, b > 0.
But I(xyetx;))) = I(xpetx;)) > 0; hence
k-1

l(x,,'a'tx;,la,) = k(x,,'a:) - —2— - Ol'dp b,

hence k(x,,) = k(x,var). So, let n; be the number of distinct Vx,, T such that k(x,,) = k.
Then since the number of ¢ € T such that Vx,,t = Vx,, is 2™ by (139), we obtain
n = 23% = ii,‘ (k = 0). Therefore, by putting Ry, (1 < 4 < n;) all the double cosets Vx,, T
such that k(x,,) = k, we arrive at the end of the proof. O

By Theorem 5, we obtain immediately:
CoroLLArY . Let Q= Q, € Q. (D), putll,| = p’, and let y e T, withy # 1. Then

_lr_ql+§(cp"—l) c-p#2,
(140) Alylr = {3_ gD+ §-ordy2
2?

where p™ is the order of y, ¢ = ;f?r ord, p, and « is as in Theorem 5 (p = 2).

...p=2,

§32. Q/T° for Q € Q. ().
THEOREM 6. We can decompose the set Q,(T) into the disjoint union
(141) QM) =@qMu,X) (disoini)

in a unique way so that the following assertions (i) ~ (i) are satisfied.

(i) For each Q € Q,), put e(Q) = e = eyp” withey £ 0 (mod p). Putord,p =
c(p” — p'Y), so that c is a positive integer and ¢ = 0 (mod 2) if p|2.}° Then we can
parametrize the elements of Q/T? as

(k=0,2,4,---, if 0 e @ (),

(142) Rky ) =1’395""’ lfQEQ;(r)’

l<y< 1 k=0

where v is an integer defined by °

0 ---0<k<ec
(143) vi={v --cpt<k<cp’ (1<v<r-1)
r --cpl<k

Ygince if p|2, then K, contains primitive 27*1_th root of unity.
20Thus if 7 = 0, then v = O for all & > 0.
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(ii) Let z, € $ represent Ry, andlet§ €Ty, withé # 1. Then

k ---if the order of § is
not a power of p,

Max(0,k — cp¥) ---ifthe order of § is
p"" (0<V<r— 1).

(144) l(6j =

In particular, the order of the group T’ ﬂl"o is given by e (if k = 0), and by p™* (if k > 0)

~ Prook. Put K, = k,(V7) (r € U,). Then since K, /k, is unramified, the basis 1, Vrof
K, /k, has the following properties;

@) ifpt2,a+br(a, bek,)is mtegral if and only if a, b are so, and 7 is a quadratic
non-residue mod p;

(11) if p|2, 7 is a quadratic residue mod 4 but non-residue mod 4p (see the proof of Lemma
17) !; hence we may assume 7 = 1 (mod 4). Then 2(a+ b \/_) (a, beky)is mtegral
if and only if a, b are integral and a = b (mod 2).

Now let E be the group of all 2e-th roots of 1 contained in K. Then there is an onto
isomorphism I, — E/ + 1 such that if § i +n, then +{5, ™'} are the eigenvalues of §,.

Foreaché e, putn=a+b+r(a, bek,)andt = (;_ 2) € G,. Then there is some

x' € PLy(k,) such that x’"ldpx’ =t (for all 6 el,). Putw = ((1) 0) so that

PLy(k;) = G, - PLy(0;) U G,wPLy(0,).

Since the centralizer X; of # in PL,(k,) is identified with K/k; in a natural manner, and
since Ky /k, is unramified and hence Nk, ;KX > Uy, we have det X; > det PLy(O,); hence
we can replace x’ by either x € G, or by xw (x € G,). Therefore, either of the following
two cases may happen:

| {a b
(Case1) 3Fx e Gp;x'6,x = (ba ) =t V6 eT),
(145) ra ,
{(Case2) IxeGuxlsx=| % "|=r (Vs5eTy).
, ba ! a |t

However, since detX, NKp kK, does not contam prlme elements of kp, only one of the
two cases can happen

Case 1. Put T = x7'I,,x = {t}. Then our problem is to parametrlze NG,/T, and for
each VgT, to compute I(gtg™!). Let x,, be as in (126). Then, :

a .1 _ [a+ brax", ba (1 - a?n*'1)
(146) Y = XnalXny = ( brn*", " a-bran” '

