CHAPTER IV

Divisors on bundles

We calculate o-decompositions of pseudo-effective divisors defined over varieties
given by toric construction or defined over varieties admitting projective bundle
structure. In §1, we recall some basics on toric varieties, extracting from the book
[110], and we prove the existence of Zariski-decomposition for pseudo-effective R-
divisors on toric varieties. The notion of toric bundles is introduced in a toric
bundle is a fiber bundle of a toric variety whose transition group is the open torus.
We give a counterexample to the Zariski-decomposition conjecture by constructing a
divisor on such a toric bundle. We also consider projective bundles over curves in §3|
We prove the existence of Zariski-decomposition for pseudo-effective R-divisors on
the bundles. The content of the preprint [106] is written in §4] where we study the
relation between the stability of a vector bundle £ and the pseudo-effectivity of the
normalized tautological divisor A¢. For example, the vector bundles with A¢ being
nef are characterized by semi-stability, Bogomolov’s inequality, and projectively flat
metrics. We shall classify and list the A-semi-stable vector bundles of rank two for
an ample divisor A such that Ag¢ is not nef but pseudo-effective. In particular, we
can show that Ag for the tangent bundle £ of any K3 surface is not pseudo-effective.

81. Toric varieties

81.a. Fans. We begin with recalling the notion of toric varieties. Let N be a
free abelian group of finite rank and let M be the dual NV = Hom(N, Z). We denote
the natural pairing M x N — Z by ( , ). For subsets S and &’ of Ng = N®R and
for a subset R C R, we set

S+8 ={n+n'|ne8n eS8}, RS={rm|nes, reR},
SY={meMg|(mn)>0fornecS}, St={meMg|(m,n)=0"frnecS}

A subset o C Ng is called a convex cone if Rypo0 = o and 0 + 0 = 0. If
o =) ,csR>oz for a subset S C Ng, then we say that S generates the convex

cone o. The set oV for a convex cone o is a closed convex cone of Mp = M ® R,
which is called the dual cone of o. It is well-known that o = (V)Y for a closed
convex cone o. The dimension of a convex cone o is defined as that of the vector
subspace Ng o = 0 + (—0o). The quotient vector space Nr(o) = Nr/Ng o is dual
to the vector space o. The vector subspace (o) C Ng is the maximum vector
subspace contained in o. If (V) = 0, then o is called strictly conver. A face
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114 IV. DIVISORS ON BUNDLES

T < o is a subset of the form m* N for some element m € V. The relative interior
of o is denoted by Int o, which is just the complement of the union of proper faces of
o. A real-valued function h: o — R is called upper convex if h(x+y) > h(z)+h(y)
and h(rz) = rh(z) hold for any z, y € o, r € R>¢. A real-valued function h on o
is called lower convex if —h is upper convex.

A convex cone o generated by a finite subset of Ny is called a convex polyhedral
cone. The dual cone of a convex polyhedral cone is also convex polyhedral. A convex
cone o generated by a finite subset of N is called a convex rational polyhedral cone
(with respect to N).

Let o be a convex rational polyhedral cone. We define N, to be the submodule
(0 + (—o)) NN and N(o) to be the quotient N/N,. Then Nog = Ng @ R =
Nr.o, N(o)r = N(o) ® R = Ng(o), and o+ ~ Hom(N(c),R). The submodule
M(o) := ot N M is isomorphic to Hom(N(a),Z). The intersection oV N'M is a
finitely generated semi-group, which is known as Gordan’s lemma. If o is strictly
convex, then 0¥ N M generates the abelian group M.

A fan X of N is a set of strictly convex rational polyhedral cones of Ng with
respect to N satisfying the following conditions:

(1) f o € ¥ and 7 < o, then 7 € 3;
(2) If 01, 02 € X, then 61 No2 < o1 and 001 No2 < T2.

A fan always contains the zero cone 0 = {0}. For a strictly convex rational poly-
hedral cone o, the set of its faces is a fan, which is denoted by the same symbol
o. Let X be a fan of N. The union |Jo of all & € X is called the support of
3 and is denoted by |3|. The intersection of N and the vector subspace of Ng
generated by |X| is denoted by Ns. The quotient N/Nsx is denoted by N(X). If 3
is a finite set, then 3 is called finite. A finite fan with |X| = Ng is called complete.
Let N’ be another free abelian group of finite rank and let X’ be a fan of N’. A
homomorphism ¢: N — N’ of abelian groups is called compatible with ¥ and X/,
and is regarded as a morphism (N, X) — (N’, ') of fans if the following condition
is satisfied: For any o € X, there is a cone o’ € X' such that ¢(o) C o’. If the
following condition is satisfied in addition, then X is called proper over £’ and ¢
is called proper: For any o’ € X',

Yo i ={oceX|¢(o)Co’}

is a finite fan with |Xo/| = ¢71(0’). If N’ = N, ¢ is the identity, and |¥'| = |X],
then X’ is called a subdivision of . If 3 is proper over 3, then it is called a proper
subdivision or a locally finite subdivision of X.

Let o C Ngr be a strictly convex rational polyhedral cone. The affine toric
variety Tn(o) is defined as the affine scheme over C associated with the semi-group
ring Clo¥ N M]. The associated analytic space Tn(o)®® = Specan Clo¥ N M] is
denoted by Tn(o). For a face 7 < o, an open immersion Tn(7) C Tn(o) is defined
by the inclusion ¥ "M C 7V N M. We set Ty = Tn(0) for the zero cone 0, which
is an algebraic torus. The associated analytic space Ty := T{" is isomorphic to
N ® C*. The toric variety Tn(2) associated with a fan 3 is defined as the natural
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union of Ty(o) for o € 3. This is a separated scheme locally of finite type over
SpecC. The associated analytic space is denoted by Ty(X). There are an action
of Ty on Tn(X) and an equivariant open immersion Ty C Tn(X). Toric varieties
are normal.

For a strictly convex rational polyhedral cone o C Ng, there is a natural
surjective C-algebra homomorphism C[o¥ N M] — C[o*+ N M] given by
m, ifmeat,

c'NM3mi— )
0, otherwise.

This induces a closed immersion
Tne) — Tn(o).

The left hand side is an orbit of Ty and is denoted by O. In fact, for the composite
To: TN — Tn(e) — Tn(o), we have

To(t) =t - 15(1) =75(1) - t

for t € Ty and for the unit 1 of Ty, where - indicates the left and right actions of
Tn on Tn(o). For a face 7 < o, let o/7 be the image of o under Ng — N(7)g,
which is also a strictly convex rational polyhedral cone with respect to N(7). Then
(o/T)Y NM(7T) is identified with ¥ N7+ N M. The Zariski-closure of O, in Ty(o)
is isomorphic to Ty(,)(o/T) by a natural surjective homomorphism Clg¥ N M] —
CleY N1+ N M] given by

m, ifmeTt,

o' NM3m— .
0, otherwise.

For a fan 3 of N and for a cone o € X, the set
Y/o:={0'/o|o <o €X}

is a fan of N(o). Then the Zariski-closure V(o) of O, in Ty(X) is isomorphic to
Ty (X/a). If o € X is not a proper face of another cone in X, then it is called a
mazimal cone. In this case, O5 = V(o).

An element m € M is regarded as a nowhere-vanishing regular function on Ty,
which is denoted by e(m). It is also a rational function on the toric variety Ty (X)
associated with a fan 3 of N. An integral primitive vector v € N is called a vertex
of ¥ if Rsgv € X. The set of vertices of 3 is denoted by Ver(X) or Ver(N, X).
For v € Ver(X), let T, be the prime divisor V(R>ov). Then the principal divisor

div(e(m)) is written by
g (m, )T,
veEVer(X)

as a Weil divisor. Since divoe is a group homomorphism M — Div(Tn(X)), the
principal R-divisor div(e(m')) is also defined for m’ € Mg; if m’ = > r;m;, then

div(e(m”)) = Z r; div(e(m;)),

where r; € R, m; € M.



116 IV. DIVISORS ON BUNDLES

Remark (1) Tn(o) is non-singular if and only if the set Ver(N,o) is
a basis of the free abelian group N,. Similarly, Ty(o) has only quotient
singularities if and only if Ver(N, o) is a basis of the Q-vector space N, ®Q.
A fan X is called non-singular if Ty(X) is non-singular.

(2) Let ¢: (N,X) — (N, ') be a morphism into another free abelian group
N’ of finite rank with a fan ’. Then it induces a morphism ¢, : Tn(Z) —
Tn/(2') which is equivariant under the homomorphism Ty — Tyr. If ¢ is
proper, then ¢, is proper.

(3) There is a proper subdivision ¥’ of ¥ such that ¥’ is non-singular. In
particular, Ty(2") — Tn(X) is a proper birational morphism from a non-
singular variety.

(4) If X is a finite fan such that |X| is a convex cone, then the toric variety X =
Tn(3) is proper over an affine toric variety. The vanishing H? (X, Ox) =0
for p > 0 holds, which is shown in a general form in [62) Chapter I, §3]
and [9; §7] (cf. [110} §2.2]). In particular, toric varieties have only rational
singularities.

1.1. Lemma Let ¢: (N,X) — (L,A) be a morphism of fans and let f =
i TN(X) — TL(A) be the associated morphism of toric varieties. Then
fITL () ~ Tn(Za)
for A € A. Moreover,

-1 _
F0x= |—|¢>(0')C/\,¢(o')ﬂlnt A0 O
If f is proper, then f=1(V(X)) is set-theoretically the union

V(o).

PrOOF. The first isomorphism is derived from the definition of f, which is given
by the gluing of natural morphisms Ty(o) — TL(A) for o C ¢~ 1(A).

For a cone o € ¥, let A; € A be the minimum cone containing ¢(o). Then
A1 = A if and only if ¢(a) C A and ¢(o) NInt A # @. The transpose ¢V: LV —
NY = M induces A; NLY — o+ NM. Hence f(O,) C Ox,. By considering the
orbit decomposition of f~*Qy, we have the equality for f~1Oy. In the proper case,
taking the closure, we have the equality for f=*(V(X)), since f is a closed map. [0

U¢(0)CA, ¢(o)NInt A#£D

An element 0 # a € N defines a 1-parameter subgroup Tz, C Tn. If a € |X],
then we have a morphism ¢, : (Z,R>o) — (N, X) of fans by ¢, (1) = a. The induced
morphism f, = ¢o,: Tz(R>o) ~ Al — Ty(X) of toric varieties is an extension of
Tza C Tn. Let o € X be the minimum cone containing a. Then f,(0) = 75(1) € O
for the origin 0 € A', where 7, is the composite Ty — Tnee) < Tn(o). Thus
limy_,of,(t) - P = 7o (P) for any point P € Ty. If P € O, for some face T < o,
then limy .o fy(t) - P = 7o /r(P), where 75/, is the composite Tnr) — Ty =
Os C Tn(ry(o/T). Suppose that P € O, for 7 € ¥ with 7 ¢ o and that ¢’ := a
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mod N € N(7) is contained in |X/7|. Let ¢’/ € ¥ /7 be the minimum cone
containing a’. Then lim; o fy(t) - P = 7o/ /7 (P).

1.2. Lemma A complete subvariety of X = Tn(X) of dimension k < dim Ny
is rationally equivalent to a complete effective algebraic k-cycle supported on the
union of V(1) with dim |X /7| = k.

PROOF. Let V be such a complete subvariety of X. Then V is contracted to a
point by X — Ty(s). Thus we may assume that |X| generates Ng. We consider
the action of the 1-parameter subgroup Tz, for 0 # a € NN |Z|. Let f,: Al — X
be the morphism defined above. The action of Tz, on X extends to a rational map
: Al x X .~ X. Tt is a morphism over Al x Ty, where (¢, P) = f,(t) - P. We
have a toric variety Y and a proper birational morphism u: Y — A! x X of toric
varieties such that ¢ =¢opu: Y — Xis a morphism. Let V be the proper transform
of A' x V in Y. Then the projection p: ¥ — Al is a proper flat morphism. In
particular, the image of (p,): V — A! x X is also proper and flat over A'. For
the fiber V; = p~1(t), the image ¢(V;) is just V multiplied by f,(¢) for ¢ # 0. The
push-forward ¢,V is a complete effective algebraic k-cycle rationally equivalent
to V. Here, any prime component of ¢,V is preserved by the action of Tz,. We
set a; = a and choose elements asg, ...a; € NN |X| such that 2221 Za; C N is a
finite index subgroup, where | = rank N. Applying the same limit argument for as
to prime components of ¢,)y, we have a new complete effective algebraic k-cycle
which is preserved by the actions of Tz,, and Tzq,. Applying the same argument
successively, we finally have a complete effective algebraic k-cycle V, such that V,
is rationally equivalent to V and that Supp V., is preserved by the action of Ty.
Hence Supp V., is written as the union of some orbits O, where dimO, < k < [.
Thus we are done. U

Remark Let 7 be a cone in . In our notation, N(7)x /- is the intersection
of N(7) and the vector subspace of N(7)r generated by |X/7|, and N(7)(32/7) is
the quotient N(7)/N(7)s/,. We have an isomorphism

V(T) =T (B/7) = Tinyg,, (B/7) X Ty /-

Thus any complete subvariety of V(7) of dimension equal to dim |3 /7| is a fiber of
the projection V(7) — Tnry(z/7)-

81.b. Support functions. Let ¥ be a finite fan of N. A X-linear support
function h is a continuous function h: |[¥| — R that is linear on every o € X.
For a subset 8 C R, let SFN(3, 8) be the set of 3-linear support functions h
with A(N N |X|) € R Then SFn(2,Z) ® Q ~ SFn(X,Q) and SFn(2,Q) ® R ~
SFnN(X,R). In fact, in the vector space Map(Ver(N,%),R) = [] cvern sy R, the
subspace SFy (X, R) is determined by a finite number of relations defined over Q.

A X-convex support function h is a continuous function h: |[X| — R satisfying
the following conditions:

(1) The restriction h|, to o € X is upper convex for any o € X;
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(2) For any o € X, there is a finite fan A, of N with |A,| = o such that h|,
is Ag-linear.

For a subset & C R, the set of 3-convex support functions h with A(]X|NN) C R is
denoted by SFCn(3, R). Functions contained in SFCy(X,Z) and SFCy(X, Q) are
called integral and rational, respectively.

For h € SFCn(3,R) and for a closed convex cone C' C |X|, we define

On(C) :=={m € Mg | {m,z) > h(x) for any z € C},
AR(C) := Zzec Rso(z, h(z)) + Rs0(0, —1) € Ng x R.
Then 00, (C) is a convex set and Ap(C) is a closed convex cone, since X is finite

and h is ¥-convex. If C is a convex polyhedral cone, then A, (C) is so. The dual
cone of Ay (C) is written by

CY x {0} U Rxo(0n(C) x {~1}).
In particular, O, (C) = 0 if and only if A,(C) 2 (0,1). When U, (C) # 0, we define
a function by
(Iv-1) hi(x) == inf{(m, z) | m € O,(C)},
Then hl,(z) > h(z) for z € C. Since A(C) = (An(C)Y)Y,
(IV-2) hi(x) = max{r € R | (z,7) € AR(C)}
for x € C.

1.3. Lemma The following conditions are equivalent:
(1) h is upper convex on C;
(2) An(C) ={(z,r) € C xR | h(z) = 1};
(3) On(C) # 0 and bl (x) = h(z) forz € C.

PrROOF. (1) = (2): The right hand side is a convex cone contained in the left.
On the other hand, (z, h(z)) is contained in the right for € C. Thus the equality
holds.

(2) = (3): We infer (0,1) € Ap(C), which implies O, (C) # 0. The equality
hg = h on C follows directly from the equality (IV-2).

(3) = (1): By the definition (IV-1), we infer that hTC is upper convex on C.
Thus we are done. O

1.4. Lemma (1) If C’ is a face of C, then
AR(C) = A (C) N (C" x R).

In particular, hl H(z) = hTC(:c) for z € C'" provided that O, (C) # 0.
(2) On(C) # 0 if and only if O, ((CV)*) # 0.
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PrOOF. (1) Let (x,t) be an element of the right hand side. Then z = Y r;z;
and t < " r;h(x;) for finitely many vectors z; € C' and for real numbers r; > 0.
The face C’ is written as I~ N C for some [ € CV. Then (I,z) = 0 implies that
x; € C' for any 4. In particular, (x,t) € Ap(C’). Thus we have the equality.

(2) follows from (1) and from that 0, (C) = 0 if and only if (0,1) € A,(C). O

1.5. Lemma Suppose that h € SFCN(X, R) for 8 = Q or R. Then there is a
finite subdivision X' of ¥ such that h € SFn(X', 8).

PROOF. For a cone o € X, let A, be a fan with |As| = o such that h|, €
SFn (o, 8). Any one-dimensional face of the convex polyhedral cone A, (o) except
R>0(0,—1) is written by R>o(v, h(v)) for some v € Ver(Ay). Therefore, the image
o of a face A of Ay (o) under the first projection Ng x R — Np is a convex rational
polyhedral cone with respect to N. The function h is linear on o . There is a finite
subdivision 3’ of 3 such that o is a union of cones belonging to X’ for any o € X
and XA < Ay (o). Here, h € SFN(X', R). O

Remark Among the finite subdivisions of we can find the maximum:
There exists a finite subdivision X* of 3 satisfying h € SFy(X¥, &) such that
' <X 2F for any finite subdivision ¥’ satisfying h € SFy(X’, 8). This is shown by
[1.15]below, for example.

