Chapter 4

Non-Resonance Theorems

4.1 Logarithmic Complex

We review classical Hodge theory for an ¢-dimensional compact complex projective
manifold X. Let O = Oy denote the sheaf of germs of holomorphic functions on
X and let Q@ = Qy be the de Rham complex of germs of holomorphic differential
forms on X with the exterior differentials, where 0 = 0. Let C = Cy denote
the constant sheaf on X. It follows from the Poincaré Lemma that the sequence
0 - C — Q is exact. Let o be the stupid filtration. The spectral sequence
associated with the filtered complex (€)', o), is:

EPY = HY(X,0QF) = EF9 = HPTI(X, C).
Theorem 4.1.1 (Hodge). This spectral sequence degenerates at the Ey term. As
a consequence, there is a decomposition
H"(X,C)= € HY(X )
ptg=n
which is called the Hodge decompostion.

Next recall “the non-compact version” or “the mixed version” of the Hodge
decomposition. Let X be a complex quasiprojective manifold, a Zariski open set
of a compact projective manifold. As a corollary of Hironaka’s resolution theorem,
we know that there exists a (smooth) projective manifold X such that Y = X \ X
is a normal crossing divisor. Each z € X has a coordinate neighborhood V, with
coordinate system (21, 22, ...,2¢) and an integer k (0 < k < ) such that z;(z) =
zo(x) =+ = z(x) =0 and Y is defined locally by the equation 2125 ...2; = 0.

Definition 4.1.2. For each x € X and p > 0, define the O, -module
DP(logY), = {w| w is the germ of a meromorphic p-form such that

(z129...21)w € W and (2129 .. 25)dw € QPTY.
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Then the set

DP(logY) = U QP(logY ),
zeX

has the structure of a sheaf of Og-modules on X. Note that QP(logY), = QP if
x¢Y. Let Q(logY') denote this complex with the ordinary exterior differentials.

Let H denote hypercohomology. The next theorem shows that the cohomology of
X with constant coefficients is computed using this logarithmic complex.

Theorem 4.1.3 (Deligne [D2]). Let j : X < X be the inclusion map.
(1) The inclusion @ (logY) < j.Qy is a quasiisomorphism.
(2) H(X,C) = H™(X, 2 (logY)).
(3) The spectral sequence

EP=HYX,0(logY)) = EXT? = HP1Y(X,C).
degenerates at the Ey term. As a consequence, there is a decomposition

H"(X,C)= P HYX,2(logY)).

pt+g=n

The problem of computing the cohomology of X with coefficients in a nontrivial
local system was also solved by Deligne. Fix x € X. It has a coordinate neigh-
borhood V,, with coordinate system (z1, z2,...,2¢) and an integer k£ (0 < k < ()
such that z1(z) = 22(z) =+ -+ = z(x) =0 and Y is locally defined by the equation
2122 ... 2 = 0. In what follows, we consider only this neighborhood of z. Thus we
may assume that X = D’ is the unit polydisk in C* and that X = (D*)¥ x D%,
Let ; be a loop around the hyperplane z; = 0. Define a locally constant sheaf of
rank one, £, on X corresponding to the representation p : 71(X) — C* satisfying

p(y) =¢ €C* (j=1,....k).
Define

Ox(£) = Ox &cy L,
(L) =R @y L (p=1,....0).

Next we study how we can extend Ox (L) to a locally free sheaf O (L) with
some rank-one local system £ on X. For simplicity, let us consider the special
(but important) case of n = k = 1. In this case X = D, X = D*, and Y = {0}.
Write ¢ = ¢, z = 21. For x € D*, choose a basis v, for £, so £, = Cv,. Choose
A € C such that ¢ = exp(—27i)). (Note that A is determined by ¢ only modulo
Z.) Then the collection {z* ® vy }zep+ determines a section on D* invariant under
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monodromy. Thus it determines a rank-one local system £ on D with a global
section vg:

vo=2"®uv, (foreach z € D*).
Then Op(L) is an extension of Op-(L) from D* to D:

O(L)

p+ = Op+(L).
Let j : D* — D be the inclusion map. We have an exact sequence
0— L —0(L) % QL)

on D* in which V(f ® v,) =df ® v, (f € O). If we use the global section vy in
order to describe the map V, then we have

V(f®@u) = V(f @vy) =d(f2*) ® v,
= APtz @u, + Ndf @, = (df + )\fd;) ® vg.

Therefore we can extend the map V to V : O(£) — Q' (logY)(L) by

V(f ®w) = (df+)\fd—;)®vo.

It is easy to see that

Y .
ker ¥ — 27 Qv lfAEZSO
0 otherwise.
On the other hand, consider the kernel of
3:V 1 5:0(L) = j.QH(L).

It is again easy to see that

2AQuy fAEZ
0 otherwise.

ker(j,V) = {

Therefore we have
ker V = ker(j, V) if A € Zso.

