CHAPTER 4

Definition of complements and elementary
properties

4.1. Introduction

The following conjecture is called Reid’s general elephant conjecture

CONJECTURE 4.1.1. Let f: X — Z 3 o be a Kx-negative contraction from
a threefold with only terminal singularities. Then near the fiber over o the linear
system —K x contains a divisor having only Du Val singularities.

At the moment it is known that this conjecture is true (only in analytic situa-
tion) in the following cases:

e X = Z > o is an isolated singularity [RY], moreover, this is equivalent to
the classification of three-dimensional terminal singularities;

e f: X — Z is an extremal flipping or divisorial small contraction [Mo],
[KoM], this is a sufficient condition for the existence of flips [K].

Some particular results are known in the case when f: X — Z is an extremal
contraction to a surface [P]. This case is interesting for applications to rationality
problem of conic bundles.

However, at the moment it is not so clear how one can prove Reid’s conjec-
ture in the algebraic situation. Moreover, it fails for the case Z = pt (there are
examples of Q-Fano threefolds with empty |- K x|). Shokurov proposed the notion
of complements, which is weaker then “general elephant” but much more easier to
work with.

DEFINITION 4.1.2. Let (X, D) be a log pair, where D is a subboundary. Then
a Q-complement of Kx + D is a log divisor Kx + D’ such that D' > D, Kx + D’
is Ic and n(Kx + D') ~ 0 for some n € N.

DEFINITION 4.1.3 ([Sh2]). Let X be a normal variety and D = S + B a sub-
boundary on X, such that B and S have no common components, S is an effective
integral divisor and |B] < 0. Then we say that Kx + D is n-complementary, if
there is a Q-divisor D% such that

(i) n(Kx + D*) ~ 0 (in particular, nD? is integral divisor);
(ii) Kx + D* is Ic;
(iii) nD* > nS + |(n + 1)B].
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In this situation the n-complement of Kx + D is Kx + D*. If moreover Kx + Dt
is plt, then we say that Kx + D is strongly n-complementary.

Note that an n-complement is not necessarily a Q-complement because of con-
dition (iii). We need this condition for technical reasons (see 4.4.1). If B = 0, then
(iii) holds automatically. In applications this is the most interesting case. We give
also a generalization of this definition for the case of nodal curves.

- DEFINITION 4.1.4. Let X be a reduced (not necessarily irreducible) curve.
Then X is said to be nodal if all its singularities are normal crossing points. A
subboundary D = ) d;D; on a nodal curve is said to be semilog canonical (slc) if
SuppD N SingX = @ and d; < 1 for all 4.

Let X be a nodal curve and D = S + B a subboundary on X, such that B
and S have no common components, S is an effective integral divisor and |B] < 0.
Assume that SuppD N SingX = &. Then an n-semicomplement of Kx + D is a
log divisor Kx + D™ such that conditions (i), (iii) of 4.1.3 and the following (ii’)
below holds.

(ii') Kx + D™ is slc.
The last definition can be generalized to the higher dimensional case (see [Ut]).

REMARK 4.1.5. Assume that on a variety X the canonical divisor Kx is
strongly 1-complementary. Let K x + B be this complement. Then B is an integral
divisor, B € |-K x| and K x + B is plt (and even canonical because Kx + B ~ 0).
By 2.2.4, Diff g(0) = 0 and by Inversion of Adjunction, K g is klt. Since Kg ~ 0,
B has only canonical Gorenstein singularities. This shows that Kx is strongly
1-complementary if and only if Reid’s general elephant conjecture holds for X/Z.

The following conjecture seems to be more realistic than Conjecture 4.1.1:

CONJECTURE 4.1.6. Let f: X — Z 3 o be a contraction from a threefold with
only terminal singularities such that —Kx is f-nef and f-big. Then near the fiber
over o the canonical divisor Kx is 1, 2, 3, 4, or 6-complementary.

Note that the condition that K x + D is n-complementary implies the existence
of an integral effective divisor

(4.1) D e |-nKx —nS — |[(n+1)B]|
related to Dt by the equality

(4.2) Dt =8+ % (l(n +1)B] + D).