21That 7 is a quadratic residue mod 4 follows from the argument used i in the proof of Lemma 17 com-
bined with the fact that the unramified quadratic extension is unique. ‘
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Put / = I(x,,) and now assume that ¢ # 1. Then we can check by a direct computation 2
that

(147) I(y) = Max(0, 2/ — 2m — ord, b, 2! — ord, 4 — ord, b),
where m = m(Vx,,) is defined as follows:
(i) iford, @ # —n, put m = 0;
(ii) if ord, @ = —n (then #n > 0, [ = n), put u = ax” (so that u runs over U, mod p¥)
and put m = ord,(u — 1). ‘
Here we put m = 2/ when u = 1 (mod p?). (Note, in computing out (147), that we have
ord,(1 — 4*1) = 2mif m < ord, 2, and = ord, 4 if m > ord, 2. ) Moreover, we have

ord, (25) = ord,(n —n™!) =0 (if the order of § is not a power of p),
i cp¥ (if the order of 6 is p™ ™, with0 <v < r-1).
Now put
(148) k' =Max(l - m,l - ord, 2), k=2K +ord, 2.

Then since 2k’ > (I — m) + (I — ord, 2) > —ord, 2, we have k > 0 and k = ord, 2 (mod 2).
By (147), we have

I(y) = Max(0, k — ord,(2b))

(149) |k | ..-if the order of & is not a power of p,
~ |Max(0,k—cp*) ---iftheorderof is p’ (0 <v <r—1).

Now for a given integer k£ > 0 with k = ord, 2 (mod 2), let #, be the number of distinct
V xn, for which (148) (and hence also (149)) holds. Then by a straightforward computation
we obtain 7 = 1 or 0 according to ord, 2 = O or = 1 (mod 2), and n, = ¢* + ¢*~! (k > 0,
k = ord, 2 (mod 2)). Now we can show exactly in the same manner as in the proof of
Theorem 5 (p = 2) that k, a function of x,,, depends only on the double coset ¥x,,T. So,
let n; be the number of distinct Vx,,, T for which (148) holds. Then since Vx,,t = Vx,, if
and only if /(y) = 0, we can obtain easily by (149) that ny = nj, n, = ﬁ,—k (k > 0), where
vi is given by (143). Thus if we denote by
Ry, [kz 0, k=ord,2 (mod2);, 1l<ucx {;&ﬁ (k= 0)]
eop*k

all the distinct Vx,, T with k(x,,) = k, then we have (144) for such Ry,.

Case 2. This case is treated exactly in the same manner, and the result is as follows.
Put y’ = x,,2'x;}. Then, for ¢ # 1, we have

I(y') = Max(0,2] - 2m’ — 1 — ord, b,2] — ord, 4 — 1 — ord, b)
where m’ is given as follows: |

() ifordga+n—-1<0,putm’ = —1;
(i) ifordya+n—-1> 0, put m’ = 0;

22 Note that a + brax™ =  + br(an” — 1); hence ordy(a + bran”) is either > 0 or = ord,{b(an" — 1)}.
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(iii) and if ord, @ + n— 1 = 0 (then n > 0, [ = n), then put = an™! (so that » runs over
U, mod p¥!)and put m’ = ord,(u - 1).

Here we putm = 2/~ 1 whenu =1 mod p? ). Put
kK = Max(I - m',l - ord, 2), k=2K +ord,2~12>0,

so that /(y’) = Max(0, k£ - ord,(2b)). Then k depends only on Vxp T’ (where T’ = {'}),
and for each k > 0 with k¥ = ord,2 — 1 (mod 2), the number #; of distinct Vx,,T" such
that k(Vx,,T") = k is given by

k k-1

m=1(Gford,2=1 (mod2), n=2 e*p‘{k (k>0, k=ord,2—1 (mod 2)).
0
Thus denoting by
1 (k = 0)
R k>0, k=o0rd,2-1 d2);, 1<uc< .
ky Y P (mo ) H {fe:pﬂvkl ( k > 0)]

all the distinct Vx,, T’ with k(x,,) = k, we have (144) for such Ry,.

Now let @}() be the set of all @ € Q,(I") which belong to Case 1 (resp. Case 2)
according to ord,2 = 0 (mod 2) (resp. = 1 (mod 2)), and let Q;(I") be that of all Q
which belong to Case 2 (resp. Case 1) according to ord,2 = 0 (mod 2) (resp. = 1
(mod 2)).

