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1 Introduction
In this section, we introduce finite complex reflection groups, define the fake degrees, and
explain the objectives of this paper.

Definition 1.1 Let $V$ be an n-dimensional Hilbert space and let $U(V)$ be the
group of unitary transformations on $V$ . An element $r\in U(V)$ is called a complex
reflection if the set $Ker(r-Id_{V})$ of fixed points of $r$ in $V$ is a complex hyperplane
$H_{r}$ . A finite subgroup $W$ of $U(V)$ is called a finite complex (or also unitary)
reflection group if $W$ is generated by complex reflections.

The following theorem is the fundamental fact characterizing such subgroups
in $U(V)$ .

Theorem 1.2 (Shephard-Todd [19]) A subgroup $W$ of $U(V)$ is a finite complex
reflection group if and only if the subring $P^{W}$ of the W-invariant elements in the
ring $P$ of polynomial functions on $V$ is generated by $n$ algebraically independent
homogeneous elements $p_{1},$ $\ldots,p_{n}$ .

In this case, the homogeneous degrees $d_{i}=\deg(p_{i})$ depend only on $W$ , and are
called the primitive degrees of $W$ . The product of $d_{i}$ is equal to $|W|$ and the sum
$\sum_{i=1}^{n}(d_{i}-1)$ is equal to the number of complex reflections in $W$ .

We call $W$ irreducible if $W$ acts irreducibly on $V$ . Shephard and Todd have
given the complete classification of the irreducible complex reflection groups:

Theorem 1.3 (Shephard-Todd [19]) If $W$ is an irreducible complex reflection
group, then $W$ is isomorphic to one of the following list:

(i) The symmetric Group $\mathfrak{S}_{n}$ , acting on $V=\{v\in \mathbb{C}^{n}|\sum v_{i}=0\}$ .

(ii) Let $m,p,$ $n$ be positive integers such that $p$ divides $m,$ $m\geq 2$ , and $p=1$ if
$n=1$ . Let $\{e_{i}; i=1, \ldots , n\}$ be an orthonormal basis of $\mathbb{C}^{n}$ and for each
$i=1,$ $\ldots,$

$n$ , let $\zeta_{i}$ be an m-th root of unity, such that $(\prod_{i=1}^{n}\zeta_{i})^{\frac{m}{p}}=1$ . We
denote by $G(m,p, n)$ the group generated by

$e_{i}\mapsto\zeta_{i}e_{\sigma(i)}$ $(\sigma\in \mathfrak{S}_{n})$ .

This is a finite complex reflection group in $\mathbb{C}^{n}$ . These groups are the imprim-
itive complex reflection groups.

(iii) One of 34 exceptional cases (these cases contain of course the exceptional
Coxeter groups).

Remark 1.4 Many rank two cases are obtained as follows: Let $\Gamma\subset SL_{2}(\mathbb{C})$ be
a finite subgroup corresponding to a platonic polyhedron. For suitable choice of
$a\in N,$ $\Gamma\cdot\mu_{a}$ is a finite complex reflection group, where $\mu_{a}=\{\left(\begin{array}{ll}\alpha & 0\\0 & \alpha^{-1}\end{array}\right)$ ; $\alpha^{a}=1\}$ .
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The action of $W$ on $P$ respects the grading by degree. Let $P+be$ the graded
ideal of polynomials vanishing at $O\in V$ and let $P_{+}^{W}$ be the ideal generated by the
invariants in $ P+\cdot$ The coinvariant algebra $P/PP_{+}^{W}$ is a representation space of $W$

and we denote it by $RW$ . This representation is isomorphic to the left regular
representation on $\mathbb{C}[W]$ . The space $RW$ is graded by homogeneous degree and
this grading is compatible with the action of $W$ . Let $RW_{k}$ be the homogeneous
subspace of $RW$ of degree $k$ .

It is well known that the graded character of this representation is

$tr_{RW}(w)$ $:=\sum_{k\geq 0}(tr(w)|_{RW_{k}})T^{k}=\frac{\prod_{i=1}^{n}(1-T^{d_{i}})}{\det_{V}(1-Tw^{-1})}\in \mathbb{C}[T]$ . (1.1)

By this character, we have a map from the space Class $(W)$ of class functions on
$W$ to $\mathbb{C}[T]$ :

Class $(W)\ni\alpha\leftrightarrow F_{\alpha}$ $:=\frac{1}{|W|}\sum_{w\in W}\alpha(w)tr_{RW}(w^{-1})\in \mathbb{C}[T]$ .

Definition 1.5 For a representation $\tau$ of $W$ we write $R_{\tau}=F_{\overline{\tau}}=F_{\overline{\chi_{\tau}}}$ , where $\chi_{\tau}$

denotes the character of $\tau$ . $R_{\tau}$ is called the fake degree of $\tau$ . Notice that $R_{\tau}\in \mathbb{Z}[T]$

with nonnegative coefficients.

Since $RW\simeq \mathbb{C}[W],$ $\dim Hom_{W}(\tau, RW)=\deg\tau=:l$ for each irreducible rep-
resentation $\tau\in\hat{W}$ . Let $p_{1}^{\tau}\leq\cdots\leq p_{l}^{\tau}$ be the homogeneous embedding degrees of
$\tau$ in the coinvariant algebra $RW$ , i.e. the degrees of irreducible $\tau$-components in
$RW$ .

Corollary 1.6 For an irreducible representation $\tau\in\hat{W}$ ,

$F_{\tau}(T)=\frac{1}{|W|}\sum_{w\in W}\frac{\chi_{\tau}(w)}{\det_{V}(1-Tw)}\prod_{i=1}^{n}(1-T^{d}\cdot)$ (1.2)

$=\sum_{j=1}^{l}T^{p;}$ . (1.3)

Proof. By (1.1) and by the orthogonality of characters. $\square $

The name fake degree was given by Lusztig. When $W$ is a Coxeter group the
notion of fake degree plays a role in the representation theory of finite Chevalley
groups. By Lusztig’s work, they can be regarded as approximations of the degrees
of the principal series unipotent representations of a finite Chevalley group. In fact
Lusztig has shown that every unipotent degree of a finite Chevalley group $G(F_{q})$

with Weyl group $W$ , can be expressed as a rational linear combination of the fake
degrees of $W$ evaluated at $T=q$ (see [8], [14]).
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The ideas and conjectures of Brou\’e, Malle and Michel state, among many other
things, that this role of $W$ and its fake degrees for the study of unipotent represen-
tations can be extended naturally to the more general case where $W$ is a complex
reflection group that arises as the quotient $N(L)/L$ with $L\subset G$ a “d-cuspidal”
Levi subgroup of $G$ . We refer the reader to [5], [6] for an account of this subject.
Also see [15], where the unipotent degrees and fake degrees were studied in the
case of the general imprimitive group.

A central notion in these considerations of unipotent and fake degrees for a
complex reflection group $W$ is its (cyclotomic) Hecke algebm. It is a deformation
of the group algebra of $W$ , similar to the ordinary Hecke algebra of a Coxeter
group. It was introduced by Brou\’e and Malle in [5], and investigated in many
subsequent papers (for example [15], [16], [7]). From the results of these papers
it is clear that the cyclotomic Hecke algebra shares many of the properties which
give the usual Hecke algebra its prominent role in representation theory. But also,
there are still severe problems to give the cyclotomic Hecke algebra a transparent
theoretical basis similar to the theory of ordinary Hecke algebras. Many results
rely on classifications and computer aided computations. In fact there are many
exceptional complex reflection groups for which it is still not known whether their
Hecke algebras are free over the coefficient ring or not, or what the rank of the
Hecke algebra is. The situation is better for the imprimitive cases. Here the theory
is rather well understood, see [1] and [15].

