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1. A survey of moduli and period mappings over $\mathbb{C}$ .

ABSTRACT: Review of moduli, Shimura varieties. Hodge structures, period map-
pings, period domains, Gauss-Manin connections.

1.1. Moduli spaces.

1.1.1. The term “moduli” was coined by Riemann to describe the continuous
essential parameters of smooth complex compact curves of a given genus $g$ .
The use of this term has been extended to many classification problems in
analytic or algebraic geometry: typically, a classification problem consists
of a discrete part (the dimension, and other numerical invariants...) and a
continuous part (the moduli).

One can distinguish between local and global moduli spaces:
(i) local moduli are the parameters of the most general small (or infin-

itesimal) deformation of a given analytic manifold or algebraic va-
riety. Let for instance $X$ be a compact analytic manifold. Then a
famous theorem of Kuranishi asserts that there is a local deformation
$\pi$ : $\underline{X}\rightarrow S$ with base point $s(X=\underline{X}_{s})$ such that any other defor-
mation comes, locally around $s$ , from $\pi$ by base change; moreover the
tangent space of $S$ at $s$ is isomorphic to $H^{1}(X, (\Omega_{X}^{1})^{\vee})$ . For curves,
the dimension of this space is $3g-3$ if $g\geq 2$ (the number of Riemann’s
complex moduli).

(ii) Global moduli spaces, when they exist, provide the solution of the
continuous part of moduli problems. For instance, Douady has con-
structed the global moduli space for closed analytic subspaces of a
given compact complex manifold. Although global moduli spaces
were already studied in the nineteenth century (in the case of curves),
the concept was first put on firm foundations by Grothendieck in
terms of representable functors.

The existence of a global moduli space is often obstructed by the pres-
ence of automorphisms of the objects under classification. One possibility is
to rule out these automorphisms by imposing some extra structure (rigidifi-
cation). When all automorphism groups are finite, another possibility is to
look for moduli orbifolds (or moduli stacks) rather than moduli spaces.

1.1.2. The most classical moduli problems concern complex elliptic curves.
These are classified by their j-invariant. However the affine j-line $A^{1}$ is not
a fine moduli space: indeed, in any family of elliptic curves parametrized by
the whole affine line, all the fibers are isomorphic.

One can rigidify the problem by introducing a (($levelN$ structure” on
elliptic curves $E,$ $i.e$ . fixing an identification $Ker[N]_{A}\cong(\mathbb{Z}/N\mathbb{Z})^{2}$ such that
the Weil pairing is given by $(\xi, \eta)\mapsto\exp(2\pi i(\xi\wedge\eta))$ (here $[N]_{A}$ denotes the
multiplication by $N$ on the elliptic curve $A$ ).

For $N\geq 3$ , this rules out automorphisms of $A$ , and the corresponding
moduli functor is representable. For $N=3$ , the moduli space is $A^{1}\backslash \{\mu^{3}=$
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1}; the universal elliptic curve with level 3 structure is the Dixon elliptic
curve

$x^{3}+y^{3}+3\mu xy=1$ (in affine coordinates $x,$ $y$ )

with $Ker[3]_{A}=the$ set of flexes.
For $N=2$ , the automorphism $[-1]_{A}$ remains; there is an elliptic curve

with level 2 structure over $\mathbb{P}^{1}\backslash \{0,1, \infty\}$ , namely the Legendre elliptic curve
$y^{2}=x(x-1)(x-\lambda)$ (in affine coordinates $x,$ $y$ )

with $Ker[2]_{A}=\{(0,0), (1,0), (\lambda, 0), (\infty, \infty)\}$ , but it is not universal: another
one is given by $\lambda y^{2}=x(x-1)(x-\lambda)$ .

1.1.3. These moduli problems admit two natural generalizations: moduli
problems for curves of higher genus, and moduli problems for polarized
abelian varieties (polarizations ensure that the automorphism groups are
finite).

There is a moduli orbifold for smooth compact complex curves of genus
$g>0$ , denoted by $\mathcal{M}_{g}$ , which can be described as follows. The set of
complex structures on compact connected oriented surface $S_{g}$ of genus $g$ is
in a natural way a contractible complex manifold of dimension $3g-3$ (resp.
the Poincar\’e upper half plane $\mathfrak{h}$ if $g=1$ ), the Teichm\"uller space $\mathcal{T}_{g}$ . The
mapping class group $\Gamma_{g},$ $i.e$ . the component of connected components of the
group of orientation-preserving self-homeomorphisms of $S_{g}$ , acts on right on
$\mathcal{T}_{g}$ , and $\mathcal{M}_{g}$ is the quotient $\mathcal{T}_{g}/\Gamma_{g}$ . For $g=1$ , one recovers $\mathcal{M}_{1}=\mathfrak{h}/SL(2, \mathbb{Z})$ .

There is a moduli orbifold for principally polarized abelian varieties of
dimension $g>0$ , denoted by $\mathcal{A}_{g}$ , which can be described as follows. For any
abelian variety $A$ , one has an exact sequence

$0\rightarrow L\rightarrow LieA\rightarrow A\rightarrow 0$

and a principal polarization corresponds to a positive definite hermitian
form $H$ on Lie $A$ whose imaginary part induces a perfect alternate form on
$L$ . Choosing a $\mathbb{C}$-basis $\omega_{1},$ $\ldots$ , $\omega_{g}$ of $\Omega^{1}(A)\cong$ $($ Lie $A)^{\vee}$ and a symplectic $\mathbb{Z}-$

basis $\gamma_{1}^{+},$
$\gamma_{1}^{-},$

$\ldots,$
$\gamma_{g}^{+},$

$\gamma_{g}^{-}$ of $L$ gives rise to a period matrices $\Omega^{+}=(\int_{\gamma_{j}^{+}}\omega_{i})$ ,

$\Omega^{-}=(\int_{\gamma_{J}^{-}}\omega_{i})$ , and $\tau=(\Omega^{-})^{-1}\Omega^{+}$ does not depend on the $\omega_{i}’ s$ . By the
properties of $H,$ $\tau$ belongs to the Siegel upper half space $\mathfrak{h}_{g}$ of symmetric
matrices with positive definite imaginary part (Riemann relations); it is
well-defined up to right multiplication by a matrix in $Sp(2g, \mathbb{Z})$ (which is
the same as the standard left action on $\mathfrak{h}_{g}$ of the transposed matrix). This
construction identifies $\mathcal{A}_{g}$ with $\mathfrak{h}_{g}/Sp(2g, \mathbb{Z})$ .

The construction which associates to a curve itsjacobian variety with the
principal polarization given by the theta divisor gives rise to an immersion
$\mathcal{M}_{g}c_{-r\mathcal{A}_{g}}$ (at the stack level) the Torelli map.

1.1.4. Shimura varieties of P.E.L. type. Following G. Shimura, one also
studies refined moduli problems for “decorated” (principally polarized) abelian
varieties, by prescribing in addition that the endomorphism algebra contains
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a given simple $\mathbb{Q}$-algebra, and imposing a level $N$ structure. This gives rise
to moduli orbifolds (resp. moduli spaces if $N\geq 3$ ) of “PEL type”

More precisely, let $B$ be a simple finite-dimensional $\mathbb{Q}$-algebra, with a
positive $involution*$ . Let $V$ be a B-module of finite type, endowed with an
alternate $\mathbb{Q}$-bilinear form such that $\langle bv, w\rangle=\langle v, b^{*}w\rangle$ . One denotes by $G$

the algebraic $\mathbb{Q}$-group of B-linear symplectic similitudes of $V$ .
Let $\mathcal{B}$ be a maximal order in $B$ stable under $*$ , and let $L$ be a lattice in

$V$ , stable under $\mathcal{B}$ and autodual for $\langle, \rangle$ (this will represent the structure
of $H^{1}(A, \mathbb{Z})$ for the abelian varieties $A$ under consideration). We choose
in addition a lagrangian subspace $F_{0}^{1}\subset V_{\mathbb{C}}$ stable under $B$ (which will be
$\Omega^{1}(A_{0})\cong$ $($ Lie $A_{0})^{\vee}$ for one particular abelian variety $A_{0}$ under considera-
tion).

There is a moduli orbifold (resp. moduli space if $N\geq 3$ ) for principally
$*-polarized^{(1)}$ abelian varieties $A$ , together with a given action $\iota$ : $\mathcal{B}\rightarrow EndA$

such that $\det(\iota(b)|\Omega^{1}(A))=\det(b|F_{0}^{1})$ for all $b\in \mathcal{B}$ (Shimura type condi-
tion), and a given $\mathcal{B}/N\mathcal{B}$-linear symplectic similitude $ A[N]=Ker[N]_{A}\rightarrow$

$Hom(L, \mathbb{Z}/N\mathbb{Z})$ .
It amounts to the same to consider abelian varieties $A$ up to isogeny, with

B-action (with Shimura type condition), together with a $\mathbb{Q}$-homogeneous
$principal*$-polarization and a class of B-linear symplectic similitudes $H^{1}(A,\hat{\mathbb{Z}}\otimes$

$\mathbb{Q})\rightarrow\hat{\mathbb{Z}}\otimes V$ modulo the group $\{g\in G(\hat{\mathbb{Z}}\otimes \mathbb{Q})|(g-1)(\hat{\mathbb{Z}}\otimes L)\subset\hat{\mathbb{Z}}\otimes L\}$ .
These moduli orbifolds are called Shimura orbifolds of “PEL type”

They are algebraic, and defined over the number field $E=\mathbb{Q}[tr(b|F_{0}^{1})]$ (the
so-called reflex field). Their connected components are defined over finite
abelian extensions of $E$ , cf. [De171] for all of this. Further comments and
examples will be supplied in 1.2.5, 7.1.1, 7.4.2.

1.2. Period mappings.

1.2.1. In the case of curves, the construction of period mappings belongs
to the nineteenth century. The idea is to study the deformations of a curve
by looking at the variation of its periods. Let $f$ : $\underline{X}\rightarrow S$ be an algebraic
family of projective smooth (connected) curves of genus $g$ over $\mathbb{C}$ . Let $\tilde{S}$

be the universal covering of $S$ . Then the homology groups $H_{1}$ $($ -, $\mathbb{Z})$ of
the fibers form a constant local system on $\overline{S}$ . Let us choose a symplectic
basis $\gamma_{1}^{+},$

$\gamma_{1}^{-},$
$\ldots$ , $\gamma_{g}^{+},$

$\gamma_{g}^{-}$ . Choosing, locally, an auxiliary $\mathbb{C}$-basis $\omega_{1},$
$\ldots,$ $\omega_{g}$

of $f_{*}\Omega_{\underline{X}/S}^{1}$ gives rise as above to a period matrices $\Omega^{+}=(\int_{\gamma_{J}^{+}}\omega_{i}),$
$\Omega^{-}=$

$(\int_{\gamma_{J}^{-}}\omega_{i})$ , and $\mathcal{P}=(\Omega^{-})^{-1}\Omega^{+}$ does not depend on the $\omega_{i}’ s$ and is well-defined

on $\tilde{S}$ .
We get a commutative square

(1) $aprincipal*$-polarization is a symmetric $\mathcal{B}$-linear isomorphism between the abelian
variety and its dual, endowed with the transposed action of $\mathcal{B}$ twisted $by*$
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$\overline{S}\rightarrow^{\mathcal{P}}$

$\mathfrak{h}_{g}$

$\downarrow$ $\downarrow$

$S\rightarrow^{\mathcal{P}}\mathfrak{h}_{g}/Sp(2g, \mathbb{Z})$

Applying this construction to the universal case $S=\mathcal{M}_{g}(\mathcal{T}_{g}=\overline{\mathcal{M}}_{g}$ in the
orbifold sense), the bottom line of this commutative square is nothing but
an analytic interpretation of the Torelli map.

1.2.2. An important feature of the period mapping $\mathcal{P}$ is that it is a quotient
of solutions of a fuchsian differential system, the Picard-Fuchs differential
system (of Gauss-Manin connection). This comes out as follows. The vector
bundle $f_{*}\Omega_{\underline{X}/S}^{1}$ is a subbundle (of rank 9) of a vector bundle $\mathcal{H}$ (of rank $2g$ )
whose fibers are the De Rham cohomology spaces $H_{DR}^{1}(\underline{X}_{s})$ . This bundle $\mathcal{H}$

carries an integrable connection, the Gauss-Manin connection
$\nabla_{GM}$ : $\mathcal{H}\rightarrow\Omega_{S}^{1}\otimes \mathcal{H}$ .

The local system of germs of horizontal analytic sections is $R^{1}f_{*}\mathbb{C}$ (with
fibers $H^{1}(\underline{X}_{s}, \mathbb{C}))$ . Completing, locally, the basis $\omega_{1},$

$\ldots,$ $\omega_{g}$ of sections of
$f_{*}\Omega_{\underline{X}/S}^{1}$ into a basis $\omega_{1},$

$\ldots,$ $\omega_{g},$ $\eta_{1},$
$\ldots,$ $\eta_{g}$ of sections $\mathcal{H}$ allows to write the

connection in form of a differential system, and a full solution matrix is given
by the “full $2g\times 2g$-period matrix” $\left(\begin{array}{ll}\Omega^{+} & \Omega^{-}\\N^{+} & N^{-}\end{array}\right)$ , while $\mathcal{P}=(\Omega^{-})^{-1}\Omega^{+}$ (we

have set $N^{+}=(\int_{\gamma_{j}}+\eta_{i}),$ $N^{-}=(\int_{\gamma_{j}^{-}}\eta_{i}))$ .
In the case of the Legendre elliptic curve over $\mathbb{P}^{1}\backslash \{0,1, \infty\}$ (cf. I.3), one

finds that $\mathcal{P}$ is given by the quotient $\tau$ of two solutions of the hypergeometric
differential equation with parameters $(\frac{1}{2}, \frac{1}{2},1)$ .

1.2.3. The theory of period mappings has been generalized to any projective
smooth morphism $f$ : $\underline{X}\rightarrow S$ by P. Griffiths [Gri71]. We assume that $S$

and the fibers of $f$ are connected for simplicity. The idea is the following:
by abstracting the structure of the periods of the fibers of $f$ , one arrives at
the notion of $polarized\sim$ Hodge structure; one then construct a map from the
universal covering $S$ to a classifying space $\mathcal{D}$ of polarized Hodge structures.

For a fixed $n$ , the real cohomology spaces $V_{s}^{\mathbb{R}}$ $:=H^{n}(\underline{X}_{s}, \mathbb{R}))$ form a local
system $V^{\mathbb{R}}$ on $S$ . We denote by $V^{\mathbb{C}}$ its complexification. The vector bundle
$\mathcal{O}s\otimes V^{\mathbb{C}}$ is the analytification of an algebraic vector bundle $\mathcal{H}$ on $S$ , and
$V^{\mathbb{C}}$ is the local system of germs of analytic solutions of an algebraic fuchsian
integrable connection $\nabla_{GM}$ on $\mathcal{H}$ , the Gauss-Manin connection.

On the other hand, the spaces $V_{s}^{\mathbb{R}}$ carry a natural algebraic represen-
tation of $\mathbb{C}^{\times}$ (Hodge structure), which amounts to a decomposition $V_{s}^{\mathbb{C}}=$

$\oplus_{p+q=n,p\geq 0}V^{p,q},$ $\overline{V^{p,q}}=V^{q,p}$ . When $s$ varies, the filtrations

$F_{s}^{p}$

$:=\bigoplus_{p^{\prime}+q=n,p^{\prime}\geq p}V^{p^{\prime},q}$
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are the fibers of a decreasing filtration $F_{s}^{p}$ of $\mathcal{H}$ by vector subbundles (the
Hodge filtration). The Gauss-Manin connection fails to preserve the Hodge
filtration by just one notch: $\nabla cLI(F^{p})\subset\Omega_{S}^{1}\otimes F^{p-1}$ .

The last piece of data is the polarization: a bilinear form $Q$ on $V_{s}^{\mathbb{R}}$ ,
$Q(v, v^{\prime})=(-1)^{n}Q(v^{\prime}, v)$ , such that $(-i)^{n}Q(v, \overline{v})$ is hermitian on $V_{s}^{\mathbb{C}}$ , definite
(of sign $(-1)^{p}$ ) on each $V^{p,q}=F_{s}^{p}\cap\overline{F}_{s}^{q}$ , and such that $F_{s}^{p}$ is the orthogonal
of $F_{s}^{n-p-1}$ in $V_{s}^{\mathbb{C}}$ .

Let $G_{\mathbb{R}}$ denote the real group of similitudes of $Q$ . The space of isotropic
flags of type $0\subset\ldots\subset F_{s}^{p}\subset F_{s}^{p}$

‘

$1\subset\ldots\subset V_{s}^{\mathbb{C}}$ is a homogeneous space
$\mathcal{D}^{\vee}=P\backslash G_{\mathbb{C}}$

for a suitable parabolic subgroup $P$ .
The flags satisfying the above positivity condition (on each $F_{s}^{p}\cap\overline{F}_{s}^{q}$ ) are

classified by an analytic open submanifold, the period domain,
$\mathcal{D}\subset \mathcal{D}^{\vee};$ $\mathcal{D}\cong K\backslash G_{\mathbb{R}}^{ad}(\mathbb{R})^{0}$

for a suitable compact subgroup $K$ ( $\mathcal{D}^{\vee}$ is called the compact dual of $\mathcal{D}$ ).
Over $\tilde{S}$ , the local system $V^{\mathbb{C}}$ becomes constant, and the construction

which attaches to any $s\in\tilde{S}$ the classifying point of the corresponding flag
$0\subset\ldots\subset F_{s}^{p}\subset F_{s}^{p-1}\subset\ldots\subset V_{s}^{\mathbb{C}}$ gives rise to a holomorphic mapping, the
period mapping

$\tilde{S}\rightarrow \mathcal{D}\mathcal{P}$ .
Via Pl\"ucker coordinates, $\mathcal{P}$ is again given by quotients of solutions of the
Gauss-Manin connection $\nabla_{GI\backslash I}$ . The projective monodromy group of $\nabla_{GM}$

is a subgroup $\Gamma\subset G_{\mathbb{R}}^{ad}$ (well-defined up to conjugation), and we get a com-
mutative square

$\tilde{S}\rightarrow^{\mathcal{P}}$
$\mathcal{D}\subset \mathcal{D}^{\vee}$

$\downarrow$ $\downarrow$

$ S\rightarrow^{\mathcal{P}}\mathcal{D}/\Gamma$ .

1.2.4. In the simple case of a family of elliptic curves and $n=1,$ $G_{\mathbb{R}}=$

$GL_{2,\mathbb{R}}$ . the flag space is just $\mathcal{D}^{\vee}=\mathbb{P}_{\mathbb{C}}^{1},$ $K=PSO(2)$ (the isotropy group of
$i\in \mathbb{P}_{\mathbb{C}}^{1}$ in $PSL_{2}(\mathbb{R})=G_{\mathbb{R}}^{ad}(\mathbb{R})^{0})$ , and $\mathcal{D}\cong K\backslash G_{\mathbb{R}}^{ad}(\mathbb{R})^{0}$ is the Poincar\’e upper
half plane $\mathfrak{h}$ .

More generally, for a polarized abelian scheme, $G_{\mathbb{R}}$ is the group of sym-
plectic similitudes, and $\mathcal{D}^{\vee}$ is the grassmannian of lagrangian subspaces of
$\mathbb{C}^{2g}$ , and $\mathcal{D}$ is the Siegel upper half space.

1.2.5. Shimum var’ieties and period mappings. When one deals with refined
moduli problems for abelian schemes with PEL decoration as in 1.1.4, one
should work with the group $G_{\mathbb{R}}$ of B-linear symplectic similitudes of $V_{\mathbb{R}}$

(notation as in 1.1.4). In that case, the corresponding period domain $\mathcal{D}$ is
a symmetric domain.
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More precisely, the datum of our B-stable lagrangian subspace $ F_{0}^{1}\subset$

$V_{\mathbb{C}}$ (attached to our particular $A_{0}$ with $H^{1}(A_{0},$ $\mathbb{C})=V_{\mathbb{C}}$ ) amounts to the
datum of an algebraic $\mathbb{R}$-homomorphism $h_{0}$ : $\mathbb{C}^{\times}\rightarrow G_{\mathbb{R}}\subset GL(V_{\mathbb{R}})$ such
that $h_{0}$ acts by the characters $z$ and 7 on $V_{\mathbb{C}}(F^{1}$ is the subspace where
$h_{0}$ acts through $z$ ), and such that the symmetric form \langle $v,$ $h(i)w$ } is positive
definite on $V_{\mathbb{R}}$ . For any abelian variety $A$ with PEL structure of the correct
type, together with a fixed isomorphism $H^{1}(A, \mathbb{C})\cong V_{\mathbb{C}}$ , the corresponding
subspace $F^{1}H^{1}(A, \mathbb{C})=\Omega^{1}(A)\subset V_{\mathbb{C}}$ is an eigenspace for some conjugate of
$h_{0}$ . The set of conjugates of $h_{0}$ under $G(\mathbb{R})$ is a finite union of copies of a
symmetric domain $\mathcal{D}$ .

For any component $S$ of the Shimum orbifold, we thus get a commutative
square

$\tilde{S}\rightarrow^{\mathcal{P}}$
$\mathcal{D}\subset \mathcal{D}^{\vee}$

$\mathcal{Q}\downarrow$ $\downarrow \mathcal{Q}$

$ S\rightarrow^{\mathcal{P}}\mathcal{D}/\Gamma$

where the horizontal maps are isomorphisms, $\mathcal{Q}$ denotes the quotient maps,
and $\Gamma$ is a congruence subgroup of level $N$ in the semi-simple group $G^{ad}$ (a
conjugate of the standard one).

The complex manifold $\tilde{S}$ admits the following modular description. Let
$U$ be the oriented real Lie group $Hom(L, (\mathbb{R}/\mathbb{Z})^{\times})$ (with $\mathcal{B}$-action and po-
larization), and let $\hat{U}$ be the associated infinitesimal Lie group. The auto-
morphism group $J$ of the decorated $\hat{U}$ coincides with $G(\mathbb{R})^{0}$ . Then $\tilde{S}$ is a
moduli space for marked decorated abelian varieties, where the marking is
an isomorphism $\rho$ : $\hat{A}\rightarrow\hat{U}$ of associated infinitesimal decorated oriented
real Lie groups (note that, by taking duals of Lie algebras, $\rho$ amounts to an
B-linear symplectic isomorphism $H^{1}(A, \mathbb{R})\cong V^{\mathbb{R}})$ . Note that the standard
right action of $J$ on $\tilde{S}$ is obtained by functoriality.
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2. Preliminaries on $p$-divisible groups.