1.6. Lemma Let g: Ver(X) — R is a map for R = Z, Q or R. Then there
exists a unique function h € SFCN(X, R) satisfying the following conditions:
(1) g(v) = h(v) for v € Ver(X%);
(2) Ifh' € SFCN(X, R) satisfies b/ (v) > g(v) for anyv € Ver(X), then h/(x) >
h(z) for any x € |X|.
The function h is called the convex interpolation of g in [62, Chapter I, §2].

PROOF. First, we consider the case 8 D Q. For o € ¥ and = € o, we set
N(o) = ZveVer(a) R>o(v,9(v)) + R>0(0,—1), and
R (z) := max{r € R | (z,7) € A(a)}.

Then hY € SFCn(o,R). If 7 < o, then A(T) = A(o) N (7 X R) by the same
argument as in[1.4. Thus h%(z) = kY (z) for any = € 7. In particular, we have a
function h® € SFCy(X, R) such that h°|, = h2 for any o € ¥ and h°(v) = g(v) for
v € Ver(X). The function h satisfies the second required condition for A by [1.3.
Next, we consider the case & = Z. If ¥ is non-singular, then h® € SFCN(XZ, Q)
is integral. Otherwise, let us consider a non-singular finite subdivision »f of . We
set gf: Ver(Z*) — Z by gf(v) = "h°(v)'. Let h be the function in SFCy (=¥, Q)
satisfying the required condition for ¢gf. Then h is integral. Thus h is the convex
interpolation of g. |

Let X be the toric variety Tn(X) associated with the fan 3 and let j: Ty — X
be the open immersion.
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For h € SFCN(3,Z), we define a coherent Ox-submodule Fy, of j.Or, by

HO(TN (0-)7]:h) - @NLED;L(G)OM e(m) = C[M}

for & € 3. The subsheaf is invariant under the action of Ty. Conversely, any
Tn-invariant coherent Ox-submodule of j,OT,, which is complete, is written as F},
for some h € SFCN(X,Z) (cf. [62, Chapter I, §2]). Here, h € SFn(3,Z) if and
only if F, is invertible. If A’ € SFCN(X,Z) is the convex interpolation of the map
Ver(X) 5 v — h(v) € Z, then F}, is the double-dual of Fj,.

For h € SFCN(X, R), we define an R-divisor of X by

D := ZvGVcr(E) (—h(U))FU

The associated R-divisor D" on the analytic variety Tn(3) is denoted by Dj,. For
R=127Z,Q, or R, any R-divisor of X supported in X\ Ty is expressed as Dy, for some
h € SFCN(Z, R) by Moreover, any K-divisor D of X is K-linearly equivalent to
Dy, for some h € SFCN(X, R), since D|t,, is a principal £-divisor. If ' € SFC\(X, Z)

is the convex interpolation of the map Ver(X) 3 v — 'h(v)' € Z, then Dn, =Dw
and Fpr = Ox(Dh/).

1.7. Remark Suppose that h € SFn(X,R) for & = Z, Q or R. Then Dy,
is R-Cartier. In fact, the restriction of Dy, to Tn(o) for o € X coincides with the
principal #-divisor — div(e(ly)) for I, € Mg such that h(z) = (l,,z) for x € o. The
choice of I, is unique up to o+ NMg. Let h? (z) = h(z)—(ly, z). If dim o = dim |X|,
then h? is a function defined on |3| which is independent of the choice of {,. Even
if dimo < dim |X|, h° is regarded as a function defined on |X/e| which belongs
to SFn(o)(2/a, R). Here, the restriction of Dj, to V(o) is f-linearly equivalent to
Djo.

1.8. Remark If 7 = o N o’ for two maximal cones o, ¢’ € X such that
dim7 = dim |X| — 1, then there is an isomorphism V(7) ~ P! x Tn(r), in which
V(o /T) ~ {0} x Tn(r) and V(o' /T) ~ {oo} x Tn(. Here,

Dhelv(ry = —h7 (v') ({00} X Tn(r))

for the primitive element v’ € N(7) generating the ray o’/7. In particular, for a
fiber F ~ P! of V(1) — Ty(r), we have

D, -F= _ha(y) = <lcruy> - <la’7y>
fory € ' NN~ o with y mod N, =v'.

Suppose that |X| is a convex cone. For h € SFCn(X, R), we write ), = O, (|X])
and Ay = Ap(|X]) for short. If |X| = Ng, then OJ;, is compact, since —h(—e;) >
(m,e;) > h(e;) for a basis {e;} of Ng and for m € O,. If h € SFCN(X,Z) and Fy,
is reflexive, then O; C Mg is the set of m € My satisfying div(e(m)) + Dy, > 0.
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The vector space HO(X,]:h) admits an action of Ty. Since this is a subspace of
H°(Ty, O1,) ~ C[M], we have an isomorphism

(IV-3) H° (X, Fr) ~ B Ce(m).

Suppose that h € SFCN (X, R) is the convex interpolation of Ver(X) 3 v — h(v) € R
in the sense of [1.6/for & = R. Then

(IV-4) HO(X, Dp,) ~ @melil;mM Ce(m)

by (IV-3). Furthermore, (0, # () if and only if there is an effective R-divisor R-
linearly equivalent to Dy, (cf.[1.16-(1) below).

mel,NM

1.9. Lemma Suppose that |X| is convexr. Let o be a maximal cone of 3 and
let R =7, Q, or R. For a function h € SFN(X, R), let ly and h? be the same as in

Then the following three conditions are equivalent:
(1) ho(x) <0 for any x € |X|;
(2) Op #0 and h‘TEl(ac) = h(z) for any = € o;
(3) There is a Ty-invariant effective R-divisor A on X such that ANV (o) =0
and A ~g Dy, on X.

ProoF. (1) & (2): (1) is equivalent to: I, € Oy, which implies (2). For y €
|X|\ o, let us choose « € Int & and a number 0 < ¢ < 1 such that (1—t)z+ty € o.
Since h|T2| is upper convex, we have

(o) = % (Pl (1= 2+ ty) = (1 = DAl () = by ) = h(y)

under the condition of (2).

(1) = (3): The R-Cartier divisor Dy = div(e(ly)) + Dy, is effective on X and
is away from V(o).

(3) = (I): Aiswritten by Dp+div(e(m)) for some m € Mg. Then (m,v) = h(v)
for v € Ver(o). In particular, m =l € 0. O

1.10. Corollary If |X| is a convex cone, then the following conditions are
equivalent for h € SFN(Z, R):

(1) h is upper convex on |X|;

(2) lo € Oy, for any mazimal cone o;

(3) For any point p € X, there is an effective divisor A of X such that A ~g Dy,
and p € A,;

(4) For any two maximal cones o, o' € X with T = o Na’ being of codimen-
sion one, the intersection number Dy, - F' is non-negative for a fiber F' of
V(T) = T

(5) For any two mazimal cones o, o' € X with o N o’ being of codimension
one, h?(y) <0 for any y € o’.
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PrOOF. (1) < (2) is shown in[1.9] (3) = (4) is trivial. (4) < (5) is shown in
[1.8!

(2) = (3): Let Z C X be the set of points p such that p € A for any effective
divisor A ~g Dyj. Then Z is a Zariski-closed subset invariant under the action of
T. If Z # (, then V(o) C Z for a maximal cone o € X. By [1.9+(3), we have Z = ().

(5) = (2): Let us fix y € ||~ o. We take z € Into and consider a line
segment {z(t) = (1 —t)x +ty |t € [0,1]}. If = is in a general position, then there
exist a sequence of maximal cones o; and numbers ¢; € [0,1) for 0 < i < k such
that

e og=o0,t=0,y € oy,

e 0,N 0,41 is of codimension one for any i < k,

o {t€]0,1] | z(t) € o;} = [ti, tiy1] for i < k and z(t) € o for ¢ > ty.
The function h?(z(t)) is linear on each [t;,¢;11] for ¢ < k and on [tg, 1]. Thus
implies that h(x(t)) is upper convex on [0,1]. Hence h?(y) <0 and l, € O,. O

Suppose still that || is convex. A support function h € SFN(X,R) is called
strictly upper convex with respect to X if it is upper convex on |%| and the set

{z € [Z]; (m, ) = h(z)}
is a cone belonging to X for any m € .

1.11. Lemma Suppose that |X| is a convexr cone and let h € SFn(3,R). For
a mazimal cone o € X, let I, be the same as in11.7T. Then the following conditions
are equivalent:

(1) h is strictly convex with respect to X;
(2) lo €O, and
{z €[XZ]; hz) = (lo,2)} =0

for any maximal cone o € X;

(3) For mazimal cones o, o' € X with o N o’ being of codimension one,
h(y) < (o) for any y € o' ~ o

(4) For maximal cones o, o' € X with T = o Na’ being of codimension one,
the intersection number Dy, - F is positive for a fiber F' of V(T) — Ty(r)-

ProOF. (1) = (2) and (2) = (3) are trivial. (3) < (4) is shown in[1.8.

(3) = (2): Let o be a maximal cone of ¥. We fix y € || \ o, take z € Int o,
and consider the line segment {z(t) = (1 —¢)x +ty | ¢t € [0,1]}. By choosing z in a
general position, we may assume that there exist maximal cones o; and numbers
t; € [0,1) satisfying the same condition as in the proof of [1.10l Then h°(y) < 0
by (3). Thus (2) follows.

(2) = (@): For m € Oy, the set

Cm ={z € |[Z]; h(z) = (m,z)}

is a convex polyhedral cone. For a point y € Int C,, let 0 € ¥ be a maximal cone
containing y. Then
ChnNo = (la—m)Lﬂa
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is a face of o, since m—1l, € @V. By (2), lg —m € CY. and C,,,No = (lo —m)*NCy,
is also a face of C),. Thus C,, = C,, No < o by y € IntC,,. In particular,
CneX. a

81.c. Relative toric situations. Let L be another free abelian group and
let A be a finite fan of L. Let ¢: (N,X) — (L, A) be a proper morphism of fans
and let f: X = Ty(X) — S = TL(A) be the induced morphism. We shall consider
the relative o-decomposition over S of the R-Cartier divisor Dy, for a function h €
SFn(X,R). By[1.4] we have

Ap(¢7'v) = Dr(67IA) N (67w x R)

for v < X. Moreover, for any A € A, the condition T (¢71A) # 0 is equivalent
to On(¢~10) # 0 for the zero cone 0 € A. If 0, (¢710) # 0, then we can define a
function over |X| by

hi(z) = hly 5 (@) = Bl (2)
for x € $~' A, which is independent of the choice of X for z.

1.12. Lemma h;/A € SFCn(X, R).

PROOF. For any A € A, we have
Opt(07'A) = 0On(¢'A), and Ayt (¢ A) = Ap(p ' N).

By the same argument as in[1.5, there is a finite subdivision ' of 3 such that the
image of any face of Ay (¢~*A) under the first projection Ng x R — Ng is a union
of some cones belonging to X’. Thus hf € SFy (X', R). O

Remark h;/A is not necessarily integral for h € SFn(X,Z).

1.13. Lemma (1) On(¢~t0) N M # 0 if and only if f.Ox( Dp,) # 0.
(2) If f.Ox( . Dp,) #0, then Dy, — Dyt is identical to the f-fized part of |Dp|.
(3) The following conditions are equivalent to each other:
(a) h is upper-convexr on ¢~ 1(X) for any A € A;
(b) On(¢=10) # 0 and h' = hk;
(¢) For any A € A and for any maximal cone o € Xy, h?(z) < 0 for
x € X, where h? is as in [1.7}
(d) Dy, is f-nef.
If h € SEN(X,Z), then these are also equivalent to:
(e) Dy, is f-free.

ProOF. (1) follows from the isomorphism (IV-4). (2) follows from (IV-4) and
The assertion (3) is proved as follows: (a) < (b) follows from (1.3l (e) = (d)
is well-known. (d) = (b), (b) < (c), and (b) < (€) are shown in[1.10. (c) = (d)
is derived from 1.10+(3). O

1.14. Lemma For a support function h € SFN(3,R), the following conditions
are equivalent:
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(1) Dy, is f-ample;

(2) For any X € A, for any two mazximal cones o, o’ € T\ with T =0 No’
being of codimension one, the intersection number Dy, - F' is positive for a
fiber F' of V(T) — T(r);

(3) h is strictly convex on Xy for any X € A.

PrOOF. (1) = (2) is trivial. & is shown in[1.11l

(2) = (1): First, we consider the case h € SFN(X,Q). Then kh € SFN(X, Z)
for some k > 0 and kDj, = Dy, is f-free by [1.13-(3). Hence Dy, is f-ample if and
only if Dy, - v > 0 for any irreducible curve v contained in a fiber of f. By [1.2] we
infer that Dy, is f-ample if and only if the condition (2) is satisfied.

Next, we consider the general case. Note that SFy(X,R) ~ SFn(X,Q) ® R.
Hence there is a support function hy € SFn (X, Q) such that Dy, - F > 0 for any T
in the condition (2). In particular, Dy, is an f-ample Q-Cartier divisor. Since A
is finite, we can find a positive number ¢ such that (Dj, —eDp,) - F' > 0 for any 7.
Therefore, Dy, — €Dy, is f-nef and thus Dy, is an f-ample R-Cartier divisor. O

Remark Since X is finite, there is a finite subdivision X’ of ¥ such that ¥’ is
non-singular and the composite Ty(X') — X — S is projective (cf.[9], [110]). This
is a toric version of relative Chow’s lemma.

1.15. Lemma Let h be a function in SFN (3, R) for R =17, Q, or R. Suppose
that h is upper conver on ¢~ X for any X € A. Then there exist a free abelian
group Ny, homomorphisms pu: N — N,, v: N, — L, a fan 3y, of Ny, and a support
function h, € SFy, (X, 8) such that

(1) p is surjective and v o = ¢,

(2) (N,X) — (N,,3,) and (N, X,) — (L, A) are morphisms of fans,

(3) the function h(x) — hy(u(zx)) is linear on x € |X|,

(4) hy is strictly convex on (E,)x = {o, € X, | v(0}) C A} for any A € A.
In particular, Dy is R-linearly equivalent to the pullback of the relatively ample
R-dwisor Dy, of Tn, (X,) over S.

Proor. We set
Vi ={z € |Z[; ¢(x) = 0 and h(—z) = —h(z)},
Cam = {z € [Bxl; (m,z) = h(z)}
for A € A and m € O (¢~ ' X). Then C ,, is a convex cone, since
Wz +y) = h(z) +hy) = (m,z +y) > h(z +y)

for x,y € Cxm. lf z, —x € Cy 1y, then z € V},, since X is strictly convex. If z € V3,
then x € C ,, for any X, m by —h(—x) > (m, z) > h(x). Therefore, for any A and
m, V}, is the maximum vector subspace of Nr contained in the convex cone Cj .

Let N, be the image of the natural homomorphism p: N — Ng/Vj. Then
#(Cx. ) is a strictly convex rational polyhedral cone and the set

2, = {(Cxam) [ A€ A;m € Tp(e'A)}
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is a fan of N,. Here, the support of (2,)x coincides with =1\ for the induced ho-
momorphism v: N, — L. We choose a maximal cone o € g and I, € (¢~ 10)NK
satisfying h(z) = (ly,x) for © € o. We define h, € SFN(X,R) by hy(z) =
h(z) — (lo, ). Then h, descends to a support function belonging to SFy, (3, &
Thus h, is strictly convex on (3,)x for any A € A.

=

O

1.16. Lemma Let h be a X-linear support function.

(1) Dy, is f-pseudo-effective if and only if O (¢~10) # 0.
(2) Suppose that Dy, is f-pseudo-effective. Then

or, (DiiX/S) = hiy, 5 (v) — h(v)

for v € Ver(X). In particular, Dy, is f-movable if and only if h;/A(v) =
h(v) for any v € Ver(X).

ProOOF. By taking a finite subdivision of 3, we may assume from the first that
X is non-singular and there is a function a € SFn(3,Z) with A = D, being f-ample.

(1) For A € A, let us denote Sy = TL(A) and Xy = Tn(Za) = f1S5. If
m € Op(¢~tA), then div(e(m)) + D, > 0 over Xy. Hence if [, (¢~10) # 0, then
Dy, restricted to Xy is R-linearly equivalent to an effective R-divisor for any A € A.
Thus one implication follows. Next, suppose that [J;(¢~10) = ). This is equivalent
to Ap(¢710) 3 (0,1), i.e.,

(0’ 1) = ZvGVer(Zo) ’I"U(’U, h(?}))

for some r, € Rsg. f m e MN Dl(ktha)(qb_lO) for some k, | € N, then (m,v) >
lkh(v) + la(v) for all v € Ver(Xg). Thus

0— % S ru(myv) 2 S (broh(v) + a(v) = k+ Y a(o).