This observation is the essential part of the following
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Theorem 4.1.4 (Deligne[D1]). Suppose that Y is a normal crossing divisor in
a complex projective manifold X. Let X = X \'Y. Let L denote a locally constant
sheaf on X. Suppose that L is a rank-one locally constant sheaf on X such that
(1) Ox(L)|x = Ox(L), and
(2) the integrable connection V : Ox (L) — Q'(L), whose kernel is equal to L,
can be extended to a connection V : Ox (L) — Q% (log Y)(L) which can be expressed
as

dzi
V(f ®v) = df+Z)\ —Z ) ® o

locally at y € Y, where 21 ...z, = 0 is a defining equation for Y, vy is a basis for
L neary, and
Ai E(C\Z>0 (i: 1,--- ,k)

Then the inclusion

is a quasiisomorphism.

4.2 The Arrangement Case

Now we return to arrangements of hyperplanes and study their Hodge theory.
Arnold [Ar] conjectured and Brieskorn [Bri] proved:

Theorem 4.2.1. Let B'(A) denote the graded C-algebra generated by 1 and the
forms wy, H € A and call B(A) the Brieskorn algebra of A. The inclusion
B* C Q) induces isomorphism of graded algebras

B'(A) ~ H'(M(A),C).

Choose projective coordinates ug, ..., up so that Hy, = ker(uo) is the hyper—
plane at infinity. Then the defining equatlon of N(As) is uoQ = 0 where Q is the
homogenization of Q.

Proposition 4.2.2. Let g be the homogenized polynomial of agr. For each H €
A, define a global meromorphic form &p on CP by

day d
o= (e Q.

ag Uo

Then

H(M,C)~ \(@n | H e A).
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Proof. Note that the global meromorphic 1-form @y is the unique extension of the
form wg from C¢ to CPY. Therefore the restriction map

O — Wlee = wy
gives an isomorphism
N @r | HeA)~ \(wn | HeA

as C-algebras. The second algebra is isomorphic to H (M, C) by Theorem 4.2.1.
O

Theorem 4.2.3 (Esnault-Schechtman-Viehweg [ESV]). Given the arrange-
ment A in C* with projective closure A, in CP', let Noo = N(As) be its divisor.
Suppose that X is a (nonsingular) complex projective manifold which is the result
of successively blowing up CP¢, 7 : X — CP!. Assume that Y = 77 (Ny) has
normal crossings. Let X = X \'Y and M = C*\ Uy, H. Then

(1) T(X,0"(logY)) ~ HMM,C) ~ \e(@u | HE A) (n=0,...,0), and

(2) HI(X,9(log V) =0 (> 1).

Proof. By Proposition 4.2.2 we have

n

H"(M,C)~ \(@n | H € A).

Note that the pullback of each @z by 7 belongs to T'(X, Q' (logY)). On the other
hand, by Theorem 4.1.3 (3), there is a decomposition

H"(X,C)= @ HY(X,2(logY)).

ptg=n

Thus we have

n

H"(M,C) ~ \(@n | H € A) = T(X,Q"(logY)) — H"(X,C).

Since X ~ M, these two monomorphisms are isomorphisms. This proves (1). We
obtain (2) by applying Theorem 4.1.3 again. O

Now we want to apply Deligne’s results on local system cohomology to ar-
rangements. In general N(Ay) C CP’ is not a normal crossing divisor. Our first
task is to use resolution of singularities to blow up linear subspaces of N(A) to
make it a normal crossing divisor. The blow up of C* at the origin is the space
C* = Uy U---U U, where each U; = C* and identifications are given by the map

7: C' — C* as follows. Let U; have coordinates {y](j )} and let the domain C* have
coordinates {u;}. Then

T (wi) =9 ")

y 'y onU;ifj#i
Y; on U;.
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The exceptional divisor is E = 771(0). It is a copy of CP‘~ 1.

There is an embedding of C* in C* x CP¢~!. Let CP"! have coordinates
(wy :...:wg). Then C = {ujwj —ujw; = 0] # j}. Here ylm =w;/w; ifi #j
and yf

Now suppose A is a central arrangement and T(A) is the origin. Let PA be
the projective quotient of A and let PN be its divisor. Note that N is the complex
cone over PN. We have a commutative diagram

i
):ui.

PN c CP“!
7[T N pra
Ct c Ctxcpt!
o /P

N c

and 77Y(N) = n~Y(PN) UE.

Theorem 4.2.4 (Varchenko (10. 8 in [V2])). Let Ay be a projective arrange-
ment in Xo = CP’ and let Ny, = N(As) be its divisor. Let 7 : X1 — Xg be the
result of blowing up points in Do(As). For2 < s < {l—1, let 75 : Xg — X1
be the result of blowing up the proper transforms of the (s — 1)-dimensional dense
spaces in Dy_1(Aso) by Ts_10Ts_00---07. Let X = Xy_1 andT =Ty_10---0Tq.
Then X is nonsingular and Y =7~ (N ) is a normal crossing divisor.