It is also easy to see that if D is a boundary, then so is Dt. As an immediate
consequence of the definition we have

PROPOSITION 4.1.7. Let X be a normal variety.

(i) Fixn € N. Let D =) _d;D; and D' = )_ d.D, be subboundaries on X such
that the following conditions hold
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a) d;>d;,—e for0<e < 1;

b) d; > d; whenever (n + 1)d; is an integer < n.
Assume that Kx + D' is n-complementary. Then Kx + D is n-
complementary.

(ii) Fizn € N. Let D = Y d;D; be a subboundary. Assume that Kx + D is
n-complementary. Then Kx + D' is n-complementary for any subbound-
ary D' = Y d,D; such that |d; — d;| < (—n—_ﬁ, Vi, where q; > 1 is the
denominator of d;.

SKETCH OF PROOF. We show, for example, (i). Let D't = Zd;’LDi be an

n-complement of Kx + D'. Put D* := D'". It is sufficient to verify (iii) of 4.1.3,
i.e.

(4.3)

dl»+ > % I_(TL + l)dzJ ifd; <1
r= 1 otherwise.

On the other hand, we have

7t > L(n+1)d]] ifd. <1
= 1 otherwise.

If n + 1 is a denominator of d;, then d; < d} and (4.3) is obvious. If n + 1 is not a
denominator of d;, then d; > d; — . Hence |(n + 1)d;| = [(n + 1)d.] for small pos-
itive . Again we obtain (4.3). Finally,ifd; = 1, then di* > L |[(n + 1)(1 —¢)| = 1
fore <1/(n+1). O

COROLLARY 4.1.8. Let X be a normal variety and D =) d;D; a subboundary
on X. Fizn € N. Let D' = ) d;D;, where d; > min{di,ﬁi}. Assume that
Kx + D' is n-complementary. Then so is Kx + D.

EXAMPLE 4.1.9. (i) Let X be a toric variety and S = 5_ S; be the toric
boundary. Then Kx +S ~ 0 and Kx + S is lc. Hence Kx + S is 1-
complementary.

(ii) Let (X > P) be an analytic germ of a three-dimensional terminal sin-
gularity. Then Kx is strongly l-complementary (see 2.2.12). Con-
versely, if there is a strong nontrivial 1-complement near an isolated three-
dimensional Q-Gorenstein singularity (X > P), then (X > P) is termi-
nal. A three-dimensional Gorenstein canonical singularity is (nontrivially)
1-complementary if and only if it is cDV (see 2.2.14).

(iii) Consider the cyclic quotient singularity X := C3/Zg(1,4,7). By 1.2.4 it is
canonical. Since X is not terminal, Kx is not strongly 1-complementary.
However, Kx is strongly 2-complementary. Indeed, (z%y + y?z + 22z)(dz A
dyAdz)~? is an invariant form. Hence this gives us a member of | —2K x|. It
is easy to check that 22y +y?z + 22z = 0 defines a log canonical singularity
F C C3. Let F' := F/Zg C X. By Corollary 1.2.2 Kx + %F’ is klt. Note
that Kx is 1-complementary in this case (see (i)).
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According to [MMM)] there are four-dimensional terminal cyclic quotient
singularities which have no strong 1 or 2-complements. However, it is ex-
pected that there are only a finite number of such exceptions. For example,
the singularity C*/Zg3(3,14,23,44) has no strong 1 or 2-complements. As
above, the invariant (dz A dy A dz)~3 gives us a strong 3-complement.

Let f: X — Z > o be an analytic germ of a three-dimensional flipping
extremal contraction. Then K is strongly 1-complementary [Mo], [KoM].
Let X be a Fano threefold with Gorenstein canonical singularities. Then
Kx is strongly 1-complementary [Sh], [R].

Let X be a variety with log canonical singularities and numerically trivial
canonical divisor Kx. Then Kx is n-complementary if and only if there
exists n such that nKx ~ 0. For example, in the case of a smooth sur-
face of Kodaira dimension O the canonical divisor is either 1, 2, 3,4 or
6-complementary (see e.g. [BPV]).