In these lectures we approach the cyclotomic Hecke algebra from topology. It
is the same approach as was used in the paper [7]. This way of thinking about the
Hecke algebra is quite natural in the case of a Coxeter group $W$ , given Brieskorn’s
description of the fundamental group of the regular orbit space as the braid group
of $W[4]$ . For Coxeter groups one can find results in this direction in [11], [12] (and
many other papers). We use the monodromy representation of certain systems
of differential equations to construct the “topological cyclotomic Hecke algebra”
(terminology from [7]), which is known to be isomorphic to the cyclotomic Hecke
algbra in many cases (and conjectured to be isomorphic in all cases) (see [7]).

There are two main results in these notes. The first is described in section
4. This is a transformation property of fake degrees of representations of $W$ with
respect to certain operations on representations of $W$ . In view of the current diffi-
culties with cyclotomic Hecke algebras we formulate and prove this result without
the use of cyclotomic Hecke algebras. The price we have to pay is that the “oper-
ations” on representations of $W$ are somewhat mysterious without the cyclotomic
Hecke algebra, and not much can be said about their basic properties. In the sec-
ond half of these notes we assume certain facts about the cyclotomic Hecke algebra,
and with these assumptions we interpret the “operations” mentioned above as the
natural action on $Irr(W)$ of the geometric Galois group of the character field of
the cyclotomic Hecke algebra. See section 7 for more details about this part of the
story. The main result of this second part is Theorem 6.7, which implies that the
geometric Galois group of the character field over the coefficient field is abelian
(but the statement of Theorem 6.7 is more precise).
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2 Minimal polynomial realization
In this section, we define the minimal $\tau$-matrix and investigate the basic properties of it.

Let $C$ be the set of W-orbits of reflection hyperplanes and let $\mathcal{A}$ be the full
hyperplane arrangement $\bigcup_{C\in C}C$ . For a hyperplane $H$ in an orbit $C\in C$ , the
stabilizer

$W_{H}$ $:=$ {$w\in W;wx=x$ for any $x\in H$}

is isomorphic to a cyclic group $\mathbb{Z}/e_{C}\mathbb{Z}$ . Here, $e_{C}$ is the order of $W_{H}$ , which is
determined by the orbit $C$ . For a representation $\tau$ of $W$ , we define a nonnegative
integer $n_{C,j}^{\tau}$ by

${\rm Res}_{W_{H}}^{W}\tau\simeq\bigoplus_{j=0}^{e_{C}-1}n_{C,j}^{\tau}\det^{-j}$ . (2.1)

Note that $\hat{W}_{H}=\{1=\det^{-ec}, \det^{-e_{C}+1}, \ldots , \det^{-1}\}$ .
In this note, we denote $f(H)=f(C)$ for a function $f$ on $C$ if $H\in C\in C$ . For

example, $e_{H}=e_{C}$ and $n_{H,j}^{\tau}=n_{C,j}^{\tau}$ . Note that

$\sum_{i=1}^{n}(d_{i}-1)=|$ {$complex$ reflections}l $=\sum_{H\in A}(e_{H}-1)$
, (2.2)

$\deg\tau=\sum_{j=0}^{e_{H}-1}n_{H,j}^{\tau}$ (for each $H\in \mathcal{A}$). (2.3)

Lemma 2.1 For an irreducible representation $\tau$ ,

$\sum_{j=1}^{\iota}p_{j}^{\tau}=\sum_{C\in C}|C|\sum_{j=1}^{e_{C}-1}jn_{C,j}^{\tau}$ . (2.4)

Proof. To show this, we use Corollary 1.6. We differentiate this equality by $T$

and take the limit $T\rightarrow 1$ . After we take the limit, (1.3) is equal to $\sum_{j=1}^{l}p_{j}^{\tau}$ , and
the only terms which survive in the sum $\sum_{w\in W}$ of right hand side of (1.2) are the
terms where $w=e$ or where $w$ is a complex reflection. The limit of the $w=e$ term
equals

$\lim_{T\rightarrow 1}\frac{\deg\tau}{|W|}\sum_{i=1}^{n}(\sum_{j.\cdot=0}^{d.-1}j_{i}T^{j_{i}-1})\prod_{k\neq i}(\sum_{j_{k}=0}^{d_{k}-1}T^{j_{k}})$

$=\frac{\deg\tau}{|W|}\sum_{i=1}^{n}\frac{1}{2}d_{i}(d_{i}-1)\prod_{k\neq i}d_{k}=\sum_{H\in A}\sum_{j=0}^{e_{H}-1}\frac{e_{H}-1}{2}n_{H,j}^{\tau}$ .
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Here, we used the facts (2.2), (2.3) and $\prod_{i=1}^{n}d_{i}=|W|$ .
For $H\in \mathcal{A}$ , we denote by $\zeta_{H}$ a primitive $e_{H}$-th root of unity. The limit of the

sum of the terms with $w$ a complex reflection equals

$\lim_{T\rightarrow 1}\frac{d}{dT}\frac{1}{|W|}\sum_{H\in A}\sum_{k=1}^{e_{H}-1}\sum_{j=0}^{e_{H}-1}\frac{n_{H,j}^{\tau}\zeta_{H}^{-jk}}{1-T\zeta_{H}^{k}}(1-T)\prod_{i=1}^{n}(\sum_{j_{i}=0}^{d_{l}-1}T^{j}\cdot)$

$=-\sum_{H\in A}\sum_{k=1}^{e_{H}-1}\sum_{j=0}^{e_{H}-1}\frac{n_{H,j}^{\tau}\zeta_{H}^{-jk}}{1-\zeta_{H}^{k}}$

$=\ldots$

$=-\sum_{H\in A}\sum_{j=0}^{e_{H}-1}n_{H,j}^{\tau}\frac{e_{H}-1-2j}{2}$ .

$\square $

Definition 2.2 For a finite dimensional representation $(\tau, E)$ of $W$ , we choose an
explicit matrix realization $\tau$ : $W\rightarrow GL(l, \mathbb{C})(l=\deg\tau)$ and fix it.

A matrix $M=(m_{ij})\in Mat(l\times l, P)$ with $\det(M)\neq 0$ is called a minimal
$\tau$ -matrix if it satisfies the following conditions:

(i) For each $w\in W,$ $M^{w}$ $:=(m_{ij}\circ w^{-1})=\tau(w)M$ .

(ii) Let $\mathbb{E}$ $:=\sum_{i=1}^{n}x_{i}\partial/\partial x_{i}$ be the Euler vector field. The matrix $M$ satisfies

$EM:=(Em_{ij})=M\cdot C_{E}^{M}$

for some $C_{E}^{M}\in Mat(l\times l, \mathbb{C})$ .

(iii)

$tr(C_{E}^{M})=\sum_{C\in C}|C|\sum_{j=1}^{e_{C}-1}jn_{C,j}^{\tau}$ .

Remark 2.3 (i) 2.2 Condition (iii) is equivalent to the following (iii)’:

deg(det(M)) $=\sum_{C\in C}|C|\sum_{j=1}^{ec-1}jn_{C,j}^{\tau}$ .

This follows immediately by considering the action of the group $\mathbb{C}^{\times}$ (for which
$E$ is the infinitesimal generator) on $M$ .

(ii) If $M$ is a minimal $\tau$-matrix and $g\in GL(l, \mathbb{C})$ , then $Mg$ is also a minimal
$\tau$-matrix.
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Proposition 2.4 (i) $C_{E}^{M}$ is semisimple and its spectrum is contained in the set
of non-negative integers.

(ii) For every finite dimensional representation $\tau$ of $W$ , there exists a minimal
$\tau$ -matrix $M$ .

(iii) Let $\alpha_{H}$ be a linear function satisfying $Ker\alpha_{H}=H$ . We define $\pi c=\prod_{H\in C}\alpha H$

for $C\in C$ . Then

$\det(M)=c\sigma nst.\prod_{C\in C}\pi_{C}^{\Sigma jn_{C.g}^{\tau}}J\prime c-1=0$ . (2.5)

(iv) For any $N\in Mat(l\times l, P)$ satisfying Definition 2.2 (i), there exists $ R\in$

$Mat(l\times l, P^{W})$ such that $N=MR$ .

(v) Spectrum of $C_{E}^{M}$ does not depend on $M$ , only on $\tau$ .