In particular, if k& > 0, then no effective R-divisor on Xg = f~!T_ is linearly
equivalent to [(kDj, + A) for any I € N, by (IV-4). Thus the other implication
follows.

(2) Let us fix a vertex v € Ver(X). For A € A with ¢(v) € A, we have

inf{multr, A | 0 < A ~g Dp|x, } = inf{(m,v) — h(v) | m € On(¢~* )}
= hTE/A(U) - h(’l}),

by (IV-4). Hence, if Dy, is f-big, then h;/A(v) — h(v) = op,(Dr; X/S). In general,

or,(Dp; X/S) < h;/A(v) —h(v) holds. In order to show the equality in general case,
we may assume or, (Dp; X/S) = 0, by replacing Dy, with Dy, — o, (Dp; X/S)T',. We
shall derive a contradiction from the assumption: h;r:/A(v) > h(v). Then there
exist vertices v; € Ver(X) and real numbers r; > 0 such that v = > r;u; and

Yo rib(v;) > h(v). However (h+ea)l ,(v) = (h + ea)(v) for any & > 0, since
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Ditea = Dp, + €A is f-big. Hence

h(v) 4+ ea(v) > Zri(h(vi) +ea(v;)) = Zrih(vi) + EZria(w).

Taking ¢ — 0, we have a contradiction. O

1.17. Theorem (cf. [57]) Let f: X = Tn(X) — S = TL(A) be the morphism
induced from a proper morphism ¢: (N,2) — (L, A) of finite fans. Then any f-
pseudo-effective R-Cartier divisor of X admits a relative Zariski-decomposition over

S.

PrOOF. We may assume that X is non-singular and is projective over S. We
have only to consider the R-divisor D, for h € SFN(X,R) with [, (¢~10) # 0.
There is a finite subdivision ¥’ of ¥ with hf = h;/A € SFn (X', R). We may assume

that X’ = Tyn(X') is non-singular and is projective over S. Let p: X' — X be the
induced projective birational morphism. Then the effective R-divisor p*Dj, — Dy, is
the negative part of the relative o-decomposition of u*Dj, over S by [1.16+(2). This
is a relative Zariski-decomposition over S since the positive part Dy is relatively

nef by [1.131(3). O

1.18. Theorem Let f: X — Y be a proper surjective morphism of normal
complex analytic varieties. Suppose that, for any point y € Y, there exist an open
neighborhood Y, a proper morphism (N,X) — (L, A) of finite fans, and a smooth
morphism Y — TL(A) such that

[TV = TN(E) X7 (a) Y

over Y. Then any f-pseudo-effective R-Cartier divisor of X admits a relative
Zariski-decomposition over'Y .

PROOF. Let D be an f-pseudo-effective R-Cartier divisor on X. For a point
yeY,let X =f —1Y for the open neighborhood ) above. We have the vanishing
R' f,Ox =0 for ¢ > 0 and an isomorphism

R' f,O% ~R? f,Zx.

Hence we may assume that there exist an R-Cartier divisor F of ) and a support
function h € SFN(2,R) such that D|xy ~gr f*E + piD; for the first projection
p1: X — Tn(X). By[1.17, there exists a bimeromorphic morphism p: X' — X such
that the positive part P of the relative o-decomposition of p*(D|y) is relatively
nef over ). By[1.15, we may assume that the R-divisor P is relatively ample over
X. Then p and P are uniquely determined up to isomorphisms. Gluing X’ and P
for such neighborhoods ), we obtain a bimeromorphic morphism ¢g: X’ — X such
that the positive part of the relative o-decomposition of g*D is relatively nef over
Y and is relatively ample over X. O
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82. Toric bundles

§2.a. Definition of toric bundles. We shall give a relative version of the
notion of toric variety (cf. [125]). Let M and N be the same free abelian groups as
before.

2.1. Definition Let S be a complex analytic space and let
L: M3 m+— L™ € Pic(S)

be a group homomorphism. For a subset S C M, we set

LS =p, _ L
For a strictly convex rational polyhedral cone o C Ng, the affine toric bundle over
S of type (N, o, L) is defined by
Tn(o, £) = Specang Lo N M].
Similarly, for a fan 3 of N, the toric bundle Tn(X, L) of type (N, 3, £) is defined
as the natural union of Ty(o, £) for o € X.

Remark £ is regarded as an element of N ® Pic(S) = H'(S,N ® O%), in
which N ® OF% is regarded as the sheaf of germs of holomorphic mappings S — Tn.
By the action of Ty on Tn(X), Tn(X, L) — S is the fiber bundle obtained from
Tn(E) xS — S by the twist by £. The cohomology class in H'(S,N®O%) attached
to the principal fiber bundle Tn(0,£) — S is —L.

There is a natural surjective Og-algebra homomorphism L[gVNM] = L[a-NM]
such that the kernel is £[(aV ~ o+) N M]. This induces a closed immersion

TN(o‘) (0, ,C) — TN (0’, ,C)
The left hand side is fiberwise an orbit of Ty and is denoted by O (£). For a face
T < 0o, the closure of O,(£) in Tn(o, £) is isomorphic to Ty (o /7, L) by the
natural surjective homomorphism
LleV NM] - Lle¥ Nt M.

The closure V(a, £) of Oy (L) in Tn(X, £) is isomorphic to Ty (X/a, £).

Suppose that S is a normal complex analytic variety. Let p: Y — S be the
morphism Tn(X, L) — S. An element m € M defines a meromorphic section e(m)
of p*L£~™ by the natural embedding

O~ L™ QL™ < L7™ @ L]M].

For a vertex v € Ver(X), let I'y, be the prime divisor V(R>ov, £). The divisor
div(e(m)) associated with the meromorphic section e(m) of p*£~"™ is written by

ZvEVelr(Z)) <m7 U>FU

as a Weil divisor. In particular,

Oy (ZUEVer(E) <m,v>Fv> ~p LT



128 IV. DIVISORS ON BUNDLES

Even for m € Mg, we can define div(e(m)) to be an R-Cartier divisor by the
linearity of divoe: M — CDiv(Y,R). Similarly, we denote by £™ the image of
m under £ ® R: Mg — Pic(S,R). Then div(e(m)) ~g f*L~™ for m € Mg. For
h € SFCn(3,R), we define

Dh = Zuev«er(z)(_h(v))r”'

If h € SFN(X,R), then Dy, is R-Cartier.
Remark We can consider a kind of differential form:

dloge(m) = e(m)~* de(m)
for m € M. Tt is not a well-defined meromorphic 1-form on ¥ = Ty(X, £). Sup-
pose that ¥ is a non-singular fan and S is non-singular. Let B be the normal
crossing divisor Y \ Tn(0, £). Then dloge(m) is regard as a global section of the
sheaf Q%, / s(log B) of germs of relative logarithmic 1-forms. Moreover, we have an
isomorphism

M® Oy ~ Q%//S(logB).

In particular, Ky + B ~ p*Kg.

2.2. Proposition Let Y be a toric bundle Tn(X, L) over a complex analytic
space S and let X be a toric bundle Tn, (X0, Lo) over Y. Let p: Y — S and
m: X — Y be the structure morphisms. Assume that Lo: Mg = Hom(Ng,Z) —
Pic(Y) is the composite of a homomorphism My — SFN(X,Z) @ Pic(S) and the
natural homomorphism SFN(X, Z) @ Pic(S) 5 (h, M) — Oy (Dp) @ p* M € Pic(Y).
Then X is isomorphic to a toric bundle TNO@N(E, Z) over S and m is induced from
the second projection Ng & N — N.

PROOF. The homomorphism My — SFn(X,Z) @ Pic(S) is defined by an ele-
ment h € SFN(3,Z) ® Ng and by a homomorphism £1: My — Pic(S). Here h is
regarded as a continuous function || — (Ng)g = Np ® R such that the restriction
h|, to a cone o € ¥ is linear and is induced from a homomorphism N, — Ng. For
mo € Mg, we write by (mg, h) the support function x — (mg, h(x)). Then

Lo = Oy (Dimo,my) @ L1
For o € 3, we can take a homomorphism 9, : My — M such that the composite

Mg — M — M, is dual to the homomorphism N, — Ng above defined by h. Then
(mo, h(x)) = (g (mg),z) for z € o. In particular,

O¢me,ny(0) = {m € Mg | (m,z) > (mo, h(z)) for x € o} = Yl (mo) +aV.

For cones o¢p € ¥y and o € X, let Y, C Y be the open subset Tn(o, L)
and let Xq, 0 C 7Y, be the open subset Ty,(00,Ly) over Y,. Then Y, =~
Specang L|e¥ N M] and the invertible sheaf Oy, (D},) for h € SFy(X) is associated
with the L[o"YNM]-module £ (o)NM]. Similarly, X5, » >~ Specany. Lo[og NMo].
Therefore, X, o >~ Specang As,, o for the subalgebra

— mo m ~
Ago.o = @moeMomag’mE%O)m(a) LT @ L™ C LMy & M],
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where £ := £, & £ € (Ng @ N) ® Pic(S). For the cone
C(oo,0;h) :={(x9,2) € (No)r ® Nr | z¢p + h(2) € 09, z € 0},

we have an isomorphism Xo, & >~ Tn,an(C (00,03 h), L) over S, since
{(mo,m) € Mg &M | mg € ¢, m € Jinemy(0)} = Clog,o:h)Y N (Mg @& M).

The structure morphism 7: X, o — Yo is interpreted as a morphism of toric
bundles over S which is induced from the second projection Ng & N — N.

For faces 79 < op and 7 < o, the cone C(7g,7;h) is a face of C(og,0o;h)
and the open immersion X, C Xs,,o is induced from the open immersion as
toric bundles over S. For other cones o, € 3 and ¢’ € X, we have C(o,0;h) N
C(oy,0';h) = C(ogNoj,o’ No;h). Thus

Yh:={C(op,0;h) | oy € Xy, o € X}

is a fan of Ng @ N and X ~ Tn,gn(Zh, £) over S. a

§2.b. Pseudo-effective divisors on toric bundles. Suppose that X is a
complete fan and that S is a normal complex analytic variety. Let p: ¥ — S be
the structure morphism of the toric bundle Y = Tn(X, £).

2.3. Lemma (1) For a line bundle M of Y, there exist a line bundle N
of S and a support function h € SFN(X,Z) such that M ~ p* N @Oy (Dy,).
In particular, there is an isomorphism

peM :N@E[Dh N M].

(2) For an R-Cartier divisor D of Y, there exists a support function h €
SFN(X,R) such that D ~g p*E + Dy, for some E € Pic(S,R).

PROOF. From the vanishing R’ p,Oy = 0 for i > 0, we have exact sequences
0 — Pic(S) — Pic(Y) — H°(S,R? p.Zy),
0 — Pic(S,R) — Pic(Y,R) — H"(S,R? p,Ry).

On the toric variety Tn(3X), any line bundle is associated with the Cartier divisor
Dy, for some h € SFn(X,Z), and any R-Cartier divisor is R-linearly equivalent to
Dy, for some h € SFN(X,R). Thus, in (1), M ® Oy (—Dy,) restricted to a fiber of p
is numerically trivial for some i € SFN(X,Z), and hence M ~ p*N ® Oy (D},) for
a line bundle A/ of S. Similarly, in (2), D — Dy, is p-numerically trivial for some
h € SFn(X,R). Hence D — Dy, ~g p*E for some E € Pic(S,R). Note that there is
an isomorphism p,Oy (D) ~ L]0, N M] by (IV-4), since p is proper. O

For h € SFn(Z,R), we write hf = hLR for short. Let M be an invertible sheaf
of Y such that M ~ f*N ® Oy (D) for some N € Pic(S) and h € SFn(X,Z).
Then the following conditions are mutually equivalent by [1.13:

(1) his upper convex on Ng; (2) O, # 0 and bl = h;
(3) M is p-free; (4) M is p-nef.
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Furthermore, M is p-ample if and only if A is strictly upper convex with respect to
3 by 1.14] Let D be an R-Cartier divisor of Y such that D ~g f*E + D, for some
R-Cartier divisor F of S and for h € SFn(2,R). Then the following conditions are
mutually equivalent by [1.16:

(1) Op#0and h=h'; (2) hisupper convex; (3) D is p-nef.

If D is p-pseudo-effective, then or, (D;Y/S) = hf(v) —h(v) for v € Ver(X) by[1.16]
Suppose that S is a normal projective variety. We study the (absolute) o-
decomposition for a pseudo-effective R-Cartier divisor of Y = Tn(X, £). For an
R-Cartier divisor E of S and for a support function h € SFy(3,R), we define
Opr(E,h) :={m e 0, | E+ L™ is pseudo-effective},
Onet (B, h) :=={m € Oy | E+ L™ is nef}.
These are compact convex subsets of Mg.
2.4. Proposition Suppose that S is a mormal projective variety. Let D =
p*E 4+ Dy, be an R-Cartier divisor of Y = Tn(X, L) for h € SFy (2, R).
(1) D is pseudo-effective if and only if Opg(FE, h) # 0.
(2) The following conditions are equivalent to each other:
(a) D is nef;
(b) lo € Onet(E,h) for any mazimal cone o € X, where l, € Mg s
defined by h(z) = (lg, x) for xz € o (cf.[1.7);
(¢) Onet(E,h) # 0 and, for any x € Ng,
h(z) = min{(m,z) | m € Onet(E, h)}.
(3) Suppose that D is pseudo-effective. Then
op-10(D) = min{og(E + L™) | m € Opg(E,h)},
or, (D) = min{(m,v) | m € Opg(E, h)} — h(v),
for any prime divisor © C S and for any v € Ver(X).
(4) Suppose that D is pseudo-effective. Then D is movable if and only if
op-16(D) = or, (D) = 0 for any prime divisor © C S and for any v €
Ver(X).
(5) Suppose that D is pseudo-effective. Then D is numerically movable if and
only if
{m e O | (E+ L™)|eo is pseudo-effective } # 0, and
{m € Opg(E,h) | h(v) = (m,v)} #0,

for any prime divisor © C S and for any v € Ver(X).

PROOF. The image ¢ € N@N'(S) of £ € N®Pic(S) satisfies (m, ¢) = ¢;(L™) €
N'(S) for m € Mg. Let us consider the set

Q:={(e,h,m) € N*(S) x SFN(Z,R) x Mg | m € Oy, e+ (m,c) € PE(S)}.
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Then 7: Q — N*(S) x SFn(Z,R) is proper, since [y, is compact for h € SFy(X).
In particular, m(Q) is closed. Let us consider

@: N'(S) x SFN(Z,R) 3 (e, h) — p*e + c1(Dy) € NY(Y).

Then (1) means that ¢ }(PE(Y)) = 7(2). We note the following R-equivalence
relation for m € Mg:

(IV-5) Dy + p*E ~g div(e(m)) + Dy, + p*(E + L™).

Thus ¢ 1 (PE(Y)) D 7(92). In the proof, we may assume that S and Y are non-
singular and Y is projective over S.

(1) It is enough to show ¢~ *(Big(Y) NNS(Y)g) C m(2). Thus we may assume
that D is a big Q-divisor. In particular, E is a Q-divisor and h is rational. Then
kD are kE is Cartier and H(Y, kD) # 0 for some k € N. In particular, H(S, £ +
kE) # 0 for some m € MN kO, by (IV-4). Hence (c1(E), h) € ©(£2).

@) = (b): Let ¢ € ¥ be a maximal cone. Then V(o,L) is a section of
p:Y — S and h?(x) = h(z) — (l5,z) < 0 for any « € Ng, since Dy, is p-nef.
Note that Dye NV (o,L) = 0 and Dyo = Dy + div(e(ls)). Therefore, Dyly(o,c) is
R-linearly equivalent to Llo. Thus E + Ll is nef and I, € Onet(E, h).

(b) = (c): For any y € Ng, there is a maximal cone o € ¥ containing y € o.
Then h(y) = (lmy> = min{(m,y) | m € Oner(E, h)}.

«©) = (b): h is upper-convex by the expression. For a vector x¢ € o, there is
an mo € Unet(E, h) such that h(zg) = (ly, o) = (mo, o). Since mo — s, € 0V, we
infer that mo =l € Onet(E, h).

(b) = (a): Let W be the intersection of the supports of effective R-Cartier
divisors Dj, + div(e(m)) for m € Onef(E, h). Then W is written as the union of
V(o, L) for suitable cones o € X. In particular, if W # @), then W D V(o , L) for a
maximal cone o. Thus W = () and D is nef.

3) If f: @ — R is a lower semi-continuous function, then

f(e.h) = it{f(e,h,m) | (e,h,m) € Q} = min{f(e,h,m) | (e,h,m) € 2},
which gives rise to a lower semi-continuous function on 7(£2). For a prime divisor
© C S, 0p is lower semi-continuous on PE(S). For a vertex v € Ver(X), m — (m,v)
is linear. Hence

r(E,h,0) :=min{oe(F + L™) | m € Opr(E, h)},

r(E, h,v) := min{(m,v) | m € Opg(E,h)} — h(v)
are well-defined, and (E,h) — r(E,h,0) and (E,h) — r(E, h,v) are lower semi-
continuous on ().