Let g: X — P! be a relatively minimal elliptic fibration, where X is
a smooth surface of Kodaira dimension x(X) < 0. Then X is n-
complementary for some n € {1,2,3,4,6}. Indeed, we have the canonical
bundle formula (see e.g. [BPV, Ch. V, §12])

S
Kx ~(x(Ox)-2)L+ ) (ri - 1)E;,
i=1
where E; are multiple fibers of multiplicities r; and L is a general fiber.
Consider, for example, case k(X) = —oo. Then X is a ruled surface over an
elliptic curve. Let F be a general fiber of the rulling and denote § := L - F.
Clearly, Kx - F = —2 and E; - F = §/r;. This gives us

2= 26+ i(ri —1)6/r;, 2-2/§= iu —1/r).

It is easy to see that 2< s <3 and Kx ~ (s — 1)L+ ¥ E;. There are only
the following possibilities:

s 2 3 3 3 3
(T1,...,75) (r1,7m2) (2,2,7)1(2,3,3) | (2,3,4) [ (2,3,5)
6 2 (ril 7)) | 2r 12 24 60
n 1 2 3 4 6
n-complement E, + E, E; B, :E> s Es

This shows that n € {1,2,3,4,6}.

Further, in the two-dimensional case 1, 2, 3, 4 and 6-complement we call regular
and define

:Rg = {1, 2, 3, 4, 6}

In the higher-dimensional case we should replace the set R, with bigger one R,
(see [PSh]).



32 4. DEFINITION OF COMPLEMENTS AND ELEMENTARY PROPERTIES

A very important question is:
when does some n-complement of Kx + D exist?

Obviously, these exist for some n > 0 when —(Kx + D) is ample (or even
semiample) [Sh2, 5.5]. By Base Point Free Theorem (see [KMM, 3-12]), n-
complements exist for some n > 0 if Kx + D is kIt and —(Kx + D) is nef and
big. It is expected also that we can remove klt condition on Ic and D € &4, (see
Proposition 11.1.1).

In general, only the nef condition is not sufficient for the existence of comple-
ments (see Example 8.1.1).

THEOREM 4.1.10 (see [Sh2, 5.2], [Ut, 19.4]). Let X be a nodal connected (but
not necessarily compact) curve. Let D be a boundary on X contained in the smooth
and compact part of X. Assume that the degree of —(Kx + D) is nonnegative (on
each compact component of X ). Then

(i) Kx + D is n-semicomplementary for n € Ry;

(ii) of Kx + D is not 1 or 2-semicomplementary, then X ~ P! and |D| =
(D] =0;

(iii) if X contains a noncomplete component and Kx + D is not 1-
semicomplementary, then the compact components of X form a chain
Y i—1 Xi, a (unique) noncomplete component X' intersect an end X; of
> Xi, SuppD is contained in another one X, and D = 1/2P, + 1/2P, (the
caser =1, X; = X, is also possible).

For each log pair (X/Z 3 0, D) we define the minimal complementary number
by
(4.4) compl(X, D) := min{m | Kx + D is m-complementary}.
This is an invariant to “measure” how singular a log pair is. We also define
(4.5) compl'(X, D) := min{m | 3 m-complement of Kx + D which is not klt}.

By definition, compl(X, D), compl’ (X, D) € NU{oco}. Take a subset & C [0, 1].
For example, consider cases ® = ®gpy (see 2.2.5), ® = [0,1], or & = &,,,. For a
Q-divisor D we write simply D € & if all the coefficients of D belong to .

Define the set of natural numbers N, (®) by

Np(®) := {m € N | 3 a log Fano variety (X, D) of dimension n
such that D € @ and compl(X, D) = m}.

Thus Theorem 4.1.10 and Corollary 4.1.11 below give us N;([0,1]) = R, :=
{1,2,3,4,6}. Obviously, N,(®') C N,(®”) if ® C ®”. Theorem 4.1.10 and
Corollary 4.1.11 show that N;(®sm) = N1([0,1]) = Rs. We will see below that
N2(®sm) is bounded (Theorem 9.1.12).