; Case 1 | Case 2
(150) ord,2=0 (mod2) | Q@) | @)
ord,2=1 (mod2)| Q@) | QI
Then by what we have shown, Theorem 6 (i) (ii) holds for this definition of Q}(I') and

Q; (). On the other hand, it is clear that the decomposition (141) is characterized by the
equality (144) (even if ¢y = 1). o

CoroLLARY . Let Q = Q, € Q,(I') and let y e I, withy # 1. Put e(Q) = e = egp” with
eo £ 0 (mod p), and let c be as in Theorem 6. Then

@ Qe D),

¢ +d™ - -the order of y is not
apowerofp; l: even,

0 ' - - - the order of y is not

(151) Ayl =1, apower of p; 1: odd,

g% (¢ +q"") ---theorderofyisp™;
cp’ =1 (mod 2),

0 ~---theorderof yis p'™ ;
cp*#1 (mod 2).




50

(i) if Qe @),
0
1o o -1 nditi
_ g +qh _ the same condition
(152) Aty = 0 > (same order) as above.
17 + 4

§33. The results of §32 suggest us to consider not only the group I'? and the lehgth

I(y) but also the following group I'”” and the length /(y). Fix any element w € V' (g (1)) v,

and put

0

V=w'Wo, TI= V’[O —1] V'= w'lTlw,

(153)

n

=rn@Gsx?), T'=Tn(GrxT)) (I20).

Further, put ”(x) = / for x € T/, and I'(y) = I for y € T". Note here that for any
x € PLy(k;), x"'Vx is conjugate in G, to either ¥ or V’; hence up to I'-conjugacy, it is
enough to consider only the two functions /(y) and /' (y).

TueoreM 4'. Theorem 4 is also valid if we replace T® by T and I(6) by I'(6).
THEOREM 5’. Theorem 5 is also valid if we replace T° by T and I(6) by I'(6).

Proor. They are reduced to the same problems (as Theorem 4 resp. 5) at the first
steps of imitating the proofs of Theorem 4 resp. 5. Namely, they are also reduced to the
problems of parametrizing ¥\G,/T and for each VgT, computing /(gtg~") (not I'(gtg™")).
The reason is that if X7 is the centralizer of T in PL,(k,), then X7 contains an element ¢
for which ord,(det £) = 1 (mod 2). (This is in fact the case, since in the case of Theorem
4, X7 is the diagonal subgroup of PL,(k,), and in the case of Theorem 5, X7 is identified
with K7 /k;, but since K, [k, is ramified, there is some ¢ € K;, such that ord, N, mE =1
(mod 2).) _} m]

On the other hand, as for Theorem 6, the circumstance is quite different. In fact, we
obtain an “opposite” result, as follows. ‘

TueOREM 6'. Theorem 6 is also valid if we replace T° by T, I(6) by I'(6) and if we
invert Q;(T') and Q@ (T).

Proor. In the proof of Theorem 6, the two cases of (145) appear inverted for /(6). ©

§34. The signatures of F°R and I*,;’." Let A be any fuchsian group, let g be the genus
of H/A, let s be the number of cusps of A (counted up to A-equivalence), and letey, - - - , &
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be the orders of the stabilizers of elliptic points of A (counted up to A-equivalence). In
this situation, the data

(154) {9;00,"' ’oo;el,""a(et}
; ’ _ L S

is called the signature of A. 1t is well-known that

1 dxdy
155 A) = —
( , ) ) U( )dgﬁ 7 ” A\ﬁ ‘yz

L
=2g—2+s+Z(1—l_)>o,
Ci=1

where x + iy € § (x,y € R). Cre :
Now let us consider the signatures of I'y and I'y". First, since (V : ¥ N V) = (V' :
VnV)=q+1,wehave (I% :ToNTY) = @Y : % NIY); hence

(156) | o) = oIY).
Let
(157) {g,00,--- ,00;e1,-- , ez €11, - , €€, €2}

s
be the signature of I’%; where {e,--- , e,} resp. {ey1,-- - , €1} resp. {ex, - - , e} are asso-
ciated with those elliptic points z of I'j that belong to p(I') resp. Q,(T') resp. Q,(T). In the
same manner, denote by