ABSTRACT: Definitions and basic theorems about p-divisible groups, quasi-
isogenies, liftings and deformations.

2.1. p-divisible groups and quasi-isogenies.

2.1.1. We begin with four definitions. Let $S$ be a scheme. Let $\Lambda$ and $\Lambda^{\prime}$ be
commutative group schemes over $S$ .

A homomorphism $f$ : $\Lambda\rightarrow\Lambda^{\prime}$ is called an isogeny if it is an (f.p. $p.f.$ )
epimorphism with finite locally free kernel.

Let $p$ be a prime number. $\Lambda$ is a p-divisible group (or Barsotti-Tate
group) if $\Lambda=\lim_{\rightarrow}Ker[p^{n}]$ and the multiplication $[\rho]$ by $p$ on $\Lambda$ is an isogeny.

$n$

If so, $[p^{n}]=[\rho]^{n}$ is an isogeny for every $n\geq 0$ , and if $S$ is connected,
the rank of $Ker[\rho^{n}]$ is then of the form $p^{hn}$ , where $h$ is an integer called the
height of $\Lambda$ .

From the fact that $[p]$ is an isogeny, it follows that for p-divisible groups,
$Hom_{S}(\Lambda, \Lambda^{\prime})$ is a torsion-free $\mathbb{Z}_{p}$-module.

A quasi-isogeny of p-divisible groups $\Lambda,$
$\Lambda^{\prime}$ is a global section $\rho$ of the

Zariski sheaf $\underline{Hom}_{S}(\Lambda, \Lambda^{\prime})\otimes_{\mathbb{Z}}\mathbb{Q}$ such that there exists locally an integer $n$

for which $ p^{n}\rho$ is an isogeny. By abuse, one writes $\rho$ : $\Lambda\rightarrow\Lambda^{\prime}$ as for homo-
morphisms. We denote by $qisog_{S}(\Lambda, \Lambda^{\prime})$ the $\mathbb{Q}_{p}$-space of quasi-isogenies.

The objects of the category of p-divisible groups on $S$ up to isogeny
are the p-divisible groups over $S$ ; morphisms between $\Lambda$ and $\Lambda^{\prime}$ are global
sections of $\underline{Hom}_{S}(\Lambda, \Lambda^{\prime})\otimes_{\mathbb{Z}}\mathbb{Q}$ . This is a $\mathbb{Q}_{p}$-linear category.

2.1.2. An important example of a p-divisible group is $\Lambda=A[p^{\infty}]$ , the (in-
ductive system of) p-primary torsion of an abelian scheme $A$ over $S$ ([Ta66]);
in this case, the height $h$ is twice the relative dimension of $A$ .

2.1.3. When $p$ is locally nilpotent on $S$ , any p-divisible group $\Lambda$ over $S$ is
formally smooth; the completion $\hat{\Lambda}$ of a p-divisible group $\Lambda$ along the zero
section is a formal Lie group [Gro74, VI,3.1]. However $\hat{\Lambda}$ is not necessarily
itself a p-divisible group; it is if and only if the separable rank of the fibers
of $Ker[p]$ is a locally constant function on $S$ (in which case $\Lambda$ is an extension

$1\rightarrow\hat{\Lambda}\rightarrow\Lambda\rightarrow\Lambda^{et}\rightarrow 1$

of an ind-etale p-divisible group $\Lambda^{et}$ by the infinitesimal p-divisible group
$\hat{\Lambda}$ , cf. [Gro74, III,7.4]). An example of an ind-etale (resp. infinitesimal)
p-divisible group of height $h=1$ is

$\mathbb{Q}_{p}/\mathbb{Z}_{p}=\lim_{n}\mathbb{Z}/p^{n}\mathbb{Z}\rightarrow$
(resp. $\hat{G}_{m}$ ).

2.2. Two theorems on p-divisible groups.

2.2.1. A considerable amount of work has been devoted to p-divisible groups
and their applications to the p-adic study of abelian varieties and their
local moduli. Among the pioneers, let us mention: Barsotti, Tate, Serre,
Grothendieck, Lubin, Messing...
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In the sequel, we shall outline the main concepts and results of the
Rapoport-Zink theory of period mappings for p-divisible groups, empha-
sizing the analogy with the complex case. We refer to their book [RZ96]
for details and proofs. We shall also emphasize the relation to differential
equations, which does not appear in [RZ96].

The whole theory relies upon three basic theorems on p-divisible groups
and their Dieudonne modules, which we shall recall below:

(i) the rigidity theorem for p-divisible groups up to isogeny,
(ii) the Serre-Tate theorem, and
(iii) the Grothendieck-Messing theorem,

which deal with infinitesimal deformations of p-divisible groups.

2.2.2. Let $\mathfrak{v}$ be a complete discrete valued ring $\mathfrak{v}$ of mixed characteristic
$(0,p)$ . Let $Ni1_{\mathfrak{v}}$ denote the category of locally noetherian $\mathfrak{v}$-schemes $S$ on
which $p$ is locally nilpotent. For any $S$ in $Ni1_{\mathfrak{v}}$ , the ideal of definition $\mathcal{J}=$

$\mathcal{J}_{S_{red}}$ of the closed subscheme $S_{red}$ (of characteristic p) is locally nilpotent.

Theorem 2.2.3 (Rigidity theorem for p-divisible groups up to isogeny).
Every homomorphism $\overline{\rho}:\Lambda\times sS_{red}\rightarrow\Lambda^{\prime}\times sS_{red}$ ofp-divisible groups up to
isogeny admits a unique lifting $\rho$ : $\Lambda\rightarrow\Lambda^{\prime}$ . Moreover, $\rho$ is a quasi-isogeny
if $\overline{\rho}$ is.

(It is crucial to work with p-divisible groups up to quasi-isogeny: if $\overline{\rho}$

were a “true” homomorphism, one could only expect to have a lifting if one
allows denominators).

PROOF. (following an argument of V. Drinfeld). We may assume that $S$ is
affine, and that $\mathcal{J}$ is nilpotent. Then the connected part $\hat{\Lambda}^{\prime}$ is a formal Lie
group, hence there is a power $p^{n}$ of $p$ such that for any affine S-scheme $S^{\prime}$ ,
$\hat{\Lambda}^{\prime}(S^{\prime})$ is killed by $[p^{n}]$ (in fact if $\mathcal{J}^{r+1}=0$ on $S$ , one can take $n=r^{2}$ ).

We observe that $Ker(\Lambda^{\prime}(S^{\prime})\rightarrow\Lambda^{\prime}(S_{red}^{\prime}))=\hat{\Lambda}^{\prime}(S^{\prime})$ . We have
$Ker(Hom(\Lambda(S^{\prime}), \Lambda^{\prime}(S^{\prime}))\rightarrow Hom(\Lambda(S_{red}^{\prime}), \Lambda^{\prime}(S_{red}^{\prime}))$

$=Hom(\Lambda(S^{\prime}), Ker(\Lambda^{\prime}(S^{\prime})\rightarrow\Lambda^{\prime}(S_{red}^{\prime})))$

which is zero because $Ker(\Lambda^{\prime}(S^{\prime})\rightarrow\Lambda^{\prime}(S_{red}^{\prime})$ is killed by $[\rho^{n}]$ while $\Lambda$ is
p-divisible.
This implies the injectivity of $qisog_{S}(\Lambda, \Lambda^{\prime})\rightarrow qisog_{S_{red}}(\Lambda\times sS_{red}, \Lambda^{\prime}\times sS_{red})$

(taking into account the fact that $Hom(\Lambda(S_{red}^{\prime}),$ $\Lambda^{\prime}(S_{red}^{\prime}))$ is torsion-free).
For the surjectivity, let us first show that for any $\overline{f}\in Hom(\Lambda(S_{red}^{\prime}), \Lambda^{\prime}(S_{red}^{\prime}))$ ,
there is a lifting $g\in Hom(\Lambda(S^{\prime}), \Lambda^{\prime}(S^{\prime}))$ of $p^{n}\overline{f}$ . For any $x\in\Lambda(S^{\prime})$ , let $h$

denote its image in $\Lambda(S_{rcd}^{\prime})$ . Since $\Lambda^{\prime}$ is formally smooth, $\overline{f}(\overline{x})$ admits a
lifting $y\in\Lambda^{\prime}(S^{\prime})$ . Since $Ker(\Lambda^{\prime}(S^{\prime})\rightarrow\Lambda^{\prime}(S_{red}^{\prime})))$ is killed by $p^{n},$ $g(x)$ $:=$

$[p^{n}]y$ is well-defined. This construction provides the desired lifting $g$ .
It remains to show that $g$ is an isogeny $if\overline{f}$ is. Let $\overline{f}^{\prime}$ be a quasi-inverse of

$\overline{f}(\overline{f}^{\prime}\overline{f}=[p^{m}])$ , and $g^{\prime}$ be a lifting of $p^{n}\overline{f}^{\prime}$ . Then $g^{\prime}g=[\rho^{2n+m}]$ by unicity of
liftings. Thus $g$ is an epimorphism, and the subscheme $Kerg$ of $Ker[p^{2n+m}]$
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is finite over $S$ . On the other hand, $\Lambda$ is flat over $S$ and the fibers of $g^{\prime}$

are flat (being isogenies). The criterium of flatness fiber by fiber [EGA IV,
11.3.10] implies that $g^{\prime}$ is flat, and we conclude that it is an isogeny. $\square $

Let us observe that there is variant of both the statement and the proof
of 2.2.3 for abelian schemes. instead of p-divisible groups.

Variant 2.2.4 (of theorem 2.2.3). Let $A,$ $A^{\prime}$ be abelian schemes over $S$ , and
let $\overline{f}$ be a homomorphism $A\times sS_{red}\rightarrow A^{\prime}\times sS_{rcd}$ . Then there exists $n\geq 0$

and a unique lifting $g:A\rightarrow A^{\prime}$ of $p^{n}\overline{f}$ .

The next theorem asserts that deforming an abelian scheme of char-
acteristic $p$ is equivalent to deforming its p-divisible group. For any $S$ in
$Ni1_{\mathfrak{v}}$ , let $Def_{p- div}(S)$ be the category of triples $(\overline{A}, \Lambda, \epsilon)$ consisting of an
abelian scheme over $S_{rcd}$ , a p-divisible group $\Lambda$ over $S$ and an isomorphism
$\epsilon$ : $\overline{A}[p^{\infty}]\cong\Lambda\times sS_{rcd}$ .

Theorem 2.2.5 (The Serre-Tate theorem). The functor
$A\mapsto(A_{rcd}, \Lambda :=A[p^{\infty}], \epsilon : A_{rcd}[p^{\infty}]\cong\Lambda x_{S}S_{rcd})$

induces an equivalence of categories between the category of abelian schemes
over $S$ and the category $Def_{p’ div}(S)$ .

We again follow Drinfeld’s argument [Dri76], cf. also [Ka81]. We
may assume that $S$ is affine and that $\mathcal{J}^{n+1}=0$ . We begin with the full
faithfulness: given a homomorphism $f^{\infty}$ : $A[p^{\infty}]\rightarrow B[p^{\infty}]$ such that $f^{\infty}$

(mod $\mathcal{J}$ ) comes from a homomorphism $\overline{f}$ : $A_{rcd}\rightarrow B_{red}$ of abelian schemes
over $S_{rcd}$ , we have to show that there exists a unique homomorphism $f$ :
$A\rightarrow B$ compatible with $f^{\infty}$ and $\overline{f}$ . The unicity follows from the injectivity
of $Hom(A, B)\rightarrow Hom(A_{rcd}, B_{rcd})$ (2.2.3). Furthermore, 2.2.4 shows the
existence of a homomorphism $g$ compatible with $p^{n}f^{\infty}$ and $p^{n}\overline{f}$ . To show
the existence of an $f$ such that $g=p^{n}f=f\circ[p^{n}]$ , the point is to show that
$g$ kills $A[p^{n}]$ , which can be seen on $g^{\infty}$ .

For the essential surjectivity, we have to construct an abelian scheme $A$

over $S$ compatible with a given datum $(\overline{A}, \Lambda, \epsilon)$ in $Def_{p- div}(S)$ . By unicity
of liftings, it suffices to do so locally on $S$ . Hence we may assume that $S$ is
affine, and choose an abelian scheme $A^{\prime}$ over $S$ and an isogeny $A_{rcd}^{\prime}\rightarrow\overline{A}$ . By
the above argument, $p^{n}$ times the given isogeny $A_{rcd}^{\prime}\rightarrow\overline{A}$ lifts to a (unique)
isogeny $e$ : $ A^{\prime}[\rho^{\infty}]\rightarrow\Lambda$ of p-divisible groups over $S$ . Its kernel is a finite
locally free subgroup scheme of $A^{\prime}$ , and we can form the abelian scheme
$A^{\prime\prime}$ $:=A^{\prime}/Kere$ . The isogeny $ A^{\prime/}[p^{\infty}]\rightarrow\Lambda$ induced by $e$ is an isomorphism
(mod $\mathcal{J}$ ), hence is an isomorphism.

2.2.6. In the sequel, we shall have to deal occasionally with p-divisible
groups over formal schemes rather than over schemes. Our formal schemes
ec will be adic, locally noetherian; hence there is a largest ideal of definition
$\mathcal{J}\subset \mathcal{O}_{X}$ , and $X=\lim_{\rightarrow}X_{n}$ , $X_{n}=Spec(\mathcal{O}_{X}/\mathcal{J}^{n+1})(X_{rcd}=X_{0})$ .

A p-divisible group $\Lambda$ over ac will be an inductive system of p-divisible
groups $\Lambda_{n}$ over $X_{n}$ such that $\Lambda_{n+1}\times x_{n+1}X_{n}\cong\Lambda_{n}$ .
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If ac $=$ Spf $\mathcal{A}$ , this is the same as a p-divisible group over $Spec\mathcal{A}$ (see
[$dJ95a$ , lemma 2.4.4]).
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3. A stroll in the crystalline world.

ABSTRACT: Review of Dieudonn\’e modules, crystals, Grothendieck-Messing the-
ory, convergent isocrystals.
3.1. From Dieudonn\’e modules to crystals.

3.1.1. At first, Dieudonn\’e theory presents itself as an analogue of Lie theory
for formal Lie groups over a perfect field $k$ of characteristic $p>0$ . In
practice, its scope is limited to the case of commutative formal Lie groups
(in which case the classical counterpart is not very substantial). The theory
extends to the case of p-divisible groups over $k$ .

Let $W$ be the Witt ring of $k$ , with its Frobenius automorphism $\sigma$ . The
theory associates to any p-divisible group $\Lambda$ over $k$ a Dieudonn\’e module, $i.e$ .
a finitely generated free module over $W$ endowed with a $\sigma$-linear Frobenius
$F$ and a $\sigma^{-1}$ -linear Verschiebung $V$ satisfying $FV=VF=p$ . id (we work
with the contravariant theory: $D(\Lambda)=Hom(\Lambda, \mathcal{W}_{k})$ , where $\mathcal{W}_{k}$ is the
Witt scheme of $k$ , as in [Dem72, pp.63-71], and in $[LiO98,5]$ ). This
provides an anti-equivalence of categories between p-divisible groups over $k$

and Dieudonn\’e modules. The rank of $D(\Lambda)$ is the height $h$ of $\Lambda$ .

Examples 3.1.2. $\bullet$ $D(\mathbb{Q}_{p}/\mathbb{Z}_{p})=W$, with $F=\sigma,$ $V=p\sigma^{-1}$ .
$\sigma^{-1}\bullet D(\hat{G}_{m})=W(-1),$

$i.e$ . $W$ as an underlying module, with $F=p\sigma,$ $V=$

$\bullet$ When $\Lambda=A[p^{\infty}]$ for an abelian variety $A$ over $k,$ $D(\Lambda)$ may be identified
with $H_{cris}^{1}(A/W)$ .

However, the structure of Dieudonn\’e modules is rather complicated in
general unless one inverts $p$ .

3.1.3. When $k$ is algebraically closed, Dieudonn\’e modules $\otimes \mathbb{Q}$ were com-
pletely classified by Dieudonn\’e (this provides a classification of p-divisible
groups over $k$ up to isogeny). They are classified by their slopes $\lambda\in[0,1]\cap \mathbb{Q}$

and multiplicities $m_{\lambda}\in \mathbb{Z}_{>0}$ (these data are better recorded in the form of
a Newton polygon). This comes as follows: each Dieudonn\’e module $D$ has
a canonical increasing finite filtration by Dieudonn\’e submodules $D_{\lambda}$ , such
that the associated graded W-module is free, and with the following prop-
erty: if $\lambda=a/b$ in irreducible form, $Gr_{\lambda}\otimes \mathbb{Q}$ admits a basis of $m_{\lambda}$ vectors $x$

satisfying $F^{b}x=p^{a}x$ .
For instance, the slope of $W(-1)$ is 1; the slope of the Dieudonn\’e module

attached to (the p-divisible group of) a supersingular elliptic curve over $k$ is
1/2, with multiplicity 2.

3.1.4. The problem of generalizing Dieudonn\’e theory to p-divisible groups
over more general bases $S$ (over which $p$ is nilpotent) has been tackled and
advertised by Grothendieck [Gro74], and further studied by many geome-
ters.

What should be the right substitutes for the W-modules $D(\Lambda)$ (resp.
for the $W[\frac{1}{p}]$-spaces $D(\Lambda)_{\mathbb{Q}})$ ?
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Grothendieck’s proposal was to define $D(\Lambda)$ as a F-crystal on the crys-
talline site of $S$ .

The right substitute for $W[\frac{1}{p}]$ -spaces was proposed later by P. Berthelot
and A. Ogus under the name of convergent F-isocrystal. These notions,
which we are about to describe, are of a higher technical level, and more
abstract, than the rest of the text. Our goal being to define and study the
Hodge filtration and the Gauss-Manin connection on convergent Dieudonn\’e
isocrystals, the reader who is ready to accept 3.3.3 and 3.6.7 may safely get
out of this crystalline stroll and resume with \S 4.

3.2. The Dieudonn\’e crystal of a p-divisible group.

3.2.1. Let $\mathfrak{v}$ be a finite extension of $W$ of degree $e$ . We assume that $e<p$ ,
and that $\varpi$ is a uniformizing parameter of $\mathfrak{v}$ such that $\sigma$ extends to $\mathfrak{v}$ by
setting $\sigma(\varpi)=\varpi$ .

Let $S$ be in $Ni1_{\mathfrak{v}}$ . An S-divided power thickening $T_{0^{c}}-rT$ is given by
(i) an S-scheme $T_{0}$ ,
(ii) a $\mathfrak{v}$-scheme $T$ on which $p$ is locally nilpotent,
(iii) a closed immersion $T_{0}\rightarrow T$ over $\mathfrak{v}$ ,
(iv) a collection of maps “

$\frac{x^{n}}{n!}$ from the ideal of definition of $T_{0}$ in $T$ to
$\mathcal{O}_{T}$ , which satisfy the formal properties of the divided powers.

S-divided power thickenings form a category $(S/\mathfrak{v})_{cris}$ (which we endow
with its fppf topology). A sheaf on $(S/\mathfrak{v})_{cris}$ is the data, for every $ T_{0}\rightarrow$

$T$ , of a fppf sheaf $\mathcal{E}_{T_{0},T}$ on $T$ , and for every morphism $f$ : $(T_{0}c_{-\succ}T)\rightarrow$

$(T_{0}^{\prime}\rightarrow T^{\prime})$ in $(S/\mathfrak{v})_{cris}$ , of a homomorphism $f^{*}\mathcal{E}_{T_{0},T}\rightarrow \mathcal{E}_{T_{\acute{0}},T^{\prime}}$ satisfying the
obvious transitivity condition. Example: $\mathcal{O}_{S_{0}/\mathfrak{v}}$ , defined by $(\mathcal{O}_{S_{0}/\mathfrak{v}})_{T_{0},T}=$

$\mathcal{O}_{T}$ . Another example: any fppf sheaf $\mathcal{F}$ on $S_{0}$ gives rise to a sheaf $\mathcal{F}_{cris}$ on
$(S/\mathfrak{v})_{cris}$ by $(\mathcal{F}_{cris})\tau_{0},\tau=\mathcal{F}_{T_{0}}$ .

A cwstal on $(S/\mathfrak{v})_{cris}$ (or, abusively, on $S$ ) is a sheaf $\mathcal{E}$ of $\mathcal{O}_{S/\mathfrak{v}}$-modules on
$(S/\mathfrak{v})_{cris}$ such that the homomorphisms $f^{*}\mathcal{F}_{T_{0},T}\rightarrow \mathcal{F}_{T_{0},T^{\prime}}$ are isomorphisms
(in Grothendieck’s terms: “crystals grow and are rigid”). One denotes by

$\mathcal{E}_{T}$ the $\mathcal{O}_{T}$-module obtained by evaluating the crystal on (id : $T\rightarrow T$ ) $\in$

$(S/\mathfrak{v})_{cris}$ .
Because of this rigidity, and using the canonical divided powers on the

ideal $\varpi \mathcal{O}_{S}$ (since $e<p,$ $\frac{\varpi^{n}}{n!}\in \mathfrak{v}$ for any $n$), one gets an equivalence of
categories between crystals on $S$ and crystals on the scheme $ S_{0}=S/\varpi$ of
characteristic $p$ .

3.2.2. The Dieudonn\’e crystal attached to a p-divisible group $\Lambda$ over $S$ is the
crystalline $\mathcal{E}xt$-sheaf $\mathcal{E}xt^{1}(\Lambda_{cris}, \mathcal{O}_{S/\mathfrak{v}})$ . It can be shown that $D(\Lambda)$ is a finite
locally free crystal on $S$ , of rank the height of $\Lambda$ . It depends functorially in
$\Lambda$ (in a contravariant way).