Proof. Let p € CP’. It suffices to prove that p has a neighborhood U such that
77H{UN Ny ) is a normal crossing divisor. Thus we may assume that p is the origin
in C* and A is a central arrangement with p € T(.A). We argue by induction on /.
There is nothing to prove when £ = 1. For £ > 1 there are three cases to consider.
Write T' = T(A) and N = N(A).

(1) If p # T, then dimT = d > 0. Consider the projection ¢ : C¢* —
Cf/T = C*% Let A° = ¢(A) be the corresponding essential arrangement. Then
¢ H(Dj(A%)) = Djya(A). Let N°* = N(A°*) and let 7 be its resolution. Then
7 HN) = 7717 Y(N®) = ¢ 1(7°%) "1 (N®*). The conclusion follows from the fact
that (7¢%)~1(N®®) is a normal crossing divisor.

Xeor —— Yo

1
X, —— Y
|
Xo

(2) If p =T is a dense edge, then p is the center of 7;. We argue by induction
on {. There is a bijection between D;(A) and D;_;(PA) for j > 1. Thus we
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may assume by induction that we have a resolution o : Yy_o — Yy = CP¢! of
PA so that Y;_ is nonsingular and ¢~ *(PN) is a normal crossing divisor. In the
commutative diagram above 7 = 7y_1 0 ---0 7. Since 77 }(N) = 7~'(PN) U E,
we have 771(N) = 710~ }(PN) U7~ LE. The first divisor on the right has normal
crossings by the induction hypothesis. The preimage of the nonsingular divisor F
intersects it transversely, hence 77!(V) is a normal crossing divisor.

(3) If p="T is not a dense edge, then A has a decomposition into indecompos-
able subarrangements A = A; W --- W A, with m > 1. Here dimT'(A4;) > 0 for all
i. Thus we may use the first case to blow up CP* for each A; by the construction
provided above so the preimage of each N(A;) has normal crossings. It follows
from Lemma 3.2.7 that D;(A) = J/-, D;(A;). Since Ay, ..., A, may be defined
in distinct sets of variables, the resolution 7 is the composition of the m separate
resolutions of the A;. O

Define a global 1-form on CP* by
D= Y Anbn.
HeA

It is the unique extension of the 1-form wy. Thus the residue of @, along
Ao 18 A and the residue of @y along Hy is — ) geaAH- Therefore let A
— > HeaAn be the weight of Hy,. For Z € L(Ay), define Az € C by

Ay = Z .

He(Ax)z

H e
OO:

Lemma 4.2.5. Let E be a component of the normal crossing divisor Y in the
resolution of Theorem 4.2.4 and let g = 0 be a local defining equation of E. If E
first appeared when we blew up a proper transform of the dense edge Z € D(Aw),
then the coefficient of dg/g in 7@y is Az.

Theorem 4.2.6 ([ESV][STV]). If Az & Z~q for every Z € D(Ax), then
HP(M, L) ~ HP(B'(A),w\N).

Proof. Let 7 : X — CP! be given as in Theorem 4.2.4 by successively blowing
up the proper transforms of the dense edges of A,. Then Y = 771(N(Ay)) has
normal crossings. Let X = X \'Y. Note that 7 gives a biholomorphic map between
M and X. Recall @y = [[pc4 ajf' as in Proposition 2.1.2 where we showed
that £, is a locally constant sheaf whose local sections are isomorphic to constant
multiples of <I>;1. Recall that the integrable connection

Vi Ou(£Ly) = Dy (Lr)
satisfies Va(f ® ®11) = (df) @ @' (f € Our). Pull back V), by 7 and we have
T*V)\ : Ox(T*[,)\) - Q§(<T*[’)\)
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satisfying (7*Vy)(f @ 7@, 1) = (df) @ 7* @} (f € Ox). Define

V: 0x(L) — QL(L)

by
V(f®1)=(df + f(r*wy))®1 (f € Ox),

where £ is  equal to the (global) constant sheaf Cx. Write £ = 7°L) and V = 7°V,.
Then X, X,Y, L, L, V,V satisfy the assumptions of Theorem 4.1.4. Thus we have

HP(B'(A),waN) = HP(B'(A), d + wrn)

(
= HP(T(X,Q (logY)),d+ 7*&yA)  (Theorem 4.2.3 (1))
~HP(X, (2 (logY),d+T"0\N)) (Theorem 4.2.3 (2))
~H(X, (2 (10 Y)(£), 7))
~HP(X, (1.0 (L), j:V)) (Theorem 4.1.4)
~ HP(X,(2(L),V)) (j is a Stein map)
~ HP(X, L)
~ HP(X,7*L))
~ HP(M,Ly).

O

In Chapter 5 we introduce some combinatorial tools. These are used in Chapter
6 to compute the groups H?(B'(A), waA).