Proof. (i) Since $e^{2\pi\sqrt{-1}E}$ acts on $P$ by identity, we have $e^{2\pi\sqrt{-1}C_{A}^{M}}=$ Id. It
follows that $C_{E}^{M}$ is semisimple and its eigenvalues are integers. The spectrum of
$C_{E}^{M}$ is contained in the set of non-negative integers since $M$ has polynomial entries.

(ii) For the proof of (ii), we may assume $\tau$ to be irreducible. Let Harm $(\tau)$

be the vector space spanned by harmonic polynomials associated with $\tau$ and let
$(\tau^{*}, E^{*})$ be the contragredient representation of $(\tau, E)$ . Take bases $\epsilon_{\iota}$ of $E$ and $\sigma_{j}$

of $($Harm $(\tau)\otimes E^{*})^{W}(i,j=1, \ldots, l)$ and we define $M=(h_{\iota j}^{\tau})$ $:=(\sigma_{j}(\epsilon_{i}))$ . By this
construction, (i) and (ii) in Definition 2.2 are clear. We have to check Definition 2.2
(iii), but this is clear by $tr(C_{E}^{M})=\sum_{j=1}^{l}\deg h_{j}^{\tau_{J}}=\sum_{j=1}^{l}p_{J}^{\tau}$ (using Lemma 2.1).

(iii) By (2.1) and Definition 2.2 (i), there exists $D\in GL(l, \mathbb{C})$ such that
$D\tau(s)D^{-1}(s\in W_{H})$ is diagonal and

$DM=M_{H}M^{\prime}$ ,

where $M^{\prime}$ is a $W_{H}$ -invariant matrix with polynomial entries and

$M_{H}=diag(I_{n_{H.0}^{\tau}}, \alpha I_{n_{H.1}^{\tau}}, \ldots, \alpha_{H}^{e_{H}-1}I_{n_{He_{H}-1}^{\tau}})$ . (2.6)

( $I_{p}$ is the $1\succ th$ unit matrix.) Note that $M_{H}$ is a minimal $\tau$ I $W_{H}$ -matrix and $\det(M^{\prime})\neq$

$0$ .
By the above discussion, $\det(M)$ is divisible by $\alpha_{H}^{\Sigma_{g=0}^{e-1}jn_{H_{J}}^{\tau}}H$ for each $ H\in$

$\mathcal{A}$ and also by the right hand side of (2.5). Both hand sides of (2.5) have the
same degree since deg(det(M)) $=tr(C_{E}^{M})=\sum_{j=1}^{l}p_{j}^{\tau}=\sum_{C\in C}|C|\sum_{j=1}^{ec-1}jn_{C,j}^{\tau}=$

$\deg(\prod_{C\in C}\pi_{C}^{\Sigma jn_{C.g}^{\tau}}g=0r_{C}-1)$ . This proves (2.5).

(iv) By the same discussion as above, we can show that, for any $ N\in Mat(l\times$

$l,$ $P$ ) satisfying (1), there exists a $W_{H}$-invariant matrix $N^{\prime}\in Mat(l\times l, P)$ such
that $DN=M_{H}N^{\prime}$ . Hence, for each reflection hyperplane $H,$ $M^{-1}N=(M^{\prime})^{-1}N^{\prime}$
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is $W_{H}$-invariant and regular at $H$ . It follows that $M^{-1}N$ is W-invariant and the
entries of $M^{-1}N$ are polynomials because of (2.5).

(v) By Remark 2.3 and (i) of this proposition, we may assume that $C_{E}^{M_{\nu}}(\nu=$

$1,2)$ are diagonal matrices.
Let $n_{1}^{\nu},$

$\ldots,$
$n_{l}^{\nu}$ be the spectrum of $C_{E}^{M_{\nu}}(\nu=1,2)$ . Since

$a^{C_{F}^{M_{\nu}}}\cdot=diag(a^{n_{1}^{\nu}}, \ldots, a^{n^{\nu}}’)$ ,

the matrix $R=M_{1}^{-1}M_{2}$ satisfies $R(ax)_{ij}=a^{n_{j}^{2}-n_{i}^{1}}R(x)_{ij}$ , and it follows that
$R(x)_{ij}=0$ if $n_{j}^{2}<n_{i}^{1}$ . But we know $\sum_{i=1}^{l}n_{i}^{1}=\sum_{i=1}^{l}n_{i}^{2}$ by Definition 2.2 (iii). If
the sequences $(n_{1}^{\nu}, \ldots , n_{l}^{\nu})(\nu=1,2)$ do not coincide, then, for every $\sigma\in \mathfrak{S}_{l}$ , there
exists $i$ such that $n_{\sigma(i)}^{2}<n_{i}^{1}$ . This implies $\det R=0$ , which is a contradiction. $\square $

Remark 2.5 This generalizes a construction of Stanley [20], who proved that for
every one dimensional representation $\tau\in\hat{W}$ the pseudo-invariants of type $\tau$ in $P$

form a rank one free module over $P^{W}$ , with generator

$\prod_{C\in C}\pi_{c}^{\Sigma jn_{C.g}^{\tau}}g=oe_{C}-1$

which is the minimal $\tau$-matrix in this situation. So Stanley’s result is Proposition
2.4 (iv) in this special case.

Corollary 2.6 Let $M$ be a minimal $\tau$ -matrix and let $n_{1}\leq\cdots\leq n_{l}$ be the spectrum
of $C_{E}^{M}$ . Then

$F_{\tau}(T)=\sum_{i=1}^{l}T^{n_{\iota}}$ .

3 Knizhnik-Zamolodchikov equations
We are going to construct deformed minimal $\tau$-matrices using certain differential equa-
tions. This is a generalization of the construction of a minimal $\tau$-matrix using harmonic
polynomials.

Let us choose labels $k=(k_{C,j})_{C\in C,j=0,\ldots,e_{C}-1}$ with $k_{C,j}\in \mathbb{C}$ . Put $q_{C,j}=$

$\exp(-2\pi\sqrt{-1}k_{C,j})$ . We shall sometimes use the notation $q$ for the vector

$(q_{C,j})_{C\in C,j=0,\ldots,e_{C}-1}$ .

Let $\epsilon_{j}(H)$ be the idempotent element $\frac{1}{e_{H}}\sum_{w\in W_{H}}\det^{j}(w)w$ in $\mathbb{C}[W_{H}]$ .
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Definition 3.1 We define

$\omega=\sum_{H\in A}a_{H}\omega_{H}$
,

where $a_{H}=\sum_{j=0}^{e_{H}-1}e_{H}k_{H,j}\epsilon_{j}(H)$ and $\omega_{H}=d(\log\alpha_{H})=\frac{d}{\alpha}\alpha_{H}\rightarrow$ .

Let

$V$reg $=$ { $v\in V;v\not\in H$ for any $H\in \mathcal{A}$ }

and let us denote by $\mathcal{O}[W]$ (resp. $\Omega^{1}[W]$ ) the sheaf of germs of $\mathbb{C}[W]$ -valued
holomorphic functions (resp. holomorphic l-forms) on $V^{reg}$ . Then $\omega$ is an element
of $\Omega^{1}(V^{reg})[W]$ satisfying $ w\cdot(\omega\circ w^{-1})\cdot w^{-1}=\omega$ .

Theorem 3.2 (Kohno, Brou\’e-Malle-Rouquier, Opdam) (i) $\omega$ is integmble
one form, $i.e$ . $\omega\wedge\omega=0$ . This means that the connection

$\nabla(k)$ : $\mathcal{O}[W]\ni\Phi\vdash\star d\Phi+\omega\Phi\in\Omega^{1}[W]$

is completely integrable, $i.e$ . the $\nabla(k)- flat$ local sections $\Phi\in \mathcal{O}[W]$ form a
vector space of $\dim|W|$ .

(ii) The connection $\nabla(k)$ commutes with right W-multiplication.