(157’) {g,; ?O, <0, 00 e’l’ o ’e;’;e’llv Tt e’lb’; e’21’ o ’e’ZC’}
the signature of I .
Then by the corollary of Proposition 7 (§26), we have
(158) s=§ = Z deg P,
Pep ()
and by Theorems 4, 4’, ‘
a=4da;
(159) {eh"' ,ea}={ela”' 9ea'} .,
= {e(P)’ Tt e(Pls Pr(P)-v, e ,Pr( )_v; (0 <v< T(P) - 1)}PEp(l'), e(P)>1
, degP  a(Py)
with o
‘ ’ c (LGB L e gy Ly >0
(160) a(P,v) = Zg(P)gv (q q ) 14 s
Br@ -1  v=0,

where e(P) = eo(P)p™™® (eo(P) 2 0 (mod p)), and ¢ = c(P) is as in Theorem 4. In
particular, we see that e(P) = 1 holds for almost all P € p(I'). Moreover, by Theorems 5,
5’, we obtain ‘ ‘
C=C’; {6219“' ;32::}:{331,"“ ,e;c,}
(161) = {p97,- P90 < v < Q) - Dlgeay
a(@) | E
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where e(Q) = p"@, and

( (cp¥+1)_, % (c ""+1)
,%““ qi'lh pt2,v>0,
&(cﬂ)_l
22 - -pf2,v=0,
(162) a(Q,V = 1 q:l_ord zqi(cz"d-l)_qi(d"l‘bl) i {
i Bt
Lg_'q-T'_-l P2, v=0.

Here, ¢ = ¢(Q) is as in Theorem 5. In particular, Q,(T) is finite. Therefore, by (156),
(158), (159) and (161), we obtain

1 1, 1¢ 1.,
(163) 5;(1‘;)‘5;““'%’:9‘9-
As for ¢); and €] »we obtain by Theorems 6, 6':
a(Q.v)
len, - e} ={e(Q); PO+, PO~ (0 < v < HQ) - Digeat
u{p @, ,p 97 (0 < v < HQ) - Dlgegim

)
164
(164) om
(€)1, ey} =P @7, ., p @ (0 < v < H(Q) - Dlgeat)
Y {e(Q)7 gr(Q)—v’ Tt ,pr(Q)—v (0 Svs r(Q) - 1)}QEQ;(1")s
a(Qv)
where
( ) qz[fﬁi]ﬂ_qZ[fZ;-—l]ﬂ > 0
a(Q,v) ={=©@r, ¢l v
L g g ey =0
165 eo(Q) q_l - ’
( ) cp¥+l 141
L AT o
BQ,v) = { «@P -1 ’
@) {;zﬁ‘_‘fﬂ ey =0
e(Q) g-1 -

Here, ¢ = ¢(Q) is as in Theorem 6. However, we do not know at present whether
{e(O))gea:ry and {e(D)gea; @y, OF {e11,- - ,e1p} and {e};,--- , €],,}, or g and g’ are always
equal. (We conjecture that they are equal. No counterexamples are known.)

At any rate, by (164), Q,(I) = Q; () U Q; (") is finite; hence Q) = QN U Q.(I) is
also finite.

The following formulae, which are obtained directly by the above results, are used
later.

(166)

1 1R e
_ZdegP{l—eo(P)+Z}T);(p -p7)gr T
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< 1 1
Trdff_(q-l);(l—;‘_)+ > (1_'(—Q5

2i &
167 B 0<a.(T)
- Z 1 Z(pv V_l)qpv—p"' 2 y; 1 : "'p{za
oS Q) & | qi %2 ... p2,
where k = Max,e,, ord, (12 + 1) (for p|2, if Q.(T) # ¢).2?
< 1 ,
v = (g- 1-— - —
ng @ DYA- 0 3 d- )
f 1 1 & ] s T
(168) =gq {1 -— (p" p’ g -
Qe;(l') eo(Q) Q) & Z
1 1 r(Q) Z(I(ELPI—-FI)]}
+ 1- P’ - "'l)q 2 pvpr- .
Qegz:(f') { eo(Q) «(0) Z

Here, [ ] denotes the Gauss symbol.

Equation (168) remains valid if we replace ¥7_,(1 - 1)

(168" by Tz (1 - 2) and invert Q{(T") and Q, (D).

Call this new number ),

The { function of I in the general case.