An important, though formal, consequence of the crystalline local char-
acter of this definition is that the formation of $D(\Lambda)$ commutes with base
change in $(S/\mathfrak{v})_{cris}$ , and for any S-divided power thickening $(T_{0}\rightarrow T)$ , there
is a canonical isomorphism of $\mathcal{O}_{T}$-modules $D(\Lambda)\tau_{0},\tau\cong D(\Lambda_{T_{0}})_{T_{0},T}$ .
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It follows that the datum of $D(\Lambda)$ amounts to the datum of $D(\Lambda\times sS_{0})$ :
the Dieudonn\’e crystal depends only on the p-divisible group modulo $\varpi$ .

3.2.3. The pull-back of a crystal $\mathcal{E}$ on $S_{0}$ via the absolute Frobenius $F_{S_{0}}$ is
denoted by $\mathcal{E}^{(p)}$ . An F-crystal structure on $\mathcal{E}$ is the datum of a morphism
of crystals $F:\mathcal{E}^{(p)}\rightarrow \mathcal{E}$ which admits an inverse up to a power of $p$ .

If $\Lambda$ is a p-divisible group over $S_{0},$ $D(\Lambda)$ is endowed by functoriality
with a structure of F-crystal. The classical Dieudonn\’e module is obtained
for $S_{0}=T_{0}=Spec(k),$ $T=Spf(W)=\lim Spec(W/p^{n})$ .

Although we shall not use this fact, $\rightarrow let$ us mention that the “Dieudonne’
functor” $D$ from p-divisible groups on $S_{0}$ to F-crystals is fully faithful under
further mild assumptions on $S_{0}$ (and even an equivalence with values in
the category of “Dieudonn\’e crystals”, $i.e$ . finite locally free F-crystals for
which $F$ admits an inverse up to $p$ –the Verschiebung); without any further
assumption on $S_{0}$ , it induces an equivalence of categories between ind-etale
p-divisible groups on $S_{0}$ and unit-root F-crystals ( $i.e$ . finite locally free
F-crystals for which $F$ is an isomorphism), cf. [BM79], $[dJ95a]$ .

3.3. The Hodge filtration.

3.3.1. Let $\Lambda^{\vee}$ be the (Serre) dual of $\Lambda$ (the $\lim_{\rightarrow}$ of the Cartier duals of the
$\Lambda[p^{n}]s)$ . There is a canonical, locally split, exact sequence of $\mathcal{O}_{S}$-modules

$0\rightarrow F^{1}\rightarrow D(\Lambda)s\rightarrow Lie\Lambda^{\vee}\rightarrow 0$

where $F^{1}=$ CoLie $\Lambda=\omega_{\Lambda}$ may be identified with the module of invariant
differentials on the formal Lie group $\hat{\Lambda}$ . In case $\Lambda$ is the p-divisible group
attached to an abelian S-scheme $\underline{A}$ , this exact sequence reduces to the Hodge
exact sequence

$0\rightarrow F^{1}\rightarrow H_{DR}^{1}(\underline{A}/S)\rightarrow Lie\underline{A}^{\vee}\rightarrow 0$ .

3.3.2. Now let $S_{0^{c}}\rightarrow S$ be a nilpotent divided power thickening (this means
that the products $\underline{x}^{n_{1}}\underline{x}^{n_{m}}\perp_{-}\ldots\perp n_{m}\overline{!}$ “ vanish for $n_{1}+\ldots+n_{m}\gg 0$); this is for

$n_{1}$ ! . . .
instance the case if $ S_{0}=S/\varpi$ as before and $e<p-1$ .

The next theorem asserts that deformations of p-divisible groups are
controlled by the variation of the Hodge filtration in the Dieudonn\’e module
[Mes72]. For any p-divisible group A on $S_{0}$ , and any lifting $\Lambda$ over $S$ , we
have seen that $D(\Lambda)_{S}$ identifies with $D(\overline{\Lambda})_{S}$ , which is a lifting of $D(\overline{\Lambda})_{S_{0}}$ to
$S$ .

Theorem 3.3.3 (The Grothendieck-Messing theorem). The functor
$\Lambda\mapsto(\Lambda\times sS_{0}, \omega_{\Lambda})$

induces an equivalence of categories between the category ofp-divisible groups
on $S_{y}$ and the category of pairs consisting of a p-divisible group $\overline{\Lambda}$ over $S_{0}$

(Zariski-locally liflable to $S$) and a locally direct factor vector subbundle of
$D(\overline{\Lambda})_{S}$ which lifts $\Lambda\subset D(\overline{\Lambda})s_{0}$ .
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We have already seen the faithfulness in 2.2.3. We just indicate here the
principle of proof of essential surjectivity and fullness. Working with nilpo-
tent divided power thickenings allows one to construct, by the exponential
method, a formally smooth group scheme $E(\overline{\Lambda})$ over $S$ together with a
canonical isomorphism $D(\overline{\Lambda})_{S_{0}}=Lie(E(\overline{\Lambda})\times sS_{0})$ , in such a way that the
canonical exact sequence

$0\rightarrow\omega_{\overline{\Lambda}}\rightarrow D(\overline{\Lambda})s_{0}\rightarrow Lie\overline{\Lambda}^{\vee}\rightarrow 0$

lifts to an exact sequence of formally smooth group schemes
$ 0\rightarrow$ $\Lambda\rightarrow E(\overline{\Lambda})\times sS_{0}\rightarrow\overline{\Lambda}^{\vee}\rightarrow 0$

Via the exponential, it is equivalent to give a local summand $F^{1}$ of $D(\overline{\Lambda})_{S}$

which lifts $\omega_{\overline{\Lambda}}$ , or to give a vector sub-group scheme $V$ of $E(\overline{\Lambda})$ which lifts
$\omega_{\overline{\Lambda}}$ . It then turns out that $E(\overline{\Lambda})/V$ is a p-divisible group $\Lambda^{\vee}$ , whose Serre
dual is the looked for p-divisible group $\Lambda$ over $S:\Lambda\times sS_{0}=\overline{\Lambda}$ by duality,
and $\omega_{\Lambda}=F^{1}$ .

The formation of $E(\overline{\Lambda})$ is functorial (contravariant in A). If we have two
p-divisible groups $\overline{\Lambda},$

$\overline{\Lambda}^{\prime}$ and a morphism $\overline{f}$ : $\overline{\Lambda}=\Lambda\times sS_{0}\rightarrow\overline{\Lambda}^{\prime}=\Lambda^{\prime}\times sS_{0}$

such that $D(f)$ respects the $F^{1}’ s$ , then the homomorphism $E(\overline{f})$ : $E(\overline{\Lambda})\rightarrow$

$E(\overline{\Lambda}^{J})$ preserves the vector subgroup schemes, hence induces a homomor-
phism $f$ : $E(\overline{\Lambda})/V\cong\Lambda\rightarrow E(\overline{\Lambda}^{\prime})/V^{\prime}\cong\Lambda^{\prime}$ which lifts $\overline{f}$ .

The exponential construction becomes simpler when the ideal of $S_{0}$ in
$S$ is of square zero (and endowed with the trivial divided powers). This is
the case which will be used in the sequel.

3.4. Crystals and connections.

3.4.1. We have already encountered the terms “F-crystal”, “unit-root F-
crystal” in I.2.4.2, 2.4.3 in the more down-to-earth context of connections.
This comes as follows. Assume for simplicity that $S_{0}$ is affine of characteristic
$p$ and lifts to a formally smooth p-adic affine formal scheme $S$ over $\mathfrak{v}=$

$W$ . Then there is an equivalence of categories between finite locally free
crystals on $(S_{0}/W)_{cris}$ and finite locally free $\mathcal{O}(S)$ -modules with integrable
topologically nilpotent connection (this interpretation of crystals extends to
much more general situations, cf. $[dJ95a, 2.2.2]$ ).
Using this equivalence of categories, the Katz (covariant) functor

$(^{continuous\mathbb{Z}_{p}- representations}of\pi_{1}^{alg}(S_{0},s_{0}))\rightarrow$ ( $unit$-root F-crystals)

is the composite of the following (anti)equivalences of categories

$(^{continuous\mathbb{Z}_{p}- representations}of\pi_{1}^{alg}(S_{0},s_{0}))\rightarrow$ ( $ind$-etale p-divisible groups over $S_{0}$ )

$\rightarrow^{D}$ (unit-root F-crystals over $S_{0}$ ).
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3.4.2. Let us briefly recall the construction of the connection attached to
a finite locally free crystal $\mathcal{E}$ on $(S_{0}/W)_{cris}$ . It depends on the technique
of formally adding divided powers to an ideal (the pd-hull). Let $\triangle_{0}$ be the
diagonal in $S_{0}\times S_{0}$ , and let $\triangle^{\wedge}$ be the p-completion of the pd-hull of the
diagonal in $ S\times S\wedge$ , endowed with the two projections $p_{1},$ $p_{2}$ to $S$ . Then by
rigidity of crystals, we have for any $n$ an isomorphism

$p_{2}^{*}(\mathcal{E}_{S_{0},S/p^{n}})\cong \mathcal{E}_{\triangle 0,\hat{\Delta}/p^{n}}\cong p_{1}^{*}(\mathcal{E}_{S_{0},S/p^{n}})$

and at the limit $ n\rightarrow\infty$ , an isomorphism of finite locally free $\mathcal{O}(\hat{\Delta})$ -modules

$\epsilon$ : $p_{2}^{*}(\mathcal{E}_{S_{0},S})\cong p_{1}^{*}(\mathcal{E}_{S_{0},S})$

satisfying a cocycle condition. Such an isomorphism is the “Taylor series”

$\epsilon(1\otimes e)=\sum_{n_{1},\ldots,n_{d}\geq 0}(\nabla(\frac{\partial}{\partial t_{1}})^{n_{1}}\ldots\nabla(\frac{\partial}{\partial t_{d}})^{n_{d}})(e)\otimes\prod_{i}\frac{((1\otimes t_{i}-t_{i}\otimes 1)^{n_{\iota}}}{n_{i}!}$

of an integrable connection $\nabla$ on the finite locally free $\mathcal{O}(S)$ -module $\mathcal{E}_{S_{0},S}$

(here $t_{1},$ $\ldots t_{d}$ denote local coordinates on $S$ ).

3.4.3. In general, the Taylor series converges only in polydiscs of radius
$|p|^{1/p-1}$ , due to the presence of the factorials. One says that $\nabla$ is convergent
if its Taylor series converges in (open) unit polydiscs. A well-known argu-
ment due to Dwork shows that F-crystals give rise to convergent connections
$\nabla$ ([Ka73]).

In order to put the discussion of convergence on proper foundations, we
need the notion of tube in analytic geometry.

3.5. Interlude : analytic spaces associated with formal schemes
and tubes.

3.5.1. Let us first review the Raynaud-Berthelot construction of the analytic
space attached to a $\mathfrak{v}$-formal scheme $X$ . It will be convenient for later purpose
to formulate the construction in the frame of Berkovich spaces rather than
rigid geometry (we refer to [Ber93, 1.6] for the translation).

As in 2.2.6, we assume that ac is adic, locally noetherian; moreover, we
assume that $X_{red}=Spec(\mathcal{O}_{X}/\mathcal{J})$ is a separated k-scheme locally of finite
type (in particular, $p\in \mathcal{J}$). However, we do not assume that SC is p-adic,
$i.e$ . that the topology of $\mathcal{O}_{X}$ is p-adic.

We describe the construction in the affine case $\chi=Spf(\mathcal{A})$ ; the general
case follows by gluing. One chooses generators $f_{1},$

$\ldots,$
$f_{r}$ of $J=\Gamma(X, \mathcal{J})$ ,

and defines, for any $n>0$ ,

$\mathcal{B}_{n}=\mathcal{A}\{T_{1}, \ldots, T_{r}\}/(f_{1}^{n}-\varpi T_{1}, \ldots, f_{r}^{n}-\varpi T_{r})$

where $\mathcal{A}\{T_{1}, \ldots , T_{r}\}$ stands for the $\varpi$-adic completion of $\mathcal{A}[T_{1}, \ldots, T_{r}]$ . One
has $\mathcal{B}_{n}/\varpi \mathcal{B}_{n}\cong$ $(\mathcal{A}/(\varpi, f_{1}^{n}, \ldots , f_{r}^{n}))[T_{1}, \ldots, T_{r}]$ , a k-algebra of finite type,
and $\mathcal{B}_{n}[\frac{1}{p}]$ is an affinoid algebra. Let $M(\mathcal{B}_{n}[\frac{1}{p}])$ be its Berkovich spectrum.
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The homomorphism $\mathcal{B}_{n+1}\rightarrow \mathcal{B}_{n}$ sending $T_{i}$ to $f_{i}T_{i}$ identifies $M(\mathcal{B}_{n}[\frac{1}{p}])$ with
an affinoid subdomain of $M(\mathcal{B}_{n+1}[p])$ [Be96, 0.2.6].

The analytic space $X^{an}$ is defined as the union $\bigcup_{n}M(\mathcal{B}_{n}[\frac{1}{p}])$ . It does not
depend on the choice of $f_{1},$

$\ldots,$
$f_{r}$ . This is a pamcompact (strictly) analytic

space over the fraction field $K$ of $\mathfrak{v}$ (one can replace the nested “ball-like”
$M(\mathcal{B}_{n}[\frac{1}{p}])$ by nested “annulus-like” spaces in order to obtain locally finite
coverings).

Examples 3.5.2. (i) if $X=Spf(\mathfrak{v}\{t\}),$ $X^{an}$ is the closed unit disc.
(ii) if ac $=Spf(\mathfrak{v}[[t]]),$ $\mathcal{J}=(\varpi, t)$ , then $M(\mathcal{B}_{n}[\frac{1}{p}])$ is the closed disc

$D_{K}(0, |\varpi|^{1/n})$ , and $X^{an}$ is the open unit disc.

3.5.3. Let $S_{0}$ be a closed subscheme of $X_{red}$ , and let $X_{S_{0}}$ be the formal
completion of ac along $S_{0}$ . The tube of $S_{0}$ in ac is $X_{S_{0}}^{an}$ . It is denoted $by$ ] $S_{0}[x$

(and considered as a subspace of $X^{an}$ ). It depends only on $S_{0,red}$ .

Example: if ec is as in example (i) above (so that $X_{red}=A_{k}^{1}$ ), and $S_{0}$ is the
point $0$ , then $X_{S_{0}}$ is as in example (ii) above: ] $0[x=D(0,1^{-})\subset D(0,1^{+})$ .
More generally, the polydiscs mentioned in 3.4.3 are the tubes of closed
points.

3.6. Convergent isocrystals.

3.6.1. Let $S_{0}$ be a separated k-scheme of finite type, and $S_{0}\rightarrow \mathfrak{Y}$ a closed
immersion into a flat p-adic formal v-scheme that is formally smooth in
a neighborhood of $S_{0}$ . Let $E$ be a vector bundle on the tube ] $S_{0}[\mathfrak{Y}$ . An
integrable connection $\nabla$ on $E$ is convergent if its Taylor series

$\epsilon(1\otimes e)=\sum_{n_{1},\ldots,n_{d}\geq 0}(\nabla(\frac{\partial}{\partial t_{1}})^{n_{1}}\ldots\nabla(\frac{\partial}{\partial t_{d}})^{n_{d}})(e)\otimes\prod_{i}\frac{(1\otimes t_{i}-t_{i}\otimes 1)^{n_{l}}}{n_{i}!}$

is induced by an isomorphism on the tube of the diagonal ] $S_{0}[\mathfrak{Y}\times \mathfrak{Y}$

$\epsilon$ : $p_{2}^{*}(E)\cong p_{1}^{*}(E)$

It amounts to the same to say that for any affine $U$ in $\mathfrak{Y}$ with local coordi-
nates $t_{1},$

$\ldots,$
$t_{d}$ , any section $e\in\Gamma(U^{an}, E)$ and any $\eta<1$ , one has

$\Vert\frac{1}{\prod n_{i}!}\nabla(\frac{\partial}{\partial t_{1}})^{n_{1}}\ldots\nabla(\frac{\partial}{\partial t_{d}})^{n_{d}}(e)\Vert.\eta^{n_{1}+\ldots+n_{d}}\rightarrow 0$

where I I denotes a Banach norm on $\Gamma(U^{an}, E)$ .

Example: (Dwork’s convergent isocrystal) One fixes $\pi$ such that $\pi^{p-1}=-p$

and take $\mathfrak{v}=\mathbb{Z}_{p}[\pi],$ $S_{0}=A_{F_{p}}^{1},$ $\mathfrak{Y}=\hat{A}_{\mathfrak{v}}^{1},$ $t=$ a coordinate on $A^{1}$ . One
has ] $S_{0}[\mathfrak{Y}=D(0,1^{+})$ . Then $E=\mathcal{O}_{D(0,1+}$ ) endowed with the connection
$\nabla(1)=-\pi dt$ is a convergent isocrystal: the convergence is ensured since
$\pi^{n}/n!\in \mathfrak{v}$ (see also I.2.4.5).

According to Berthelot, the category of vector bundles with convergent
connection depends only on $S_{0}$ –even only on $S_{0,red}-(up$ to canonical
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equivalence), and is functorial in $S_{0}/K$ : this is the category of convergent
isocwstals on $S_{0}/K$ (or. abusively, on $S_{0}$ ).

Since any separated k-scheme locally of finite type can be locally embed-
ded into a ac as above. one can define the category of convergent isocrystals
on such a scheme by gluing [Be96, 2.3.2].

3.6.2. There is a natural functor from the category of F-isocrystals on
$S_{0}/\mathfrak{v}$ to the category of convergent isocrystals on $S_{0}/K$ [Be96, 2.4]. The
composite of this functor with the Dieudonn\’e functor is denoted by $D(-)_{\mathbb{Q}}$ .
It factors through a $\mathbb{Q}_{p}$-linear functor, still denoted by $D(-)_{Q}$ :

$\left\{\begin{array}{llll}p- divisible & groups & over & S_{0}\\tupoisogeny & & & \end{array}\right\}\rightarrow$ { $convergent$ isocrystals on $S_{0}$ }

3.6.3. The advantage of convergent isocrystals over “crystals up to isogeny”
lies in their strong ”continuity property”, which allows to remove the restric-
tion $e<p$ on ramification (as we shall do henceforth), and work conveniently
with singular schemes $S_{0}$ (while divided powers present certain “patholo-
gies” in the singular case). In our applications, $S_{0}$ will be a countable
(non-disjoint) union of irreducible projective varieties. and $\mathfrak{v}$ may be highly
ramified.

3.6.4. If $S_{0}$ is the reduced underlying scheme $X_{rcd}$ of a formal scheme $X$ as
in 3.5.1, there is a notion of evaluation of $E$ on $X^{an}$ [Be96. 2.3.2]: this is a
vector bundle on $X^{an}$ with an integrable connection.

By functoriality of the construction, it will be enough to deal with the
affine case $X=Spf\mathcal{A}$ and to assume that there is a closed immersion $S_{0}=$

$($ Spf $\mathcal{A})_{red}\rightarrow \mathfrak{Y}$ into a formally smooth p-adic formal $\mathfrak{v}$-scheme. One can
construct inductively a compatible family of $\mathfrak{v}$-morphisms $Spec(\mathcal{O}_{X}/\mathcal{J}^{n})\rightarrow$

$\mathfrak{Y}$ whence a $\mathfrak{v}$-morphism $X\rightarrow \mathfrak{Y}$ . Let $v$ : ] $S_{0}[-e=X^{an}\rightarrow]S_{0}[\mathfrak{Y}$ be the
associated analytic map. The looked for evaluation of $E$ on $X^{an}$ is the pull-
back by $v$ of the vector bundle with integrable connection on ] $S_{0}[\mathfrak{Y}$ defined
by $E$ .

3.6.5. Let now $S$ be a separated scheme in $Ni1_{\mathfrak{v}}$ (it may also be viewed in
$Ni1_{W})$ . Let $\mathcal{E}$ be a finite locally free F-crystal on $S/W$ . This provides a
vector bundle $\mathcal{E}_{S}$ on $S$ , which only depends on the inverse image $\mathcal{E}\times Wk$

of $\mathcal{E}$ on the k-scheme $S/p$ (cf. 3.2.1). On the other hand, the convergent
isocrystal $E$ on $S/p$ attached to F-crystal $\mathcal{E}\times Wk$ (cf. 3.6.2) depends only
on $S_{red}$ .

3.6.6. Let us apply this to Dieudonn\’e crystals. Let ac be a formal scheme
as in 3.5.1, and let $\Lambda=\lim_{\rightarrow}\Lambda_{n}$ be a p-divisible on ac $=\lim_{\rightarrow}X_{n}$ . This gives
rise to a vector bundle $D(\Lambda)_{X}=\lim_{\rightarrow}D(\Lambda_{n})_{X_{n}}$ on $X$ . On the other hand,
we have the vector bundle $D(\Lambda_{0})_{X}=$ on ac and a natural homomorphism
$D(\Lambda_{0})_{X}\rightarrow D(\Lambda)_{X}$ obtained by pull-back $ X_{rcd}=X_{0}\rightarrow\chi$ .

When $e\geq p$ , this is not an isomorphism in general. However, the asso-
ciated morphism of analytic vector bundles $(D(\Lambda_{0})_{X})^{an}\rightarrow(D(\Lambda)_{X})^{an}$ is an
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isomo$7phism$ . Moreover, $(D(\Lambda_{0})_{X})^{an}$ is the analytic vector bundle underly-
ing the evaluation of $D(\Lambda_{0})_{\mathbb{Q}}$ on $X^{an}$ .

Indeed, working locally, and taking in account the very construction of
$X^{an}$ , we reduce to the case when ac is p-adic. Then $X/p$ is a k-scheme.
Using the canonical divided powers on $(p)$ and the rigidity of crystals,
$D(\Lambda X_{X}X/p)_{X}\cong D(\Lambda)_{X}$ . It is thus enough to see that $D(\Lambda_{0})^{an}\cong D(\Lambda\times\chi$

$X/p)_{X}^{an}$ . This follows from the fact that the convergent isocrystals $D(\Lambda_{0})_{\mathbb{Q}}$

and $D(\Lambda\times x\chi/p)_{\mathbb{Q}}$ are “the same”, since $\chi_{0}=(X/p)_{red}$ : indeed, it is clear
that $(D(\Lambda_{0})_{X})^{an}$ (resp. $D(\Lambda\times xX/p)_{X}^{an}$ ) coincides with the evaluation of
the convergent isocrystal $D(\Lambda_{0})_{\mathbb{Q}}$ (resp. $D(\Lambda\times xX/p)_{\mathbb{Q}}$ ) on $X^{an}$ (cf. also
$[dJ95b, 6.4]$ , in a slightly less general context).