(iii) We define an action $\Phi\leftrightarrow\Phi^{w}$ of $W$ on $\mathcal{O}[W]\simeq \mathcal{O}\otimes \mathbb{C}[W]$ and $\Omega^{1}[W]\simeq$

$\Omega^{1}\otimes \mathbb{C}[W]$ by $ w\otimes$ (left multiplication of $w$ ). Then $\nabla(k)$ commutes with this
action.

Proof. Basically, the proof of Kohno [13] is still valid. $\square $

Let $(\tau, E)$ be a representation of $W$ , and let $e_{\tau}$ be an idempotent of the ring
$\mathbb{C}[W]^{N}$ such that $\mathbb{C}[W]^{N}\cdot e_{\tau}$ is isomorphic to $(\tau, E)$ (we choose $N$ large enough). By
Theorem 3.2 (ii), $\nabla(k)^{N}$ descends to a connection on the bundle $V^{reg}\times E\rightarrow V^{reg}$ .
Moreover, by Theorem 3.2 (iii), $\nabla(k)^{N}$ descends to $\mathcal{E}$

$:=\mathcal{O}(X^{reg})\otimes_{\mathbb{C}}\mathcal{L}(E)$ , where
$X=W\backslash V,$ $X^{reg}=W\backslash V^{reg}$ and $\mathcal{L}(E)$ is the local system $V^{reg}\times WE\rightarrow X^{reg}$ .
The resulting connection on $\mathcal{E}$ , called Knizhnik-Zamolodchikov $(KZ)$ connection, is
denoted by $\nabla_{\tau}(k)$ .

Definition 3.3 We define $\mathcal{E}^{\nabla_{\tau}(k)}\rightarrow X$ reg to be the local system of $\nabla_{\tau}(k)- flat$

sections in $\mathcal{E}$ .

Let $x_{0}$ be a base point in $X^{reg}$ , and $v_{0}$ a lift of $x_{0}$ in $V^{reg}$ . For every $H\in \mathcal{A}$ , we
choose a path $l_{H}$ : $v_{0}\rightarrow s_{H}v_{0}$ in $V^{reg}$ , where $s_{H}$ is a generator for $W_{H}$ such that
$\det(s_{H})=(H=e^{2\pi\sqrt{-1}/e_{H}}$ . We denote $\pi_{1}(V^{reg}, v_{0})$ and $\pi_{1}(X^{reg}, x_{0})$ by $P$ and $B$ ,
and we call them the pure bmid group and the braid group, respectively.

The following theorem is due to Brou\’e, Malle and Rouquier:
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Theorem 3.4 (see [7]) (i) $B$ is generated by $\{l_{H}\}_{H\in A}$ .

(ii) $P$ is generated by $\{l_{H}^{e_{H}}\}_{H\in A}$ .

(iii) We have the following short exact sequence:

$1\rightarrow P\rightarrow B\rightarrow W\rightarrow 1$ ,

where the map $B\rightarrow W$ is given by $l_{H}\mapsto s_{H}$ .

Definition 3.5 Let $\tau(k)$ be the monodromy action of $B$ on $\mathcal{E}_{x_{0}}^{\nabla_{\tau}(k)}$ .

Theorem 3.6 (Brou\’e-Malle-Rouquier, Opdam)

$\prod_{j=0}^{e_{H}-1}(\tau(k)(l_{H})-q_{H,j}\zeta_{H}^{j})=0$ .

(Note that $q_{H,j}\zeta_{H}^{J}=\exp(2\pi\sqrt{-1}(j-e_{H}k_{H,j})/e_{H}).$) Moreover, with respect to a
fixed basis of $\mathcal{E}_{x_{O}}=E$ the matrix of $\tau$ will have coefficients in $S$ , the ring of entire
functions in the labels $(k_{C,j})_{C\in C,j=0,\ldots,e_{C}-1}$ .

Proof. The proof we present here differs a little bit from the one in [7], and will
give important additional information about the local behaviour of flat sections
near the reflection hyperplanes.

We first address the last assertion of Theorem 3.6. This is a basic fact, which
we prove anyway, for wan $t$ of a good reference. The connection matrix of $\nabla_{\tau}$

depends polynomially on the labels $(k_{C,j})_{C\in C,j=0,\ldots,e_{C}-1}$ . By definition of analytic
continuation along a path, it therefore suffices to prove the following local fact
(the monodromy matrix of a loop is a composition of finitely many local steps like
these): Suppose we have a holomorphic, first order, linear system of differential
equations on the bundle $\mathbb{C}^{l}\times D$ over the unit disc $D$ , and the coefficient matrix
depends polynomially on a parameter $\kappa\in \mathbb{C}$ . Given $v\in \mathbb{C}^{l}$ , the unique solution
$\nu(z, \kappa)(z\in D)$ such that $\nu(0, \kappa)=v$ is an entire function of $\kappa$ . For this it suffices
to check that the power series expansion of $\nu$ on $D$ converges locally uniformly in
$\kappa$ , and this is an elementary exercise left to the reader.

Choose $H_{0}\in \mathcal{A}$ and fix it. For notational convenience, we abbreviate $\alpha_{H_{0}}$ as
$\alpha_{0},$ $S_{H_{0}}$ as $s_{0}$ and so on. Let $x_{0}\in H_{0}$ be a regular point and let $(x, \alpha_{0})$ be a
coordinate in a tubular neighborhood $U\times I$ of $x_{0}$ , where $U\subset H_{0}$ and $I\subset \mathbb{C}\alpha_{0}$ .
For every $\epsilon_{0}\in E$ with $s_{0}\epsilon_{0}=\zeta_{0}^{j}\epsilon_{0}$ , we shall construct a flat section $\epsilon(x, \alpha_{0})$ in
$U\times I$ .

Contracting the equation $d\epsilon+\omega\epsilon=0$ with vector field $\alpha_{0}^{*}$ , we have

$\frac{\partial\epsilon}{\partial\alpha_{0}}+\frac{1}{\alpha_{0}}a_{0}\epsilon+A(x, \alpha_{0})\epsilon=0$ , (3.1)
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where $A(x, \alpha_{0})=\sum_{H\in A,H\neq H_{0}}\frac{(\alpha_{\dot{0}},\alpha_{H})}{\alpha_{H}}a_{H}$ . Notice that

$s_{0}A(xos_{0}^{-1}, \alpha_{0}\circ s_{0}^{-1})_{S_{0}^{-1}}=\sum_{H\neq H_{0}}\frac{(\alpha_{0}^{*},\alpha_{H})}{\alpha_{H}\circ s_{0}^{-1}}s_{0}a_{H}s_{0}^{-1}$

$=\sum_{H\neq H_{0}}\frac{(s_{0}(\alpha_{0}^{*}),\alpha_{s_{0}(H)})}{\alpha_{s_{0}(H)}}a_{s_{0}(H)}$

$=\zeta_{0}A(x, \alpha_{0})$ .

Hence,

$B(x, \alpha_{0})$ $:=\alpha_{0}A(x, \alpha_{0})$

is $W_{0}$ -invariant, i.e. $wB(x\circ w^{-1}, \alpha_{0}\circ w^{-1})w^{-1}=B(x, \alpha_{0})$ for any $w\in W_{0}$ , and
satisfies $B(x, 0)=0$ . It follows that $B(x, \alpha_{0})$ can be expressed as

$B(x, \alpha_{0})=\sum_{n=1}^{\infty}B_{n}(x)\alpha_{0}^{n}$ . (3.2)

By definition, $s_{0}B_{n}(x)s_{0}^{-1}=\det^{n}(s_{0})B_{n}(x)$ .
The equation (3.1) is equivalent to

$\alpha_{0}\frac{\partial\epsilon}{\partial\alpha_{0}}+a_{0}\epsilon+B(x, \alpha_{0})\epsilon=0$ . (3.3)

Let

$\epsilon(x, \alpha_{0})=\alpha_{0}^{c}\sum_{n=0}^{\infty}\epsilon_{n}(x)\alpha_{0}^{n}$ (3.4)

be a solution of (3.3) satisfying $\epsilon_{0}(x)=\epsilon_{0}$ . By (3.2), (3.3) and (3.4), we have

$\sum_{n=0}^{\infty}((c+n+\sum_{l=0}^{e_{O}-1}k_{H_{O},l}\sum_{w\in W_{O}}\det^{l}(w)w)\epsilon_{n}(x)+\sum_{l=1}^{n}B_{l}(x)\epsilon_{n-l}(x))\alpha_{0}^{n+c}=0$ .