If m € Opg(E, h), then
op10(D) < 3yr6(p" (B + £™)) = a6(E + L),

or, (D) < multp, (div(e(m)) + Dp) = (m,v) — h(v),

v

by (IV-5), since div(e(m)) + Dy, is an effective R-divisor containing no fiber of p.
Thus 0,-1¢(D) < r(E,h,0) and or, (D) < r(E, h,v).
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Suppose that D is a big Q-divisor. Then FE is a Q-divisor and h is rational. By
(IV-4) and (IV-5), we infer that any effective Q-divisor Q-linearly equivalent to D
is written by div(e(m)) + Dy, + p*A for some m € Oj, N Mg and for some effective
Q-divisor A ~g E + L™. Thus 0,-19(D) = 7(E,h,0) and or, (D) = r(E, h,v).

By the lower semi-continuity, the expected equalities also hold for any pseudo-
effective R-divisor D = p*E + Dy,.

(4) Let T' C Y be a prime divisor with or(D) > 0. This is stable under the
action of Ty. Therefore, I' = p~ 'O for a prime divisor © C S or I =T, for a
vertex v € Ver(X). Thus we have the equivalence.

(5) If D|r is not pseudo-effective for a prime divisor I' C Y, then I' = T',, for
a vertex v € Ver(X) or I' = p~1O for a prime divisor © C S. In case I' = T,
we choose I, € Mg satisfying h(v) = (l,,v) and let h¥ € SFy(,)(2/R>ev,R) be
the function defined by h*(z) = h(z) — (l,,x). Since Dj. ~g Dy + p* L7 the
restriction D|r, is pseudo-effective if and only if Opg(E + L, h,) N vt # 0 by
(I). This is equivalent to the existence of m € Opg(FE,h) with h(v) = (m,v).
In case I' = p~'O, we note that I' is a toric bundle over ©. By considering the
normalization of ©, we infer from that D|,-1¢ is pseudo-effective if and only if
(E+ L™)|e is pseudo-effective for some m € Op. Thus we are done. O

2.5. Theorem Let S be a non-singular projective variety such that

(1) PE(S) € N*(S) = NS(S) @ R is a convex rational polyhedral cone with
respect to NS(S), and
(2) Nef(S) = PE(S).
Then any pseudo-effective R-Cartier divisor of a projective toric bundle Tn(%, L)
over S admits a Zariski-decomposition.

PROOF. We may assume that Y = Tn(X, £) is non-singular and projective.
Then a pseudo-effective R-divisor D of Y is R-linearly equivalent to p*E + Dy,
for an R-divisor E of S and for an h € SFn(X,R) such that Opg(E, k) # 0. By

assumption,

PE(S) ={£¢ e N'(S) [ {7 >0 (1 <i<k)}
for some 1-cycles y1, Yo, ..., & of S. Let ¢: M — N'(S) be the homomorphism
defined by c(m) = ¢1(£™) and let ¢V: N1(S) — Ng be its dual. Both ¢ and c¢¥ are
defined over Q. Then the cone R>o(Opg(E, h) x {—1}) is the dual cone of

k

A(E,h) = Ap + Zi:l Rxo(c” (i), —E ).

For = € Ng, let us define
h¥(z) = min{(m,z) | m € Opg(E,h)}.

Then h*(z) > h(z) and Opg(E,h) = Opg(E, ht). Moreover, h* € SFCy(Z,R),
since the image of any face of A(FE,h) under the first projection Ng x R — Ng
is a rational polyhedral cone. Let 3’ be a finite subdivision of 3 such that At €
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SFN(E,R) and let pu: Y/ = Tn(X', £) — Y be the associated proper bimeromorphic
morphism. Then

* — 1 —
No(i'D) =3 oy (W (0) = R()T
by [2.4}(3). Here P,(u*D) ~g p*E + Dyt, which is nef by [2.4}(2). O
§2.c. Examples of toric bundles. Let S be a non-singular projective variety
and let Ly, Lo, ..., L, be divisors of S. Let p: P = P(£) — S be the projective

bundle associated with & = @;_, Os(L;). This is described as a toric bundle
Tn (3, £) as follows:

(1) Nis of rank  — 1 with a basis ey, es, ..., er_1;
(2)
L= Z L ® Og(L; — L,) € N® Pic(S);

(3) We set e, = —> 1~ 1162 € N. The fan ¥ consists of the faces of the
(r — 1)-dimensional cones

g; = Zlgjgr,j;éi RZO 6]‘ (1 S 7 S T).
Let h: Ng — R be the function defined by
r—1 r;, ifzeo; fori<r
h e | =
(Zj=1 xje]) {0, if x € o,

Then h € SFN(X,Z). In fact, h(z) = min{(l;,z) | 1 < i < r} for the dual basis
(I1,12,...,l—1) of M to (e1,ea,...,er—1) and I, = 0. Note that h(e;) =0 for i < r,
and h(e,) = —1, where Ver(X3) = {ej,ea,...,e.}. In particular, Dj, is just the
prime divisor I',, and hence D, ~ H — p*L, for the tautological divisor H = He.
We consider the standard convex polytope

O:= {s:(sl,SQ,...,sr)G[O,l]r :_1si:1},

where [0,1] ={r e R| 0 <r < 1}. For s € OJ, an R-divisor A of S, and for a real
number b > 0, we define

A(S) =A + b (Zizl SZLZ) s
Opr(A, Le,b) := {s € O| A(s) is pseudo-effective}.
If we identify Mg ~ R"~! by the dual basis to (ey,ea,...,e,_1), then
. r—1 r—1 ‘ }
Dh—{(ml,mg,...,mr_l)ERzo ‘ Zi:l m; <1,

and hence Opg (DL, +A bh) is identified with the set of vectors (mqy,ma,...,my_1) €
R’;Ol such that 37! m; < b and

ALY Lot (b= 30 i) Ly € PE(S).
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Thus, if b > 0, there is an identification Opg(A + 0L, bh) < Opg(A, Le,b) by
. 1 r—1
s;i=m;/b for i<r, and stl—gZizl ms.

2.6. Lemma Let D be an R-divisor of P numerically equivalent to p*A + bH
for an R-divisor A of S and b € R.
(1) D is pseudo-effective if and only if b > 0 and Opg(A, Le,b) # 0.
(2) D is nef if and only if b > 0 and A + bL; is nef for any 1 <i <r.
(3) D is mowvable if and only if b > 0 and the following two conditions are
both satisfied:
(a) For any prime divisor © C S, there is a vector s € Opg(A, Le,b)
such that og(A(s)) = 0;
(b) For any 1 < j < r, a vector s = (81,52,...,5,) with s; = 0 is
contained in Opg(A, Le, b).
(4) D is numerically movable if and only if b > 0, and the condition (b) above
and the following condition are satisfied: For any prime divisor © C S,
there is a vector s € O such that A(s)|e is pseudo-effective.

PRrROOF. (1) D is numerically equivalent to bDjy + p*(bL, + A). This is p-
pseudo-effective if and only if b > 0. Hence (1) follows from[2.4-(1) and from the
identification Opg (A + bL,.,bh) <« Opg(A, L, b).

(2) A maximal cone of X is one of o; for 1 < i <r. Forly, lo, ..., l, € M
introduced above, we set h()(z) := h(z) — (I;,z). Then D is nef if and only if
A +bL, and A +bL, + L% = A+ bL; for i < r are all nef, by [2.4L(2).

(3) follows from by [2.4}(3), since

or, (D) =min{bs; | s € Opr(A, Le,b)} for 1<i<mr,
op-10(D) = min{oe(A(s)) | s € Opg(A, L., b)}.
(4) follows from [2.4}(5). O

We consider the special case: r = 2. We may assume Lo = 0 and may write L =
L;. Then £ = Og(L)® Og, P =Tn(X, L) for N =2Z, X = {{0}, [0, +00), (—00, 0]},
and L™ = Og(mL) for m € Z. The support function h € SFyn(X,R) is written by
h(z) = min{0,z}, O, = [0,1] C R = Mg, and D), ~ H for the tautological divisor
H = H¢ of P. The prime divisors I'y and I'_; corresponding to the vertices in
Ver(X) = {1, —1} are sections of p. Here, I'y = div(e(1)) + D, ~ —p*L + H and
I'_y = Dy. Let D be an R-divisor of P. Then D ~g p*E + bH for some R-divisor
E of S and for some b € R. By [2.6}1(1), D is pseudo-effective if and only if b > 0
and E + mL is pseudo-effective for some 0 < m < b. By [2.6-(2), in case b > 0,
D is nef if and only if F and E + bL are both nef. If Nef(S) = PE(S), then any
numerically movable R-divisor D is nef, since D|r, ~g E and D|r_, ~r E + bL.
Therefore, we have proved the following:

2.7. Corollary In the situation of [2.6], suppose that every effective divisor of
S is nef and r = 2. Then P, (D) is nef for a pseudo-effective R-divisor D of P.
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2.8. Example In the situation above where r = 2, L1 = L, Ly = 0, suppose

that there is an infinite sequence {E,}52; of R-divisors of S such that

(1) c1(Ey) € PE(S) for any n,

(2) lim,—oo c1(Ey) = 1 (L),

(3) E, —tL ¢ PE(S) for any n and ¢t > 0.
We fix a number 0 < o < 1 and consider pseudo-effective R-divisors D = p*E,, +
al'y. Then DY ~g p*(E, — aL) 4+ aH. Thus D%|pr, ~r E, — oL is not pseudo-
effective. If (D% — rI'1)|r, is pseudo-effective, then r > «. Hence

VFl(DS) = O—Fl(Dz) =a.

We set D := p*L+al'y. Thenor, (DY) = 0by DY ~g p*((1—a)L)+al' ;. Thus
the function or, is not continuous on PE(P), since ¢1 (D%) = lim,, o ¢1(D2). If we
choose S, L, and P, = ¢1(E,,) as follows, then they satisfy the condition above: Let

S be the product F x E for an elliptic curve E without complex multiplication and
let L be a fiber of the first projection. Since PE(S) = Nef(.S) is a cone isometric to

{(z,y,2) eR?| 22 > 2° + 4%, 2> 0},
we can find a sequence {P,} of points of PE(S) such that P, —tci(L) ¢ PE(S) for
any ¢t > 0 and ¢1(L) = limy, o0 P
2.9. Lemma In the situation of the P'-bundle above, assume that dim S = 2,

L is nef, and that E is a non-singular irreducible curve of S with E? < 0. Then
the R-divisor D = p*E + bH with b > 0 admits a Zariski-decomposition.

PROOF. By taking the o-decomposition of D, we may assume that D is mov-
able. Thus FE is pseudo-effective and E + bL is nef by [2.6}(3), since L is nef. Note
that D is big. From the equivalence relations

D ~R bF,1 +p*E ~R bF1 +p*(E + bL),

we infer that NBs(D) coincides with the non-singular complete intersection V' :=
I'iNp 'E. Let ¢: Z — P be the blowing-up along the ideal sheaf

J = Op(—miI'1) + Op(—map™E),

where m; and mgy are positive integers satisfying msE? = —my(L - E). Then the
exceptional set Go := ¢~ (V) is isomorphic to the P!-bundle

Pv(OV(—m1F1) (&) Ov(—mgp*E)) ~ PE(OE(TTML) (&%) OE(—ng))

Let v: W — Z be the normalization and let p: W — X be the composite. Then W
has only quotient singularities and G = v~ '@} is isomorphic to G by construction.
The prime divisor G is Q-Cartier and Ow (—kG) ~ p*J/(tor) for some k € N. Let
r be the minimum positive number with (p*D —rG)|¢ being pseudo-effective. Then
(p*D — rG)|g is nef but not big, since G is the P!-bundle associated with a semi-
stable vector bundle over the curve E. Thus p*D —rG is nef, since NBs(p*D) C G.
Let p: Y — W be a birational morphism from a non-singular projective variety.
Then (u*p*D — rp*G)|r is not big for any prime component I' of u*G. Thus
P, (4'p"D) = p*(p"D — rG) by IILB.T. O
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Next, we consider a special case of P2-bundles in order to obtain a counterex-
ample to the existence of Zariski-decomposition.

In the description of the projective bundle P(€) = Tn(X, £), we assume r = 3,
L3 =0,1ie.,E=0g(L1)D0s(La) ® Og. For the support function h € SFy(X,Z),
we know Dy, =TI'c, ~ H for the tautological divisor H = Hg. For an R-divisor A
of S, Opr(A, h) is identified with

Q:={(z,y) € R220 |z+y <1, A+ xLi+ yLs is pseudo-effective}.

We assume the following condition for S, Lq, Lo, and A:

(1) DPE(A, h) = DNef(Aa h),

(2) L1, Ly, A+ Ly, and A + Ly are ample;

(3) a:=inf{x +y | (z,y) € O} > 0 and there exists a unique point Py =
(w0, 90) € Q with 29 +yo = a3

(4) Q is not locally polyhedral at Py; In other words, if (z,u) € R? satisfies
zxo + uyo < za +uy for any (z,y) € Q, then zxg + uyo < zx + uy for any
(z,y) € AN A{Po}.

Example Let S be an abelian surface of the Picard number p(S) = 3. For
example, S = E x E for an elliptic curve E without complex multiplication. Then
PE(S) = Nef(S) € N*(S) is a cone isometric to

C={(z,y,2) eR*| 22 > 2? +¢* 2 >0}
For points A = (—1,-1,0) ¢ C, L1 = (1,0,a), Ly = (0,1, a) for a > 1, the set
{(z,y) €R* | A+ 2L, +yLs €C}
is written by
{(@y) | a®@+y) 2 (@-1)*+(y—1)% a+y >0}
Thus S, L1, Lo, and A satisfy the condition above.

2.10. Theorem If S, Ly, Lo, and A satisfy the condition above, then the
R-divisor B =p*A + H on P(E) admits no Zariski-decompositions.

PROOF. We may assume that Q0 := {(x,y) € Q | y > yo} is not locally
polyhedral at Py = (xg,yo). In other words, if z, u € R with z > u > 0 satisfies
zx + uy > zxo + uyo for any (x,y) € €, then zx + uy > zxo + uyp for any
(z,y) € Q' {Po}.

Let us consider the function on N defined by

h¥(x) = min{(m, ) | m € Oyer(A, h)}.
Then h(ze; + uep) = min{zz + yu | (z,y) € Q} for (z,u) € R% Here, note
that h* ¢ SFCn(X,R), since Q is not locally polyhedral at Py. We have h*(e;) =
h¥(es) = 0, and h*(e3) = —1. Thus B is movable by [2.6-(3). For the maximal
cones oy =y, R>oej, we have htg, = hle, and ht|s, = hlo,, but ht|s, # 0;
for example, h*(e; 4+ e3) = a > 0. Hence NBs(B) is just the section V(o3,£) =
I'e, NT,,, since NBs(B) is stable under the action of Ty. The blowing-up of P
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along V(a3, L) corresponds to the subdivision S of 3 such that Ver(Zl) =
{e1,e2,e3,—e3 = €1 + ea}. Let pq: Pl = TN(E“],L) — P be the blowing-up. We
denote the structure morphism Pl — S by the same p. For the exceptional divisor
Teyter = V(Rsg(er +e2), £) € P we have

T, v0y (M1 B) = 01, 4, (P"A + D) = hH(e1 + e2) =,

by 2.6}(3). Thus P, (;iB) = p*A+ Dy, for the support function h; € SFy(Z!, R)
such that hy(v) = h¥(v) for any v € Ver(SM). Then ht(x) > hi(x) > h(z) for any
x € Ng and Opg(A, h1) = Opr(A, h). If h¥(2e1 +e2) = h1(2e1 + e32), then hi(x) =
hi(z) for any @ € R>ge; + R>o(eq + e2); it contradicts the assumption: Q0 is not
locally polyhedral at Py. Thus h¥(2e1+e2) > hy(2e1+e2) and the section V(R>ge;+
Rso(e1+es), £) of P — S'is a connected component of NBs(P, (u} B)). Let P2l —
P be the blowing-up along the section, which corresponds to a subdivision s of
2 such that Ver(2P?) = Ver(2) U {2¢; + e5}. For the composite po: P2 — P
and for the projection p: PPl — S, we have P,(u3B) = p*A + Dy, for hy €
SFn(ZP | R) defined by hy(v) = hi(v) for any v € Ver(22)). Here, h(x) > hy(x)
for £ € Ng and h*(3e; + 2e3) > ho(3e; + 2e3) by the same reason above. In
particular, the section V(Rsg(e; + e2) + Rso(2e1 + e2), L) of p: Pl — S is a
connected component of NBs(P,(usB)). In this way, we can construct a non-
singular subdivision = of 3 such that

Ver(SM) = Ver(2) U {ey + ea,2e1 + e, ..., nes + (n— 1)es}
for n > 2. Then, for the toric bundle p: P := TN(E["],/J) — S, the induced
birational morphism P+ — P is just the blowing up along the section
V(R>o(e1 + e2) + Rso(ner + (n — 1)es), L)
of p: Pl — S, which is a connected component of NBs(P, (u B)) for the birational

morphism i, : P} — P. Thus we are reduced to the following:

2.11. Lemma Let
-~—>Xn’ﬁ‘>Xn_1—>---—>Xlﬂ>X0

be an infinite sequence of blowups in which centers V,, C X,,_1 are non-singular
subvarieties of codimension two for any n > 1. Let E, be the exceptional divisor
wn (V). Assume that there exist a sequence of pseudo-effective R-divisors D,, on
X, satisfying the following conditions:

(1) ,un(vn-i-l) - Vna

(2) ov, (Dn-1) > 0;

(3) Dy = pyDn—1—ov,(Dn-1)Ey.
Then Dy admits no Zariski-decompositions.