3.6.7. Let us draw from this two consequences:
(i) taking into account the fact that the functor $D(-)_{\mathbb{Q}}$ factors through

the category of p-divisible groups up to isogeny, we see that if we are
given a quasi-isogeny $\Lambda_{0}\rightarrow\Lambda_{0}^{\prime}$ , then there is a canonical isomorphism
of vector bundles $(D(\Lambda_{0}^{\prime})_{X})^{an}\rightarrow(D(\Lambda)_{X})^{an}$

(ii) Through the isomorphism $(D(\Lambda_{0})_{X})^{an}\rightarrow(D(\Lambda)_{X})^{an}$ (or equivalently,
through the isomorphism $D(\Lambda\times x\chi/p)_{X}^{an}\rightarrow(D(\Lambda)_{X})^{an})$ , the analytic
vector bundle $(D(\Lambda)_{X})^{an}$ is naturally endowed with an integrable
connection, which deserves to be called the Gauss-Manin connection
attached to $\Lambda$ .

Indeed, when $\Lambda=\underline{A}[p^{\infty}]$ for an abelian scheme $\underline{A}$ over $\chi(D(\Lambda)_{X})^{an}$

may then be identified with the De Rham cohomology bundle $H_{DR}^{1}(\underline{A}^{an}/X^{an})$

together with its Gauss-Manin connection. Here, one can use the comparison
theorem between crystalline and De Rham cohomology, or the theory of
universal vectorial extensions and Grothendieck’s $\#$-structures, cf. [MM74],
[BBM82].

In the first alternative, one uses the divided powers on $(p)$ and construct
a canonical isomorphism of vector bundles with connection $D(\Lambda\times xX/p)_{X}\cong$

$H_{DR}^{1}(\underline{A}/X)$ .
In the second alternative, one uses Grothendieck’s construction of a

canonical connection on the universal vectorial extension $E(\Lambda)$ of $\Lambda^{\vee}$
–

cf. 3.3.2; the induced connection on the Lie algebra $D(\Lambda)_{X}$ turns out to be
the Gauss-Manin connection on $H_{DR}^{1}(\underline{A}/X)$ .

The Gauss-Manin connection is especially significant when $X^{an}$ is smooth
(even though ac itself may not be formally smooth).
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4. Moduli problems for $p$-divisible groups.

ABSTRACT: Review of moduli spaces of p-divisible groups quasi-isogenous to a
fixed one modulo $p$ , with examples.

4.1. Moduli problem for p-divisible groups quasi-isogenous to a
fixed one modulo $p$ .

4.1.1. Here, we work over the discrete valuation ring $\mathfrak{v}=W=\overline{\mathbb{Z}_{p}^{ur}}$ (the
completion of the maximal unramified extension of $\mathbb{Z}_{p}$ ), with uniformizing
parameter $\varpi=p$ . Recall that $Ni1_{\mathfrak{v}}$ denote the category of locally noetherian
$\mathfrak{v}$-schemes $S$ on which $p$ is locally nilpotent.

Let A be a fixed p-divisible group over $k=\overline{F}_{p}$ . The following theorem
is due to M. Rapoport and T. Zink [RZ96, 2.16, 2.32].

Theorem 4.1.2. The functor
$Ni1_{\mathfrak{v}}\rightarrow Sets$

$S-\rangle\{(\Lambda, \rho)|$ $\rho\in qisog(\Lambda x_{S}S_{rcd},\times\frac{}{F}S_{rcd})\Lambda.\cdot p- divisiblegroup_{\frac{o}{\Lambda}}nS\rho\}/\cong$

is representable by a formal scheme $\mathfrak{M}$ over $\mathfrak{v};\mathfrak{M}_{rcd}$ is locally of finite type
over $\overline{F}_{p}$ and its $i$rreducible components are projective $\overline{F}_{p}$ -varieties.

Of course, the rigidity of p-divisible groups up to isogeny (2.2.3) is crucial
here. The main difficulty in proving 4.1.2 is to control the powers of $p$ which
are needed in the process of lifting isogenies.

The separated formal scheme $\mathfrak{M}$ is not formally smooth in general, but
has been conjectured to be flat over $\mathfrak{v}$ . The group $J$ of self-quasi-isogenies of
A acts (on the right) on $\mathfrak{M}$ by $(\Lambda, \rho).j=(\Lambda, \rho\circ j)$ . This group $J$ is actually
the group of $\mathbb{Q}_{p}$-points of an algebraic group over $\mathbb{Q}_{p}$ .

We denote by $\mathcal{M}$ the Berkovich analytic space over $\mathbb{C}_{p}$ attached to $\mathfrak{M}$ :
$\mathcal{M}=\mathfrak{M}^{an}\otimes_{K}\mathbb{C}_{p}\wedge$ (cf. 3.5). This is a paracompact (strictly) analytic space.
We shall see later that it is smooth, and a p-adic manifold in the sense of
I.1.3.7.

4.2. Examples.

We take A $=\overline{A}[\rho^{\infty}]$ , the p-primary torsion of an elliptic cume $\overline{A}$ over
$\overline{F}_{p}(h=2)$ .

4.2.1. The ordinary case, $i.e$ . $\overline{A}[p](\overline{F}_{p})\neq 0$ .
Then $\overline{\Lambda}\cong\hat{G}_{m}\oplus \mathbb{Q}_{p}/\mathbb{Z}_{p}$ , and $J=(G_{m\mathbb{Q}_{p}})^{2}$ . For any $(\Lambda, \rho)$ in $\mathfrak{M}(S)$ , the

separable rank of $Ker[\rho]$ is constant (due to the quasi-isogeny $\rho$ ). Therefore
$\Lambda$ is an extension

$\hat{\Lambda}\rightarrow\Lambda\rightarrow\Lambda^{ct}$ .

The quasi-isogeny $\rho$ respects this extension, hence splits into two parts
$(\hat{\rho}, \rho^{et})$ . We have $\hat{\Lambda}\cong\hat{G}_{m},$

$\Lambda^{ct}\cong \mathbb{Q}_{p}/\mathbb{Z}_{p}$ . Up to isomorphism, the pair
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$(\hat{\rho}, \rho^{et})$ thus amounts to an element of $(\mathbb{Q}_{p}^{\times}/\mathbb{Z}_{p}^{\times})^{2}\cong \mathbb{Z}^{2}$ . Therefore

$\mathfrak{M}=\prod_{\mathbb{Z}^{2}}\mathfrak{M}^{0}$

is a disjoint sum of copies of a formal (group) scheme $\mathfrak{M}^{0}$ which parametrizes
extensions of $\mathbb{Q}_{p}/\mathbb{Z}_{p}$ by $\hat{G}_{m}$ . It is known that

$\mathfrak{M}^{0}=\hat{G}_{m}$

This identification is given by the following recipe. Recall that if $S=$
$Spec(R),$ $R$ local artinian with residue field $\overline{F}_{p}$ and radical $\mathfrak{m}(\mathfrak{m}^{n+1}=0)$ ,
then $\hat{G}_{m}(S)=1+\mathfrak{m}$ ; in particular $\hat{G}_{m}(S)$ is killed by $[p^{n}]$ . Let us choose
any lift $q_{n}$ of $1/p^{n}\in \mathbb{Q}_{p}/\mathbb{Z}_{p}$ in $\Lambda$ . Then $[\rho^{n}]q_{n}$ is a well-defined element $q$ in
$\hat{\Lambda}(S)\cong 1+m$ , which is unchanged if $n$ is replaced by a bigger integer (but
another choice of the isomorphism $\hat{\Lambda}\cong\hat{G}_{m}$ would change $q$ into $q^{a},$ $a\in \mathbb{Z}_{p}^{\times}$ ).
As a formal W-scheme, $\mathfrak{M}^{0}=Spf(\mathfrak{v}[[q-1]])$ , with the $(p, q-1)$ -adic topology.
The associated analytic space $\mathcal{M}^{0}$ over $\mathbb{C}_{p}$ is the open unit disc $|q-1|<1$ .

The parameter $q$ is thus the local modulus for deformations of $\overline{A}[p^{\infty}]$ . On
the other hand, if $p\neq 2$ , we have an algebraic local modulus for deformations
of $\overline{A}$ (say, with level two structure): the Legendre parameter $ z=\lambda$ around
the Legendre parameter $(_{can}$ of the canonical lifting $A_{can}$ of $\overline{A}$ (cf. I.3.4.2).
The p-divisible group $A_{can}[p^{\infty}]$ splits: its parameter is $q=1$ . Therefore,
in this special case, the Serre-Tate theorem 2.2.5 asserts that $q\in 1+(z-$
$\zeta_{can})\hat{\mathbb{Z}}^{ur}[[z-\zeta_{can}]]$ . It has been proved by W. Messing and N. Katz that $q$ is
the Dwork-Serre-Tate parameter discussed in I.3.4, ([Mes76], [Ka81]) –
which explains the terminology.

4.2.2. The supersingular case, $i.e$ . $\overline{A}[p](\overline{F}_{p})=0$ .
In this case $\overline{\Lambda}=\overline{\Lambda}\wedge$ is a so-called Lubin-Tate formal group, End $\overline{\Lambda}=\mathcal{B}_{p}$ ,

“the” maximal order in the (non-split) quaternion algebra $B_{p}$ over $\mathbb{Q}_{p}$ , and
$J=B_{p}^{\times}$ .

Here again, there is a discrete invariant: the (height’ of the quasi-isogeny
$\rho$ , which amounts to the p-adic valuation of the norm of its image in $J=B_{p}^{\times}$ .
Therefore

$\mathfrak{M}=\prod_{\mathbb{Z}}\mathfrak{M}^{0}$

is a disjoint sum of copies of a formal scheme $\mathfrak{M}^{0}$ which parametrizes de-
formations of the Lubin-Tate group A. According to Lubin-Tate, $\mathfrak{M}^{0}\cong$

$Spf(\mathfrak{v}[[t]])$ , with the $(p, t)$ -adic topology. The associated analytic space $\mathcal{M}^{0}$

over $\mathbb{C}_{p}$ is the open unit disc $|t|<1$ .
Assume for simplicity that $\overline{A}$ is defined over $F_{p}$ . Then one can describe

the universal formal deformation $\Lambda$ over Spf $\mathbb{Z}_{p}[[t]]$ through its logarithm
$\sum b_{n}(t)X^{p^{2n}}$ , which is given recursively by

$b_{0}(t)=1,$
$b_{n}(t)=\frac{1}{p}\sum_{0\leq m<n}b_{m}(t)t_{n}^{p^{2}}$
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The so-called canonical lifting, corresponding to $t=0$ , has formal com-
plex multiplication by $\mathbb{Z}_{p^{2}}$ , cf. $[GH94a],$ $[GH94b]$ .

4.3. Decorated variants.

4.3.1. Just as in the complex case 1.1.4, it is useful to consider variants or
the moduli problem 4.1 for “decorated” p-divisible groups, with prescribed
endomorphisms $and/or$ polarization.

Instead of the $\mathbb{Q}$-algebra $B$ of 1.1.4, we shall consider a finite-dimensional
semi-simple $\mathbb{Q}_{p}$-algebra $B_{p}$ , since the category of p-divisible groups up to
isogeny is $\mathbb{Q}_{p}$-linear. Let $V_{p}$ be a $B_{p}$-module of finite type, and let $G_{\mathbb{Q}_{p}}$ be
the group of $B_{p}$-linear endomorphisms of $V_{p}$ .

$Let\mathcal{B}_{p}\mathcal{B}_{p}$

.
be a maximal order in $B_{p}$ , and let $L_{p}$ be a lattice in $V_{p}$ , stable under

4.3.2. We assume that $\mathcal{B}_{p}$ acts on our p-divisible group A. One then redefines
$J$ to be the group of self-quasi-isogenies of A which respect the $\mathcal{B}_{p}$-action.

For technical reasons, one picks up a lifting A of A with $\mathcal{B}_{p}$-action to
some finite extension of $W$ , and looks at the $\mathcal{B}_{p}$-module $F_{0}^{1}$

$:=\omega_{\overline{\Lambda}}$ . We
denote by $\mathfrak{v}$ the finite extension $W[tr(b|F_{0}^{1})]$ of $W$ .

One strengthens the moduli problem 4.1 by imposing to our pairs $(\Lambda, \rho)$

that $\Lambda$ is endowed with a $\mathcal{B}_{p}$-action $\iota$ : $\mathcal{B}_{p}\rightarrow End\Lambda,$
$\rho$ respects the $\mathcal{B}_{p}$-action,

and moreover a “Shimura type condition” $\det(\iota(b)|\omega(\Lambda))=\det(b|F_{0}^{1})$ .
It follows easily from 4.1.2 [RZ96, 3.25] that this moduli problem is

representable by a formal scheme, still denoted by $\mathfrak{M}$ , over $\mathfrak{v}$ . It is acted on
by J. $\mathfrak{M}_{rcd}$ is locally of finite type over $\overline{F}_{p}$ and its irreducible components
are projective $\overline{F}_{p}$ -varieties.

4.3.3. Let us say a word about the polarized variant (here, it is safer to
assume $p\neq 2$ ). One assumes that $\mathcal{B}_{p}$ is endowed with an $involution*$ , and
that $L_{p}$ is autodual for an alternate $\mathbb{Z}_{p}$-bilinear form such that $\{bv, w\}=$

$\langle v, b^{*}w\rangle$ . Of course, here, $G_{\mathbb{Q}_{p}}$ denotes the algebraic $\mathbb{Q}_{p}$-group of $B_{p}$-linear
symplectic similitudes of $V_{p}$ . One assumes that A is endowed with a $*-$

polarization (2) and modify $J$ to respect the polarization up to a multiple
in $\mathbb{Q}_{p}$ .

The corresponding moduli problem is again representable by a formal
scheme with the same properties. This formal scheme has been conjectured
to be flat by Rapoport-Zink; although this has been verified in many cases
(cf. $e.g$ . [GorOl]), there are some counter-examples (cf. [POO]).

Example 4.3.4 (fake elliptic curves at a critical prime $p$). Let us fix a indefi-
nite quaternion algebra $B$ over $\mathbb{Q}$ and a maximal order $\mathcal{B}$ in $B$ (after Eichler,
they are all conjugate). A prime $p$ is called critical if it divides the discrim-
inant of $B,$ $i.e$ . if $B_{p}=B\otimes_{\mathbb{Q}}\mathbb{Q}_{p}$ is the (non-split) quaternion algebra over

(2)
$a*$-polarization is a symmetric $\mathcal{B}_{\rho}$-linear quasi-isogeny between the p-divisible and

its Serre dual, endowed with the transposed action of $\mathcal{B}_{p}$ twisted $by*$
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$\mathbb{Q}_{p}$ . Note that $B_{p}$ then contains copies of the unramified quadratic extension
on $\mathbb{Q}_{p}$ ; we denote by $\mathbb{Q}_{p^{2}}$ one of them. The maximal order (unique up to
conjugation) can be written $\mathcal{B}_{p}=\mathcal{B}\otimes \mathbb{Z}_{p}=\mathbb{Z}_{p^{2}}[\Pi],$ $\Pi^{2}=p,$ $\Pi.a=a^{\sigma}\Pi$ for
$a\in \mathbb{Z}_{p^{2}}$ . We fix a critical prime $p$ .

We consider abelian surfaces with quaternionic multiplication by $\mathcal{B}$ .
They are sometimes called “fake elliptic curves” because they share many
features with elliptic curves, cf. [BC91, III, 1].

We fix a fake elliptic curve $\overline{A}$ over $\overline{F}_{p}$ , and set $\Lambda=\overline{A}[p^{\infty}]$ . This is a
special formal $\mathcal{B}_{p}$-modules of height 4 in the following sense.

Let $S$ be in $Ni1_{\mathfrak{v}}$ (or else an inductive limit of such schemes –as a formal
scheme), and let $\Lambda$ be a p-divisible group over $S$ . After Drinfeld, one says
that $\Lambda$ is a special formal $\mathcal{B}_{p}$ -modules of height 4 if

(i) $\Lambda$ is infinitesimal $(\Lambda=\hat{\Lambda})$ of height $h=4$ ,
(ii) $\mathcal{B}_{p}$ acts on $\Lambda$ ,
(iii) via this action, $\omega_{\Lambda}$ is a locally free $(\mathbb{Z}_{p^{2}}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{S})$-module of rank 1.

We take $V_{p}=B_{p}$ where $B_{p}$ acts by left multiplication. In this situation,
$G_{\mathbb{Q}_{p}}\cong B_{p}^{\times}$ . When $S=Spec(\overline{F}_{p})$ , there is a unique class of $\mathcal{B}_{p}$-isogeny of
special formal $\mathcal{B}_{p}$-modules of height 4. The group $J$ of self-quasi-isogenies of
a special formal $\mathcal{B}_{p}$-module of height 4 is $J=GL_{2}(\mathbb{Q}_{p})$ . This can be easily
read off the Dieudonn\’e module $\otimes \mathbb{Q}$ .

In this example, there is again a discrete invariant: the “height” of the
quasi-isogeny $\rho$ , which amounts to the p-adic valuation of the determinant
of its image in $J$ . Therefore

$\mathfrak{M}=\prod_{\mathbb{Z}}\mathfrak{M}^{0}$

is a disjoint sum of copies of a formal scheme $\mathfrak{M}^{0}$ which parametrizes de-
formations of the special formal module A. This formal scheme has been
described by Drinfeld, cf. 6.3.4.

4.3.5. This example and examples 4.2 were the sources of the general theory.
Let us at once suggest a vague analogy with the archimedean situation –

especially 1.1.4, 1.2.5 –which will become more and more precise in the
next sections: one can see the p-divisible group A in characteristic $p$ (resp. $J$ )
as an analogue of the infinitesimal oriented real Lie group $\hat{U}$ (resp. $G(\mathbb{R})^{0}$ ).
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5. $p$-adic period domains.

ABSTRACT: Review of p-adic symmetric domains and period domains via stability
theory.

5.1. p-adic flag spaces.

5.1.1. We begin with the p-adic analogue of the flag space $\mathcal{D}^{\vee}$ of 1.2.3,
1.2.5. In 1.2.5, this flag space parametrized the lagrangian subspaces $F^{1}$ in
the $H_{DR}^{1}$ of abelian varieties of a certain type, marked by a fixed isomorphism
$H_{DR}^{1}\cong V^{\mathbb{C}}$ .

In the p-adic case, $\mathcal{D}^{\vee}$ will parametrize the Hodge filtration $F^{1}$ of Dieudonn\’e
modules of p-divisible groups of a certain type (3.3.1).

5.1.2. More precisely, let us consider a moduli problem for p-divisible groups
as in 4.1, possibly decorated as in 4.3 (from which we follow the notation).
The decoration reflects on the Dieudonn\’e module $D(\overline{\Lambda})_{\mathbb{Q}}=D(\overline{\Lambda})\otimes \mathbb{Q}$ : one
has an isomorphism of $B_{p}$-module (with symplectic structure, in the polar-
ized case):

$D(\overline{\Lambda})_{\mathbb{Q}}\cong V_{p}\otimes G^{\overline{\mathbb{Q}_{p}^{ur}}}\rho$

We fix such an isomorphism, and consider that $G_{\mathbb{Q}_{p}}\otimes_{\mathbb{Q}_{p}}\overline{\mathbb{Q}_{p}^{ur}}$ acts on $D(\overline{\Lambda})_{\mathbb{Q}}$ .
But $D(\overline{\Lambda})_{Q}$ has an extra structure: the $\sigma$-linear Frobenius automorphism.
The group $J$ is nothing but the subgmup of $G_{\copyright_{p}}(\overline{\mathbb{Q}_{p}^{ur}})$ of elements commuting
with Frobenius.

5.1.3. Let $\mathfrak{v}$ be the finite extension of $W=\mathbb{Z}_{p}^{ur}$ considered in 4.3.2 and let
$K$ be its fraction field. We denote here by $F_{0}^{1}\subset V_{p}^{\mathbb{C}_{p}}=V_{p}\otimes \mathbb{C}_{p}$ the $\mathbb{C}_{p}$-span
of the space $\omega_{\overline{\Lambda}}-\subset V_{p}\otimes_{\mathbb{Q}_{p}}K$ introduced in 4.3.2. We set $G_{\mathbb{C}_{p}}=G_{\mathbb{Q}_{p}}\otimes_{\mathbb{Q}_{\rho}}\mathbb{C}_{p}$ .

The flag variety $\mathcal{D}^{\vee}$ of all $G_{\mathbb{C}_{p}}$ -conjugates of $F_{0}^{1}$ in $V_{p}^{\mathbb{C}_{p}}=D(\overline{\Lambda})\otimes_{W}\mathbb{C}_{p}$ is a
homogeneous space

$\mathcal{D}^{\vee}=P\backslash G_{\mathbb{C}_{p}}$

for a suitable parabolic subgroup $P$ . There is an ample line bundle $\mathcal{L}$

on $\mathcal{D}^{\vee}$ which is homogeneous under the derived group $G_{C_{p}}^{dcr}$ ; we denote
by $\mathcal{D}^{\vee}\subset \mathbb{P}(W)$ an associated $G_{\mathbb{C}_{p}}^{der}$-equivariant projective embedding (if
$G_{\mathbb{C}_{p}}=GL_{2g},$ $\mathcal{D}^{\vee}=Grass(g, 2g)$ , one can just take the $SL_{2g}$-equivariant
Pl\"ucker embedding).

Note that, there is an obvious right action of $J$ on $\mathcal{D}^{\vee}$ , which factors
through the adjoint group $J^{ad}$

$:={\rm Im}(J\rightarrow G_{\mathbb{C}_{p}}^{ad})$ .

5.1.4. In our three basic examples (4.2.1, 4.2.2, 4.3.4), we have $G_{\mathbb{C}_{p}}=GL_{2}$ ,
hence $\mathcal{D}^{\vee}=\mathbb{P}_{\mathbb{C}_{\rho}}^{1}$ .