(3.5)

By this equation, we have $c=-e_{0}k_{H_{0},j}$ since $w\epsilon_{0}=\det^{-j}(w)\epsilon_{0}(w\in W_{0})$ .
For a moment, assume that $e_{0}k_{H_{0},l}\not\equiv e_{0}k_{H_{0},l}$ (mod $\mathbb{Z}$ ) for $l\not\equiv l^{\prime}(mod e_{0}\mathbb{Z})$ .

Then $n-e_{0}k_{H_{0},j}+\sum_{l=0}^{e_{0}-1}k_{H_{0},l}\sum_{w\in W_{0}}\det^{l}(w)w$ is invertible since the eigenvalues
of $w$ are $\det^{-l^{\prime}}(w)(l=0, \ldots, e_{0}-1)$ . It follows that equation (3.5) is uniquely
solved and we have $w\epsilon_{n}(x)=\det^{n-j}(w)\epsilon_{n}(x)$ for $w\in W_{0}$ by induction. Hence

$\epsilon(x, \alpha_{0})=\alpha_{0}^{j-e_{0}k_{H_{0\cdot J}}}\sum_{n=0}^{\infty}\epsilon_{n}(x)\alpha_{0}^{n-j}$ . (3.6)
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Since the series $\sum_{n=0}^{\infty}\epsilon_{n}(x)\alpha_{0}^{n-j}$ is $W_{0}$-invariant, we have proved Theorem 3.6 for
generic $k$ . By the continuity of $\epsilon(x, \alpha_{0})$ with respect to $k$ , Theorem 3.6 is proved.
$\square $

Definition 3.7 Let $\{\epsilon_{i};i=1, \ldots, l=\deg\tau\}$ be a local basis of $\mathcal{E}^{\nabla_{\tau}(k)}$ around
$x_{0}\in X$reg and let $\{\sigma_{j} ; j=1, \ldots, l\}$ be a basis of $($Harm $(\tau)\otimes E^{*})^{W}$ , as in the proof
of Proposition 2.4. For $k=(k_{C,j})_{C,j}$ , we define a matrix

$M(k)=(\sigma_{j}(\epsilon_{i}))_{i,j=1,\ldots,l}$ .

Corollary 3.8 (i) The matrix $M_{0}$ $:=M(k=0)$ is a minimal $\tau$ -matrix.

(ii) For all $k,$ $M(k)$ is a nonsingular matrix. For any element $b$ of $B$ , we define
a matrix $\tau(k)(b)$ by

$\mu(b)M(k)=\tau(k)(b)M(k)$ ,

where $\mu(b)M(k)$ is analytic continuation along $b$ . Then $\tau(k)$ is the mon-
odmmy representation of $\mathcal{E}^{\nabla_{\tau}(k)}$ (cf. Theorem 3.6), written as matrix with
respect to the local basis $\{\epsilon_{i}; i=1, \ldots, l=\deg\tau\}$ . In particular, $\tau(k)(b)$ is an
element of $GL(l, S)$ where $S$ denotes the ring of entire functions in $k$ .

(iii) Let $\tau$ be irreducible. The Euler vector field $E$ acts on $M(k)$ in the following
way:

$EM(k)=M(k)C_{E}^{M}(k)$ (3.7)

with

$C_{E}^{M}(k)=C_{E}^{M_{0}}-s(\tau, k)Id$ .

and where the scalar $s(\tau, k)$ is given by:

$s(\tau, k)$ $:=\frac{l}{\deg\tau}\sum_{C\in C}ec|C|\sum_{j=0}^{e_{C}-1}k_{C,j}n_{C,j}^{\tau}$ .

(iv) We have

$\det(M(k))=c\sigma nst.\prod_{C\in C}\pi_{C}^{\epsilon_{C}(k)}$
,

where

$\epsilon_{C}(k)=\sum_{j=0}^{e_{C}-1}jn_{C,j}^{\tau}-e_{C}\sum_{j=0}^{e_{C}-1}k_{C,j}n_{C,j}^{\tau}$ .
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(v) If $k_{C,j}$ is an integer for every $C$ and $j$ , then $\tau(k)(b)$ only depends on the
image of $b$ in $W$ (cf. Theorem $3.4(iii)$). This induces a map from $\mathbb{Z}^{\Sigma_{c\in c}e_{C}}$

to the space Funct(Rep(W), Rep$(W)$ ) of functors from Rep $(W)$ to Rep$(W)$

$by$

$\mathbb{Z}^{\Sigma_{c\epsilon c}e_{C}}\ni k=(k_{C,j})$

$\leftarrow\rangle$ $(\gamma(k) : \tau\mapsto\tau(-k))\in Funct(Rep(W), Rep(W))$ .

Moreover, the matrix elements of $M(k)$ are mtional functions on $V$ in this
situation, with their poles contained in $\mathcal{A}$ .

(vi) If $k$ is integml, then the local data (cf. (2.1)) $n_{C,j}^{\tau}$ and $n_{C,j}^{\tau(k)}$ coincide for any
integml $k$ .

Proof. (i) This is a direct consequence of Definition 3.7.
(ii) The regularity of $M(k)$ is a direct consequence of its definition. The re-

maining statement follows from Theorem 3.6.
(iii) The Euler vector field $E$ acts on $\mathcal{E}^{\nabla_{\tau}(k)}$ . By definition, $\nabla_{\tau}(k)_{E}=E+$

( $E,$ $\omega\rangle$ is $0$ on $\mathcal{E}^{\nabla_{\tau}(k)}$ . On the other hand, $\langle E, d\log\alpha_{H}\rangle=1$ for any $H\in \mathcal{A}$ , and
$\{E, \omega\}=\sum_{H\in A}a_{H}$ is an element of the center of $\mathbb{C}[W]$ , hence it acts on $E$ by
scalar multiplication since we assume $\tau$ to be irreducible in this item. This scalar
is equal to $s(k, \tau)$ , since

tr $\sum_{H\in A}a_{H}=\sum_{H\in A}\sum_{j=0}^{e_{C}-1}k_{H,j}\sum_{w\in W_{H}}\det^{j}(w)tr_{E}w$

$=\sum_{H\in A}\sum_{j=0}^{ec-1}k_{H,j}\sum_{w\in W_{H}}\sum_{j=0}^{e_{C}-1}n_{C,j^{\prime}}^{\tau}\det^{j-j^{\prime}}(w)$

$=\sum_{C\in C}e_{C}|C|\sum_{j=0}^{e_{C}-1}k_{H,j}n_{C,j}^{\tau}$ .

Therefore the Euler vector field $E$ acts on $\mathcal{E}^{\nabla_{\tau}(k)}$ by the scalar $-s(\tau, k)$ , and
$EM(k)=M(k)C_{E}^{M}(k)$ , as was claimed.

(iv) We may and will assume that $\tau$ is irreducible here. Since the series
$\sum_{n=0}^{\infty}\epsilon_{n}(x)\alpha_{H_{0}}^{n-j}$ in (3.6) is $W_{H_{O}}$ -invariant, $\sigma(\epsilon_{n}(x)\alpha_{H_{0}}^{n-j})$ is a $W_{H_{O}}$ -invariant func-
tion for any $\sigma\in(Harm(\tau)\otimes E^{*})^{W}$ . It follows that this function is regular at $H_{0}$

because the pole of it is of order less than $e_{H_{0}}$ .
As in the proof of Proposition 2.4 (iii), locally at $H\in C$ , there exists a matrix

$D\in GL(l, \mathbb{C})$ such that

$DM(k)=M_{H}(k)M^{\prime}(k)$ ,
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where $M^{\prime}(k)$ is a holomorphic $W_{H}$ -invariant matrix and

$M_{H}(k)=$ diag $(\alpha_{H}^{-k_{H.0}e_{H}}I_{n_{H,0}^{\tau}}, \alpha_{H}^{1-k_{H.1}e_{H}}I_{n_{H,1}^{\tau}}, . . . , \alpha_{H}^{e_{H}-1-k_{H.e_{H}-1}e_{H}}I_{n_{H.e_{H}-1}^{\tau}})$ .
(3.8)

It follows that

$\det M(k)=\prod_{C\in C}\pi_{C}^{\epsilon_{C}(k)}\cdot r$
,

where, $r$ is a W-invariant, entire function. Using (iii) it follows that Er $=0$ and
(iv) is proved.