PRrROOF. Assume the contrary. Let f: Y — X be a birational morphism with

P,(f*Dy) being nef. We may assume that f is a succession of blowups with non-
singular centers. Suppose that the image V] of the composite £ C X; «— Y
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is not a divisor. Since codimV; = 2, f is an isomorphism over a general point
of V1. On the other hand, Vi C Supp N, (f*Dyp) and the divisor N,(f*Dy) is f-
exceptional, since N,(Dy) = 0. This is a contradiction. Therefore V] is a prime
divisor and is the proper transform of F;. Furthermore, there is a Zariski-closed
subset S; C Xy such that V3 ¢ S; and Y --— X is a morphism over Xy \ 5.
The birational mapping Y --— X is considered as a succession of blowups with
non-singular centers over Xy ~\. S;. There is a birational morphism v,: Y; — Y
from a non-singular projective variety such that f;: Y7 -+— X; is a morphism and
vy is an isomorphism over Xo \ S;. Note that P,(f;D1) = viP,(f*Dyp). Let V3
be the image of the composite Fs C X5 ~-— Y;. By the same argument as above,
V5 is a divisor and is the proper transform of Fs. Since v; is isomorphic outside
S1, Fo is not exceptional for the birational mapping X, --— Y. Furthermore,
there is a Zariski-closed subset S5 C X7 such that ul_l(Sl) C Sy, Vo & Ss, and
the birational mapping Y5> -+-— X5 is a morphism over X; \ S5. There is also
a birational morphism v5: Yo — Y7 from a non-singular projective variety such
that fo: Y5 -— X5 is a morphism and vs is an isomorphism over X; \ S3. By
continuing the same arguments, we infer that the divisor F,, is not exceptional for
the birational mapping X,, -+— Y for any n > 1. This is a contradiction, since
f:Y — Xy has only finitely many exceptional divisors. t

§2.d. Explicit toric blowing-up. Let S be an n-dimensional complex an-
alytic manifold and let By, Bs, ..., B, for r < n be non-singular prime divisors
such that B = Y B; is simple normal crossing. Let p: V = V(£) — S be the
geometric vector bundle associated with & = ®!_, Og(B;). This is also considered
as a toric bundle as follows: let N = > i, Ze; be a free abelian group with a base
(e1,€2,...,60), oy = > Rspe;, and let

Ly=Y @ Os(~Bi) € N&Pic(8).

Then V ~ Ty:(oy, £y). Let MP be the dual N#’. The prime divisor T, corre-
sponding to a vertex e; € Ver(oy) is the geometric vector bundle associated with
the kernel of the projection & — Og(B;). Let us consider the section 7' C V of p
determined by the surjective ring homomorphism

Sym(€Y) = L[oy "M - Og

induced from the natural injections Og(—B;) C Og (cf. Chapter [II, §1.b). By the
identification T ~ S, we have B; = T',|r. If U C S is an open subset over which
Og(B;) are trivial line bundles, then the composite

U~p 'lUNTCp 'lU~C" xU —C"

is a smooth morphism and the pullback of the i-th coordinate hyperplane is B;NU.
Let A be a finite subdivision of . Then we have a bimeromorphic morphism
J: Tne(A, L£y) — V of toric bundles over S. Let us consider Sp := f~'(T). Then
Sa is a normal variety and the bimeromorphic morphism f: Sy — S satisfies the
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condition of [1.18] since f~1U is smooth over the toric variety Ty: (A) for the open
subset U above. Note that f is isomorphic over S \ B.

2.12. Definition The bimeromorphic morphism Sp — S is called the toric
blowing-up of S along the simple normal crossing divisor B = > B; with respect
to the subdivision A.

Let Z be the intersection By N By N --- N B, which is smooth. If Z # (), then
TNp'Z=V(oy,Ly) Np'Z and

SAXSZ:U

by [1.1l Here V(A, Ly|z) =~ Tnex)(A/A, Ly|z) and A/X is a complete fan.

AEA, AnInt oy £0 VA Lylz)

2.13. Proposition Let S be the toric bundle Tn(X, L) over non-singular va-
riety Z for a non-singular fan 3 of a free abelian group N of rank I and for some
L € Ny ® Pic(Z). Let us fix mutually distinct vertices v1, va, ..., v, € Ver(X) for
r <l and set B; =T, = V(R>ov;, L) C S. Let f: SaA — S be the toric blowing-up
along the simple normal crossing divisor B = 3 B; with respect to a finite subdi-
vision A of a%. Then Sa is isomorphic to the toric bundle Ty(X1, L) over Z for
a finite subdivision 31 of X and f is interpreted as the morphism of toric bundles
over Z associated with the subdivision.

PrROOF. By 2.2, the toric bundle Tys (A, £y) over S is isomorphic to the toric
bundle Tysgn (Zh, £) over Z for £ = 0&L € (N*&N)@Pic(Z) and h € SFy(2,Z)®
Nt defined as follows: As a function |X| — (N®)g, h is defined by

S = v; <1<
h(v):{€“ if v 1? for 1<i<],
0, otherwise
for v € Ver(X). Here 3y, = {C(X,0;h) | A € A, 0 € X} for
C(A\ o;h) = {(z/,2) € (N ) ®Ng | 2’ + h(z) €\, z € o}

Let Uy C S be the open subset Ty(o, £). Then U, ~ Specan, L[o¥ N M]. Let
Va,o be the toric bundle Ty;: (X, £y) over U, for a cone A € A or for A = oy Then
p~ U, ~ Vo, We have an isomorphism V) » =~ Specan Ay o for the subalgebra

_ m — FIMH
Axe @m’EAVﬁMh,mED“n/,h)(a)‘c C LM e M].

The section T'N p~'U, C p U, is determined by a surjective homomorphism
Asy o = L[V N M] which is induced from the summation

b Lm—Lm,
m’eAVNME

Then the fiber product of Vy - and T over V is isomorphic to Specan , By o for the
Oz-algebra By » defined as the image of a similar homomorphism Ay o — L[M].



140 IV. DIVISORS ON BUNDLES

For m € M, there exists an m’ € AV N M? with m € O¢m my (o) if and only if
m € Ch(A, o) NM for the cone
Ch(X,0):=anh™'(A\) ={z co|h(z)c .
Hence, Bx o >~ L[Ch(X, 0)Y N M]. Therefore, Sa ~ Tn(X1, £) for the fan
S = {Ch(A o) [ A€ A, o). O

A function h € SFy;(A,R) defines an R-Cartier divisor Dy, on Tyz (A, Ly). We
denote its restriction to Sp by the same symbol Dy,.

Remark For h € SF\: (A, Z), the invertible sheaf Oy(Dy,) is associated with
the L[or)/ N M¢]-module £[0p () N M?]. Therefore, there is an isomorphism

f+Osn(Dn) ~ > L= >, Os (— Z;l miBi) C jxOs<B

mely, (oy)NME mely (oy)NME

for the open immersion j: S\ B — §.

Suppose that S is projective and Z = (), B; is non-empty and irreducible.
For h € SFy: (A, R) and for an R-divisor E of S, we define

Onet(E|z,h) :=={m € Op(oy) | (E+ EE”)|Z is nef},
Note that h is defined only on |[A| = oy.

2.14. Lemma
(1) The following conditions are equivalent to each other:
(a) The restriction (Dy + f*E)|;-15 is nef;
(b) Ix € Onet(E|z,h) for any mazimal cone X € A, where Iy € I\/IIhR 18
defined by h(z) = (Ix,z) for x € X;
(c) Onet(E|z,h) # 0 and, for any x € oy,

h(z) = inf{(m,z) | m € Onet(E|z, h)}.

(2) Assume that E + L} is nef for any m € o with (E + L}")|7 being nef.
Then Dy, + f*E is nef on Sa if the restriction (Dy, + f*E)|f-15 is nef.

ProoOF. (1) The proof is similar to [2.4}(2).
(@) = (b): The restriction of Dy, + f*E to f~'Z is nef if and only if its
restriction to Tye(x)(A/A, Ly|z) is nef for any A € A with ANIntey # 0. For

such a cone A, let us choose I € l\/IEQ such that h(z) = (Ix,z) for any € A
and define h*(y) := h(y) — (Ix,y) for y € oy. Then (E + L)|z is nef if X is a
maximal cone. If A; and Ay are maximal cones of A with dimA; N Ay =r—1, then
A1 NA2NInt oy # 0. By restricting Dy, +p*E to V(A1 NAg, £) over S, we infer that
(In,x) > h(z) for £ € Ay U Ag. Thus Iy € Oy(oy) for a maximal cone A by the
same argument as in the proof of [1.10-(5) = [1.10-(2)). Thus Ix € Onet(E|z, h).

(b) < (c) is shown by the same argument as in[2.4-(2).

(b) = (a): Let Wz be the intersection of the supports of effective R-Cartier
divisors Dy, + div(e(m)) for all m € Onet(E|z, h) in the toric bundle Ty (A, Ly|z)
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over Z. If Wy # 0, then Wy, D V(X, Ly|z) for a maximal cone; this contradicts
Ix € Onet(E|z,h). Hence Wz = 0 and hence (Dj, + f*E)| -1 is nef.

(2) By assumption, if m € Onet(E|z,h), then £ + LI is nef. Let W be
the intersection of the supports of effective R-Cartier divisors Dy, + div(e(m)) in
Tn: (A, Ly) for all m € Oner(E|z, h). Suppose that (Dy, + f*E)| -1z is nef. Then
W = () by the same argument above. Thus Dy, + f*E is nef. (I

2.15. Proposition Let S be a non-singular projective variety and let By, Bs,
..., B, be non-singular prime divisors such that B = 2;21 B; is simple normal
crossing, v < dim S, and Z = ﬂ:zl B; is non-empty and irreducible. Let E be an
R-divisor of S such that

DNef(E) = {(mi)le eR" ’ E - Zi:l miBi 18 nef} 7é @
Assume that Oner(E) C N'(S) is a rational polyhedral convex set and

Onet (B) = {(mi) € RSq | (B = Y miBy)|7 is nef } .

Suppose either that NBs(E) C Z or that E admits a Zariski-decomposition. Then
there exist a toric blowing-up f: Sa — S along B associated with a finite non-
singular subdivision A of the first quadrant cone oy C (N®)g for the free abelian
group N¥ of rank r related to B and a support function h € SFy:(A,R) such that
Dy, + f*FE is nef and is the positive part of the o-decomposition of f*E.

PROOF. For the construction of the toric blowing-up, we consider the free
abelian group N* with the basis (e1,es,...,e,) and the element £, = > e; ®
Os(—B;) € N* @ Pic(S). Let (01,0, ...,0,) be the basis of M® = (N¥)V dual to
(e1,ea,...,e.). By the identification (m;) < m =Y m;d;, we can regard Ones(E)
as a subset of ME{. We consider the following function on oy:

At (z) := min{(m, z) | m € Onet(E)}.
Then hf € SFCy: (0, R). Note that h' is non-negative on o. Let A be a non-
singular finite subdivision of o such that ht € SFn: (A, R). Then Ef := D+ + f*E
is nef by 2.14] since Onef(E) C Onet(E|z, hT).

The positive part P,(f*E) of the o-decomposition is written by Dy + f*E for
some h € SFy: (A, R), since A is non-singular. Here,

h(v) = multy, No(f*E) =or, (f*E) >0
for any v € Ver(A). Note that Dy, + f*E = P,(f*E) > ET, since ET is nef. In
particular, h(v) < hf(v) for any v € Ver(A) and hence h(x) < hf(z) for z € oy,

Let v € Ver(A) be a vertex contained in Int ;. Then the corresponding prime
divisor I';, C Sp is isomorphic to V(A/R>gv, Ly]z) over Z. The restriction of

Dy + f*E to T, is pseudo-effective. Then, by[2.4-(1), there is an [,, € I\/IE§ such that
(1) h(v) = {lv, z),
(2) (ly,x) > h(x) for any x € U,caca A
(3) E+ Eé“ is nef.
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Since I, € Onet(E), we have h(v) = (l,,v) > hf(v). Thus h(v) = hf(v).

Suppose that NBs(E) C Z. If a vertex v € Ver(A) is not contained in Int oy,
then f(I',) ¢ Z. Thus or, (f*E) = h(v) = 0. Therefore P,(f*E) = E' and it gives
the Zariski-decomposition.

Next suppose that there is a vertex v € Ver(A) such that h(v) < hf(v). Then
v ¢ Int oy. There is a vertex v’ € Ver(N, X) contained in Int oy such that C(v,v’) =
R>ov + R>gv’ is a two-dimensional cone contained in A. Here h(v') = hf(v'). The
blowing-up v: Y — S along the intersection I', N I',, corresponds to a finite
subdivision A’ of A in which the new vertex w = v + v’ € Ver(A’) corresponds to
the exceptional divisor I'y,. We have

RY(w) = hT(v) + AT (V') = or, (v* f*E) = multr, N,(v*f*E),
h(w) = h(v) + h(v") = multr, v* N, (f*E),
or, (V*Py(f*E)) = h(w) — h(w) = hi(v) = h(v) > 0.
Next, we consider the blowing-up of Y along I', N I", whose exceptional divisor
corresponds to w + v = 2v + v’. By continuing the process, we have a sequence
Yy = Y1 — - — Y =Y — S of blowups such that the exceptional divisor of

v Yy — Yj,_1 corresponds to wy = kv + v'. For the morphisms f;: ¥; - Y — S,
we have the following equalities:

Wt (wi) = kAY(v) + 21 (') = or,, (FLE),

Ty, _, (fr-1B) + h(v) = multr,, viNo(fi_1 E),
o1, Vi Po(fi1 B)) = hl(wy) — multr,, viNo(fi_,E)
= h(v) — h(v) + hi (wp_1) — or

Thus the process does not terminate. Hence, E admits no Zariski-decompositions
by [2.11l Therefore, if E admits a Zariski-decomposition, then h'(v) = h(v) for any
v € Ver(A) and hence P,(f*E) is equal to the nef R-divisor ET. O

(fi-1E) > 0.

We—1

83. Vector bundles over a curve
§3.a. Filtration of vector bundles.
3.1. Lemma Let X be a complex analytic variety and let
0—-& =& —E —0

be an exact sequence of vector bundles on X. Let w;: P, — X be the projective
bundle Px (&;) for i =1, 2, 3. For the tautological line bundle Og, (1), let F be the
vector bundle on Py determined by the commutative diagram

0 —— 7& —— 71 — 175 — 0

(v:6) l ! H

0 —— 0g(1) —— F — 7€ —— 0,
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and let q: P1o = Pp,(F) — Py be the natural projection. Then, there is a mor-
phism p: P1o — Py over X such that p is isomorphic to the blowing-up along
P; C P,. Moreover, the divisor E = p~1 Py is isomorphic to P, xy Ps over P, and
p*052(1) = q*O}—(l) ® OP12(7E)'

PROOF. The diagram (IV-6) induces a surjective homomorphism ¢*7{&y —»
O£(1) defining p above. Let Z be the defining ideal sheaf of P3 in P,. Then there
is a surjective homomorphism
(IV-7) m3€1 — LO¢, (1)
inducing &; ~ m2,(Z0¢,(1)). There is a commutative diagram

p*ﬂ';gl f— q*ﬂfgl — q*Ogl (1)

l |

p*(IO&fé(l)) - 0*052(1) —_— O}_(l)'
Thus p*(ZO¢,(1))/(tor) is isomorphic to the line bundle ¢*Og, (1). Hence p*Z/(tor)
is the defining ideal of the Cartier divisor E = Pp, (¢*€5) ~ Py xy P5 of P15. Here
Op,(—E) @ p*O¢,(1) ~ ¢*Og, (1) holds. Let p: Q@ — P» be the blowing-up along
Ps3. Then there is a morphism ¢: Pjs — @ such that p = poyw. There is a morphism
Q — Py over X by the pullback p* of (IV-7). From (IV-6), we infer that there is
a morphism @) — Pj> over P; which is the inverse of . O

Remark If rank&; =1, then P ~ X and Pjs ~ Ps.

Let X be a complex analytic variety and let
Ce=0=& CECéC---CE=E]

be a sequence of vector subbundles of £ on X such that Gr;(&) = &;/€;—1 is a
non-zero vector bundle for 1 < ¢ < [. The number [ is called the length of £, and
is denoted by I(&,).