5.2. Symmetric domains via stability theory.

5.2.1. In the p-adic case, one cannot define symmetric spaces by a positivity
condition as in 1.2.3, 1.2.5. One uses instead the Hilbert-Mumford notion of
semi-stability, following an idea of M. van der Put and H. Voskuil $[vdPV92]$ .
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5.2.2. We set $J^{\prime}=J\cap G_{\mathbb{C}_{p}}^{der}$ . This is again the group of $\mathbb{Q}_{p}$-points of an
algebraic group over $\mathbb{Q}_{p}$ . Let $T\cong(G_{m\mathbb{Q}_{p}})^{j}$ be a maximal $\mathbb{Q}_{p}$-split torus in
$J^{\prime}$ . The semi-stable locus of $\mathcal{D}^{\vee}$ with respect to T-action is the open subset
of points $x\in \mathcal{D}^{\vee}$ such that there is a T-invariant function of $\mathbb{P}(W)$ which
does not vanish on $x$ .

One can check whether $x$ is semi-stable with respect to $T$ using the
Hilbert criterion: let $\lambda$ be any cocharacter ( $=$ one-parameter subgroup) of
$T$ . By properness of $\mathcal{D}^{\vee}$ , the map $z\in G_{m}\mapsto x.\lambda(z)\in \mathcal{D}^{\vee}$ extends to $A^{1}$ ,
$i.e$ . the limit $x_{0}=\lim_{z\rightarrow 0}x.\lambda(z)$ exists. It is clearly fixed by $G_{m}$ , thus the fiber
$\mathcal{L}_{x_{0}}$ corresponds to a character $z-rz^{-\mu(x,\lambda)}$ of $G_{m}$ . Then $x$ is semi-stable if
and only if the Mumford invariant $\mu(x, \lambda)$ is $\geq 0$ for every $\lambda$ .

5.2.3. One defines the symmetric space $\mathcal{D}$ to be the intersection of the semi-
stable loci of $\mathcal{D}^{\vee}$ with respect to all maximal $\mathbb{Q}_{p}$ -split tori $T$ in $J^{\prime}$ . This is
a p-adic manifold in the sense of I.1.3.6. It is also called the p-adic period
domain (associated with the moduli problem).

Since $J$ acts on the set of tori $T$ by conjugation, it is clear that $\mathcal{D}$ is
stable under the J-action on $\mathcal{D}^{\vee}$ .

5.3. Examples.

5.3.1. In our three basic examples, we have $G_{\mathbb{C}_{p}}=GL_{2},$
$\mathcal{D}^{\vee}=\mathbb{P}^{1}$ .

In example 4.2.1, $J^{\prime}\subset J=(G_{m})^{2}$ is the one-dimensional torus $T$ with
elements $(z^{-1}, z)$ . Its action on a point $x$ is by $z^{2}$-scaling; the limit point $x_{0}$

is always $0$ , except if $ x=\infty$ . The only non-semi-stable point is $\infty$ , hence
$\mathcal{D}=A^{1}$ .

In example 4.2.2, $J^{\prime}=SL_{1}(B_{p})\subset J=B_{p}^{\times}$ . There is no non-trivial
$\mathbb{Q}_{p}$-split torus in $J^{\prime}$ , hence $\mathcal{D}=\mathcal{D}^{\vee}=\mathbb{P}^{1}$ .

5.3.2. We now turn to example 4.3.4. In this example, $J=GL_{2}(\mathbb{Q}_{p})$ and
$J^{\prime}=SL_{2}(\mathbb{Q}_{p})$ . All maximal $\mathbb{Q}_{p}$-split tori are conjugate $g^{-1}Tg$ of the above
$T$ . Therefore, $\mathcal{D}=\mathbb{P}^{1}\backslash \cup\infty.g$ is the Drinfeld space over $\mathbb{C}_{p}$

$\mathcal{D}=\Omega_{\mathbb{C}_{p}}$ $:=\mathbb{P}_{\mathbb{C}_{p}}^{1}\backslash \mathbb{P}^{1}(\mathbb{Q}_{p})$

To be consistent, we consider the right action of $PGL_{2}$-action on $\mathbb{P}^{1}$ ,
which is deduced from the customary left action by the rule $x.g=g^{-1}.x$ .

The Drinfeld space is actually defined over $\mathbb{Q}_{p},$ $i.e$ . is a $\mathbb{Q}_{p}$-analytic man-
ifold $\Omega$ . It would follow from the Bruhat-Tits tree $\mathcal{T}$ of $J^{ad}=PGL_{2}(\mathbb{Q}_{p})$ .
The vertices of this tree correspond to closed discs in $\mathbb{Q}_{p}$ ; two such ver-
tices are connected by an edge if for the corresponding discs $D^{\prime},$ $D^{\prime\prime}$ , one has
$D^{\prime}\subset D^{\prime\prime}$ and the radius of $D^{\prime\prime}$ is $p$ times the radius of $D^{\prime}$ (each vertex has
$p+1$ neighbors). The group $PGL_{2}(\mathbb{Q}_{p})$ acts on $\mathcal{T}$ (on the right, say).

For any disc $D$ centered in $\mathbb{Q}_{p}$ , let $\eta_{D}$ denote its Berkovich “generic
point” (which is a point in Berkovich’s affine line $A^{1}$ over $\mathbb{Q}_{p}$ ). Then the
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FIGURE 1. $\mathcal{T}$ for $p=2$

geometric realization of $\mathcal{T}$ may be identified with the closed subset
$|\mathcal{T}|=\{\eta_{D(a,r^{+})}|a\in \mathbb{Q}_{p}, 0<r<\infty\}\subset\Omega$

(a $PGL_{2}(\mathbb{Q}_{p})$ -equivariant embedding), and the set of vertices with the subset

ver $\mathcal{T}=\{\eta_{D(a,r^{+})}|a\in \mathbb{Q}_{p}, r\in p^{\mathbb{Z}}\}\subset|\mathcal{T}|$

According to Berkovich, $|\mathcal{T}|$ is a retract of $\Omega$ [Ber90]; in particular, $\Omega$ is
simply connected.

On the other hand, $\Omega$ is the generic fiber of a p-adic formal scheme $\hat{\Omega}$

whose reduction modulo $p$ is an infinite tree of projective lines, with dual
graph $\mathcal{T}$ (cf. [BC91, $I]$ ).

The Drinfeld space $\Omega$ is a p-adic analogue of the Poincar\’e double half-
plane $\mathbb{P}_{\mathbb{C}}^{1}\backslash \mathbb{P}^{1}(\mathbb{R})$ . Note that the latter space could also be defined using
stability, in the same way (with $J^{\prime}=SL_{2}(\mathbb{R})$ ). Another similarity: accord-
ing to [Ber90], there is a $PGL_{2}(\mathbb{Q}_{p})$ -invariant metric on $\Omega$ (which extends
the standard metric on $|\mathcal{T}|$ ).
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6. The $p$-adic period mapping and the Gauss-Manin connection.

ABSTRACT: Rapoport-Zink’s period mapping as classifying map for the Hodge
filtration in the Dieudonn\’e module. Basic properties: equivariance, \’etaleness. Its
relation to the Gauss-Manin connection. Examples and formulas.
6.1. Construction.

6.1.1. The construction of the p-adic period mapping is parallel to the
complex case: one attaches to a point $s\in \mathcal{M}$ representing a pair $(\Lambda, \rho)$ the
point $\mathcal{P}(s)$ of $\mathcal{D}^{\vee}$ which parametrizes the notch $F^{1}$ of the Hodge filtration of
the Dieudonn\’e module of $\Lambda$ . The idea of the construction is already present
in Grothendieck’s talk [Gro70].

6.1.2. More precisely, notation being as in 4.1.1-4.3.1, let us consider the
universal object $(\underline{\Lambda},\underline{\rho})$ on the moduli formal scheme $\mathfrak{M}$ , and the Dieudonn\’e
crystal $D(\underline{\Lambda})$ . Its evaluation $D(\underline{\Lambda})_{\mathfrak{M}}$ on $\mathfrak{M}$ is a vector bundle on $\mathfrak{M}$ .
Lemma 6.1.3. The quasi-isogeny $\rho$ induces a trivialization of the associated
analytic vector bundle on $\mathcal{M}=\mathfrak{M}_{C_{p}}^{\overline{a}n}$ :

$(D(\underline{\Lambda})_{\mathfrak{M}})^{an}\cong V_{p}^{\mathbb{C}_{p}}\otimes_{\mathbb{C}_{p}}\mathcal{O}_{\mathcal{M}}$

PROOF. $\rho$ is a quasi-isogeny between $\underline{\Lambda}\times \mathfrak{M}$ and A $\times_{\overline{F}_{p}}\mathfrak{M}_{red}$ . According
to 3.6.7 (i), by the rigidity of convergent isocrystals, it induces a canonical
isomorphism $(D(\triangle)_{\mathfrak{M}})^{an}\cong(D(\overline{\Lambda}\times_{\overline{F}_{p}}\mathfrak{M}_{red})_{\mathfrak{M}})^{an}$ . On the other hand, since
the formation of $D(\Lambda)$ commutes with base change (3.2.2), we have

$(D(\overline{\Lambda}\times\overline{F}_{p}\mathfrak{M}_{rcd})_{\mathfrak{M}})^{an}=D(\overline{\Lambda})\otimes w\mathcal{O}_{\mathcal{M}}=V_{p}\otimes_{\mathbb{Q}_{p}}\mathcal{O}_{\mathcal{M}}$ .
$\square $

6.1.4. On the other hand, we have a locally direct summand $F^{1}=(\omega_{\underline{\Lambda}})^{an}$

in $(D(\underline{\Lambda})_{\mathfrak{M}})^{an}\cong V_{p}\otimes_{\mathbb{Q}_{p}}\mathcal{O}_{\mathcal{M}}(3.3.1)$ . This determines an M-point of the flag
space $\mathcal{D}^{\vee},$ $i.e$ . an analytic mapping

$\mathcal{P}:\mathcal{M}\rightarrow \mathcal{D}^{\vee}$

This is called the period mapping for the moduli problem (decorated or
not). It is clear from the construction that $\mathcal{P}$ is J-equivariant.

If $\mathcal{M}^{0}$ is any connected component of $\mathcal{M}$ , it is stable under $J^{\prime}\subset J$ ,
hence the induced period mapping $\mathcal{P}$ : $\mathcal{M}^{0}\rightarrow \mathcal{D}^{\vee}$ is J’-equivariant (the
$J^{\prime}$-action factors through $J^{\prime ad}$ ).

6.2. Properties.

Theorem 6.2.1. The period mapping $\mathcal{P}$ is etale. Its image lies in the peri $od$

domain $\mathcal{D}$ .

The first assertion reduces, via an infinitesimal criterion of etaleness,
to the “essential surjectivity part” of the Grothendieck-Messing theorem
(3.3.3), in the case of an ideal of square zero, cf. [RZ96, 5.17]. It corresponds
to what is called the “local Torelli property” in the complex case.
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The second assertion is a consequence of a theoreIn of B. Totaro on the
equivalence of semi-stability and‘weak $adInissibility$ ’ [Tot96]. The second
assertion may be viewed as a p-adic analogue of the Riemarln relations”
(1.1.3).

Corollary 6.2.2. $\mathcal{M}$ is smooth, and any component $\mathcal{M}^{0}$ is a connected
p-adic manifold in the sense of I.1.3.7.

6.2.3. It is very likely that $\mathcal{P}$ , viewed as a mapping $\mathcal{M}\rightarrow \mathcal{D}$ , is surjec-
tive. This is closely related to Fontaine’s conjecture on the realizability of
filtered Dieudonn\’e modules by p-divisible groups. Recent work by C. Breuil
[Bre99], [BreOO] settles the Fontaine conjecture at least for finite residue
fields of characteristic $\neq 2$ , but it seems that the surjectivity conjecture is
not yet fully established.

On the other hand, the fibers of the period mapping are relatively well-
understood, cf. [RZ96, 5.37].

6.2.4. The argument in the proof of 6.1.3 shows a little more. Recall from
3.6.7 (ii) that the analytic vector bundle $(D(\underline{\Lambda})_{\mathfrak{M}})^{an}$ on $\mathcal{M}$ comes together
with an integrable connection $\nabla_{GI\backslash f}$ (the Gauss-Manin connection).

Lemma 6.2.5. The trivialization
$(D(\underline{\Lambda})_{\mathfrak{M}})^{an}\cong V_{p}^{\mathbb{C}_{\rho}}\otimes_{\mathbb{C}_{p}}\mathcal{O}_{\mathcal{M}}$

of \^o.1.3 induces a trivialization of the Gauss-Manin connection:
$((D(\underline{\Lambda})_{\mathfrak{M}})^{an})^{\nabla_{GI\backslash I}}\cong V_{p}^{C_{p}}$

The point is that the convergent isocrystal $D(\Lambda\times \mathfrak{M})$ is constant,
since it comes by base change, from $D(\overline{\Lambda})_{\mathbb{Q}}$ .

This useful lemma will allow us to give explicit expression of the period
mapping in terms of quotients of solutions of differential equations, as in the
complex case.

6.3. Examples and formulas.

6.3.1. We start with example 4.1.1 (p-divisible groups of elliptic curves with
ordinary reduction). The extension

$1\rightarrow\hat{G}_{m}\rightarrow\Lambda\rightarrow \mathbb{Q}_{p}/\mathbb{Z}_{p}\rightarrow 1$

parametrized by $q\in 1+pW$ gives rise, by contravariance, to an extension
of Dieudonn\’e modules (cf. 3.1.1)

$0\rightarrow W\rightarrow D(\Lambda)\rightarrow W(-1)\rightarrow 0$

which splits canonically due to the rigidity of Dieudonn\’e crystals: $D(\Lambda)=$

$D(\overline{\Lambda})=W\oplus W(-1)$ . We denote by $e_{0},$ $e_{-1}$ the corresponding canonical
basis of $D(\Lambda)$ . The image $\tau=\mathcal{P}(q)\in W[\frac{1}{p}]$ of $q$ under the period mapping
is, by definition, the unique element such that $\tau e_{0}+e_{-1}$ generates $F^{1}$ . It
turns out that

$\tau=\log q$ ,
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thus
$\mathcal{M}^{0}=D(1,1^{-})\rightarrow A^{1}\mathcal{P}=\log=\mathcal{D}$ .

Let us indicate a sketch of proof of this remarkable formula (the formula
goes back to Messing-Katz [Mes76], [Ka81]). The argument is more trans-
parent if we think in terms of one-motives instead of elliptic curves: that
is, rather than viewing $\Lambda$ as the p-divisible attached to some elliptic curve
over $W$ , one remarks that it is also the p-divisible group attached to the
one-motive $M=[\mathbb{Z}\rightarrow G_{m}]1\mapsto q$ . Then $D(\Lambda)$ can be identified with $H_{DR}(M)$ ,
the dual of the Lie algebra of $ c\#$ , where $[\mathbb{Z}\rightarrow G\#]$ denotes the universal
vectorial extension of $M$ (cf. [De174]); this extension splits canonically
$(G^{\mathfrak{h}}=G_{a}\times G_{m})$ , and this splitting agrees with the above splitting of $D(\Lambda)$ .
We are thus reduced to prove the following purely algebraic fact: let us view
$M=[\mathbb{Z}\rightarrow^{1-q}G_{m}]$ as a one-motive over $K((q-1))$ ; then in terms of the
canonical basis $e_{0},$ $e_{-1}$ of $H_{DR}(M),$ $F^{1}\subset H_{DR}(M)$ is generated by the vec-
tor $(\log q)e_{0}+e_{-1}$ . This well-known fact is easily proved by transcendental
means, replacing $K$ by $\mathbb{C}$ .
6.3.2. Since the basis $e_{0},$ $e_{-1}$ is horizontal under the Gauss-Manin connec-
tion $\nabla$ on $D(1,1^{-})(6.2.5)^{(3)},$ $\tau$ is a quotient of solutions of the Gauss-Manin
connection. In terms of the Legendre parameter $ z=\lambda$ (around the param-
eter ( of the canonical lifting $A_{can}$ of the fixed ordinary elliptic curve $\overline{A}$),
the equality $\tau=\log q$ means that $q\in 1+(z-\zeta_{can})W[[z-\zeta_{can}]]$ is the
Dwork-Serre-Tate parameter discussed in I.3.4 (for $p\neq 2$ ).

This allows to give explicit formulas for $\mathcal{P}$ as a function of the algebraic
parameter $z$ rather than $q$ . For instance, let us assume that $p\equiv 1(4)$ . The
disc $|z-\frac{1}{2}|<1$ is an ordinary disc. The canonical lifting is $\zeta_{can}=\frac{1}{2}$ (complex
multiplication by $\mathbb{Z}[\sqrt{-1}]$ ). The Gauss-Manin connection is represented by
the hypergeometric differential operator with parameter $(\frac{1}{2}, \frac{1}{2},1)$ . Let us
recall the setting, which we have already met in I.5.3.11.

We consider the symplectic basis $\omega_{1}=[\frac{dx}{2y}],$ $\omega_{2}=[\frac{(2x-1)dx}{4y}]$ of rela-
tive De Rham cohomology. It has the virtue to be, at $z=\frac{1}{2}$ a basis of
eigenvectors for the complex multiplication. The Gauss-Manin connection
satisfies

$\omega_{2}=2z(z-1)\nabla(\frac{d}{dz})\omega_{1}+\frac{4z-5}{6}\omega_{1}$ .

The first row of the solution matrix $Y$ normalized by $Y(\frac{1}{2})=id$ is given by

$y_{11}=F(\frac{1}{4},$ $\frac{1}{4},$ $\frac{1}{2};(1-2z)^{2})+\frac{1}{2}(1-2z)F(\frac{3}{4},$ $\frac{3}{4},$ $\frac{3}{2};(1-2z)^{2})$ ,

$y_{12}=(1-2z)F(\frac{3}{4},$ $\frac{3}{4},$ $\frac{3}{2};(1-2z)^{2})$ .

We have to relate $\omega_{1|_{1/2}},$ $\omega_{2|_{1/2}}$ to the symplectic basis $e_{0},$ $e_{-1}$ . Because
$z=1/2$ gives the canonical lifting, the canonical splitting of the Dieudonn\’e

(3) $which$ is induced by the usual Gauss-Manin connection attached to the Legendre
elliptic pencil, cf. 3.6.6 (ii).
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module is given by the complex multiplication: $e_{0},$ $e_{-1}$ is a basis of eigen-
vectors. In fact, taking into account the fact that we deal with symplectic
bases, we find

$\omega_{1|_{1/2}}=\frac{\ominus}{2}e_{-1}$ , $\omega_{2|_{1/2}}=\frac{2}{\Theta}e_{0}$ ,

where $\Theta\in W^{\times}$ denotes the Tate constant (for $z=\frac{1}{2}$ ) discussed in I.3.4.1,
4.5. (the ambiguity –by a factor in $\mathbb{Z}_{p}^{\times}-$ is removed since the basis $e_{0},$ $e_{-1}$

has been fixed). The period mapping $\tau=\tau(z)$ is given by the quotient of

the entries in the first row of the matrix Y. $\left(\begin{array}{ll}\Theta/2 & 0\\0 & 2/\Theta\end{array}\right)$ , that is to say:

$\tau(z)=(\frac{\ominus^{2}}{4})_{F(\frac{1}{4},\frac{1}{4},\frac{1}{2};(1-2z)^{2})+\frac{1}{2}(1-2z)F(\frac{3}{4},\frac{3}{4},\frac{\ovalbox{\tt\small REJECT}_{3}}{2};(1-2z)^{2})}^{(1-2z)F(\frac{3}{4},\frac{3}{4},\frac{3}{2};(1-2z)^{2})}$

Note that since the target of the period mapping is $A^{1}$ , the denominator
does not vanish on $D(\frac{1}{2},1^{-})$ . Note also that, in analytic terms, the etaleness
of $\mathcal{P}(6.2.1)$ reflects the fact that $\frac{d\tau}{dz}$ does not vanish, being the quotient of
linearly independent solutions of a linear differential equation of rank two.

6.3.3. We now turn to example 4.1.2 (p-divisible groups of elliptic curves
with supersingular reduction). In this case, the period mapping

$\mathcal{M}^{0}\cong D(0,1^{-})\rightarrow \mathbb{P}^{1}\mathcal{P}=\mathcal{D}$

was thoroughly investigated by Gross-Hopkins $[GH94a],$ $[GH94b]$ . In the
special case considered in 4.1.2. ii) (the fixed supersingular elliptic curve]
being defined over $\overline{F}_{p}$ ), they obtained the following formula

$\mathcal{P}(t)=\lim_{n\rightarrow\infty}p^{n}b_{2n}(t)/p^{n+1}b_{2n+1}(t)\in \mathbb{Q}_{p}[[t]]$

and a closed formula was proposed by J. K. Yu in [Yu95, 11].
In terms of the algebraic Legendre parameter $ z=\lambda$ in a supersingular disc,
it is still true, via 6.2.5, that $\tau=\mathcal{P}(z)$ is a quotient of solutions of the Gauss-
Manin connection. This allows to give explicit formulas for $\mathcal{P}$ as a function
of the algebraic parameter $z$ . For instance, let us assume that $p\equiv 3(4)$ .
The disc $|z-\frac{1}{2}|<1$ is a supersingular disc. In terms of a symplectic basis
of eigenvectors for the action of $[\sqrt{-1}]$ on $V_{p}^{\mathbb{C}_{p}}$ , we get the following formula
for the Gross-Hopkins period mapping

$\tau(z)=\kappa F(\frac{1}{4}, \frac{1}{4}, \frac{1}{2};(1-2z)^{2})+\frac{1}{2}(1-2z)F(\frac{3}{4},\frac{3}{4},\frac{\ovalbox{\tt\small REJECT}_{3}}{2};(1-2z)^{2})(1-2z)F(\frac{3}{4},\frac{3}{4},\frac{3}{2};(1-2z)^{2})$

where $\kappa$ is a constant depending on the choice of the basis (a natural
choice would be to take this basis inside the p-adic Betti lattice discussed in
I.5.3; the corresponding constant $\kappa$ is then the one occuring in the proof of
I.Theorem 5.3.9.