§35. The results. By our above results on parabolic elements and elliptic elements
of ', we can extend Theorem 1 (§8) and Theorem 2 (§23) to the case of general I, as
follows.

TueoreM 7. LetT be any discrete subgroup of G = Gr X Gy, such that T'g, T, are dense
in G, G, respectively and that G| has finite invariant volume. Let {r(u) = []pepa(1 —
u%8 PY~1 pe the [-function of T (see §6). Then we have the following formula for {r(u):

x (1 —u)”,

e Poe P(u)(l + qu)? 9
R K (e

where p.() is the (finite) set of all T-equivalence classes of cusps of T (see §26), g = N,
g and g’ are the genus of T and Iy respectively, where T° = T N (G X V) and v =

I' N (Gr X w™'Vw), with V = PS LZ(O,,) andw € V(O (1)) V (n: a prime element of k;).

23 As can be checked, easily, the exponent i_d’;,% + 3 (+ — ord, 2 for p|2) is an integer.
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P(u) is a polynomial of degree 2g with a form:

170 {P(u) 1%,(1 = 7)1 - mju) € Z{u],
mr = g (15i$g),» '
(171) Iml, Il < % m, 7t # 1, g2

Now, the positive integer H is given as jbllaws .

H= —(q— 1)u(r;;)+ D a-

(172) QEQ(I') e(Q)
T,

—(q—l)(g—1+§+5)+3+?,

where
dxdy
uTw) = e ¥
(173)
=2g- 2+S+Z(1 -—) Z(l —-—) Z(l——)
j .

{g;00,--- 0051, ,ez €11, e €21, , €} being the signature ofI“0 in the way of

notations given in §34. Thus, s = Y. pep. 1y deg P, and the numbers o, 1,, 1, are given by
(166), (168), (167) respectively. In particular, if T has no elements of order p and g’ = g,
then we have

Gyx [ a-uesr)?

Pepo(T)
(174) P

(T2

u)"" DATR*+E](-31)

'lj

x(1
(see (163), (164)).

REMARKs . (i) We conjecture that g’ = g; to which no counterexamples are known.
(i1) By (169), we see that {-(u) was better defined with
(1 _ udeg P)—l.
Pep(T)Up.(T)
But to avoid confusion, we shall keep the previous definition.
(iii) Finally, we note that if T" is torsion-free, then we have ¢’ = g by (163); hence

G@x [ a-usy!

Pepo(T)
(175) P(w)

" (- )1 - q%)
and if moreover G/T is compact, then p () = ¢ and s = 0; hence we have
: L s P(u) .
(176) {l‘(u) - (l _ u)(l _ qzu)
which is nothing but Theorem 1 (§8).

X (1 — @)@ o1+

X (1 — 5)@De-D
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§36. The Eichler-Selberg trace-formula. Having Theorems 3 ~ 6 and their corol-
laries on hand, we can prove Theorem 7 exactly in the same manner as in the proof of
Theorem 1. But, of course, we need here the Eichler-Selberg trace formula (for the Hecke
operators acting on the space of holomorphic cusp forms of weight 2) with respect to fuch-
sian groups A, where Ggr/A may not be compact and A may not be torsion-free. Namely,
we make use of the following generalization of Lemma 1 (§9):

Lemma 18 (Eichler-Selberg, Petersson)?* Let A be a discrete subgroup of Gy such that
GR/A has finite invariant volume, let A be a subgroup of Gr containing A such that y™' Ay
is commensurable with A and Ay™' A = AyA forally € A. Let p = p, be the representation
(22) (§89) of the Hecke ring H(A, A) in the space of holomorphic cusp forms of weight 2
with respect to A. Then p is a direct sum of g linear real representations x1,- - - , Xg (9:
the genus of A). Moreover for each y, € A withy, ¢ A, put

(177) G A(AyoA)=Zn—+2ZZrh,
. v v S 'h

where

(1) v runs over all elliptic A-conjugacy classes {y}, contained in Ay,A, and n, is the
order of the centralizer of y in A; or equivalently, n, is the multiplicity of the fixed
point of y as an elliptic point of A.