COROLLARY 4.1.11. Notation as in Theorem 4.1.10. Assume that X ~ P!,
| D] =0, —(Kx + D) is ample and D € ®gmy. Then D = 3"._,(1—1/m;)D;, where
for (mi,...,m,) there is only one of the following possibilities (up to permutations):
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An: (m), (my,me), Kx + D is 1-complementary;

D,: (2,2,m), Kx + D is 2-complementary;

Es: (2,3,3), Kx + D is 3-complementary;

E;: (2,3,4), Kx + D is 4-complementary;

Es: (2,3,5), Kx + D is 6-complementary.

Relations between our notation A,, D,, Es, E7, Eg and two-dimensional Du
Val singularities will be explained in Ch. 6.

EXERCISE 4.1.12. Let X ~ P! and D € ®s,N[0,1). Assume also that degD =
2. Show that D = Y__ (1 — 1/m;)D;, where for (my, ..., m,) there is only one of
the following possibilities:

Dy: (2,2,2,2), Kx + D is 2-complementary;

Eg: (3,3,3), Kx + D is 3-complementary;

Ey: (2,4,4), Kx + D is 4-complementary;

Eg: (2,3,6), Kx + D is 6-complementary.

4.2. Monotonicity

We noticed that the inequality DT > D does not hold in general. However,
under some additional restrictions on coefficients we can expect D¥ > D to be
true.

4.2.1. Fix n € N and define the set P, by
a€eP, <= 0<a<1l and |[(n+1)a] > na.

COROLLARY 4.2.2. Let (X, D) be a log pair such that D € P, and Kx + D*
any n-complement. Then Dt > D.

LEMMA 4.2.3 (Monotonicity of the integral part). (i) Letr € Q such that
r <1 and nr € Z. Then

l[(n+ 1)r| < nr.
(ii) Letr=1—1/m, n € N. Then for anyn € N
[(n + 1)r] > nr.
PROOF. Let us proof, for example, (ii). Write nr = ¢ + k/m, where ¢ = |nr]
and k/m = {nr}, k€ Z,0 <k <m —1. Then

_ 3 [ q if k=0,
(n+Dr] =|g+k/m+1-1/m] = { g+1 otherwise.

In both cases |[(n + 1)r] > g+ k/m = nr. O
By Monotonicity Lemma, P, D &g, for any n € N. Moreover, we have

COROLLARY 4.2.4.
P = ﬂ P,..

neN
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PROOF. Let a ¢ ®gy. Then 1 —1/m < a <1-1/(m + 1) for some m € N.
This yields [(m + 1)a] < m — 1 and ma > m — 1. Hence a ¢ P,,. O

EXAMPLE 4.2.5. Let (X, D) be a log variety with a standard boundary (i.e.
D € ®g,,). Assume that Kx + D is numerically trivial. Let Kx + D% be some
n-complement. Then D* > D and D* = D. If X is projective, then this yields
Dt = D. In this case, n is any natural such that nD is an integral divisor. In
general case, we say that a complement Kx + Dt of Kx + D is trivial if D = D+,

It is easy to check that
1 1 2 2
?":{O}U[n+1’}i] U [n+1’ﬁ] U
k k n
Ulasrs] U-U 7]

This gives
LEMMA 4.2.6. (i) If a1,00 € Py, then either oy +ag € P, or o + a2 > 1.
(ii) Let m e N, k; e NU{0} and b; € P,, j =1,...,7. Assume that
a__m—l +izr:k-b-<1
T om m £ 7=

Then a € P,.

PROOF. (i) is trivial. As for (ii) we notice that 3 k;b; < 1. Hence by (i),
> kjb; € P, and we may assume that 7 = 1 and k; = 1. Put b := b,. It is

sufficient to show that there exists ¢ € N such that
g _m- 14+ <9
n+1~— m - n

This is equivalent to
nm—1+b) <mg<(n+1)(m—1+0b).