Note that since the target of the period mapping is $\mathbb{P}^{1}$ , the denominator
vanishes somewhere on $D(\frac{1}{2},1^{-})$ .
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Note also that the period mapping in the complex situation is given, up to
a constant factor, by the same hypergeometric formula, viewed as a complex
analytic function.
6.3.4. At last, let us turn to example 4.3.4 (p-divisible groups of fake elliptic
curves at a critical prime $p$). In this case, the period mapping

$\mathcal{M}^{0}\rightarrow\Omega_{\mathbb{C}_{p}}\mathcal{P}=\mathcal{D}$

is an isomorphism. This is a reinterpretation of Drinfeld’s work, cf. [RZ96]
(and [BC91, II8]). Actually, Drinfeld establishes an isomorphism at the
level of formal schemes

$\mathfrak{M}^{0}\cong\hat{\Omega}\otimes_{3_{\lrcorner}^{r_{p}}}\overline{\mathbb{Z}_{p}^{ur}}\wedge$

which is $J^{1}$ -equivariant (where $J^{1}$ denotes the image in $J^{ad}=PGL_{2}(\mathbb{Q}_{p})$ of
the elements of $J$ whose determinant is a p-adic unit).

6.3.5. Recall that the p-adic manifold $\Omega_{\mathbb{C}_{p}}$ is simply connected (in the
usual topological sense). However, the above isomorphism and the modular
property of $\mathfrak{M}$ , allowed Drinfeld to construct a tower of finite etale connected
Galois coverings of $\Omega_{\mathbb{C}_{p}}$ (or even of $\Omega_{\overline{\mathbb{Q}_{p}^{ur}}}$ ), as follows.

One considers the universal special formal module A of height 4 over
$\mathfrak{M}^{0}\cong\hat{\Omega}\otimes\overline{\mathbb{Z}_{p}^{ur}}\wedge$ . For any $n\geq 1,$ $Ker[p^{n}]$ is a finite locally free formal group
scheme of rank $p^{4n}$ over $\hat{\Omega}\otimes\overline{\mathbb{Z}_{p}^{ur}}\wedge$ . This gives rise to a finite etale covering of
the analytic space $\Omega_{\overline{\mathbb{Q}_{p}^{ur}}}$ (fibered in rank-one $\mathcal{B}_{p}/p^{n}\mathcal{B}_{p}$-modules).

To get a connected Galois covering, one looks at the $\Pi$-action (recall
from 4.3.4 that $\mathcal{B}_{p}=\mathbb{Z}_{p^{2}}[\Pi],$ $\Pi^{2}=p$): one has $Ker[\rho^{n}]=Ker[\Pi^{2n}]$ , and the
complement of $Ker[\Pi^{2n-1}]$ in $Ker[\Pi^{2n}]$ provides a finite etale Galois covering
$\Sigma^{n}$ of $\Omega_{\overline{\mathbb{Q}_{p}^{ur}}}$ with group $(\mathcal{B}_{p}/p^{n}\mathcal{B}_{p})^{\times}$ . When $n$ grows, these form a projective
system of Galois coverings (with Galois group the profinite completion of
$\mathcal{B}_{p}^{\times})$ . This tower is equivariant with respect to the $GL_{2}(\mathbb{Q}_{p})$ -action.

Over $\mathbb{C}_{p},$
$\Sigma^{n}$ decomposes into finitely many copies of a connected p-

adic manifold $T^{n}$ which is a finite etale Galois covering of $\Omega_{\mathbb{C}_{p}}$ with group
$SL_{1}(\mathcal{B}_{p}/p^{n}\mathcal{B}_{p})$ . This can be seen either by using various maximal commuta-
tive $\mathbb{Q}_{p}$-subalgebras of $B_{p}$ and reasoning as in $[Var98a, 1.4.6]$ , or by global
means, using the \v{C}erednik-Drinfeld theorem (7.4.7), or else by the properties
of the so-called determinant map [BZ95, II].

Up to now, there is no other method for constructing non-abelian finite
etale coverings of $\Omega_{\mathbb{C}_{p}}$ . The coverings $\prime r^{n}$ remain rather mysterious: are they
simply-connected? Is any connected finite etale covering of $\Omega_{\mathbb{C}_{p}}$ a quotient
of some $\prime r^{n}$ ? Does there exist an infinite etale Galois covering of analytic
manifolds $\prime r\rightarrow\Omega_{\mathbb{C}_{p}}$ with Galois group $SL_{1}(\mathcal{B}_{p})$ ?

Drinfeld’s construction works for any $GL_{n}$ over any local field $L$ , replac-
ing $\Omega$ by the complement $L\Omega^{(n-1)}$ of L-rational hyperplanes in $\mathbb{P}^{n-1}$ .

(4) $for$ the Legendre elliptic pencil, and computed with help of a basis of cycles –with
coefficients in the Gauss integers –which are eigenvectors for complex multiplication at
$z=1/2$ .
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6.4. De Jong’s viewpoint on p-adic period mappings.

J. de Jong $[dJ95b]$ has proposed an interpretation of the period map-
ping which clarifies a lot the nature of its fibers. We briefly present this
interpretation under the following mild simplifying assumption:

$*that$ there is a family of affinoid domains $(X_{i})$ of $\mathcal{M}^{0}$ such that the
$\mathcal{P}(X_{i})$ (which are finite unions of affinoid domains in $\mathcal{D}$ since $\mathcal{P}$ is
etale) form an admissible covering of $\mathcal{D}$ .

This assumption is fulfilled in our three basic examples (but not always,
cf. [RZ96, 5.53]).

Under $(*)$ , De Jong shows ( $loc$ . $cit$ . (5) intr. and 7.2) that there is an
etale local system of $\mathbb{Q}_{p}$-spaces $\mathcal{V}$ on $\mathcal{D}$ such that $\mathcal{M}^{0}$ is a component of the
space of $\mathbb{Z}_{p}$-lattices in $\mathcal{V}$ . Here, an “etale local system of $\mathbb{Q}_{p}$-spaces” is given
by the data

$\mathcal{V}=(\{U_{i}\rightarrow \mathcal{D}\}, \mathcal{V}_{i}, \phi_{i_{J}})$

where $U_{i}\rightarrow \mathcal{D}$ are open immersions,
$\mathcal{V}_{i}=\lim_{n}\mathcal{V}_{i}/p^{n}\mathcal{V}_{i}\leftarrow$

are etale local systems

of $\mathbb{Z}_{p}$-lattices (each $\mathcal{V}_{i}/p^{n}\mathcal{V}_{i}$ being a finite locally free sheaf of $\mathbb{Z}/p^{n}\mathbb{Z}$-modules
on the etale site of $U_{i}$ ), and $\phi_{ij}$ : $(\mathcal{V}_{i}\otimes \mathbb{Q}_{p})_{|U_{2}x_{D}U_{J}}\rightarrow(\mathcal{V}_{J}\otimes \mathbb{Q}_{p})_{|U_{i\times D}U_{J}}$ are
isomorphisms satisfying the usual cocycle condition (cf. $[dJ95b,$ $4]$ ).

Of course, in the (decorated case”, $\mathcal{V}$ inherits the relevant decoration.
It follows from this interpretation that in example 4.1.2, the fibers of

the period mapping are in natural bijection with the set of vertices of the
Bruhat-Tits tree $\mathcal{T}$ .

Similarly, in example 4.3.4, one can see that the fibers of $\mathcal{P}$ are in bijec-
tion with the one-point set $SL_{1}(B_{p})/SL_{1}(\mathcal{B}_{p})$ , cf. 7.4.4.

(5) $of$ course $ p=\ell$ throughout \S \S 6 and 7 of $loc$ . $cit$ .
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7. $p$-adic uniformization of Shimura varieties.

ABSTRACT: Application of the theory of p-adic period mappings: Rapoport-Zink’s
p-adic uniformization theorem. The case of global uniformization. \v{C}erednik-
Drinfeld uniformization of Shimura curves and other examples.

7.1. p-integral models of Shimura varieties.

7.1.1. Let $Sh$ be a Shimura variety of PEL type as in 1.1.4. We recall the
setting of 1.1.4: $B$ is a simple finite-dimensional $\mathbb{Q}$-algebra, with a positive
involution $*,$ $V$ is a B-module of finite type, endowed with an alternate
$\mathbb{Q}$-bilinear form such that \langle $bv,$ $w$ } $=\langle v,$ $b^{*}w$ } $;G$ denotes the $\mathbb{Q}$-group of B-
linear symplectic similitudes of $V;\mathcal{B}$ is a maximal order in $B$ stable under
$*$ and $L$ is a lattice in $V$ , stable under $\mathcal{B}$ and autodual for $\langle$ , $\rangle$ .

The (non-connected) Shimura variety $Sh$ is defined over the reflex field
$E$ (which is a number field in $\mathbb{C}$ ). There are variants of $Sh$ in which the
principal congruence subgroup of level $N$ of $G(\hat{\mathbb{Z}})$ is replaced by any open
compact subgroup $C$ of $G(A_{f})$ , where $A_{f}=\hat{\mathbb{Z}}\otimes \mathbb{Q}$ is the ring of finite adeles
of $\mathbb{Q}$ . The complex points of $Sh$ admit the following adelic description

$Sh(\mathbb{C})=C\backslash ((G(\mathbb{R})^{ad}.h_{0})\times G(A_{f}))/G(\mathbb{Q})$

(cf. 1.2.5 about the one-parameter group $h_{0}$ ). We refer to [Moo98] for
a recent survey of Shimura varieties in adelic setting (and their integral
models).

7.1.2. We set $B_{p}=B\otimes_{\mathbb{Q}}\mathbb{Q}_{p},$ $\mathcal{B}_{p}=\mathcal{B}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}$ , and so on. We denote by $C_{p}$

the stabilizer of $L_{p}$ in $G(\mathbb{Q}_{p})$

We assume that $C$ is of the form $C^{p}C_{p}$ for some open compact subgroup
$C^{p}$ of $G(A_{f}^{p})$ , where $A_{f}^{p}=(\prod_{\ell\neq p}\mathbb{Z}_{l})\otimes \mathbb{Q}$ .

In the case of a congruence subgroup of level $N$ , this condition means
that the level is prime to $p$ .

We fix an embedding $v:E\rightarrow \mathbb{C}_{p}$ , denote by $E_{v}$ the v-completion of $E$ ,
by $\mathfrak{v}$ the discrete valuation ring $\overline{\mathbb{Z}^{ur}}.\mathcal{O}_{E_{2)}}=\overline{\mathbb{Z}^{ur}}.\mathcal{O}_{E}$ (compositum in $\mathbb{C}_{p}$ ), and
by $K$ the fraction field of $\mathfrak{v}$ .

7.1.3. Let $S$ be a scheme. The objects of the the category of S-abelian
schemes up to prime to $p$ isogeny are the abelian schemes over $S$ ; morphisms
between $A$ and $A^{\prime}$ are global sections of $\underline{Hom}_{S}(A, A^{\prime})\otimes_{\mathbb{Z}}\mathbb{Z}_{(p)}$ , where $\mathbb{Z}_{(p)}$ is
the ring of rational numbers with denominator prime to $p$ . This is a $\mathbb{Z}_{(p)^{-}}$

linear category. Its relation to p-divisible groups is given by the following
elementary lemma:

Lemma 7.1.4. The faithful functor $A\mapsto A[p^{\infty}]$

{S-abelian schemes up to prime to $pisogeny$} $\rightarrow$ { $p$-divisible groups over $S$ }
is conservative, $i.e$ . reflects isomorphisms.

The following result (which we state in a rather vague manner) is due
to R. Kottwitz [Kot92] (Compare with 1.2.5.).
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Proposition 7.1.5. For sufficiently small $C^{p}$ , there is a moduli scheme
$Sh$ over $\mathcal{O}_{E_{1}}$ for isomorphism classes of abelian varieties $A$ up to prime
to $p$ isogeny, with $\mathcal{B}$ -action (with Shimum type condition), together with a

$\mathbb{Q}$ -homogeneous $principal*$ -polarization and a class of B-linear symplectic
similitudes $H_{ct}^{1}(A, A_{f}^{p})\rightarrow A_{f}^{p}\otimes V$ modulo the group $C^{p}$ . The gene $r^{\prime}ic$ fiber
$Sh\otimes o_{E_{v}}E_{v}$ is a finite sum of copies of $Sh\otimes_{E}E_{v}$ .

In the case of a congruence subgroup of level $N$ , this condition that $C^{p}$

is sufficiently small means that $N$ is sufficiently large (and kept prime to $p$).

7.2. The uniformization theorem.

7.2.1. One fixes a point of $Sh(\overline{F}_{p})$ , hence a $\overline{F}_{p}$-abelian variety $\overline{A}$ up to prime
to $p$ isogeny with $\mathcal{B}$-action, principal $*$-polarization, and level structure.
We consider the p-divisible group A $=\overline{A}[p^{\infty}]$ (with $\mathcal{B}_{p}$-action, principal
$*$-polarization, level structure). We denote by $\overline{G}$ the $\mathbb{Q}$-group of self-quasi-
isogenies of $\overline{A}$ respecting the additional structure. It is clear that $\overline{G}(\mathbb{Q}_{p})\subset J$ ;
on the other hand $\overline{G}(A_{f}^{p})\subset G(A_{f}^{p})$ .

We also consider an auxiliary lifting $\overline{A}\sim$ of $\overline{A}$ (with $\mathcal{B}$-action) over some
finite extension $\mathcal{O}_{E^{\prime}}$ of $\mathcal{O}_{E}$ in $\mathfrak{v}$ , and set $\overline{\Lambda}=\overline{A}_{\mathfrak{v}}[\rho^{\infty}]\sim\sim$ . We can then identify
$D(\overline{\Lambda})\otimes_{W}K$ with $H_{DR}^{1}(\overline{A})\otimes_{\mathcal{O}_{E}},$$ K\sim$ , and the submodule

$\omega_{\overline{\Lambda}}^{-}$
with $ F^{1}H_{DR}^{1}(\overline{A})\otimes_{\mathcal{O}_{E}}\sim$ ,

$K$ . Thus if the complex lagrangian space $F_{0}^{1}$ of 1.1.4 is taken to be $ F^{1}H_{DR}^{1}(\overline{A})\otimes_{\mathcal{O}_{E}}\sim$ ,
$\mathbb{C}$ (for some complex embedding of $E^{\prime}$ extending the natural complex em-
bedding of $E$), the complex and p-adic Shimura type conditions “agree”
(1.1.4, 4.3.2). We can consider the corresponding decorated moduli problem
for p-divisible groups, and the formal moduli scheme $\mathfrak{M}$ over $\mathfrak{v}$ as in 4.3.
Moreover, the flags spaces $\mathcal{D}^{\vee}$ considered in the complex and $1\succ adic$ situa-
tions agree, $i.e$ . come from the same flag space defined over the reflex field
$E$ .

7.2.2. One defines a morphism of functors on $Ni1_{\mathfrak{v}}$ :

$\mathfrak{M}\rightarrow Sh$

as follows [RZ96, 6.14]. Let $S$ be in $Ni1_{\mathfrak{v}}$ and let us consider a pair $(\Lambda, \rho)\in$

$\mathfrak{M}(S)$ . By rigidity of p-divisible groups up to isogeny (2.2.3), the $\mathcal{B}_{p}$-quasi-
isogeny $\rho\in$ qisog( $\Lambda\times sS_{red}$ , A $X_{\overline{F}_{p}}S_{rcd}$ ) lifts to a unique $\mathcal{B}_{p}$-quasi-isogeny

$\tilde{\rho}\in qisog$ ( $\Lambda$ , A $\times_{\mathfrak{v}}S$ ). This can be algebraized in a weak sense: there is an
S-abelian scheme $A_{(\Lambda,\rho)}$ up to prime to $p$ isogeny, with $\mathcal{B}$-action and with

p-divisible group $\Lambda$ , and a quasi-isogeny $A_{(\Lambda,\rho)}\rightarrow\overline{A}\sim\times o_{E^{\prime}}S$ which induces $\tilde{\rho}$

at the level of p-divisible groups. Moreover $A_{(\Lambda,\rho)}$ is unique in the category
of S-abelian schemes up to prime to $p$ isogeny with $\mathcal{B}$-action (7.1.4), and its
formation is functorial in $(\Lambda, \rho)$ . One then defines the required morphism of
functors on $\mathfrak{M}(S)$ by setting $(\Lambda, \rho)\mapsto A_{(\Lambda,\rho)}$ (endowed with the polarization
and level structure inherited from $\overline{A}$).
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This defines a morphism of formal schemes, hence a morphism of asso-
ciated analytic spaces over $\mathbb{C}_{p}$ :

$\mathcal{Q}$ : $\mathcal{M}\rightarrow Sh_{\mathbb{C}_{p}}^{an}$ .

7.2.3. It turns out that the decorated abelian varieties (up to prime to $p$

isogeny) which are isogenous to $\overline{A}$ form in a natural way a countable union
$Z=\cup Z_{n}$ of projective irreducible subvarieties $Z_{n}$ of $Sh_{\overline{F}_{p}}$ , each of them
meeting only finitely many members of the family ([RZ96, 6.23, 6.34]).
One can slightly generalize the notion of tubes (3.5) and define the tube
$]Z$ [ $\subset Sh_{\mathbb{C}_{p}}^{an}$ . We denote by $S$ the connected component $of$ ] $Z$ [which contains

the modular point $s$ of our chosen lifting $\overline{A}\sim$ .

Theorem 7.2.4. For sufficiently small $C^{p}$ , there is a connected component
$\mathcal{M}^{0}$ of $\mathcal{M}$ such that the restriction $\mathcal{Q}$ : $\mathcal{M}^{0}\rightarrow S$ is a topological covering
of S. More precisely, $S$ is the (right) quotient of $\mathcal{M}^{0}$ by some torsion-free
discrete subgmup of $J$ .

cf. [RZ96, 6.23, 6.31]. Roughly speaking, the proof of 7.2.4 involves two
steps: using the Serre-Tate theorem 2.2.5, one shows that the morphism of
$\mathfrak{v}$-formal schemes $\mathfrak{M}\rightarrow Sh$ defined above is formally etale. One concludes
by a careful study of this morphism on geometric points.

In our examples 4.2, $S$ is an open unit disc, and the map $\mathcal{Q}$ is an iso-
morphism (in 4.2.1, it is induced by $ q\mapsto z=\lambda$ ).

7.2.5. Let us consider the universal decorated abelian scheme $\underline{A}$ over $Sh$ ,
and the vector bundle $\mathcal{H}=H_{DR}^{1}(\underline{A}/Sh)$ with its Gauss-Manin connection
$\nabla_{GM}$ : $\mathcal{H}\rightarrow\Omega_{Sh}^{1}\otimes \mathcal{H}$ .

Corollary 7.2.6. Viewed as a p-adic connection and restricted to $S$ , the
Gauss-Manin connection $\nabla_{GM|S}$ comes from a representation of $\pi_{1}^{top}(S, s)$

on $V^{\mathbb{C}_{p}}$ (hence it satisfies Cauchy’s theorem, cf. I.1.5).

PROOF. Let $\tilde{S}$ be the universal covering of $S$ . According to I.1.5), we have
to show that the pull-back of $\nabla_{GM}$ on $\tilde{S}$ is trivial $(\cong V^{\mathbb{C}_{p}}\otimes \mathcal{O}_{\overline{S}})$ . By 7.2.4
and 6.2.5, this already holds on the quotient $\mathcal{M}^{0}$ of $\tilde{S}$ . $\square $

Remark. Using the Weil descent data of [RZ96, 6.21], one can show that
the representation is defined over a finite unramified extension $E_{v}^{\prime}$ of $E_{v},$ $i.e$ .
comes from a representation of $\pi_{1}^{top}(S, s)$ on $V\otimes E_{v}^{\prime}$ .

7.2.7. The assumption $C=C^{p}C_{p}$ is necessary to define the morphism
$\mathcal{Q}$ : $\mathcal{M}^{0}\rightarrow S$ . The assumption $C^{p}$ small enough” is much less important.
Theorem 7.2.4. holds without it, except that the discrete subgroup of $J$ is
then no longer torsion-free [the point is that there is always a normal sub-
group $C^{\prime p}$ of finite index which is small enough, one applies the theorem to
$C^{\prime p}$ , and one passes to the quotient by $C^{\prime p}/C^{p}$ ]. However, to give a modular
interpretation of the (ramified) quotient of $\mathcal{M}^{0}$ in this case, one needs the
notion of p-adic orbifold (to be discussed in III); moreover the Gauss-Manin
connection may acquire logarithmic singularities along the branched locus.
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7.3. Global uniformization

We say that there is global uniformization in case $S$ is (the analytification
of) a whole connected component of the $S$himura variety $Sh$ . This occurs
when the reduction $mod p$ of the decorated abelian varieties $A$ parametrized
by $Sh$ form a single isogeny class.

In the situation of global uniformization, the group $\overline{G}$ of self-quasi-
isogenies of $\overline{A}$ (with decoration) is an inner form of $G$ .

In view of our analogy 4.3.5, this situation can be expected to be closest
to the complex case (in the notation of 1.2.5, the $\hat{A}’ s$ are all isomorphic to
$\hat{U})$ . Indeed, we then get a commutative diagram of p-adic manifolds (similar
to 1.2.5):

$\mathcal{M}^{0}\rightarrow^{\mathcal{P}}$
$\mathcal{D}\subset \mathcal{D}^{\vee}$

$\mathcal{Q}\downarrow$ $\downarrow \mathcal{Q}$

$S$ $\rightarrow^{\mathcal{P}}\mathcal{D}/\Gamma$ .
where the horizontal maps are etale, $\mathcal{Q}$ denotes the quotient maps, and
$\Gamma$ is an arithmetic subgroup in the semi-simple group lii7ad In all known
examples, $\mathcal{P}$ is actually an isomorphism and $\mathcal{M}^{0}=\tilde{S}$ [RZ96, 6], [BZ95],
$[Var98a]$ . $[Var98b]$ .

Here, the archimedean–non archimedean correspondence goes beyond
a mere analogy: indeed, here and in 1.2.5, what is denoted by $S$ (resp. $\mathcal{D}^{\vee}$ )
is the –complex or p-adic –analytification of the same algebraic variety.
Remark. To avoid any ambiguity, let us point out that we consider here
only phenomena of global uniformization which can be interpreted in terms
of moduli spaces of p-divisible groups. This does not account for all cases of
global p-adic uniformization of Shimura varieties. For instance, it is known
that the elliptic modular curve $X_{0}(p)$ is a PtIumford curve over $\mathbb{Q}_{p}$ , whereas
the p-adic uniformization of 7.2.4 (or variants with level $p$ structure) is local.