(ii) S runs over all cusps of A up to A-equivalence; (Ay,A)s (resp. As) is the set of
all elements of AyoA (resp. A) that stabilize ** S. For each S, h runs over a set
of representatives of As-double cosets in (AyoA)s, and ry, is defined as follows. For
each S, fix a generator &5 of As, and define r), by:

h . T
h . parabolic,h = &5 (b € R) —5
(178) A hypgrbolic, hlsh =85, 0 (fa>p)
where a,f € Z,> 0, i
and (a,8) = 1. @ (fa<p)
Then, the summations on the right side of (177) are finite, and we have
(179) A(AyoA) = 2(d(AyoA) — tr p(AyoA)),

where d(AyoA) = |Ay,A/Al

§37. Proof of Theorem 7. First we shall compute the right 51de of (177) for the case
A=Tgr,A= Iy, and AyA = T, (m > 1).

(i) The second term (contrzbutzon of parabolic elements).

Fix any cusp § of I'y and let d be the degree of its I'-equivalence class (see §26). Put

H® = {yeT|yrS =S, &r: parabohc}u{l}
H = {7€F|'}’RS S}

2ACf. M. Eichler [12].
25 Then elements of Ag are necessarily parabolic, but elements of (AypA)s may not be so.
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By Theorem 3, there exists ¢ € Gg X PLy(Z,) such that H = "' B¢, where

_dk b
B9 = (0 )lkez beZ(")}

1 Z@
0 1

1 Z

Thus H° = t"‘( )t, and HNT° = t"(o l)t. Put ¢ = t"((l) :)t so that ¢

—kd
generates H N T°. Let h be any element of H and put 4 = 1! (p

(180) herm o |H-d=m boeZ;
whenlkl-d<m, b0 (mod p);

where by = bp™. Moreover if k and by run over such numbers as above, and b, runs only
over a set of representatives modulo p™#4, then A runs over a set of representatives of
the double coset space H NT°\H N T™/H N T?. For each such representative A, let us
compute 7, (defined in Lemma 18)2® First, A is parabolic if and only if £ = 0, and in this
case b, = b = by/p™ (bp # 0 (mod p)). Thus the summation }; r, over such A is given
by 2 (1 - )7}, where ¢ runs over all pr1m1t1ve p™-th roots of unity; hence is equal to

(p 1)p™! (use the equality ¥, (x— O = f(x L&) where f(x) = (" - NP =1)1). On
the other hand, if 4 is hyperbolic, i.e., if k # 0, then the numbers ¢, 8 defined in (178) are
givenby @ = 1, 8 = p?™ (k > 0), and a=p 2 pg=1 (k< 0). Moreover for each k > 0
with kd < m, the number of b, mod p™** satisfying (180) is equal to (p — 1)p™*4!
(kd < m), 1 (kd = m). Therefore, the summation }, r, over the hyperbolic representatives
h is given by

(181) - UZEI]P’""“”‘ .--m % 0 (mod d)
-DT P41 -.m= 0 (mod d).
Call this number c(m,d). Then, since each P € g, (') consists of exactly deg P distinct

I'% equivalence classes (Proposition 7, §26), the second term of the right side of (177) is
given by

(182) s(p—1)p™' +2 )’ c(m,degP)degP,
Pepo,(I')
where 5 = ¥ pe,, ) deg P is the number of cusps of I3 (up to I'-equivalence).
(ii) The first term (contribution of elliptic elements)
This is obtained directly from the Corollaries of Theorems 4, 5, 6 (see (118) for the
definition of 4,,{y}r). In fact, 3, n]! is given by

(183) N dntre =G+ D+ Y Nty

{yir {yIr {yir (yir

b
0 Pkd) t. Then

where the summation on the left side is over all I'-conjugacy classes {y)r such that yg is
elliptic, and the summations on the right side are over such {y)r that the fixed points z
(€ 9) of yr belong to the elements p(I), Q,(I') and Q,(T) respectively.

26w, 1. t. the generator £ of H N I,
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By the Corollary of Theorem 4, we have

itie= D D Aniyhr

i P=P;ep(l) veTz.y#1

(184) m-1
| =2(Np+ (@ - 1) ) ¢ Nuid + (¢ = Dg"'o,
k=1

where ¢ is given by (166) and
(185) | N, = Z deg P,
' Pep(T), deg Pim

Note, in computing thlS out, that for each n > 0, the number of elements y (y # 1) of I,
with deg{y}r = n is given by

2¢(P)  ---n>0, n=0(mod deg P),

0 .-+ n>0, n# 0 (mod deg P),

eP)-1 ---n=0.
Note also the Corollary ((ii)) of Proposition 8.