(v) If $k_{C,j}$ is an integer for every $C$ and $j$ , then $\mu(l_{H})^{e_{C}}=\mu(l_{H}^{e_{C}})=1$ by
Theorem 3.6. Hence $\tau(k)(b)$ only depends on the image of $b$ in $W$ by Theorem 3.4.
This means that, with respect to the chosen basis of $E$ , all the local sections of
$\mathcal{E}^{\nabla_{\tau}(k)}$ extend to global holomorphic sections on $V^{reg}$ . Let us prove the rationality
of $M(k)$ now. The connection $\nabla_{\tau}$ has simple poles at the reflection hyperplanes,
and also at $\infty$ . It follows that the pole orders at the reflection hyperplanes and at
infinity are bounded by the eigenvalues of the residues of $\nabla_{\tau}$ . Multiply a global
flat section $\sigma$ with a suitable power of $\prod_{C\in C}\pi_{C}$ so that the resulting product $\sigma^{\prime}$ is
entire on $V$ . Then the restriction of $\sigma^{\prime}$ to any complex line $L\subset V$ is a polynomial
of degree $\leq N$ for some suitable $N\in N$ . Therefore, $\sigma^{\prime}$ is killed by all homogeneous
constant coefficient differential operators of order $>N$ , which implies that $\sigma^{\prime}$ is a
polynomial. We conclude that $M(k)$ is a matrix of rational functions on $V$ , whose
poles are possibly at $\mathcal{A}$ , and that $\tau(k)$ descends to a representation of $W$ .

We have

$\mathbb{Z}^{\Sigma_{c\in c}e_{C}}\ni k=(k_{C,j})$

$-\rangle$ $(\gamma(k) : \tau\mapsto\tau(-k))\in Funct(Rep(W), Rep(W))$ ,

since it is easy to verify the functoriality.
(vi) This follows from (3.8). $\square $

Remark 3.9 (i) The functor $\gamma(k)$ does not respect $\otimes,$ $Hom$ and $*(contragre-$

dient). The reason for this is simply that the tensor product of two KZ
connections is not equal to the KZ connection of the tensor product of the
two representations of $W$ involved (and similarly for the other constructions
from linear algebra that are mentioned).

(ii) If $W$ is a simply laced Coxeter group, the functor $\gamma(0,1)$ corresponds to the
involution $i$ : $\hat{W}\rightarrow\hat{W}$ that was introduced by Lusztig, with the property that
$ i(\cdot)\otimes\det$ maps special representations to special representations. Similarly,
for a Coxeter group that is not simply laced, the involution $i$ defined by
Lusztig is equal to $\gamma((0,1),$ $(0,1))$ . This involution $i$ plays a role in the study
of cells and special representations of $W$ .
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Conjecture 3.10 For $k$ and $k^{\prime}$ in $\mathbb{Z}^{\Sigma_{c\in c^{e_{C}}}},$ $\gamma(k)\gamma(k^{\prime})$ equals $\gamma(k+k^{\prime})$ .

Remark 3.11 (i) Conjecture 3.10 is clearly true if the following question, raised
by Deligne-Mostow [10], has an affirmative answer: For a given irreducible
representation $\tau$ of $W$ , is it uniquely possible to deform $\tau$ to a family of
representations $\tau_{q}$ of $B$ such that the eigenvalues of $\tau_{q}(l_{H})$ satisfy the relation

$\prod_{j=0}^{ec-1}(\tau_{q}(l_{H})-\zeta_{C}^{j}q_{C,j})=0$?

In turn, this question has an affirmative answer (locally in a neighbourhood of
$q_{C,j}=1$ at least) if the so-called cyclotomic Hecke algebra of $W$ , introduced
by Brou\’e and Malle [5], can be generated by $|W|$ elements over its coefficient
ring. This was conjectured by Brou\’e, Malle and Rouquier [7], and checked
in many cases. We will discuss these matters extensively in Section 6 and
Section 7.

(ii) If Conjecture 3.10 is true, then $\gamma(k)$ maps $\hat{W}$ to itself. This follows from the
fact that $\gamma(k)$ respects direct sums and dimensions. If 3.10 is true, $\gamma(k)$ has
inverse $\gamma(-k)$ , but the $\gamma(-k)$ pre-image of an irreducible representation must
be irreducible by the above. In this situation we have an action $k\rightarrow\gamma(k)$ of
the lattice $\mathbb{Z}^{\Sigma_{c\epsilon c^{e_{C}}}}$ on $\hat{W}$ . Let $I$ be the kernel of this action, and denote by
$G_{W}$ the finite abelian group $\mathbb{Z}^{\Sigma_{c\epsilon c}e_{C}}/I$ . We will identify this group with
its image in Per $(\hat{W})$ . In Section 6 we will show that this group is isomorphic
with the geometric Galois group of the character field of the cyclotomic Hecke
algebra, in the situation where this algebra is free over its coefficient ring. In
particular we prove in this case that the character field is an abelian extension
of the coefficient field of the cyclotomic Hecke algebra, assuming that the
coefficient field contains $\mathbb{C}$ .

4 Symmetries of fake degrees

In this section, we prove the “fake degree symmetry”, which is the main theorem of this
note.

The key result is the following lemma, which shows how one may construct
minimal matrices for $W$ using the KZ connection. We use the notations introduced
in Definition 3.7 and Corollary 3.8.

Lemma 4.1 Choose $b=(b_{C})_{C\in C}$ , where $b_{C}\in\{0,1, \ldots, e_{C-1}\}$ for each $C\in C$ . De-
fine $k_{b}\in \mathbb{Z}^{\Sigma_{c\epsilon c}e_{C}}$ by putting $(k_{b})_{C,j}=1$ if $j\geq b_{C}$ , and $(k_{b})_{C,j}=0$ if $j<b_{C}$ . Let
$\chi_{b}$ be the one dimensional representation of $W$ associated with $\pi_{b}=\prod_{C\in C}\pi_{C^{C}}^{e-b_{C}}$ .
Then $\pi_{b}\cdot M(k_{b})$ is a minimal matrix of type $\tau(k_{b})\otimes\chi_{b}(=\gamma(k_{b})(\tau)\otimes\chi_{b})$ .
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Pmof. By Corollary 3.8 (v), $M(k_{b})$ is a rational matrix with poles in $\mathcal{A}$ , and
by (3.8) one sees that $\pi_{b}\cdot M(k_{b})$ has polynomial entries. It is a nonsingular matrix
of type $\tau(k_{b})\otimes\chi_{b}$ by Corollary 3.8 (ii). Definition 2.2 (ii) is satisfied because of
Corollary 3.8 (iii). It remains to prove the minimality. We will appeal to Remark 2.3
(i) for the proof of minimality. By that remark it suffices to compute the degree of
the determinant of $\pi_{b}\cdot M(k_{b})$ . From Corollary 3.8 (iv) and (vi) we find that the
degree equals $\sum_{C}|C|\epsilon_{C}^{\prime}(k_{b})$ with

$\epsilon_{C}^{\prime}(k_{b})=\epsilon_{C}(k_{b})+(e_{C}-b_{C})\dim(\tau)$

$=\sum_{j=0}^{e_{C}-1}jn_{C,j}^{\tau}-e_{C}\sum_{j=b_{C}}^{e_{C}-1}n_{C,j}^{\tau}+(e_{C}-b_{C})\dim(\tau)$