Taking into account that b € P,, we have l/(n +1) < b < I/n for some [ € N. So
there exists ¢ € N such that

n(m—-1+b)<nim-1)+1<mqg<
(n+1)(m-1)+1<(n+1)(m—1+0b).
This proves the lemma. O
From Corollary 2.2.8 we have

COROLLARY 4.2.7. Let (X,S + B) be a log variety, where S is reduced and B
is effective. Assume that Kx + S + B is plt and B € P,,. Then Diffs(B) € P,,.

REMARK 4.2.8. It is easy to see that ®,,, C P; UP,UP3UP4UPs. Therefore if
D€ ®y, and Kx + D% isan 1, 2, 3, 4 or 6-complement of Kx + D, then Dt > D.
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4.3. Birational properties of complements
Now we will see that complements have good birational properties.

PROPOSITION 4.3.1 ([Sh2]). Let f: X — Y be a birational contraction and D
a subboundary on X. Assume that Kx + D is n-complementary for some n € N.
Then Ky + f(D) is also n-complementary.

ProoOF. Take f(D)* := f.(D%) and apply 1.1.6. O
Under additional assumptions we have the inverse implication:

PROPOSITION 4.3.2 ([Sh3, 2.13]). Fizn € N. Let f: Y — X be a birational
contraction and D a subboundary on'Y such that
(i) Ky + D is nef over X;
(ii) f(D) € P, (in particular, f(D) is a boundary).
Assume that Kx + f(D) is n-complementary. Then Ky + D is also n-
complementary.

PRrOOF. Consider the crepant pull back

Ky + D' = f*(Kx + f(D)¥), with f.D' = f(D)*.
Write D' = S’ + B’, where S’ is reduced, S’, B’ have no common components, and
|B'] <0. We claim that Ky + D’ is an n-complement of Ky + D. The only thing
we need to check is that nB’ > |[(n + 1) {D}]. From (ii) we have f(D)* > f(D).
This gives that D' > D (because D — D' is f-nef; see [Sh2, 1.1] or [KM, 3.39]).
Finally, by Monotonicity Lemma 4.2.3 and because nD’ is an integral divisor, we
have

nD' >nS" + |(n+1)B'] >n|D] + |[(n+1){D}].
)

REMARK 4.3.3. (i) By Monotonicity Lemma 4.2.3, the condition (ii) holds
if all the coeflicients of f(D) are standard, i.e., f(D) € ®gm. By 4.2.8 (ii)
also holds if n € Ry and f(D) € ®&y,.

(ii) The above proof shows that the proposition holds under the following weaker
assumption instead of (ii):

(ii)’ for each nonexceptional component D; of D = Y d;D; meeting the excep-
tional divisor of f we have d; € P,,.

4.4. Inductive properties of complements

PROPOSITION 4.4.1 (cf. {[Sh2, Proof of 5.6], [Ut, 19.6]). Let (X/Z > o,D =
S + B) be a log variety. Set S := |D| and B := {D}. Assume that
(i) Kx + D is plt;
(ii) —(Kx + D) is nef and big over Z;
(iii) S # 0 near f~1(o0);
(iv) D € P, for somen € N.



36 4. DEFINITION OF COMPLEMENTS AND ELEMENTARY PROPERTIES

Further, assume that near f~1(0)NS there exists an n-complement K s+ Diff s(B)+
of Ks + Diff s(B). Then near f~'(o) there ezists an n-complement Kx + S + Bt
of Kx + S + B such that Diffg(B)* = Diffs(B™).

This proposition should be true in the case when Kx + D is dlt. We need only
good definitions of complements on nonnormal varieties (see [Ut]).

PROOF. Let g: Y — X be a log resolution. Write Ky + Sy + A = ¢*(Kx +
S + B), where Sy is the proper transform of S on Y and |A] < 0. By Inversion of
Adjunction, S is normal and Kg + Diffg(B) is plt. In particular, gs: Sy — S is a
birational contraction. Therefore we have

Ks, + Diffs, (4) = g5(Ks + Diffs(B)).