On the other hand, by the Corollary of Theorem 6, we obtain

Q. (@+Dg™ 'y ---m: even,
(186) Amly)r = { '
%; (g+Dg™ 'y ---m: odd

where p, y’' are given by the following:
n= Zoao(l- =) Y
(187) J[Zoan @@ B2@ - p g™ -oec: even,
z oean @O 9@ - p g e odd.
the formula for i’ is obtained by inverting Q;(I') and Q; ()
on the right side of (187).

Here, c is defined by ord, p = c(p"@ — p"@-1). Note, in computing this out, that since
c is even when p|2 (see Theorem 6), we have c: even & cp: even. Now we can check
directly by (168) and (163) that

(187)

(188) qu+ =1y,
(189) - =2 -9
Finally, we obtain immediately from the Corollary of Theorem 5 that
Q 5
(190) > Al =" 1,
(yir

7, being as in (167). Thus by putting these together, we obtain
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(191)27 %A(T"‘) = A,y + By,

with .

(An = Np + (g = DI N,

Bm = ';‘(p - l)Spm_l + ZPepw(l") C(m, deg P) deg P

3@+ 1g™'u ---m: even,
Hg+ g™y ---m: odd.

(192) 4

+(9;—10' + )™t + {
Now, in general, let f(m), F(m) be two functions defined for every positive integer m.
Then the following two relations are equivalent:

m—1
(193) Fm)=fm)-@-1) fm-k (m=1),
k=1
m-1 ‘
(193') fm)=Fm)+(@-1)) ¢"'Fm-k)  (m>1),
k=1

(see §13). Moreover, we have the following table2?
f(m) F(m) Notes

use (193’) to check
0 ---m#0 (modd)

(194) (i) ) 1 putd = 1in (i)

i) (@+1)g"'p ---mieven | qu+p'+(~q)"(u— )
@+Dg™ Yy --m:0dd | =Tut+2(-9)"(g -9)

@iv) Am Nn by definition

Now define L,, and N/, by : |
- (V) : B, ' L,

i) T4 N, =Ny +Ln

Then by (194) (i) (ii), we obtain
1 -1 T, Ty me s
(195) L,,.—E(p—l)s+kz;n deg P+ o0+ 5 + =+ (-q)"(g - ),
: P SR

and
(196) Np=N, = Ly.-

274(T™) is the A(AyA) (of Lemma 18) for AyA = T™.
28 Recall that if T has a cusp, then k, = Qp; hence g = p.
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Now, on the other hand, we can compute the right side of (179) for AyoA ™ by
exactly the same computatlon as in §14. Namely, put , :

det(1 = (o(T") - g + Dy + gt} = ﬂ{l — (T — g + D+ i)
(1‘97) . , ‘ i=1 - ,

[]d-mat -, @ =gs1<ice.
i=1

Then by the same computation as in §14, we obtain

g
(198) N,=g"+1-(g-1g-D-) (@ +m™ (m=1).
=1 ,
Now by (195), (196) and (198), we immediately obtain the formula for {r(4) = [1pepr)(1-
u Pyl = exp(To_, Lnym); namely we obtain

£r() = xp(Y) o exp(- 37 Zmu
m=1

m=1
9,0 —mu)(1 - mu) v
(199) =H'=(11(=_ u)(l - 7D (1= D
x [ (1 —usePyx (1 -t Deriporitey
Pepo(l) ‘
x (1 + qu)? 9.

Since H = 2(p - s+ 2(q -Do+3 Tu + 17,, this proves (169)29

That P(u) € Z[u] and H € Z. By (169) we have P(u)(1 — u)f € Z[[u]], and by
definition, H € Q*° Put H = 2 (m,n € Z, > 0). Then P(u)" € Z[u]; hence 3 P(u) € Z[u].
But then (1 - w)? € Z[[u]]; hence H ¢ Z.

That (171) holds. This follows exactly in the same manner as in the proof of Theorem
2 (§23), if we use the generalization of Lemma 10 of Chapter 1 given in Supplement §2
instead of Lemma 10. This completes the proof of Theorem 7. m]

We have also proved: ' ' ' h

CoroLLARY . With the notations of Theorem 7 and Lemm‘d 18, we haize |

(2000 - P(u) = det{1 = (o(T") — g + Du + ¢*u?}

§38. Examples.