Let us consider the following functor F' from the category of complex analytic
spaces over X into the category of sets: for a morphism f: Y — X let ¢;: f*E —
L; be surjective homomorphisms into line bundles £; of Y for 1 < ¢ <[ and let
u;: L; — L;11 be homomorphisms for 1 <4 < [ such that the diagrams

f*gi — f*5i+1

@il ltpﬂ-l

L; X, £i+1
are all commutative. Let F(Y/X) be the set of the collections (p;,u;)!_; above
modulo isomorphisms.

3.2. Lemma-Definition The functor F above is representable by a projective
smooth morphism over X. The representing morphism is denoted by

T=m:Px(€) =P(&)=P(& CE&C---C &) — X
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PRrROOF. We shall prove by induction on [. If [ = 1, then F is representable by
the projective bundle Px(£) = P(£;). For the projective bundle p;: P(&;) — X,
let K1 be the kernel of pi&; — Og, (1). Then K; is a subbundle of pié&; for any i.
Let &/ be the quotient vector bundle pi€&;/K;. Then we have a sequence of vector
bundles

Og(l)C & C&E C---CE.

By induction, the functor F' with respect to the filtration above but starting from
&} is represented by

Q =Ppe,)(E C - C &) —P(&).

Let ((p;: f*& — L;),u;) be an element of F(Y/X) for a morphism f: Y — X
from an analytic space. Then ¢; induces a morphism f1: Y — P(&;) over X and
¢; induces a surjective homomorphism f;&/ — L£;. Hence the element of F(Y/X)
defines a morphism Y — @ over X. Conversely, from a morphism h: Y — @,
we have a morphism f;: Y — @ — P(&), surjective homomorphisms f{&! — L;
into line bundles for 2 < ¢ < [, and compatible homomorphisms wu;: £; — L;11
for 2 < i <. We define £1 = f{O¢, (1), p1: f*&1 — L1 to be the pullback of
pi€1 — Og, (1), ¢; to be the composite f*&; — fi&€ — L; for 2 < i < [, and
uy: L1 — Lo to be the composite
L1 = f{0¢ (1) = f1& — L.

Then (¢;, u;) is an element of F(Y/X). In this way, we infer that () — X represents
F with respect to &,. O

For 1 < k <[, we define the following filtrations:
o<k =161 C--C&], Esp=[ErC---C&l

Let ((p;: 7*& — L;), u;) be the universal element of F'(P(£,)/X). Note that u; are
all injective. By considering (p;,u;) for ¢ < k or i > k, we have natural morphisms
P(&,) — P(Ea<i) and P(E,) — P(Ee>k). We have a Cartesian commutative diagram

P(&) —— P(Eaxk)

(IV-8) J J
P(Ee<k) —— P(&)

for 1 < k < [I. Here vertical arrows are smooth projective morphisms by the
proof of [3.2. We infer that the horizontal arrows are bimeromorphic by [3.1] The
bimeromorphic morphism P(£; C &) — P(&;) is an isomorphism if and only if &
is a line bundle. Thus P(£,) — P(Ee>k) is an isomorphism for some k > 1 if and
only if I = 2 and &; is a line bundle.

3.3. Lemma
(1) The pullback of P(Ex+1/Ek) C P(Ekt+1) by the morphism P(Ee>pt1) —
P(Ek+1) is isomorphic to

P(5k+1/5k c---C 5[/5k)
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(2) Let Ey, be the pullback of P(Ex+1/Ek) C P(Eky1) by the composite P(Eq) —
P(Eeskt1) — P(Epg1) for 1 <k <1—1. Then Ey is a divisor isomorphic
to

P(gl c---C 5].3) X x P(5k+1/5k c---C 51/5k)
Here, Ej is not exceptional for the bimeromorphic morphism P(E,)
— P(E¢>k+1) if and only if k =rank & = 1.

(3) For indices 1 < a(l) < a(2) < --- < a(e) < 1 —1, the intersection

ﬂjzl Eq;) is isomorphic to the fiber product

e+1
[ PEag-1p41/Eai-1) €+ C Eay/Eai-1)
j=1
over X, where a(0) =0 and ale +1) =1.
(4) Let H; be the pullback of the tautological divisor Hg, by the composite

PRrROOF. Let f: Y — X be an analytic space over X.

(1) Let F' be the similar functor to F' with respect to the filtration €¢>41. Let
(pi,u;) be an element of F’(Y/X). Then it induces a morphism into P(Ex41/Ek) C
P(Ek+1) if and only if the the composite f*E; — f*Ex+1 — L1 is zero. Thus we
have the expected isomorphism.

(2) Let (s, u;) be an element of F(Y/X). Then it induces a morphism into
P(Ext1/Ek) C P(Eky1) if and only if ug: L — Liy1 is zero. Thus Fy is expressed
as above. This is a divisor since dim Ej, = dimP(&;) + dimP(£/&;) — dim X =
dimP(€)—1. This is not exceptional if and only if P(€e<j) — X is an isomorphism.
It is equivalent to: k = rank &y = 1.

(3) Let (p;,u;) be an element of F(Y/X). It induces a morphism into the
intersections of E,(;) if and only if u,;) = 0 for any j. Thus the isomorphism
exists.

(4) The pullback of P(Ex11/Ek) C P(Ek41) by the morphism P(E C Ext1) —
P(Ek+1) is a divisor whose pullback is Ey. The linear equivalence follows from

3.1 O
3.4. Lemma The projective morphism P(E,) — X is also characterized by the
following way inductively:
(2) P(& C &) is the blown-up of P(E;) along P(E2/&1).
(3) P(&1 C & C &3) is the blown-up of P(Ey C &3) along P(Ex/E1 C E3/&7).

Iy P(& C -+ C &) is the blown-up of P(Ey C -+ C &) along P(Ey/E1 C
- CE/E).

Proor. By the Cartesian diagrams (IV-8)) and by [3.1, it is enough to show
that the pullback of P(£/&1) C P(€) by P(Ee>2) — P(£) is isomorphic to

P(gz/gl c---C 5/51)
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This is done in 3.3+(1). O

3.5. Lemma Let L1, Lo, ..., L1411 be invertible sheaf on X and set & =
@k L; for 1 <k <1+ 1. Then, for the filtration Eg = [E9 C & C -+ C E11], the
variety Px (E,) is isomorphic to the toric bundle Tn(X, L) over X for some fan X
of a free abelian group N of rank | with a basis (e1,ea,...,¢e;) and for the element

l
L= e (Li®L)eNePic(X).

PROOF. We may assume | > 1. If [ = 1, then P(&,) is a P'-bundle asso-
ciated with & = L1 & L5. Thus it is enough to take the standard fan X =
{R>pe1,R>o(—e€1),{0}}. For I > 2, we shall construct the fan 3 of the abelian
group N satisfying the required condition by induction on I. We consider a free
abelian group N;y; of rank [ + 1 containing N such that N; ;1 = N & Ze;41 for

a new element e;17 € Nyp1. For 1 < i < [, we define N; := Zl<j<iZej and
Vig1 = _El<j<i e; € N;. Let m;: N;y1 — N; be the homomorphism given by
mi(ej) = e for j <iand m;(e;41) = —v;41. Let us consider the first quadrant cone

Ol = 22:1 R>oe; and the following cones of Ng for 1 <i <1:

o; = Z Rzoej + R20U1+1, 0'2 = Z Rzoej + Rzo(—’vl+1).

1<G<1, i 1<G<1, i

Let X° be the fan of N consisting of all the faces of the cones o; for 1 <7 <[+ 1.
Then we have an isomorphism Ty(X, £) ~ Px(&). Similarly, let £* be the fan
of N consisting of all the faces of o; and o for 1 < ¢ < [. Then >F is a finite
subdivision of £° and the associated morphism TN(Eﬂ, L) — TN(Eb, L) is just the
blowing up of Px (&) along the section Py (£/&_1). Thus Tn(ZF, L) ~ P(&_1 C
&). Here, the P'-bundle structure Ty(Z*) — Ty, ,(E7_,) ~ P(&§_,) is induced
from m;_1: N — N;_;. By induction, there exists a fan X; 1 of N;_; such that
Tn, , (3i—1, L) ~ Px(Ee<i—1). The fiber product of P(£_1 C &) and P(Ee<i—1)
over P(&_1) is isomorphic to P(&,). Thus the set

S ={onmt|o€ S reX_)
is a fan giving an isomorphism Tn(X;, £) ~ Px (&,). O

83.b. Projective bundles over a curve. This subsection is devoted to prov-
ing the following;:

3.6. Theorem FEvery pseudo-effective R-divisor of a projective bundle Po (&)
defined over a non-singular projective curve C associated with a vector bundle &
admits a Zariski-decomposition.

We may assume r = rank & > 1. Let p: P(€) = Po(€) — C be the structure
morphism of the projective bundle, H¢ a tautological divisor associated with &,
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and Og(1) the tautological line bundle Op(Hg). Let F be a fiber of p. Then
NY(P(E)) = Rey (F) + Rey (He). The Harder-Narasimhan filtration:

0=&cé&E c---cgE=€

is characterized by the following two conditions:

(1) &;/&;—1 is a non-zero semi-stable vector bundle for any 1 < <

(2) w(&i/Ei—1) > pu(€iyr1/Ei) for 1 < i <1—1, where u(€) := deg(€)/ rank(E).
The number [ is called the length of the Harder-Narasimhan filtration of £ and is
denoted by I(£). We define pipmax(E) = u(&1) and pnin(€) == u(€/E-1). We have
only to study the Zariski-decomposition problem for the R-divisor D; := Hg — tF
for t € R. We begin with the following:

3.7. Lemma Let F', F2, ..., F™ be vector bundles on a non-singular projec-
tive curve C' and let Z be the fiber product

Po(FY) xo Po(F?) x¢ -+ xo Po(F™).

For the projections p;: Z — Po(FY), y = (y1,%2,---,yn) € R, t € R, and a fiber
F ofp: Z — C, let D(y,t) be the R-divisor

Z; yip; Hyi —tF.

(1) Suppose that

H°(C,Sym™ (F") ® Sym®(F?) ® - - - @ Sym® (F")) # 0
for some a1, ..., an € Z>o. Then

> ittmax(F) 2 0.

(2) D(y,t) is pseudo-effective if and only if y € R%, and
S it F) > 1.

(3) D(y,t) is nef if and only if y € RY, and
> bittmin(F) = 1.

PROOF. (1) Let F! be the Harder—Narasimhan filtration of 7¢. By considering
successive quotients of symmetric tensors, we can find non-negative integers b;, for
1 <i<nandfor 0 <k <I(F") such that

W(FY i
Zk:l bk — ai

and the vector bundle

B-Q,(®,) sl ez

admits a non-zero global section. Here B is semi-stable (cf. [82]) and hence

wB =" S (e )
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is non-negative. Thus

Zj:l a'i/f"max(]:i) > /J/(B) > 0.

(2) The R-linear equivalence relation

Dy.t)~e Y pilHr = (V) + (3 ibtman(F) = 1) F

gives one implication. In order to show the other one, we have only to consider
the case where y € Z" and t € Z, since the set of the first Chern classes of big
Q-divisors is dense in the pseudo-effective cone. Then we have an isomorphism

p.0z(D(y, 1) = @) Sym"(F') @ Oc(~tP),

where P = p(F) € C. Hence, if |D(y,t)| # 0, then y € ZZ; and 3| Yifimax(F*) >
t by (1). Thus we are done.
(3) The R-linear equivalence relation

D(!/J) ~R Zi:l yz(I—I]-'1 - /J/min(]: )F) + (Zizl yzumm(]:) - t)F
gives one implication. If D(y,t) is nef, then the restriction to the subspace
P(fl/fll(fl)ﬂ) X xo P(F"/ l?fn)ﬂ)

is also nef. Hence y € R%; and Y Y ftmin (F ) >t by (2). Thus we are done. O

By applying[3.7]to the case n = 1, £ = F*, we have:

3.8. Corollary The R-divisor D is pseudo-effective if and only if t < pimax(E)-
It is nef if and only if t < pimin(E).

3.9. Lemma Hg — (&) F admits a Zariski-decomposition.

PrROOF. We may assume that £ is not semi-stable. Thus | = () > 2. Let
p: Y =P(& C &) — P(E) be the blowing-up along P(£/&1). Then the exceptional
divisor E is isomorphic to P(&1) x¢ P(E/&1) by B.1. Let m: Y — P(&;) be the
induced projective bundle structure. The restrictions of p and 7 to E are the first
and the second projections, respectively. We shall calculate the v-decomposition
of p*(Hg — p(&1)F). Since n*Hg, ~ p*Hg — E, the conormal bundle Og(—FE)
is isomorphic to 7*Og, (1) ® p*Og/g,(—1). Therefore, by 3.7, the restriction of
p*(He — p(&1)F) — aF to E is pseudo-effective if and only if 0 < o < 1 and
w(&) < au(&r) + (1 —a)u(€/E1). Since u(€1) > w(€2/&1), these inequalities hold
if and only if & = 1. Therefore P, (p*(Hg — p(E1)F)) is equal to the nef R-divisor
7*(Hg, — pu(&1)F). Thus we have a Zariski-decomposition. O

3.10. Proposition If I(£) = 2, then every pseudo-effective R-divisor of P(E)
admits a Zariski-decomposition.
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PROOF. Dy is pseudo-effective but not nef if and only if u(£/&1) <t < u(&r).
Let p: Y — P(€) and E be the same as in[3.9. By the same argument, the R-divisor
(p*(Dy) —aE)|g is pseudo-effective if and only if ¢t < au(&1)+(1—a)u(E/E1). Since
w(€/&1) <t < p(&r), the minimum o satisfying the inequality above attains the
equality: ¢ = a1 p(€1) + (1 — ap)p(E/E1). Thus P, (p*Dy) is nef by
Pu(p* D)~ arm (He, — p(€0)F) + (1 — an)p"(Hs — plE/ENF). D
We assume [ > 3. Let S =P(& C -+ C &) — C be the projective smooth
morphism defined in[3.2 for the Harder—Narasimhan filtration &,. Let p: S — P(&)
be the induced birational morphism and let Ey for 1 < k <l—1and H; for1 <i <]
be the divisors defined in[3.3] Note that E = 22;11 Ej is a simple normal crossing
divisor. By[3.9] we may assume pu(€/&-1) <t < p(&1), equivalently Dy = Hg —tF
is not nef but big. Let us define p; = p(&;/&€—1) for 1 <i <1 =1(€) and

t —
ag(t) :== max {O, A} .
K1 — Hk+1

for 1 <k <1-—1. Let a; be the vector (ay(t),as(t), - ,a;—1(t)). Note that
a(t) =0 for t < ppi1 and ag(t) > g (t) for k < k'. We define an R-divisor by

. -1
Dy(y) = Di(y1,y2,--- 1) = p"He — tF — Zi:l yiEi
for y = (y1,y2,...,5-1) € R
3.11. Lemma (1) Ny(p*Dy) = N,(p*Dy) = 22;11 a(t)Ey. Moreover,
NBs(p*D;) ={s € S| 0s(P,(p*D;)) >0} C E.
(2) Di(y) is nef if and only if its restriction to Z = ﬂ;;ll Ey is nef. This is
also equivalent to that y is contained in the polytope
-1
O(ptest) := {y ERLMO0S << Sy 1, (ke — o)y >t — m}-
k=1

Proor. (1) We denote the total transform of Hg by H and that of F' by the
same symbol F on a projective variety birational to P(£). Then H = H; on S.
We introduce the following non-negative numbers:

(1), ji=1;
Bi(t) == q a;(t) —aj_1(t), 2<j<I-1;
1—al(t), ]:l

Then we can write

Dile) ~a 3 0i(0)H; —tF
(1v-9) e 3 GO~ mF)+ Y B0, ~ g F)

+ (o ()1 + (1 — ap(t)) g1 — ) F
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for 1 <k <1[l—1. Here H; — 1 F is the pullback of a pseudo-effective R-divisor by
S — P(&;) for i < k. Since Ej dominates P(;) for i < k, we have o, (H;—pu1 F) =0
for ¢ < k. There is a linear equivalence relation

Hj — ppy1 F~Ej 1+ -+ Epp1 + (Hpp1 — e F)

for j > k+1, where Hy41 — pg41 F is nef. Hence o, (H; — g1 F) = 0 for j > k+1.
Therefore, D;(c;) is pseudo-effective and og, (Di(a)) = 0 by (IV-9). Moreover,
we infer NBs(p*D;) C E by for k = 1. Thus D;(c) is movable.

For an index 1 <k <[ —1, we can write

(IV-10)  Dily) ~x (uelHi = inF) = i)
(- )= e F) + Y = u)E)
+ (yepn + (1= y)py1 — 1) F.