Note that Diffs, (A) = A|s, , because Y is smooth. By Corollary 4.2.7 we see that
Diffs(B) € P,. So we can apply Proposition 4.3.2 to gs. We get an n-complement
Ks, + Diffs, (A)* of Kg, + Diffs, (A). In particular, by (4.1), there exists

© € |-nKs, — [(n + 1)Diffs, (A4)]|
such that
nDiffs, (A)* = |(n + 1)Diffs, (4)] + O.
By Kawamata-Viehweg Vanishing,
R'h, (Oy(—nKy — (n+1)Sy — [(n+ 1)A))) =
R'h, (Oy(Ky + [-(n+ 1)(Ky + Sy + A)])) = 0.
From the exact sequence
0 — Oy(—nKy — (n+1)Sy — [(n +1)A))
— Oy (—nKy —nSy — |[(n + 1)A))
— Os, (—nKs, — [(n +1)A]]s,) — 0
we get surjectivity of the restriction map
HO(Y,Oy(—nKy — nSy — [(n + 1)A])) —
H°(Sy,0s, (-nKs, — [(n+1)A]|sy)).
Therefore there exists a divisor
Ze€|-nKy —nSy — [(n+1)A]|
such that =|g, = ©. Set

At = %(I_(n +1)A] +E).

Then n(Ky + Sy + A*) ~ 0 and (Ky + Sy + A%)|s, = K5, + Diffs, (A)*. Note
that we cannot apply Inversion of Adjunction on Y because A* can have negative
coefficients. So we put Bt := g,A*. Again we have n(Kx + S + Bt) ~ 0 and
(Kx + S+ B*)|s = Ks + Diffs(B)*. We have to show only that Kx + S+ Bt is



4.5. EXCEPTIONALITY 37

lc. Assume that Kx + S+ B1 is not Ic. Then Kx + S+ B+ a(B* — B) is also not
lc for some a < 1. It is clear that —(Kx + S+ B + a(B* — B)) is nef and big over
Z. By Inversion of Adjunction, Kx + S + B + a(B* — B) is plt near SN f~1(o).
Hence LCS(X,B + a(B* — B)) = S near SN f~1(0). On the other hand, by
Connectedness Lemma, LCS(X, B + a(B* — B)) is connected near f~!(0). Thus
Kx + S+ B+ a(B*™ — B) is plt. This contradiction proves the proposition. O

REMARK 4.4.2. It follows from the proof that we can replace (iv) in Proposi-
tion 4.4.1 with

(iv)’ Diffg(B) € P, for some n.
In the two-dimensional case we have a stronger result.

PROPOSITION 4.4.3 (cf. [Sh2, Proof of 5.6], [Ut, 19.6]). Let (X/Z > o,D =
S + B) be a log surface such that :
(i) Kx + D is dit;
(ii)) —(Kx + D) is nef and big over Z;
(iii) S :=|D] # 0 near f~1(o0).
Assume that near f~1(0) NS there exists an n-semicomplement Ks + Diffg(B)*
of Ks + Diffs(B). Then near f~1(0) there erists an n-complement Kx + S + Bt
of Kx + S + B such that Diffg(B)* = Diffg(B™).

PROOF. Similar to the proof of 4.4.1. By Propositions 2.1.2 and 2.1.3, the curve
S is nodal. Further, we can take a log resolution g: ¥ — X so that Sy ~S. 0O

EXERCISE 4.4.4 ([Sh3]). Let (X > P) be a germ of a two-dimensional normal
singularity, let C # 0 be a reduced divisor on X, and B = }_ b;B; # 0 a boundary
on X such that Kx + C + B is plt. Assume that b; > 1/2 for all s. Show that
Kx + C + [B] is Ic and SuppB is irreducible. Moreover,

Diff¢(B) = (1 - % + %) P, where (X > P)~C?/Z,(1,q).

If B€ ®sm (ie., B=(1—-1/m;)By, m; € N), then
(Kx +C+ B)lc =(1-1/m)P, m = min.
Hint. Show that Kx + C + B is 1-complementary (using 4.1.10 and 4.4.3).