ExampLE 1. Let B be a quaternion algebra over Q, in which p and oo are unramified.
Let D be the discriminant of B (so, D # 0 (mod p)). Let O be a maximal order of B, put
o) = |2, p0, and put | x

01) B ={xe 0("’) | N3jq(x) = 1}/ + 1.

* BRecall that s # 0 only if g = =p.
30 Hence P(u) € Q[ul.
31se Gauss’ lemma.
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Then by Proposition 1 of Chapter 4, I' can be considered as a discrete subgroup of G =
Gr x G, = PSLy(R) x PS L,(Q,) (with dense image of projection in each component of
G, and with finite volume quotient G/T"). The quotient is compact if and only if D # 1.
For D = 1, we have B = M;(Q), and I" = PS L,(Z?) up to conjugacy in G. .

Now by Eichler’s arithmetic of quaternion algebras [11], and by Shimizu [28] (for
(203)), we can easily calculate the various invariants of these I" defined in Theorem 7.
The result is as follows:

=L Me-n-iMa-Ey-LTa -3
g=g-121;[<1 1) 4EJ(1 () 351(1 )

(202) 1 )
+l—{5 ...D=1,

0 ---D#l;
(203) o= Jo-n.

4 —(== (=
(204 Q;m( &) s[Jo-G+3TJa-
Hence
(205) H=2[le-v++[Ja-G+:[Ja-G

12 4 173 1
MDp ADp ADp
Thus,
-w' ---D=1
fr(u) x {
206) - ..D#1
u
R ey e

P(u) being a polynomial of degree 2g of the form described in Theorem 7. In particulaf, if
D=1, 6, 10 or 22, then we have g = 0; hence P(u) = 1. For D = 1, i.e.,I" = PSL,(Z®),
this formula coincides with the one calculated in §7.

Here, we note a rather strange fact: if B* denotes the quaternion algebra over Q with
discriminant D* = Dp (hence D" is definite), then by Eichler’s formula for the class
number of (definite) quaternion algebras (see Eichler [10] Satz 2), we obtain:

(207) H is equal to the class number of B*.

However, we do not know what this really implies, except in the case of D = 1. (For D =
1,ie., I = PSLy(ZP), H is nothing but the number of supersingular moduli j (Corollary
of Theorem 1’ in §9 of Chap.5), and if E; denotes the elliptic curve with modulus j,
then j — A(E;) (the endomorphism ring of E;) gives a bijection between the set of all
supersingular moduli j and that of right orders of the (complete set of) representatives of
left O*-ideals of B*, where O* is a given maximal order of B*.)
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ExampLE 2 (See Chap. 5, Part 2 for the details and proofs). Let I' = PSLy(Z®) and
let I be a subgroup of I" with finite index. Let K’ be the finite extension of K = F.(j) (J:
a variable over F,) corresponding to I'" in the sense of §16 of Chapter 5 Part 2. Let H’ be
the number of prime divisors of K’ that lie on supersingular prime divisors of K. Then by
the results of Chapter 5, Part 2 (esp. §30), we have
(208) rax [] a-w 5" = e@xq-w",
Pep,, (')

where {x (u) = Tl'-u%%ﬁ) is the congruence {-function of K’ over F .. Thus we have

gl
P(u) = 1_[(1 -mu)(1-mu) withiml=|ml=p (1<i<g),
i=1

where ¢’ is the genus of K’ and is at the same time the genus of (I"*)g.
As an example, let N > 1, N £ 0 (mod p) be an integer, and let I = I'(NV) be the
principal congruence subgroup of I';

(209) I(V) ={y € SLy(ZP) |y = +1(modN)}/ +1 (N > 1).
Put
6 N =2),
=T:T =<
"= (M){%mmhﬁ) W >2);

puts = n /N, and let d be the smallest positive integer such that p? = +1 (mod N). Then |
we have

(210) [_[ (1 — w8 Py = (1 — %)
Pepo(I')
The genus g’ of I'(V) is given by g’ = %n + 1, and since I'(N) is torsion-free, we have
H=p-1)¢g -1+3%)=5(@-1). Hence
d\-s/d P'(u) 2 (p-1)
(211) @) x (1 -u?) %= X (1 —-u)P,

(1 —u)(1 - p*u)
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