By 3.7, H; — ui F is pseudo-effective for ¢ > k. Let p: Ex — P(E) xc P(E/E) be
the natural birational morphism. Suppose that D;(y)|g, is pseudo-effective. Then
its push-forward by pg, is also pseudo-effective. Suppose first that E;11/E is not
a line bundle. Then Ej|g, is pg-exceptional for any j > k + 1. Hence y; < 1
and t < yppr + (1 — yg)pre1 by and Suppose next that xy1/E is a
line bundle. Then E;|g, is pg-exceptional for any j > k + 1. Here Hy41|p, is the
pullback of Hg, /g, of P(Exy1/Ex) =~ C, which is numerically equivalent to py1F.
Thus the inequalities yx+1 < 1 and ygp1 + (1 — yx)pgs+1 > ¢ follow from (IV-10),
the R-linear equivalence relation

Eypi~rH—E_1— - —Epyo— Hpqq,

and from[3.7]

Hence, if D:(y)|g, is pseudo-effective, then ay(t) < yi. Since Di(a)|g, are all
pseudo-effective, we infer that vg, (D) = ay(t) for any k by Therefore
No(p*Dy) = Ny (p* Dy) = 3 a(t) i

(2) We can write

-1
Di(y) ~r y1(H1 — i F) + ijg(yj —yj—1)(Hj = p; F) + (1 = 1) (Hy — i F)
-1
+ (ylul + Zj:Z(yj = Y-y + (L =y — t)F-

If y € O(ue,t), then Dy(y) is nef, since H; — u; F is nef for 1 <4 < [. Conversely
suppose that D;(y) is nef. The intersection Z = ﬂiﬂ;ll E}, is isomorphic to

]P)(El) Xc ]P)(gg/gl) Xco - Xo P(gl/glfl).
Since D¢(y)|z is nef, we have y € O(u.,t) by 3.7 O
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Let N be a free abelian group of rank [ — 1 with a basis (ei, eg, e 6571) and
let (5?, 55, . ,55_1) be the dual basis of M¥ = (N%)V. We consider
-1 ) -1
Ly = Zk:l 65 ® Os(—B;) € N"® Pic(S) and oy = Zk:l Rzoeg € NFR

in order to have a toric blowing up of S along E. We note that the polytope (e, t)
is identified with the same subset

Ovet(H — tF) = {m € M} | H — tF + L]" is nef}

as in[2.15 for the R-divisor H — tF by y < Zyléf Here, the subset satisfies the
condition of [2.15 by [3.11-(2). Let h' € SFCy: (o, R) be the support function
defined by
At (z) = min{(m,z) | m € Onet(H — tF)}

and let A be a finite subdivision of oy with A € SFy: (o, R). Then, for the toric
blowing up f: Sa — S along E associated with A, we have a nef R-Cartier divisor
Pt :=D,i + H—tF on Sa. If H — tF admits a Zariski-decomposition, then PT is
the positive part of a Zariski-decomposition by [2.15]

3.12. Lemma Suppose that the Harder—Narasimhan filtration of € is split:

&= @k_:l En/Er1.

Then H —tF admits a Zariski-decomposition. In particular, Pt is the positive part
of a Zariski-decomposition of H — tF.

PROOF. Let us consider
Z =P(&) xc P(&3/&1) xo - xe P(&/E-1) — C
and the pullback H; of the tautological divisor Hyg, /&, to Z for any i. Then there
is a birational morphism
M =Pz(Oz(H1) @ - Oz(H))) — Pc(E),
since &, is split. We know Nef(Z) = PE(Z) and Nef(Z) € N'(Z) is a rational

polyhedral cone. Therefore, every pseudo-effective R-divisor on the toric bundle M
over Z admits a Zariski-decomposition by O

The following proof is more explicit than above and it does not use[2.15!

ANOTHER PROOF OF The projective bundle M in the proof above is
written as a toric bundle Tn(3, £) over Z, where N is a free abelian group of rank
I — 1 with a basis (e1,€e2,...,e;-1), L=>.e; @ Oz(H; — H;), and X is a complete
fan of N defined as in §2.c. Here Ver(X) = {ey, ea,...,e1-1,¢€} for e, = — Zi;i €;.
We have the support function h € SFN(X,Z) defined by h(z) = min({(d;,z) | 1 <
i <1—1}U{0}), where (d1,...,0;—1) is the dual basis to (e1,ez,...,¢e;). Then
Dy =T¢, ~X"Hg — g*H, for the structure morphism ¢: M — Z. We define

Hi=04(H,) @ Oz(Ha) & - ® Oy(H;)
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for 1 <4 <. Then we have a filtration He = [H1 C Ha C - -- C H;] of subbundles
of H;. We can show that there is a birational morphism Pz(H,) — S = Pc(&,)
which is an isomorphism over an open neighborhood of £ C S and that the total
transform of F; C S in P (H,) is just the same E; with respect to the filtration
H.. By 3.5, we can write Pz(H,) as a toric bundle Tn(X;, £) over Z, where
Ver(X)) = {e1,ea,..., e, w1, wa, ..., w_1}, for w; := Z;Zl e;. Note that w; = e;
and w;—y = —e;. Then E; =Ty, = V(R>ow;, £) C Tn(X;,£). The pullback
of H—tF in Po(&) to Pz (H,) is written by Dy, + ¢*(H; — tF) for the structure
morphism q: Pz (He) — Z. We can apply the method of to constructing the
Zariski-decomposition of Dy, + ¢*(H; — tF), since PE(Z) = Nef(Z) is a polyhedral
cone. Then, by

Onet(H; — tF,h) = {m ey | Zl: m;H; + (1 - Zl: mi)ﬁl —tF is nef}

1-1 -1 -1
_ -1 ) s _ .
= {m € RZO ’ g M <1, g oy Tk + (1 E i 7717,)#1 > t} .
Therefore, the dual cone A of R>o(Onet(H; — tF, h) x {—1}) is written by

-1

-1
8= 3717 Roalens0) + Rsaler,—1) + Roo (31— mers 1)

We set h¥(z) = max{r € R| (z,r) € A}. We shall construct a finite subdivision
>* of 3 as follows: The maximal cones of X are

7= Zlﬁjsu;éj Rzoes,
-1
[ . L .
£= Doy B20% B <Zi—1(“l ’“)el) ’

for 1 <i <1—1. Then ht € SFyN(Z¥ R) and hence Dy,: 4+ ¢*(H; —tF) on Ty(ZF, £)
is the positive part of the Zariski-decomposition.

On the other hand, let us consider the toric blowup X — P(H,) along E =
> E; associated with a finite subdivision A of oy. Then, by X is isomorphic
to the toric bundle Tn(X', £) over Z for a fan X' defined as follows: Let us define
he SFN(E],Z) ® Nh by

h(v):{ef, ifv:y)i for 1<:i<Il—-1,
0, otherwise.

Then ' = {Cu(A,0) | A € A, o € i}, where Ch(X,0) =0 Nh™'(A).
We can identify Onef(H — tF') with Oner(H; — tF, h) by

-1
Yy m=y0 + Zi:2(yi — Yi—1)0;.
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The dual Ngp — NFR of the linear transformation coincides with h over the cone
oy, = 22:1 R>ow;. Thus

hf(h(z)) = h¥(x)
for z € o,. Note that h¥ is linear on o € $°. The set {o, No} |1 <i<1—1}
of cones generates a finite subdivision of o,. We take A to be the corresponding
subdivision of 'y by h. Then h' € SFy: (A, R). Let X' be the finite subdivision of X,
corresponding to A. Then ¥ is a finite subdivision of poLE Here, Pt = Djs + H—tF

on X is equal to Dy: + ¢*(H; — tF). Thus P’ is the positive part of the Zariski-
decomposition. (|

Now we are ready to prove the main result (3.6 of §3.b.

PROOF OF [3.6. There is a connected analytic space © and a sequence of vector
subbundles

0=&c&Ecéa---Ccé
on C x © satisfying the following conditions: let (£;)g be the restriction of £ to
C x {6}.
(1) g’i/g‘i_l ~ pi(&;/€i—1) for any 1 < i <1 for the first projection ps;
(2) There is a point 0 € © such that the sequence (&;)o is split, i.e,

(Ei)o =~ EBk:1 Ek/Ek—1;
(3) There is a point § € © such that (&;)g = &; for any 1.
Let S — C x © be the projective smooth morphism defined by

gzPCx@(glC'”Cgl)-

Then we hav~e siNmilar gffective divisors Ek for1<k<I[-1. VVe~ also have t}ie toric
blowing-up f: Sa — S associated with the subdivision A and Pt = Dy,: 4+ f*(H —
tF') that is relatively nef over ©. Let fv be the prime divisor of S ‘A associated with
v € Ver(A). Here the restrictions of PT and T, to the fiber over § € © coincide with
P? and T, respectively. The restriction of P' to the fiber over 0 is the positive
part of a Zariski-decomposition by [3.12. In particular, P! is nef and big and the
restriction of PT to I, is not big for any v € Ver(A), by TI1[3.7. Again by [TI1/3.7]
we infer that P is the positive part of the Zariski-decomposition of H — tF. O

84. Normalized tautological divisors

84.a. Projectively flatness and semi-stability. We shall prove the follow-
ing theorem which may be well-known. It is derived from the study of stable vector
bundles and Einstein—Hermitian metrics by Narasimhan and Seshadri [107], Mehta
and Ramanathan [78], [79], Donaldson [12], Uhlenbeck and Yau [142], and Bando
and Siu [3].
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4.1. Theorem Let £ be a reflexive sheaf of rank r on a non-singular com-
plex projective variety X of dimension d. Then the following three conditions are
equivalent:

(1) & is locally free and the normalized tautological divisor Ag is nef;
(2) & is A-semi-stable and

(CQ (8) —

for an ample divisor A;

(3) & is locally free and there is a filtration of vector subbundles
0=&cé&E Cc---CcqE=€E

such that €;/E;—1 are projectively flat and the averaged first Chern classes
w(&;i/Ei—1) are numerically equivalent to u(€) for any i.

r—1,

. 01(5)> CAE =0

Here, a vector bundle & is called projectively flat if it admits a projectively flat
Hermitian metric h, namely, the curvature tensor Oy is written by
G)h = w- idg

for a 2-form w, as an End(E)-valued C*°-2-form. We need some preparations for
the proof.

Let U(r) be the unitary group of degree r and let PU(r) be the quotient group
U(r)/ U(1) by the center U(1) ~ S'. Let O% x U(r) be the direct product of the
sheaf O% of germs of holomorphic unit functions and the constant sheaf U(r). Let
GL(r,Ox) be the sheaf of germs of holomorphic r X r regular matrices and let
0% U(r) be the image of the natural homomorphism

Ox x U(r) — GL(r, Ox).
Then we have an exact sequence:
1—-8'— 0% xU@r) = 0% U(r) — 1,
in which the homomorphism from S' is given by s+ (571, s).
4.2. Lemma The image of the homomorphism
H'(X, 0% U(r)) — H (X, GL(r, Ox))
is regarded as the set of all the isomorphism classes of vector bundles £ of X of

rank r admitting projectively flat Hermitian metrics.

PRrOOF. Let (€,h) be a projectively flat Hermitian vector bundle of rank r.
Then there are an open covering {Ux} of X and positive-valued C°°-functions ay
on Uy such that a;lh is a flat metric on Uy. Thus we may assume that there exist
holomorphic sections

er,ed,...,er e H(Uy, ),
such that, for any 1 <i,5 <7,

h(ef‘, e;‘) = axd; j,



4. NORMALIZED TAUTOLOGICAL DIVISORS 155

where 0; ; denotes Kronecker’s §. Let T} ,, be the transition matrix of £ with respect
to the frame {(Uy,e})}:

(e1,e5,..,er)-Th, = (el e ... el).

Then T}, are holomorphic  x r regular matrices and satisfy
T\ T, = apay ' -id.

Locally on Uy N U,, there is a holomorphic function u such that a,ay' = |ul?.
Thus u~ Ty, is unitary. Hence Ty, € H(Uy N U,, 0% U(r)). Therefore & €
H'(X, GL(r, Ox)) comes from H' (X, 0% U(r)).

Next suppose that & is contained in the image of H' (X, 0% U(r)). Then, for a
suitable frame {(Uy, e})}, the corresponding transition matrix T} ,, is contained in
H°(UxNU,, 0% U(r)). Thus

tT)\,uTMu = uxp - id,

for a positive-valued C'*°-function vy, on Uy NU,. By replacing the open covering
{U,} by a finer one, we may assume that there is a positive-valued C'*°-function ay
on Uy such that vy, = auagl. Let hy be the Hermitian metric of €|y, defined by

h,\(ef‘, e;‘) = axd; ;.

Then hy = h, on Uy NU,. Hence we have a projectively flat metric on £. (|
4.3. Corollary A wvector bundle £ of rank r is projectively flat if and only

if the associated P"~1-bundle 7: Px(E) — X is induced from a projective unitary
representation m (X) — PU(r).

PROOF. There is a commutative diagram of exact sequences:

1 O% o5 U(r) —— PUr) —— 1
1 O;( GL(T,OX) e PGL(T’,O)() — 1.

Here note that O% is the center of both O% U(r) and GL(r,Ox). Let & be an
element of H'(X,GL(r, Ox)) whose image in H'(X,PGL(r,Ox)) is contained in
the image of H'(X,PU(r)). Then we can check & comes from H' (X, 0% U(r)) by
a diagram chasing. O

4.4. Lemma Let Y C X be a non-singular ample divisor of a non-singular
projective variety X of dimension d > 3. Let &y be a vector bundle of Y and let
L be a line bundle of X such that Ey is projectively flat and detEy ~ L @ Oy.
Then there is a projectively flat vector bundle € of X satisfying detE ~ L and
ERO0y ~&.
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PRrROOF. We shall consider the following two homomorphisms:
det: O% U(r) - O%, and p: Ox U(r) — PU(r).
Let p, C C* be the group of r-th roots of unity. Then we have an exact sequence

1=, — 0% U(r) LU on x PUG) — 1,

which induces an exact sequence
H' (X, p,) — H' (X, 0% U(r)) — H'(X,0%) x H'(X,PU(r)) — H*(X, ,)).
By the weak Lefschetz theorem, we have isomorphisms
HY(X,p,) ~ H'(Y,p,), H'(X,PU(r) ~ H'(Y,PU(r))
and injective homomorphisms
H'(X,0%) — H'(Y,0}), HA(X,p,) — HA(Y, p,).
Thus we can find £ by a diagram chasing. O

4.5. Lemma Let £ be an A-stable reflexive sheaf with Ao(E)- A4=2 =0 for an
ample divisor A. Then & is a projectively flat vector bundle.

This is proved in [3| Corollary 3] in the K&hler situation. But here, we give an-
other proof by using the argument of [79, 5.1] which is valid only in the projective
situation.

PRrROOF. If £ is locally free, then it follows from works of Donaldson [12],
Mehta-Ramanathan [78], [79] as well as Uhlenbeck—Yau [142]. Thus we have
only to prove that & is locally free in the case d > 3. Let S be the complete in-
tersection of smooth divisors Ay, Ag, ..., Aj_o contained in the linear system |mA|
for a sufficiently large m € N. Then £|g = £ ® Og is a locally free sheaf and it is
A-stable by [79]. Hence E|s is a projectively flat vector bundle. By [4.4, there is a
projectively flat vector bundle £ such that

det& ~det&, &' ®0g~E®Og.
By the argument of [79] 5.1], we have an isomorphism & ~ £’. O

4.6. Proposition Let £ be an A-semi-stable reflexive sheaf with Ao(E)- A2 =
0 for an ample divisor A. Then & is locally free.

PrROOF. We shall prove by induction on rank&. We may assume & is not
A-stable by [4.5. Then there is an exact sequence

0-F—-E—-G—0,

where F and G are non-zero torsion-free sheaves satisfying pa(F) = pa(€) =
14(G). Thus F and the double-dual G = GV of G are also A-semi-stable sheaves.
In particular, Bogomolov’s inequalities

Ag(F)-A¥2 >0, AyG")-A¥2>0
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hold. Note that Ay(G) — Ay(G") is represented by an effective algebraic cycle of
codimension two supported in Supp G*/G. By the formula (II-9), we infer that

Ag(G) = As(G1), Ag(F)- A2 = Ay (G") - A2 =0,

and pu(F) = u(G) = p(€). By the induction, F and G are locally free. Suppose
that G # G*. Then & defines a non-zero element of H(X, Ext' (G, F)). On the
other hand, we have Ext?(G"/G, F) = 0, since codim SuppG"/G > 3. It implies
Ext' (G, F) = 0, a contradiction. Hence G = G" and €& is also locally free. O

Proor or[4.1. (1) = (2): Let C C X be a smooth projective curve. Then
the normalized tautological divisor of the restriction £|¢ is also nef. Thus &|¢ is
semi-stable. Hence & is A-semi-stable and Bogomolov’s inequality Ay(&)-A972 >0
holds for any ample divisor A. On the other hand,

0 < AT 77 A2 = _AH(E) - AT2,

Thus Ay(£) = 0 in N*(X).

(2) = (3): If € is A-stable, then £ is a projectively flat vector bundle by
Otherwise, there is an exact sequence: 0 — F — & — G — 0 such that F and G are
non-zero torsion-free sheaf and pa(€) = pa(F) = pa(G). By the same argument
as in the proof of [4.6, we infer that F and G are also A-semi-stable vector bundles
with Ag(F) - A472 = Ay(G) - A%72 = 0. Thus we have a filtration satisfying the
condition (3).