7.4. Example: the \v{C}erednik-Drinfeld uniformization of Shimura
curves at a critical prime.

7.4.1. The first historical example of global uniformization in the above
sense is the \v{C}erednik uniformization of (($Shimura$ curves” (modular curves
for fake elliptic curves) at a critical prime $p$ , cf. [ $\check{C}$er76]. \v{C}erednik’s method
was of group-theoretic nature and did not involve formal groups. A modular
proof was subsequently proposed by Drinfeld [Dri76] (cf. also [BC91, III]).
For examples, and related topics, we refer to $[vdP89]$ . $[vdP92a],$ $[vdP92b]$ .

7.4.2. We fix an indefinite quaternion algebra $B$ over $\mathbb{Q}$ , a maximal or-
der $\mathcal{B}$ in $B$ , and a positive involution $*of\mathcal{B}$ . We consider the standard
representation $V=B$ of $B$ , so that $G=GL_{B}(V)\cong B^{\times}$ .

We refer to the foundational paper [Shi67] for the properties of the
(connected) Shimura curve $\mathcal{X}^{+}(N)$ of level $N$ attached to $B$ . It parametrizes
$principally*$-polarized abelian surfaces with multiplication by $\mathcal{B}$ (fake elliptic
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curves, cf. 4.3.4), with level $N$ structure. We recall the following properties
of $\mathcal{X}^{+}(N)$ , which actually characterize it $(loc. cit. 3.2)$ :

(a) $\mathcal{X}^{+}(N)$ is a projective geometrically connected smooth curve defined
over the cyclotomic field $\mathbb{Q}(\zeta_{N})$ ,

(b) $\mathcal{X}^{+}(N)(\mathbb{C})=\mathfrak{h}/\Gamma^{+}(N)$ , that is to say: $\mathcal{X}^{+}(N)$ is the quotient of the
Poincar\’e upper half plane by the image $\Gamma^{+}(N)=PSL_{1}(\mathcal{B})(N)$ of the
group $\{g\in(1+N\mathcal{B})^{\times}, Nr(g)>0\}$ in $PSL_{2}(\mathbb{R})$ , where Nr stands for
the reduced norm,

(c) for any imaginary quadratic field $K$ in $B$ such that $\mathcal{O}_{K}\subset \mathcal{B}$ , let $z$

be its fixed point in $\mathfrak{h}$ . Then the extension of $\mathbb{Q}(\zeta_{N})$ generated by
the image of $z$ in $\mathcal{X}^{+}(N)$ is the class field over $K$ with conductor
$N\mathcal{B}\cap \mathcal{O}_{K}$ .

The commutative diagram of 1.2.5, involving the complex period map-
ping, specializes to the following

$\tilde{S}$
$\rightarrow^{\mathcal{P}}$

$\mathcal{D}=\mathfrak{h}$
$\subset \mathcal{D}^{\vee}=\mathbb{P}^{1}$

$\mathcal{Q}\downarrow$ $\downarrow \mathcal{Q}$

$S=\mathcal{X}^{+}(N)_{\mathbb{C}}^{an}\rightarrow^{\mathcal{P}}\mathcal{D}/\Gamma^{+}(N)$

where the horizontal maps are isomorphisms (and the vertical maps are
topological coverings if $\Gamma_{p}^{+}(N)$ is torsion-free).

There is a useful variant $\mathcal{X}^{*}$ of $\mathcal{X}^{+}=\mathcal{X}^{+}(1)$ , already considered by
Shimura ([Shi67, 3.13], in which $\Gamma^{+}$ is replaced by the image $\Gamma^{*}$ in $PSL_{2}(\mathbb{R})$

of the group $\{g\in B^{\times}|g\mathcal{B}=\mathcal{B}g, Nr(g)>0\}$ :

$\mathcal{X}^{*}(\mathbb{C})=\mathfrak{h}/\Gamma^{*}$ .

It is defined over $\mathbb{Q}$ . More generally, there is a Shimura curve $\mathcal{X}_{\Gamma}$ attached
to any congruence subgroup $\Gamma$ in $B^{\times}/\mathbb{Q}^{\times}+$ , where $B^{\times}+denotes$ the group
of elements of positive reduced norm.

7.4.3. It is known that $\mathcal{X}^{+}(N)$ has good reduction at any prime $p$ which
does not divide the discriminant $d(B)$ of $B$ nor the level $N$ (Y. Morita).
If instead $p$ is critical (but still does not divide $N$ ), as we shall assume
henceforth, \v{C}erednik’s theorem shows that $\mathcal{X}^{+}(N)_{\mathbb{C}_{p}}$ is a Mumford curve
uniformized by the Drinfeld space $\Omega_{\mathbb{C}_{p}}=\mathbb{P}_{\mathbb{C}_{p}}^{1}\backslash \mathbb{P}^{1}(\mathbb{Q}_{p})$ (at least if $N$ is large
enough); in fact, $Sh$ becomes a Mumford curve over some finite unramified
extension of $\mathbb{Q}_{p}$ (note that $\mathbb{Q}(\zeta_{N})\subset \mathbb{Q}_{p}^{ur}$ ).

To be more explicit, let $\overline{B}$ be the definite quaternion $\mathbb{Q}$-algebra which
is ramified at the same primes as $B$ except $p:\overline{B}_{p}\cong M_{2}(\mathbb{Q}_{p})$ . Let $\overline{\mathcal{B}}$ be a
maximal order in $\overline{B}$ . Let $\Gamma_{p}^{+}(N)$ be the image in $PGL_{2}(\mathbb{Q}_{p})$ of the group
{ $g\in(1+N\overline{\mathcal{B}}[\frac{1}{p}])^{\times}|ord_{p}(Nr(g))$ even}. Let $\Gamma_{p}^{*}$ be the image in $PGL_{2}(\mathbb{Q}_{p})$

(6)
$1f$ this group is not torsion-free $\tilde{S}$ is the universal covering in the sense of orbifolds.
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of the normalizer $\{g\in\overline{B}^{\times}|g\overline{\mathcal{B}}[\frac{1}{p}]=\overline{\mathcal{B}}[\frac{1}{p}]g\}$ . These are discrete subgroups,
and one has the \v{C}erednik uniformization:

$\mathcal{X}^{+}(N)_{\mathbb{C}_{p}}^{an}\cong\Omega_{\mathbb{C}_{p}}/\Gamma_{p}^{+}(N)$ ,

$\mathcal{X}_{\mathbb{C}_{p}}^{*an}\cong\Omega_{\mathbb{C}_{p}}/\Gamma_{p}^{*}$ .

For recent applications to p-adic L-functions, Heegner points, etc... cf.
[BD98].

7.4.4. The case of $\mathcal{X}^{*}$ is the one originally considered in [ $\check{C}$er76], except
that \v{C}erednik uses the adelic language. In order to make the translation, it
is useful to keep in mind the following few facts (cf. [Vig80, pp. 40, 99 and
passim]).

For critical $p$ , the unique maximal order $\mathcal{B}_{p}$ of $B_{p}$ is $\{b\in B_{p}|Nr(b)\in$

$\mathbb{Z}_{p}\}$ . Hence, we have an equality $SL_{1}(\mathcal{B}_{p})=SL_{1}(B_{p})$ and a chain of compact
normal subgroups

$PSL_{1}(\mathcal{B}_{p})=PSL_{1}(B_{p})\subset PGL_{1}(\mathcal{B}_{p})\subset PGL_{1}(B_{p})$

with $PGL_{1}(B_{p})/PSL_{1}(\mathcal{B}_{p})\cong \mathbb{Q}_{p}^{\times}/(\mathbb{Q}_{p}^{\times})^{2}$ (which is of type $(2, 2)$ if $p\neq 2$ , of
type (2, 2.2) if $p=2$ ).

On the other hand, the normalizer of $\mathcal{B}_{\ell}$ in $B_{\ell}^{\times}$ is $B_{\ell}^{\times}$ if $l$ is critical, and
$\mathcal{B}_{p}^{\times}.\mathbb{Q}_{p}^{\times}$ otherwise. It follows that

$\Gamma^{*}=\{g\in B^{\times}+|\forall\ell\{d(B), g\in \mathcal{B}_{\ell}^{\times}.\mathbb{Q}_{\ell}^{\times}\}/\mathbb{Q}^{\times}$

$\Gamma_{p}^{*}=\{g\in\overline{B}^{\times}|\forall\ell\{d(B), g\in\overline{\mathcal{B}}_{\ell}^{\times}.\mathbb{Q}_{\ell}^{\times}\}/\mathbb{Q}^{\times}$

$\Gamma^{+}(N)=\{g\in B^{\times}+|\forall\ell, g\in(1+N\mathcal{B}_{\ell})^{\times}.\mathbb{Q}_{p^{X}}\}/\mathbb{Q}^{\times}$

$\Gamma_{p}^{+}(N)=\{g\in\overline{B}^{\times}|$ $\forall\ell\neq p,g\in(1+N\overline{\mathcal{B}}_{\ell})^{\times}.\mathbb{Q}_{\ell}^{\times}ord_{p}(Nr(g))even;\}/\mathbb{Q}^{\times}$

If $N$ is prime to $d(B)$ , this can also be rewritten

$\Gamma^{+}(N)=\{g\in B^{\times}+|\forall\ell\forall\ell 1^{d(B),ord_{\ell}(Nr(g))even;}d(B),g\in(1+N\mathcal{B}_{l})^{\times}.\mathbb{Q}_{\ell}^{\times}\}/\mathbb{Q}^{\times}$

$\Gamma_{p}^{+}(N)=\{g\in\overline{B}^{\times}|$ $\forall\ell\forall l\}_{d(B),g\in(1+N_{\ell}^{\frac{)}{\mathcal{B}}})^{\times}.\mathbb{Q}_{\ell}^{\times}}^{d(B),ord_{\ell}(Nr(g)even;}\}/\mathbb{Q}^{\times}$

In particular, for $N=1$ , we see that there are canonical bijections
$\Gamma^{*}/\Gamma^{+}=\Gamma_{p}^{*}/\Gamma_{p}^{+}=(\mathbb{Z}/2\mathbb{Z})^{\psi\{\ell|d(B)\}}$

7.4.5. We now give some indications on Drinfeld’s modular approach to
\v{C}erednik’s uniformization.

Lemma 7.4.6. (i) Fake elliptic curves have potentially good reduction
at every prime; the reduction is supersingular reduction at the critical
prime $p$ . In particular, over $\overline{F}_{p}$ , they form a unique isogeny class.

(ii) Fake elliptic curves have a unique $principal*$ -polarization.
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PROOF. (i): due to the presence of many endomorphisms, the potential good
reduction follows easily from the semi-stable reduction theorem for abelian
schemes; also, the non-split quaternion algebra $B_{p}$ acts on the p-divisible
group up to isogeny, and this forces the slopes to be 1/2; for details and (ii),
cf. [BC91, III]. $\square $

It follows from (i) that any fake elliptic curve over $\overline{F}_{p}$ is isogenous to the
square of a supersingular elliptic curve $\overline{E}$ . However, while there are only
finitely many supersingular elliptic curves up to isomorphism, fake elliptic
curves over $\overline{F}_{p}$ have continuous moduli! The moduli spaces are chains of
$\mathbb{P}^{1}’ s^{(7)}$

Let us introduce the quaternion $\mathbb{Q}$-algebra $D$ ramified only at $p$ and $\infty$ :
$D\cong End^{\mathbb{Q}}(\overline{E})$ . Let $\overline{A}$ be a fake elliptic curve over $\overline{F}_{p}$ . It follows from 7.4.6
(i) that $End^{\mathbb{Q}}(\overline{A})\cong M_{2}(D)$ , and $End_{B}^{\mathbb{Q}}(\overline{A})\cong\overline{B}$ .

In particular, the inner form $\overline{G}$ of $G$ considered in 7.3 is $\overline{B}^{\times}$ , and $\overline{G}(\mathbb{Q}_{p})=$

$GL_{2}(\mathbb{Q}_{p})=J$ .
It follows from 7.4.6 (ii) that we may disregard polarizations. The p-

divisible groups attached to fake elliptic curves with $\mathcal{B}$-multiplication are
special formal $\mathcal{B}_{p}$-modules of height 4; recall from 4.3.4 the corresponding
formal moduli space

$\mathfrak{M}=\coprod_{\mathbb{Z}}\mathfrak{M}^{0}$
. The period mapping is an isomorphism

(6.3.4, 6.4), and the commutative diagram of 7.3 specializes to

$\tilde{S}=\mathcal{M}^{0}$ $\rightarrow^{\mathcal{P}}\mathcal{D}=\Omega_{\mathbb{C}_{p}}\subset \mathcal{D}^{\vee}=\mathbb{P}^{1}$

$\mathcal{Q}\downarrow$ $\downarrow \mathcal{Q}$

$S=\mathcal{X}^{+}(N)_{\mathbb{C}_{p}}^{an}\rightarrow^{\mathcal{P}}\mathcal{D}/\Gamma_{p}^{+}(N)$

where the horizontal maps are isomorphisms (and the vertical maps are
topological coverings if $\Gamma_{p}^{+}(N)$ is torsion-free), in complete analogy with
7.2.

7.4.7. Let us end this section by considering the case where $p$ divides the
level $N:N=p^{n}.\Lambda I,$ $p\{M$ .

In this case, $\Gamma_{p}^{+}(N)=\Gamma_{p}^{+}(M)$ . The finite etale covering $\mathcal{X}^{+}(N)_{\mathbb{C}_{p}}^{an}\rightarrow$

$\mathcal{X}^{+}(\Lambda I)_{\mathbb{C}_{p}}^{an}$ is not a topological covering anymore (even if $\Gamma_{p}^{+}(\Lambda I)$ is torsion-
free). As was shown by Drinfeld, it is hidden in the finite etale covering $\prime r^{n}$

of $\Omega_{\mathbb{C}_{p}}(6.3.5)$ .
Let us assume for simplicity that $M>2$ , so that-l $\not\in\Gamma^{+}(M)$ . This im-

plies that $\Gamma^{+}(N)/\Gamma^{+}(ilI)\cong SL_{1}(\mathcal{B}/p^{n}\mathcal{B})$ . Then $\wedge f^{n}$ is a topological covering
of $\mathcal{X}^{+}(N)_{\mathbb{C}_{p}}^{an}$ , and more precisely, one has the commutative diagram

(7) $Another$ curious feature of the higher dimensional case is that the product of $n>1$
supersingular elliptic curves over $\overline{F}_{p}$ form a single isomorphism class (Deligne, Ogus)
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$\mathcal{X}^{+}(N)_{\mathbb{C}_{p}}^{an}\downarrow\rightarrow^{\sim}\wedge r^{n}/\Gamma_{p,\downarrow}^{+}(\lrcorner\iota I)$

$\mathcal{X}^{+}(\Lambda I)_{\mathbb{C}_{p}}^{an}\rightarrow^{\mathcal{P}}\Omega_{\mathbb{C}_{p}}/\Gamma_{p}^{+}(\Lambda I)$

where the vertical maps are finite etale Galois covering maps with group
$SL_{1}(\mathcal{B}/p^{n}\mathcal{B})$ , cf. [BC91, III.5.5], $[Var98a]$ . Similarly, there is such a p-
adic global uniformization for any Shimura curve $\mathcal{X}_{\Gamma}$ (cf. 7.4.1).

7.5. Other examples of global p-adic uniformization.

7.5.1. Shimura’s paper [Shi67] deals not only with quaternion algebra over
$\mathbb{Q}$ , but also with quaternion algebras $B/E$ over a totally real number field
$E$ . When $B$ splits at a single real place, he constructs curves $\mathcal{X}^{+}(N)$ and
$\mathcal{X}^{*}$ satisfying properties similar to (a),(b),(c) of 7.4.2.

In this context, $N$ may be an arbitrary ideal of $\mathcal{O}_{E},$ $\mathbb{Q}(\zeta_{N})$ has to be
replaced by the ray class field with conductor $ N.\infty$ , and the condition
$N(g)>0$ means that the reduced norm of $g$ is totally positive, or, what
amounts to the same, is positive at the split real place $\infty 0$ .

The novelty, however, is that these Shimura curves have no direct in-
terpretation as moduli spaces for decorated abelian varieties, since $B$ is
not in the Albert list of endomorphism algebras of abelian varieties when
$[E : \mathbb{Q}]>1$ .

To overcome this problem, Shimura introduces the following remarkable
trick. Let $K$ be a totally imaginary quadratic extension of $E$ . Then $B^{\cdot}=$

$B\otimes_{E}K$ is in Albert’s list (we endow it with the involution which is the
tensor product of $*onB$ and complex conjugation on $K$ ). It turns out
that the Shimura varieties of PEL type for abelian varieties of dimension
$g=4[E:\mathbb{Q}]$ ( $*$-polarized, with level structure) with complex multiplication
by $B^{\cdot}$ are twisted forms of the same curve. The Shimura curve attached to
$B$ is obtained by Weil descent from the Shimura curves attached to $B\otimes_{E}K$ ,
for sufficiently many quadratic extensions $K$ .

7.5.2. \v{C}erednik’s original p-adic uniformization theorem already applies to
Shimura curves attached to quaternion algebras over a totally real number
field $E$ . His method has been further developed in $[Var98a],$ $[Var98b]$ . On
the other hand, Drinfeld’s modular approach has been extended by Boutot-
Zink [BZ95], using Shimura’s trick. Let us sketch the principle of the con-
struction.

Let $G$ be the multiplicative group of $B^{\times}$ , viewed as an algebraic group
over $\mathbb{Q}$ . Let $\Gamma$ be a congruence subgroup of $G^{ad}(\mathbb{Q})$ (alternatively, one can
consider an open compact subgroup $C$ of $G(A_{f}))$ . Let us first assume that $\Gamma$

is maximal at $p$ (alternatively $C$ is of the form $C^{p}C_{p}$ for some open compact
subgroup $C^{p}$ of $G(A_{f}^{p})$ , cf. 7.1.2). The (non-connected) Shimura curve $Sh$

given by
$Sh_{\mathbb{C}}^{an}=C\backslash ((\mathbb{P}_{C}^{1}\backslash \mathbb{P}^{1}(\mathbb{R}))\times G(A_{f}))/G(\mathbb{Q})$
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is defined over the reflex field, which is $E$ (embedded into $\mathbb{R}$ via $\infty 0$ ). Over
some finite abelian extension $E^{\prime}/E$ , it decomposes as a disjoint union of
geometrically connected Shimura curves $\mathcal{X}_{\Gamma}(\mathfrak{h}/\Gamma$ over $\mathbb{C}$ ; one possible $\Gamma$ is
the image of $G(\mathbb{Q})\cap C$ in $G^{ad}(\mathbb{Q}))$ .

Let $v=v_{0}$ be a critical finite place of $E,$ $i.e$ . such that $B_{v}$ is a non-
split quaternion algebra. Let $p$ be the residue characteristic of $v_{0}$ and let
$v_{1},$

$\ldots,$ $v_{m}$ be the other places of $E$ above $p$ .
Let $K$ be a totally imaginary quadratic extension of $E$ , such that every

place $v_{i}$ splits in $K$ . We denote by $w_{i},$ $U_{i}$ the two places of $K$ above $v_{i}$ . The
quaternion algebra $B^{\cdot}=B\otimes_{E}K$ is ramified at $w=w_{0}$ : $B_{w}\cong B_{v}$ .

We fix an extension $\infty 0$ : $K\rightarrow \mathbb{C}$ of the real embedding $\infty 0$ of $E$ , and a
double embedding $\mathbb{C}\$-\supset\overline{\mathbb{Q}}\rightarrow \mathbb{C}_{p}$ whose restriction to $K$ is compatible with
$(\infty 0, w)$ . The embeddings $K\rightarrow \mathbb{C}_{p}$ which factor through some $w_{i}$ but not
through some $\overline{w_{i}}$ form a CM type $\Psi:\Psi\coprod\overline{\Psi}=Hom(K, \mathbb{C}_{p})$ (identified with
$Hom(K, \mathbb{C})$ through our chosen double embedding).

There is a natural $\mathbb{Q}$-group $G^{\cdot}$ such that $G^{\cdot}(\mathbb{Q})=\{b\in B|bb^{*}\in E\}$ ,
acting on $V^{\cdot}=V\otimes_{E}K$ . One can attach to $C$ an open compact subgroup
$C^{\cdot}$ of $G^{\cdot}(A_{f})$ , maximal at $p$ , and a Shimura curve $Sh$. such that $Sh$ is
open and closed in $Sh$ ([BZ95, 3.11]). Alternatively, one can attach to $\Gamma$ a
congruence subgroup $\Gamma^{\cdot}$ in $G^{\cdot}ad(\mathbb{Q})$ and a corresponding connected Shimura
curve $\mathcal{X}_{\Gamma}$ . which is a twisted form of $\mathcal{X}_{\Gamma}$ (defined over some abelian extension
of $K$ ). The point is that this new Shimura curve $Sh$ . is of PEL type. More
precisely, for $C$ small enough, it is a moduli space for $*$-polarized abelian
varieties of dimension $g=4[E:\mathbb{Q}]$ with multiplication by $\mathcal{B}^{\cdot}=\mathcal{B}\otimes 0_{E}\mathcal{O}_{K}$ ,
Shimura type $\Psi$ , and level structure. As in 7.1.5, it admits a model $Sh$.
over $\mathcal{O}_{E_{v}}$ .

Let $\underline{A}\rightarrow Sh$
. be the universal abelian scheme up to prime to $p$ isogeny.

Due to the $\mathcal{O}_{K}$-action, the p-divisible group of 4 splits as $\underline{A}[p^{\infty}]\cong\prod_{i}\Lambda_{w_{t}}\times$

$\Lambda_{\overline{w_{?}}}$ , where $\Lambda_{w_{t}}$ and $\Lambda_{\overline{w_{\iota}}}$ are p-divisible groups of height $4[E_{v_{t}} : \mathbb{Q}_{p}]$ with
formal multiplication by $E_{v_{i}}$ . Moreover, $\Lambda_{w}=\Lambda_{w_{0}}$ is a special formal $\mathcal{B}_{v^{-}}$

module of height $4.[E_{v} : \mathbb{Q}_{p}]$ (defined as in 4.3.4, replacing $\mathbb{Q}_{p}$ by $E_{v}$ ), and
$\Lambda_{\overline{w}}$ is the Serre dual of $\Lambda_{w}$ ; the other $\Lambda_{w_{\iota}},$ $i>0$ , are etale, and the $\Lambda_{\overline{w_{i}}}$ are
their respective Serre duals. Hence the Newton polygon of the Dieudonn\’e
module of $\underline{A}[p^{\infty}]$ has slopes $0,$ $\frac{1}{2},1$ (only $\frac{1}{2}$ if $m=0$ ).