$=\sum_{j=0}^{b_{C}-1}(j+e_{C}-b_{C})n_{C,j}^{\tau}+\sum_{j=b_{C}}^{e_{C}-1}(j-b_{C})n_{C,j}^{\tau}$

$=\sum_{j=0}^{b_{C}-1}(j+e_{C}-b_{C})n_{C,j}^{\tau(k_{b})}+\sum_{j=b_{C}}^{e_{C}-1}(j-b_{C})n_{C,j}^{\tau(k_{b})}$

$=\sum_{j=0}^{e_{C}-1}jn_{C,j}^{\tau(k_{b})\otimes\chi_{b}}$

This shows the minimality of $\pi_{b}\cdot M(k_{b})$ by Remark 2.3 (i). $\square $

Theorem 4.2 (Fake degree symmetry) Let $\tau$ be irreducible. With notations
as in Lemma 4.1,

$F_{\chi_{b}\otimes\tau(k_{b})}(T)=T^{N(\tau,b)}F_{\tau}(T)$ .

where

$N(\tau, b)=\sum_{C\in C}|C|\sum_{j=0}^{b_{C}-1}(\frac{e_{C}n_{C,j}^{\tau}}{\deg\tau}-1)$

Proof. This is a direct consequence of (3.7), in view of Lemma 4.1 and Corollary 2.6.
$\square $

5 Coxeter-like presentation of $W$

So far we used only one straightforward topological fact, the relation between
the braid group $B$ and the pure braid group $P$ , Theorem 3.4. We also avoided
completely the use of the so called cyclotomic Hecke algebra, although we already
mentioned in Remark 3.11 that this algebra plays an important role when one tries
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to say more about the meaning and properties of the functor $\gamma(k)$ . In the next
sections we will discuss this in some detail. Unfortunately, one is forced to make
the serious assumption that the cyclotomic Hecke algebra is a free algebra over its
coefficient ring. This was conjectured by Brou\’e, Malle and Rouquier in [7], but
at present no general proof is known. It has been proved for the infinite series by
Ariki (see [1]) and by Brou\’e and Malle (see [5]) in about half of the exceptional
cases.

Let us now start the discussion of the cyclotomic Hecke algebra and its relation
to the previous sections. The results and ideas in this and the next section are
entirely due to Brou\’e, Malle and Rouquier. A good reference for this material is
[7].

To give the relation between the braid group and the cyclotomic Hecke algebra
one first needs Coxeter-like presentations of $W$ , that are well behaved with respect
to the braid group $B$ .

Definition 5.1 A Coxeter-like presentation of $W$ is a presentation of $W$ given by
a minimal set of generators $S\subset W$ such that

(i) The set $S$ consists of reflections of $W$ , and all relations are generated by
homogeneous braid relations and the order relations (relations of the form
$s^{d}=e$ , for $s\in S$).

(ii) There exists a choice of $l_{H}$ (for any $H$ with $s_{H}\in S$ ) such that $\{l_{H}\}_{H,s_{H}\in S}$

with just the homogeneous relations from (i) form a presentation of $B$ .

Remark 5.2 (i) It is well known that Coxeter groups have such presentations
(see [4], [9]).

(ii) Brou\’e-Malle-Rouquier have shown that there exists such a presentation of $W$

for all but $G_{24},$ $G_{27},$ $G_{29},$ $G_{31},$ $G_{33}$ and $G_{34}$ . For these groups, the existence
of such a presentation is conjectural.

6 Cyclotomic Hecke algebras and monodromy
In this section, we define the Hecke algebra $H_{u}(W)$ of finite complex reflection groups
which have a Coxeter-like presentation.

Let $S$ be the ring of entire functions in $(k_{C,j})_{C\in C,j=0,\ldots,e_{C}-1}$ and let $K$ be its
field of fractions. We also define $R=\mathbb{Z}[u_{C,j}^{\pm}; C\in C,j=0, \ldots , e_{C}-1](u_{C,j}$ are
indeterminant) and let $Q$ be its field of fractions. The following definition is from
[7].

Definition 6.1 The (topological) Hecke algebra $H_{u}(W)$ is the R-algebra $R[B]/J$ ,
where $J$ is the ideal generated by the elements $\prod_{j=0}^{e_{H}1}(l_{H}-u_{H,j})$ .
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Corollary 6.2 If $W$ has Coxeter-like presentation, then the image $\{T_{s}|s\in S\}$

of { $l_{H}|H\in \mathcal{A}$ such that $s_{H}=s\in S$ } genemtes $H_{u}(W)$ and is subject to the
relations $\prod_{j=0}^{e_{C}-1}(T_{s}-u_{s,j})=0$ . Together with the braid relations (which already
hold in $B$) this is a presentation of $H_{u}(W)$ . (Here $u_{s,j}=u_{H,j}$ if $s=s_{H}.$)

With this definition, the next theorem follows directly from Theorem 3.6, except
for the last assertion (iii).

Theorem 6.3 We take Knizhnik-Zamolodchikov connection with values in $E=$
$\mathbb{C}[W]$ , and let $\mu(k)$ be its monodmmy representation.

(i) For $b\in B,$ $\mu(k)(b)$ coincides with the left multiplication by an element $\mu(k)_{b}\in$

$(\mathbb{C}[W])^{\times}$ .

(ii) Let us embed $R$ in $S$ by means of the substitution

$u_{H,j}=\det(s_{H})^{j}\exp(-2\pi\sqrt{-1}k_{C,j})$ .

Then the representation $\mu(k)$ factorezes as follows:
$\mu(k)\rightarrow$

$S[B]$ $S[W]$

$\searrow$ $\nearrow$

$S\otimes_{R}H_{u}(W)$

A similar factorization holds for the matrix representations $\tau(k)$ defined in
Corollary 3.8(ii). These representations can be obtained by restriction of $\mu(k)$

to a minimal left ideal of $\mathbb{C}[W]$ of type $\tau$ .

(iii) (Brou\’e-Malle-Rouquier [7]) If $W$ has a Coxeter-like presentation and $H_{u}(W)$

can be generated by $|W|$ elements as R-module, then $\mu(k)$ induces an K-
algebm isomorphism

$K\otimes_{R}H_{u}(W)\rightarrow\sim K[W]$ . (6.1)

Moreover, in this situation $H_{u}(W)$ is free over $R$ of rank $|W|$ .

Remark 6.4 The assumption of Theorem 6.3 (iii) is conjectured to be true in all
cases and is known for the basic series by the work of Ariki and Koike [2] and Ariki
[1], and the work of Brou\’e and Malle [5] in many of the exceptional cases.

Hypothesis 6.5 From now on we will assume that $W$ has a Coxeter-like presenta-
tion and that $H_{u}(W)$ can be generated by $|W|$ elements, as required in Theorem 6.3
(iii).

Corollary 6.6 The algebm $Q\otimes H_{u}(W)$ is a semisimple algebm of $rank|W|$ , which
splits over $K\supset Q$ .
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Let $F$ denote the character field of $Q\otimes H_{u}(W)$ , which we define as the subfield
of $K$ generated by the values of the irreducible characters of $K\otimes H_{u}(W)$ on $ Q\otimes$

$H_{u}(W)$ . It is a subfield of $K$ containing $Q$ . Note that the characters take values in
$S$ on an R-basis of $H_{u}(W)$ , by Theorem 3.6 and Theorem 6.3(ii), (iii). In fact, the
values of these characters on $H_{u}(W)$ are even in the integral closure of $R$ in $S$ , by a
well known argument due to Steinberg (for example, see [8], Proposition 10.11.4).
In particular, $F$ is a Galois extension of $Q$ . Let $G_{F}$ denote its Galois group. This
Galois group acts naturally on the irreducible characters of $K\otimes H_{u}(W)$ . The
evaluation homomorphism $f\rightarrow f(O)$ of $S$ , applied to the characters, defines a
bijection between the irreducible characters of $K\otimes H_{u}(W)$ and of $W$ (by Tits’
specialization theorem). Hence we arrive at a certain action of $G_{F}$ on $\hat{W}$ . The
Galois group of $\mathbb{C}\cdot F$ over $\mathbb{C}\cdot Q$ is called the geometric Galois group, which we will
denote by $G_{F}^{geom}$ . By restriction to $F\subset \mathbb{C}\cdot F$ we have a canonical homomorphism
$G_{F}^{geom}\rightarrow G_{F}$ , which is obviously injective. We identify $G_{F}^{geom}$ with its image in
$G_{F}$ . Via this embedding of $G_{F}^{geom}$ in $G_{F}$ we have now defined an action of $G_{F}^{geom}$

on $\hat{W}$ , which we will denote by $\alpha$ . Note that $\alpha$ is an injective homomorphism
$G_{F}^{geom}\rightarrow Per(\hat{W})$ .