(3) = (1): If & is projectively flat, then f*& is semi-stable for any morphism
f: C — X from a non-singular projective curve. Thus if £ has a filtration satisfying
the condition (3), then f*& is also semi-stable and Ag is nef. O

Concerning with the invariant v for nef R-divisors defined in Chapter [V,
we have the following:

4.7. Corollary If Ag is nef, then v(Ag) =1 — 1.

84.b. The case of vector bundles of rank two. We next consider a weaker
condition: Ag is pseudo-effective. We have the following result when rank & = 2.

4.8. Theorem Let £ be an A-semi-stable vector bundle of rank two on a non-
singular complex projective variety X of dimension d > 2 for an ample divisor A.
Suppose that the normalized tautological divisor Ag is pseudo-effective. Then Ag is
nef except for the following three cases:

(A) There exist divisors My, Mo such that
M- AV =My - AV and £~ Ox (M) ® Ox(Ms);

(B) There exist an unramified double-covering 7: Y — X and a divisor M of
Y such that

&~ 1.0y (M);
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(C) There is an exact sequence
0— Ox(L1) > & —TI0x(Ly) — 0,

where T is an ideal sheaf with codim Supp Ox /I = 2 and the divisor Lq
s numerically equivalent to Lo.

Remark Here A = A¢ is pseudo-effective in these exceptional cases. Further,
A is nef if and only if My & Ms in the case (A), and M & o*M for the non-trivial
involution o: ¥ — Y over X in the case (B); A is not nef in the case (C).

4.9. Corollary If £ is an A-stable vector bundle of rank two for an ample
divisor A such that the normalized tautological divisor Ag is pseudo-effective. Then
Ag is nef except for the case (B) in[4.8]

The idea of our proof of [4.8 is to consider the o-decomposition of A. We shall
prove [4.8] after discussing exceptional cases.

Let X be a non-singular projective variety of dimension d and let A be an
ample divisor.

4.10. Lemma Let M, My be divisors of X with M- A% = My-A%1. Then
the vector bundle £ = Ox(My) & Ox(Ms) is A-semi-stable and |2Ag| # 0. The
Q-divisor Ag is nef if and only if My & Ms.

Proor. If £ C € is an invertible subsheaf, then it is a subsheaf of Ox (M)
or Ox(Msy). Thus £ - A%~ < (1/2)c1(€) - A%~L. The symmetric tensor product
Sym? £ contains Ox (M + My) =~ det £ as a direct summand. Hence |2Ag| # 0. If
M & Ms, then Ag is nef. Conversely if Ag is nef, then M7 — My & 0 by (4.1, since

Ay (E) = —=(M; — My)* = 0. O

1
4
4.11. Lemma Let 7: Y — X be an unramified double-covering from a non-
singular variety and let M be a divisor of Y. Then, for the vector bundle & =
T+Oy (M), there is an isomorphism
T =~ Oy (M) ® Oy (c*M),

where o: Y — Y is the non-trivial involution over X. In particular, £ is semi-
stable with respect to any ample divisor of X and A¢ is pseudo-effective. Further,
Ag is nef if and only if M & o*M.

PRrROOF. Let us consider the natural homomorphism ¢: 7*7,.0y — Oy. Then

¢ + o*¢ gives an isomorphism
71,0y ~ Oy @ Oy.
Similarly from the natural homomorphism ¢: 7*7,.0y (M) — Oy (M), we have the
homomorphism
p+o*o: T E=T"1.0y (M) — Oy (M) & Oy (c*M).

Since Oy (M) is an invertible sheaf, we infer that the homomorphism also is an
isomorphism by considering it locally over X. O



4. NORMALIZED TAUTOLOGICAL DIVISORS 159

4.12. Lemma Let Z be a closed subspace locally of complete intersection of X
with codim Z = 2 and let L be an invertible sheaf of X . If there exists a locally free
sheaf £ with an exract sequence

(IV-11) 0—-0x =E—1zL—0,
for the defining ideal sheaf T4 of Z, then
(IV—12) 5%252(027,6_1) ~ Oz.

Conversely, if the isomorphism (IV-12) exists, then there is a naturally defined
cohomology class §(Z, L) € H*(X, L") such that §(Z, L) = 0 if and only if there is
a locally free sheaf € with the exact sequence (IV-11).

PROOF. Suppose that the locally free sheaf £ exists. Then (IV-11) induces a
long exact sequence

0 — Hom(ZzL,0x) — Hom(E,Ox) — Hom(Ox,Ox) — Ext*(TzL,0x) — 0.
Therefore
Oy ~ Ext (I7L,0x) ~ Ext*(Og, L7).
Next suppose the isomorphism (IV-12) exists. The spectral sequence
EY? = HP(X,ExtY(T7L,Ox)) = EPT1 = ExtPT9(Z,L, Ox)
induces an exact sequence
0 — HYX,L™Y) = Ext (Z4L,0x) — HY(Z,05) — H*(X,L™1).
Let 6 = 6(Z, L) be the image of 1 € H(Z,0z) under the right homomorphism.
Then § = 0 if and only if there is an extension of sheaves
0—-0x =€ —IzL—0

such that Ext!(£,0x) = 0. It remains to show that £ is locally free. We may
replace X by an open neighborhood of an arbitrary point. Thus we may assume
that there is an exact sequence

0—>OX—>(9§'§2—>IZ£—>O,

since Z is locally a complete intersection. Pulling back the sequence by £ — Z7L,
we have an exact sequence

O—>(’)X—>§—>5—>O,

which is locally split. By the snake lemma, we infer that £ is locally free. Hence £
is locally free. |

Example Let X be a non-singular projective surface and let = be a point.
Suppose that the geometric genus p,(X) = dim H*(X,Ox) = 0. Then there is a
locally free sheaf £ with an exact sequence

0—-0x —-&—-m; —0

for the maximal ideal m, at x.
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Let 7: Y — X be a generically finite proper surjective morphism from a variety
Y with only Gorenstein singularities and let v: V' — Y be the normalization. By
duality, there are trace maps v.wy — wy and T,wy — wyx. The first trace map
induces an effective divisor C' of V', which is called the conductor of Y, such that
Ky =v*Ky —C . If C =0, then v is an isomorphism. The pullback of differential
forms induces a homomorphism v*7*wyx — wy, which gives rise to a splitting of
the composite of trace maps above. Thus there exist an effective divisor Ry, x of
V' and an effective Cartier divisor Ry,x of Y such that

Ky =v'T"Kx + Ry)x, Ky =7"Kx+ Ry/x, Ry/x =7"Ry/;x —C.

The divisors Ry,x and Ry,x are called the ramification divisors of ¥ — X and
V — X, respectively.

4.13. Lemma If Ry, x =0, then 7 is a finite étale morphism.

PROOF. Since the ramification divisor Ry, x is effective, the conductor C' is
zero. Hence Y is normal. Let Y — W — X be the Stein factorization of T,
where we write u: Y — W and p: W — X. Then the dualizing sheaf wyy is the
double-dual of p.wy. Since Ry,x = 0, we have isomorphisms wy =~ p*wx and
wy ~ pwrww. Thus W — X is étale, since p is a finite morphism. In particular, W
is non-singular. Consequently, the birational morphism Y — W is isomorphic. O

PROOF OF [4.8. Bogomolov’s inequality Ay(£)-A9~2 > 0 attains the equality if
and only if A = Ag is nef by[4.1. We have only to show the equality Ao (€)-A972 =0
except for the three exceptional cases. Let A = P + N be the o-decomposition of
the pseudo-effective divisor A (cf. Chapter III, §1). Then there exist an R-divisor
D of X and a real number b such that

N&AW+7*D and P®(1-bA—7"D.

We have P-F >0 and N-F > 0 for a fiber F of the Pl-bundle 7: P = Px(£) — X.
Thus 0 < b < 1. Let Ay, As,...,Ag_1 be general members of the linear system
|mA| for a sufficiently large m € N. Then £|¢ is semi-stable for the non-singular
curve C' = A; N Ay N--- N Ag_y by [78]. In particular, if (A + 7*E)| -1y is
pseudo-effective for an R-divisor E of X, then E - A%~1 > 0. Note that N l=1(c)
and P|.-1(c) are pseudo-effective. Thus D - A1 > 0 in the case b > 0, and
D - A%1 <0 in the case b < 1.

First suppose that b < 1. Since P is movable, P2 is regarded as a pseudo-
effective R-cycle of codimension two. Therefore

m.(P?) = —2(1 = b)D
is a pseudo-effective R-divisor. Thus —D is pseudo-effective. If b > 0 in addition,
then D & 0 since D - A%~! = 0. Hence N & bA and P & (1 — b)A. This is a

contradiction. Therefore b = 0. Thus —N & —7*D is pseudo-effective. Hence
N =0 and A is movable. Since A2 = —7*Ay(&), we have

—Ao(E) = o (H - A?) = 7. ((H + mm* A) - A?)
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for any integer m. If m > 0 is large, then H + mn*A is ample and thus (H +
mm*A) - A? is pseudo-effective. Hence —Ay(€) is pseudo-effective. By Bogomolov’s
inequality, we have Ay(€) - A2 = 0.

Next suppose that b = 1. Since P & —n*D is movable, so is —D. On the other
hand, b > 0 implies D - A%=1 > 0. Hence D & 0 and P & 0. Let

N = Z O'iri
be the prime decomposition. For each i, there are non-negative integers b; and
Q-divisors D; such that
Fi ~Q blA + ’/T*Di.
Since A—o;7* D; is pseudo-effective and since &|¢ is semi-stable, we have D;-A9~1 <
0. Hence b; > 0. Moreover, D; - A%~ = 0, since D ~g Y. 0;D; & 0. We consider
the following three cases:
(I) b; > 2 for some i;

(IT) N has at least two irreducible components and b; = 1 for any I';;

(ITII) N has only one irreducible component I'y and b; = 1.
Let Y be an irreducible component I'y. Then 7: Y — X is a generically finite
surjective morphism of degree b,. By adjunction, we have

KY = 7T*KX —|— ((bl — 2)/\ + 7T*D1)|y.
Therefore Ry/x ~ ((b1 —2)A + 7*D1)|y. Since Ry, x is effective,
W*(((bl - 2)A + 7T*D1)|y) = W*(((bl - 2)A + 7T*D1) . (blA + W*Dl)) = 2(b1 - 1)D1

is an effective divisor of X.
We consider the case (I). We may assume that by > 2. Then D; ~gq 0, since
Dy - A%"1 = 0. Hence Y ~g b1 A. By the definition of o-decomposition, we have

1
g; = O'F,i(A) = b—O’pq(Y)
1
Thus N has only one irreducible component ¥ and N = (1/b1)Y. Furthermore,
(b1 —2)Aly ~q Ry x > 0. Let us choose a positive integer m such that H +mm* A
is ample. Then

T (H +ma* A) - (by — 2)A) - Y) = by (by — 2)ma (H - A2) = —by (by — 2)As(E)

is also a pseudo-effective cycle. Hence by Bogomolov’s inequality, if by > 3, then
A5(€) = 0 and hence A is nef by [4.1. This is a contradiction to: P & 0. Therefore,
by = 2 and thus Ry,x = 0. Hence 7: Y — X is an étale double-covering by [4.13|
From the exact sequence

0—>Op(H-Y)— Op(H) —» Oy(H) — 0,

we infer that & ~ 7w, Oy (H). Thus & is of type (B).

Next we consider the case (IT). Let T'y, T'y be two irreducible components of N.
Then m,(T'y - T'3) = Dy + Da, since by = by = 1. Thus D; + Dy is effective with
(D1 + D3)-A%! = 0. Therefore, D1+ Dy ~ 0 and 'y + 'y ~ 2A. Hence N has only
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two components and o1 = g9 = 1/2. We infer that every component of 'y N T’y is
contracted by 7 from the vanishing 7.(T'y - I'y) = 0. Therefore

7T*(H . Fl . Fg) = —Ag(g) + D1 . D2 = —AQ(S) - D%

is an effective cycle. On the other hand,

Rpyyx ~ (=A+7"Dy)|r,.
Thus we have also an effective cycle

m(H - Rr,/x) = m(H - (~A+7*Dy) - (A +7*Dy)) = D3 + As(E).
Hence —Ay(€) = D? in NQ(X) and 'y NTy = (. In particular, T'; and Ty are
mutually disjoint sections of the P!-bundle. Therefore
& ~mOr,(H) ®mOr,(H).

Thus this is of type (A).

Finally, we treat the case (III). For the unique component ¥ = I'y, there is a
divisor L1 such that Y ~ H — 7n*L;. Since N = 01Y & A, we have 07 = 1 and
det £ & 2L;. Note that

R = Ry/X ~ (—H + 7T*(—L1 + deté’))\y
By applying 7, to the exact sequence
0— OP(H - Y) - O]p(H) - Oy(H) — O,
we have another exact sequence
0— Ox(L1) = & —TIO0x(Ly) — 0,
where Lo is a divisor linearly equivalent to det £E—L; and Z = 7,0y (—R). Therefore
€ is of type (C). This completes the proof. O

Concerning with the invariant x, for pseudo-effective R-divisors defined in
Chapter [V, we have the following;:

4.14. Corollary If € is an A-semi-stable vector bundle of rank two, then
Ko (Ag) < 1.
ProOOF. We may assume that A = Ag¢ is pseudo-effective. By [4.7, we may

assume further that A is not nef. By the proof of (4.8, the positive part P of the
o-decomposition of A is numerically trivial and hence A & N. Thus £,(A) =0. O

4.15. Theorem The tautological divisor of the tangent bundle of a K3 surface
is mot pseudo-effective.

PROOF. For the tangent bundle £ = Tx of a K3 surface X, det(£) = Ox and
c2(€) = 24. By [150], £ is A-stable for any ample divisor A. Since X is simply
connected, Ag = Hg is not pseudo-effective by [4.9. a

Remark Kobayashi proved x(A) = —oo in [66, Theorem C]. On the other
hand, the tangent bundle is generically semi-positive in the sense of Miyaoka [81].
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Problem For a K3 surface X, are there infinitely many prime divisors I' C
Px (Tx) such that H|r are not pseudo-effective?

Actually, for some K3 surface X, there is a nef divisor L of Px (Tx) with H-L? <0
(cf. [112]). For example, if X is a smooth quadric surface, then L = H + 27* A is
free for a hyperplane section A. In this case, H - L? = —8 < 0. A general member
' € |L] is a non-singular surface birational to X, with K2 = —40. Here H|r is not
pseudo-effective. In particular, the pullback of T'x in I' is not A’-semi-stable for an
ample divisor A’ of I.

Problem Let £ be a vector bundle of rank two on a non-singular projective
surface X. Suppose that for any generically finite morphism f:Y — X from
any non-singular projective surface Y and for any ample divisor A of Y, f*& is
A-semi-stable. Then is Ag nef?

If Ag is not nef, then it is not pseudo-effective by and is a negative example to
111

4.16. Proposition If £ is a vector bundle of rank two on a non-singular
projective surface whose normalized tautological divisor is not pseudo-effective, then
E is A-semi-stable for some ample divisor A.

PROOF. Assume the contrary. Then there is an exact sequence
0—-L—-E—-IzM—0
such that Z is the ideal sheaf of a subspace Z of dimZ < 0 and (L —M)-A >0
for any ample divisor A. Therefore £ — M is pseudo-effective. By the formula,
A = Hy — %ﬂ'*(ﬁ FM) = He — 'L + %77*(/.3 — M),
we infer that Ag is pseudo-effective. O

4.17. Corollary Let £ be a vector bundle of rank two of a non-singular pro-
jective surface X. If D is a pseudo-effective R-divisor of X with 3D? > Ay (&),
then Ae + 7* D is pseudo-effective.

ProoOF. We may assume that A = Ag is not pseudo-effective. By [4.16, £ is
A-semi-stable for an ample divisor A. Thus Bogomolov’s inequality A5(E) > 0
holds. Let D be a Q-divisor with 3D? > Ay (€). It is enough to show that A+ 7*D
is big. Let m be a positive integer such that mA and mD are Z-divisors. Then D
is big by the Hodge index theorem and

T Op(m(A + 7* D)) = m,0p(mA) @ Ox(mD),

in which 7,Op(mA) is an A-semi-stable vector bundle with trivial first Chern class.
Therefore,

H*(X, 7,0p(m(A + 7°D)))¥ ~ HY(X, 7,.0p(mA)Y @ Ox(Kx —mD)) =0
for m > 0. Note that
HP (P, Op(m(A + 7*D))) ~ H?(X, 7. Op(m(A + 7* D)))
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for any p > 0. Since (A + 7*D)? = —A5(€) + 3D? > 0, we have
lim m=3x(P, Op(m(A + 7*D))) > 0.

m—00

Therefore A + 7* D is big. O

Problem Let £ be a vector bundle of rank two on a non-singular projective
variety X. Suppose that the normalized tautological divisor A = A¢ is not pseudo-
effective. Describe the set

V(X,&) :={D € N*(X) | A+ 7*D is pseudo-effective}.

For example, if X = P? and € = T, then V (X, &) = {al | a > 1/2}, where ¢ C P?
is a line.