FIGURE 2

Let $\mathfrak{v}$ be the discrete valuation ring $\overline{\mathbb{Z}^{ur}}.\mathcal{O}_{E_{v}}$ as in 7.1.2. The moduli
problem for $\mathcal{B}_{v}$-module of height $4.[E_{v} : \mathbb{Q}_{p}]$ is representable by the p-adic
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formal schelne
$\prod_{\mathbb{Z}}(_{E_{t}}\hat{\Omega})_{\mathfrak{v}}$

, where $E_{1}\hat{\Omega}$ is the analogue for (and over) $\mathcal{O}_{E_{t)}}$ of

the formal scheme $\hat{\Omega}$ . with associated analytic space $(E_{1)}\Omega)_{\mathbb{C}_{p}}=\mathbb{P}_{\mathbb{C}_{p}}^{1}\backslash \mathbb{P}^{1}(E_{v})$ ,

cf. 6.3.5.

7.5.3. This is the modular way taken by Boutot and Zink to reprove (and
strengthen) \v{C}erednik’s theorem. As was remarked by Varshavsky $[Var98b$ ,
3.13], one obtains a simpler adelic formulation if one works with a twisted
version $adSh$ of $Sh$ (corresponding to a different normalization of $h_{0}$ in 1.2.5);
this does not change the adelic description of the associated complex space

ad
$Sh_{\mathbb{C}}^{an}=C\backslash ((\mathbb{P}_{\mathbb{C}}^{1}\backslash \mathbb{P}^{1}(\mathbb{R}))\times G(A_{f}))/G(\mathbb{Q})$ ,

but makes the analogy with the following description of the associated p-adic
space more striking.

Let $\overline{B}$ be the quaternion algebra over $E$ obtained from $B$ by inter-
changing the invariants at $\infty 0,$ $v$ , and let $\overline{G}$ be the $\mathbb{Q}$-algebraic group at-
tached to $\overline{B}^{\times}$ Let us identify $\overline{G}(A_{f}^{p})$ with $G(A_{f}^{p})$ via an anti-isomorphism
$\overline{B}\otimes_{E}A_{f}^{p}\rightarrow B\otimes_{E}A_{f}^{p}$ , and set $\overline{C}=GL_{2}(E_{v})C^{p}$ viewed as a subgroup of
$\overline{G}(A_{f})$ . Then

ad
$Sh_{\mathbb{C}_{p}}^{an}=C^{p}\backslash ((E_{v}\Omega)_{\mathbb{C}_{p}}\times G(A_{f}^{p}))/\overline{G}(\mathbb{Q})$

$=\overline{C}\backslash $ ( $(\mathbb{P}_{\mathbb{C}_{p}}^{1}\backslash \mathbb{P}^{1}(E_{v}))\times\overline{G}$(A $f)$ ) $/\overline{G}(\mathbb{Q})$

where $\overline{G}(\mathbb{Q})$ acts on $(E_{\tau}\Omega)_{\mathbb{C}_{p}}$ through $\overline{G}^{ad}(\mathbb{Q}_{p})\cong PGL_{2}(E_{v})$ .
Moreover, one can drop the assumption that $C$ is maximal at $p$ , on

replacing $(E_{v}\Omega)_{\mathbb{C}_{p}}$ by some finite etale covering as in 7.4.7. [BZ95, 3],
$[Var98b, 5]$ .

7.5.4. Rapoport, Zink and Boutot on one hand (by modular methods \‘a la
Drinfeld). and Varshavsky on the other hand (by group-theoretic methods \‘a

la $\check{C}$erednik), have pointed out similar global p-adic uniformizations in much
more general cases.

Let us only mention a remarkable example: Mumford’s fake projective
plane [Mu79]. This is a smooth projective complex surface $S$ with the same
Betti numbers as $\mathbb{P}^{2}$ , but not isomorphic to $\mathbb{P}^{2}$ . Actually, it is a surface of
general type. Mumford’s construction is of diadic nature. It is a quotient of
the two-dimensional generalization $\Omega^{(2)}$ of $\Omega$ by an explicit arithmetic group.
This $\Omega^{(2)}$ is the complement of the lines defined over $\mathbb{Q}_{2}$ in the projective
plane.

Using the last theorem of [RZ96] or $[Var98b]$ , one can see that $S$ is
actually a Shimura surface of PEL type. parametrizing polarized abelian
varieties of dimension 9, with multiplication by an order in a simple $\mathbb{Q}-$

algebra $B$ of dimension 18 with center $\mathbb{Q}(\sqrt{-7})$ . The invariants of $B$ at
the two primes of $\mathbb{Q}(\sqrt{-7})$ above 2 are 1/3 and 2/3 (cf. a recent preprint
by F. Kato for more detail). The associated group $G$ is a group of unitary
similitudes of signature $(1, 2)$ .
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The “diadic ball” $\Omega^{(2)}$ (or rather its formal avatar) has an modular
interpretation for certain p-divisible groups (with multiplication by $B_{2}$ ).
These p-divisible groups split as a product of three p-divisible groups of
slope 1/3 and height 3, and three p-divisible groups of slope 2/3 and height
3.

The associated Gauss-Manin connection splits into six factors of rank 3
(in two variables). It resembles the Appell-Lauricella connection studied in
[Ter73], [DM93], [Yo87], but is different.

7.6. Application of the theory of p-adic Betti lattices.

7.6.1. We consider more closely the Gauss-Manin connection $(\mathcal{H}, \nabla_{GM})$ in
the case of Shimura curves.

We begin with the case $E=\mathbb{Q}$ as in 7.4. Then $\mathcal{H}$ is a vector bundle
of rank 4, and the B-action on $\mathcal{H}$ obtained by functoriality of De Rham
cohomology commutes with $\nabla_{GM}$ .

Let us choose an imaginary quadratic field $F=\mathbb{Q}(\sqrt{-d})$ inside $B$ . Then
$(\mathcal{H}, \nabla_{GM})\otimes F$ splits into two parts: $(\mathcal{H}, \nabla_{GM})_{+}\oplus(\mathcal{H}, \nabla_{GM})_{-}$ (on which
$F\subset B$ acts through identity and complex conjugation respectively).

On the other hand, let us fix embeddings $F\subset\overline{\mathbb{Q}}\subset \mathbb{C}$ , and let us fix a
base point $s\in \mathcal{X}_{\Gamma}(\overline{\mathbb{Q}})$ of our Shimura curve. This is the moduli point of a
decorated fake elliptic curve $A/\overline{\mathbb{Q}}$ . We have $V^{\mathbb{C}}=H_{B}^{1}(A_{\mathbb{C}}, \mathbb{C})\cong(\mathcal{H}_{\mathbb{C}}^{an})^{\nabla_{GM}}$ ,
and this again splits $into\pm parts$ . The Betti cohomology F-space $H_{B}^{1}(A_{\mathbb{C}}, F)$

already splits into two parts: $H_{B}^{1}(A_{\mathbb{C}}, F)_{+}\oplus H_{B}^{1}(A_{\mathbb{C}}, F)_{-}$ , both of rank two
and stable under the action of $B\otimes F\cong M_{2}(F)$ .

The flag space $\mathcal{D}^{\vee}$ is actually defined over the reflex field $\mathbb{Q}$ . Over $F$ , it
becomes isomorphic to $\mathbb{P}^{1}$ , or more precisely, to $\mathbb{P}(H_{B}^{1}(A_{\mathbb{C}}, F)_{+})$ . The period
mapping describes the “slope” of the Hodge line $F^{1}\cap V_{+}^{\mathbb{C}}$ with respect to
a basis of $H_{B}^{1}(A_{\mathbb{C}}, F)_{+}\subset((\mathcal{H}_{+})_{\mathbb{C}}^{an})^{\nabla_{GM}}$ , and is thus given by a quotient of
solutions of the (partial) Gauss-Manin connection $\nabla_{GM+}$ .

Assume for simplicity that $\Gamma\subset B^{\times}/\mathbb{Q}^{\times}$ is torsion-free. Then $\Gamma$ may be
identified with the projective monodromy group, $i.e$ . with the quotient by
the homotheties of the image of the monodromy representation

$\pi_{1}((\mathcal{X}_{\Gamma})_{\mathbb{C}}, s)\rightarrow GL(H_{B}^{1}(A_{\mathbb{C}}, F)_{+})$ .

7.6.2. Let us now turn to the p-adic side. We fix an embedding $\overline{\mathbb{Q}}\subset \mathbb{C}_{p}$ .
We shall limit ourselves to the case of a prime $p$ of supersingular reduction
for $A$ . Note that this includes the case of critical primes (7.4.6).

Let $D$ be the definite quaternion algebra over $\mathbb{Q}$ which is ramified only
at $p$ , and let $\overline{B}$ be the definite quaternion algebra over $\mathbb{Q}$ which is ramified
at the same primes as $B$ except $p$ . Then, whether $p$ is critical or not, the
group $J$ (of self-quasi-isogenies of $\overline{A}[p^{\infty}]$ commuting with $B$ ) is $\overline{B}_{p}^{\times}$ .

By the local criterion for splitting fields [Vig80, III.3.5], $F$ is also a
splitting field for the quaternion algebra $D$ (and $\overline{B}$ as well). We can there-
fore apply the theory of I.5.3, and get an F-structure $H_{B}^{1}(A_{\mathbb{C}_{p}}, F)$ inside
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$H_{cris}^{1}(\overline{A}, /\mathbb{C}_{p})\cong V^{C_{p}}=D(\overline{\Lambda})\otimes \mathbb{C}_{p}$ . By construction, it is stable under the
action of $1lI_{2}(D)\otimes F\cong\lrcorner lI_{4}(F)\cong B\otimes\overline{B}\otimes F$ .

Using the embedding $F\otimes 1\otimes F\subset B\otimes\overline{B}\otimes F$ , one splits this F-structure
$H_{B}^{1}(A_{\mathbb{C}_{p}}, F)$ into two parts $H_{B}^{1}(A_{\mathbb{C}_{\rho}}, F)_{+}\oplus H_{B}^{1}(A_{\mathbb{C}_{p}}, F)_{-}$ (on which $ F\otimes 1\otimes$

$1\subset B\otimes\overline{B}\otimes F$ acts through identity and complex conjugation respectively),
both of rank two and stable under the action of $B\otimes F\subset M_{4}(F)$ , hence
under $J$ .

The p-adic flag space $\mathcal{D}^{\vee}$ is again defined over the reflex field $\mathbb{Q}$ . Over $F$ ,
it becomes isomorphic to $\mathbb{P}(H_{B}^{1}(A_{\mathbb{C}_{\rho}}, F)_{+})$ (note that the scaling ambiguity
of $H_{B}^{1}(A_{\mathbb{C}_{\rho}}, F)_{+}$ by a factor in $\sqrt{F^{\times}}$ disappears here). The J-equivariant
period mapping $\mathcal{P}$ describes the “slope” of the Hodge line $F^{1}\cap V_{+}^{\mathbb{C}_{p}}$ with
respect to a fixed basis $(e_{0}, e_{1})$ of $H_{B}^{1}(A_{\mathbb{C}_{p}}, F)_{+}\subset((\mathcal{H}_{+})_{\mathbb{C}_{p}}^{an})^{\nabla_{GI\backslash I}}$ , and is thus
given by a quotient of solutions of $\nabla cM+\cdot$

Note that if $B$ is split at $p$ , then $\mathcal{P}$ is of Gross-Hopkins type, and one
has only a local p-adic uniformization of $\mathcal{X}_{\Gamma}$ around $s$ (in a supersingular
disk).

If instead $p$ is critical, then $\mathcal{P}$ is of Drinfeld type, and the group $\Gamma_{p}\subset J^{1}$

appearing in the global p-adic uniformization of $\mathcal{X}_{\Gamma}$ may be identified with
the quotient by the homotheties of the image of the monodromy represen-
tation (in the sense of 7.2.6)

$\pi_{1}^{top}((\mathcal{X}_{\Gamma})_{\mathbb{C}_{p}}, s)\rightarrow GL(H_{B}^{1}(A_{\mathbb{C}_{p}}, F)_{+})$ .

A slight refinement provides a rank two $\mathcal{O}_{F}[\frac{1}{p}]$ -lattice $H_{B}^{1}(A_{\mathbb{C}_{p}}, \mathcal{O}_{F}[\frac{1}{p}])_{+}$

in $((\mathcal{H}_{+})_{\mathbb{C}_{p}}^{an})^{\nabla_{GI\backslash I}}$ stable under p-adic monodromy.

7.6.3. One can go one step further and see that the phenomenon encountered
in 6.3.3 shows up here again: “the” quotient $\tau$ of solutions of solutions of
$\nabla_{Gl\backslash I}$ which expresses locally the period mapping $\mathcal{P}$ is essentially given by
the same formula in the complex and the p-adic cases.

More precisely, assume that $A$ has complex multiplication by an order
in $M_{2}(F)$ (so that $A$ is isogenous to the square of an elliptic curve with
complex multiplication by $\mathcal{O}_{\mathbb{Q}(\sqrt{-d})}$ with [fundamental] discriminant $-d$ ),
and identify $End_{B}(A)$ with $F$ . We denote by $\epsilon$ the Dirichlet character, $w$

the number of roots of unity, $h$ the class number attached to $\mathcal{O}_{\mathbb{Q}(\sqrt{-d})}$ .
We may choose our symplectic basis $e_{0},$ $e_{1}$ of $H_{B}^{1}(A_{C}, F)_{+}$ (resp. $H_{B}^{1}(A_{\mathbb{C}_{p}},$ $F)_{+}$ )
in such a way that $[\sqrt{-d}]^{*}e_{0}=-\sqrt{-d}e_{0},$ $[\sqrt{-d}]^{*}e_{1}=\sqrt{-d}e_{1}$ (here $[\sqrt{-d}]$

is viewed as an element of $End_{B}(A)=F)$ .
Let $\omega$ be a section of $\mathcal{H}_{+}$ in a Zariski neighborhood $U$ of $s$ , which corresponds
to a relative differential of the first kind (no pole) on the universal abelian
scheme. Then $\omega$ is a cyclic vector for $\mathcal{H}+overU$ with respect to $\nabla_{GM}$ , so
that $\nabla_{GM}$ amounts to a concrete linear differential equation of order two
over $U$ .
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We calculate $\tau$ with respect the basis $e_{0},$ $e_{1}$ of $H_{B}^{1}(A_{\mathbb{C}}, F)_{+}$ (resp. $H_{B}^{1}(A_{\mathbb{C}_{p}},$ $F)_{+}$ )
in a small neighborhood of the base point $s$ . Denoting by $z$ an algebraic lo-
cal parameter at $s$ in $U$ , and extending $e_{0},$ $e_{1}$ by horizontality, we then have
the proportionality

$\omega\sim\tau(z)e_{0}+e_{1}$

Theorem 7.6.4. There is a quotient $y=y_{1}/y_{2}$ of solutions of $\nabla_{GM}$ in
$\overline{\mathbb{Q}}[[z]]$ such that $\tau$ takes the form $\tau(z)=\kappa^{-1}y(z)$ for a suitable constant $\kappa$ .
In the complex case, $\kappa\sim$ $\prod$ $(\Gamma\{\frac{u}{d}\})^{\epsilon(u)w/2h}\in \mathbb{C}^{\times}/\overline{\mathbb{Q}}^{\times}$

$u\in(\mathbb{Z}/d)^{\chi}$

In the p-adic case, assuming moreover that $p\{d$ ,

$\kappa\sim$ $\prod$ $(\Gamma_{p}\langle\frac{pu}{d}\rangle)^{-\epsilon(u)w/4h}\in \mathbb{C}_{p}^{\times}/\overline{\mathbb{Q}}^{\times}$

$u\in(\mathbb{Z}/d)^{\times}$

PROOF. Let us write $\omega_{|z=0}=\omega_{11}e_{1}$ . Then $\tau(z)=\kappa^{-1}y(z)$ , with $\kappa=$

$\omega_{11}^{2}/2\pi i$ in the complex case, $\kappa=\omega_{11}^{2}$ in the p-adic case (the factor $2\pi i$ which
arises in the complex case is the factor of proportionality of the symplectic
forms in De Rham and in Betti cohomology respectively). The evaluation of
$\omega_{11}$ in the complex case is given by the Lerch-Chowla-Selberg formula (cf.
I.4.6.3). In the p-adic case, it is given by I.5.3.9. $\square $

7.6.5. This discussion generalizes without much complication to the case
of Shimura curves attached to a quaternion algebra $D$ over a totally real
number field $E$ of degree $>1$ . We concentrate on the case of a critical place
$v$ and assume, for simplicity, that $E$ is Galois over $\mathbb{Q}$ and that $v$ is the unique
place of $E$ with the same residue characteristic $p(i.e$ . $m=0$ in the notation
of7.5.2).

Let $F$ be a totally imaginary quadratic extension of $E$ contained in $B$ .
Then $F$ is a splitting field for $B,$

$\overline{B}$ , and $D$ . Let us fix a double embedding
$\mathbb{C}i-\overline{\mathbb{Q}}\rightarrow \mathbb{C}_{p}$ as in 7.5.2, and an extension $FK\rightarrow\overline{\mathbb{Q}}$ of $\infty 0$ . For $C$

small enough, $Sh$ . carries a universal abelian scheme of relative dimension
$g=[FK : \mathbb{Q}]$ . After tensoring $\otimes_{K}\overline{\mathbb{Q}}$ , its Gauss-Manin connection splits into
pieces of rank two, indexed by the embeddings of $FK$ into Q. We select the
piece $(\mathcal{H}, \nabla_{GM})_{+}$ corresponding to $\infty 0$ .

Let us fix a base point $s\in Sh(\overline{\mathbb{Q}})\subset Sh\cdot(\overline{\mathbb{Q}})$ of our Shimura curve. This
is the moduli point of a decorated abelian variety $A/\overline{\mathbb{Q}}$ (of dimension $g=$
$[FK : \mathbb{Q}]$ and multiplication by $\mathcal{B}^{\cdot}$ ). We have $V^{\cdot}=V\otimes_{E}K\cong H_{B}^{1}(A_{\mathbb{C}}, \mathbb{Q})$ .
Note that $H_{B}^{1}(A_{\mathbb{C}}, F)\cong V\otimes_{\mathbb{Q}}FK$ splits into pieces of FK-rank two, indexed
by the embeddings of $F$ into Q. We select the piece $H_{B}^{1}(A_{\dot{\mathbb{C}}}, F)_{+}$ correspond-
ing to $\infty 0$ . We then have a natural embedding $H_{B}^{1}(A_{\mathbb{C}}, F)_{+}\subset((\mathcal{H}_{+})_{\mathbb{C}}^{an})^{\nabla_{GM}}$ ,
and $H_{B}^{1}(A_{\mathbb{C}}, F)_{+}$ is stable under monodromy.

On the other hand, it follows from 7.4.6, that $A^{\cdot}$ has supersingular
reduction $\overline{A}$ at $v$ . We can construct the F-structure $H_{B}^{1}(A_{\mathbb{C}_{p}}, F)$ inside
$H_{cris}^{1}(\overline{A}, /\mathbb{C}_{p})\cong V^{\mathbb{C}_{p}}=D(\overline{\Lambda})\otimes \mathbb{C}_{p}$ . By construction, it is stable under the
action of $M_{g}(D)\otimes F\cong M_{2g}(F)$ , which contains naturally $B\otimes_{\mathbb{Q}}\overline{B}\otimes_{\mathbb{Q}}F$ .
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Using the embedding $F\otimes 1\otimes F\subset B\otimes\overline{B}\otimes F$ , one splits this F-structure
$H_{B}^{1}(A_{\mathbb{C}_{p}}, F)$ into parts of FK-rank two, indexed by the embeddings of $F$

into Q. We select the piece $H_{B}^{1}(A_{\mathbb{C}_{p}}, F)_{+}$ corresponding to $\infty 0$ . We then
have a natural embedding $H_{B}^{1}(A_{\dot{C}_{p}}, F)_{+}\subset((\mathcal{H}_{+})_{\mathbb{C}_{\rho}}^{an})^{\nabla_{GLI}}$ , and $H_{B}^{1}(A_{\mathbb{C}_{p}}, F)_{+}$

is stable under p-adic monodromy.

7.7. Conclusion.

Roughly speaking, the period mapping $\mathcal{P}$ attaches to each member of an
algebraic family of algebraic complex varieties (with additional structure) a
point in some flag space, which encodes the Hodge filtration in the cohomol-
ogy of this variety. This mapping can be expressed in terms of quotients of
solutions of the fuchsian differential equation (Picard-Fuchs/Gauss-Manin)
which controls the variation of the cohomology.

We have described the theory of period mappings for p-divisible groups
in somewhat similar terms.

Sometimes, it is possible to go through the looking-glass of sheer analo-
gies. This occurs when we restrict our attention to p-divisible groups at-
tached to polarized abelian varieties with prescribed endomorphisms and
fixed “Shimura type” In this situation, we have three algebraic objects
defined over a number field (the reflex field):

(a) the Shimura variety $Sh$ parametrizing certain “decorated” abelian
varieties,

(b) the Gauss-Manin connection $\nabla_{GM}$ describing the variation of these
abelian varieties over $Sh$ , and

(c) the flag variety $\mathcal{D}^{\vee}$ .

These objects are transcendentally related, both in the complex and
p-adic sense.

The period mapping may be viewed as multivalued and defined on p-
adic open domains in $Sh$ ; it is given as in the complex case by quotients of
solutions of the Gauss-Manin connection (as a p-adic connection).

In most situations, these open domains are small and $\mathcal{P}$ is single-valued.
However, it happens in some remarkable cases that $\mathcal{P}$ is a global multi-

valued function. This occurs when the abelian varieties under consideration
form a single isogeny class modulo $p$ . In this situation, the complex and p-
adic transcendental relations between $Sh,$ $\nabla_{GM}$ are completely similar: $Sh$

is uniformized by an analytic space which is etale over some open subset $\mathcal{D}$

of $\mathcal{D}^{\vee}$ , and the group of deck transformations $\Gamma$ is isomorphic to the projec-
tive global monodromy group of $\nabla_{GM}$ . In III, we shall analyze in detail the
group-theoretic aspects of this situation.