4.5. Exceptionality

DEFINITION 4.5.1. Let (X/Z > o, D) be a log variety such that there is at least
one Q-complement of Kx + D near the fiber over o.

e Assume that Z is not a point (local case). Then (X/Z 3 o, D) is said to be
exceptional over o if for any Q-complement of Kx + D near the fiber over
o there exists at most one (not necessarily exceptional) divisor S such that
a(S,D) = —1.

e Assume that Z is a point (global case). Then (X, D) is said to be ezceptional
if every Q-complement of Kx + D is kit.
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The main advantage of this definition is Shokurov’s conjecture that exceptional
log varieties are bounded in some sense (see 4.5.2, 6.1.4, 6.1.10 (ii), 7.1.16, 7.2.6,
9.1.7, 9.1.11, [Sh3, §7], [KeM], [P2]). On the contrary, nonexceptional ones has
“regular” complements (i.e., n-complements with small n). This phenomena was
discovered by Shokurov [Sh3]. In [KeM] exceptional log del Pezzo surfaces are
called del Pezzo surfaces without tiger. Studying of such surfaces is closely related
to the uniruledness of affine surfaces [KeM, 6.1].

EXAMPLE 4.5.2. Let D be a boundary on a curve X. If (X, D) is nonexcep-
tional, then by Theorem 4.1.10, Kx + D is 1 or 2-complementary. Assume addi-
tionally that D € ®gy, and X = P!. By 4.1.11 and 4.1.12, (X, D) is exceptional
only in the following cases: Eg, E7, Ejg, 54, E’G, E‘7, Eg.

We discuss two-dimensional generalizations of this fact in Ch. 8 and 9.

EXAMPLE 4.5.3. A log canonical singularity (X, o) is exceptional if and only
if for every boundary B such that Kx + B is lc there exists at most one divisor
S (not necessarily exceptional) such that a(S,B) = —1. We see in Ch. 6 that a
two-dimensional klt singularity is exceptional if and only if it is of type Eg, E7
or Eg. Note that they are bounded. In contrary, nonexceptional kit singularities
belong to two infinite series A, and I,. Refer to [I], [MP], [IP] for generalizations
of this observation.

An isolated log canonical nonklt singularity (X, o) is exceptional if and only if
there is exactly one divisor with discrepancy a(-,0) = —1. Under the assumption
that X is Gorenstein such singularities are called simple elliptic in dimension two
and simple K3 in higher dimensions [IW].

EXAMPLE 4.5.4. Let C' C C? be a curve given by 2 = ¢®. Then Kc: + 3C is
lc and not klt. Simple computations show that there exists only one divisor with
discrepancy —1. Therefore (C?,2C) is exceptional.

The following proposition gives a nice relationship between local and global
exceptional objects.

PROPOSITION 4.5.5 ([P1, Theorem 5]). Let (X 3 P) be a kit singularity and
f:(Y,S) = X a plt blowup of P. Then the following are equivalent:
(i) (X > P) is exceptional;
(i) f(S) = P and (S, Diff5(0)) is exceptional;
(iii) (S,Diffs(0)) is exzceptional.

PROPOSITION 4.5.6 ([PSh], see also [MP], [IP], [P2]). Let (X/Z > o,D) be
an exceptional log variety of local type. Then there exists a divisor S of X(X) such
that a(S,D%) = —1 for any nonklt Q-complement of Kx + D (i.e. S does not
depend on the choice of D).

COROLLARY 4.5.7 ([P1]). Let (X > P) be a Q-factorial exceptional lc singu-
larity. Then a plt blowup is unique up to isomorphisms.
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EXAMPLE 4.5.8 ([MP], cf. [P1, Theorem 5]). Let G be a finite group acting
on C™ freely in codimension one. Then the quotient singularity C™/G is exceptional
if and only if so is the log Fano (P"~!/G, D), where D is given by the formula (1.4).
In dimension two there are exactly three types of exceptional groups: tetrahedral,
octahedral and icosahedral (up to conjugation and scalar multiplication). In di-
mension three there are four types of them: F'; G, I, J, in the classical notation.