Theorem 6.7 If Hypothesis 6.5 holds, then the field $\mathbb{C}\cdot F$ is contained in a field
that is obtained from $\mathbb{C}\cdot Q$ by adjoining radicals of the form $(u_{C,j})^{1/N}$ , for a suitable
N. In particular, $\mathbb{C}\cdot F$ is an abelian extension of $\mathbb{C}\cdot Q$ .

Proof. As was explained above, the characters of $K\otimes H_{u}(W)$ take values in the
integral closure of $R$ in $S$ on $H_{u}(W)$ . The lattice $L=\mathbb{Z}^{\Sigma_{c\in c}e_{C}}$ (as in Corollary 3.8
$(v))$ acts on $S$ by means of the action $(\beta(l)f)(k)=f(k-l)$ . Notice that $Q$ is fixed
for this action! By Theorem 6.3(ii), for every $\tau\in\hat{W}$ we have a representation
$\tau(k)$ : $S\otimes H_{u}(W)\rightarrow Mat(d_{\tau}\times d_{\tau}, S)$ (where $d_{\tau}$ is the degree of $\tau$ ) and these
representations exhaust the equivalence classes of irreducible representations of
$K\otimes H_{u}(W)$ (by Theorem 6.3(iii)). We define $\beta(l)(l\in L)$ in the obvious way on
$S\otimes H_{u}(W)$ and on Mat $(d_{\tau}\times d_{\tau}, S)$ (i.e. coefficient-wise) and then define $\beta(l)(\tau)=$

$\beta(l)\circ\tau\circ\beta(-l)$ . Obviously, $\beta(l)(\tau)$ is S-linear, and it is also a representation of
$S\otimes H_{u}(W)$ because $\beta(l)$ is a ring homomorphism of $S\otimes H_{u}(W)$ . Using Tits’
specialization theorem, applied to specializations of $S$ at lattice points, we find
that the new representation so obtained by translation, is irreducible. In this way,
we have an action $\beta$ of the lattice $L$ on the finite set $Irr(K\otimes H_{u}(W))$ . Hence
there exists a $N\in N$ such that $N\cdot L$ fixes every representation. This means that a
character vaJue $\chi_{\tau}(b)$ is periodic with respect to the lattice $N\cdot L$ . Therefore it can
be viewed as a univalued function of the coordinates $z_{C,\gamma}=(u_{C,j})^{1/N}$ , which is as
such still a holomorphic function outside the coordinate hyperplanes $z_{C,j}=0$ , and
integral over $Q$ , hence certainly integral over the larger ring of polynomials in $z_{C,j}$ .
But this polynomial ring is integrally closed in the field of meromorphic functions
in the $z_{C,j}$ , because a solution of a monic equation is bounded in norm by the sum
of the norms of the coefficients of the equation (including the top coefficient 1).
Our conclusion is that $\chi_{\tau}(b)$ is a polynomial in the coordinates $z_{C,j}=(u_{C,j})^{1/N}$ .
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$\square $

Corollary 6.8 (i) Hypothesis 6.5 implies that Conjecture 3.10 holds. In partic-
ular, as was mentioned in Remark 3.11 (ii), the functors $\gamma(l)$ of Corollary 3.8
(v) define an action of $L$ on $\hat{W}$ .

(ii) The action $\alpha$ of $G_{F}^{geom}$ on $\hat{W}$ defines an isomorphism of $G_{F}^{geom}$ with the group
$G_{W}$ described in Remark 3.11 (ii).

Pmof. In fact, everything is clear by the remark that the action $\beta$ of $L$ defined in
the proof of Theorem 6.7 is equal to the action $\gamma$ when we identify $Irr(K\otimes H_{u}(W))$

and $\hat{W}$ via the specialization $f\rightarrow f(O)$ of $S$ , as always. From Theorem 6.7 is
is clear that $G_{F}^{geom}$ is the quotient of $L/(N\cdot L)$ by the subgroup that fixes all
the irreducible characters via the action $\beta$ , and this is isomorphic to $G_{W}$ by the
definition of $G_{W}$ . $\square $

7 Applications
The phenomenology in the field of cyclotomic Hecke algebras is much further de-
veloped than the theory, and the present paper does not change this situation very
much! Recently, Gunter Malle made a thorough study of the character and split-
ting fields of representations of cyclotomic Hecke algebras in [16]. His study is
based on the theory developed in [1] for the case of the cyclotomic Hecke algebra
of the groups $G(m,p, n)$ , and on a case by case analysis of the primitive groups
(always assuming Hypothesis 6.5 of course). There are many intriguing observa-
tions in Malle’s paper [16], and some of these are closely related to the questions
we have discussed here. One remark has to be made beforehand. In the comparison
of results of [$l\theta J$ and the results of the present paper one must realize that we are
discussing the topological Hecke algebm here, with its presentation as described in
Corollary 6.2. However, Malle uses the abstract Hecke algebra, defined with a sim-
ilar presentation but where the topological braid group $B$ is replaced by the abstract
braid group associated with a certain choice of a presentation of $W$ (by removing
the order relations from the presentation of $W$). In other words, only when the
presentation of $W$ that Malle uses is a Coxeter-like presentation it is clear that we
are discussing the same algebra. Recall that there are still some groups for which
the existence of a Coxeter-like presentation is not known. See section 5. With this
understood, let me list the main facts revealed in Malle’s paper, and comment on
these from the point of view of the theory in this paper.

(i) The character field $F$ is a regular, abelian extension of $k(u_{C,j})$ , where $k$

denotes the splitting field of the group algebra $\mathbb{Q}[W]$ . (It is known that $k$ is
the character field of the reflection representation of $W$ , by a result of [3]).
This means that $G_{F}^{geom}=Ga1(F/k(u_{C,j}))$ , and that this group is abelian.
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The equality of these two Galois groups is based on the (empirical!) fact that
$k$ contains all the roots of unity of order $d$ , whenever $d$ is the order of an
element of $G_{F}^{geom}$ ( $loc$ . $cit$ . Cor. 4.8).

(ii) The order of $G_{F}^{geom}$ can be arbitrarily large (but of course subject to the
condition imposed by $(i))$ , even if all the reflections in $W$ have order 2 (cf $loc$ .
$cit$ . Ex. 4.5). The orders of elements of $G_{F}^{geom}$ do not necessarily divide the
order of the center $Z(W)$ (but in the “well-generated” case they do, see $loc$ .
$cit$ . Prop. 7.2).

(iii) A Beynon-Lusztig type of “semi-palindro$m$icity” for fake degrees of rational
representations of the l-parameter cyclotomic Hecke algebra ( $loc$ . $cit$ . Thm.
6.5).

(iv) The group $W$ can be generated by $n$ complex reflections if and only if the fake
degree of the reflection representation is semi-palindromic ( $loc$ . $cit$ . Prop.
6.12).

We have not much to say about (i), since the methods used here do not seem
fit for the study of the full Galois group of $F$ . The only thing we have proved is
the fact that $G_{F}^{geom}$ is abelian (Theorem 6.7).

It is implied by (i) that the order of every element of $G_{F}^{geom}$ is a divisor of the
order of the group of roots of unity in $k$ . Looking at the explicit results of Malle
and of Brou\’e and Malle [5] in the primitive cases, and at (ii) mentioned above, this
seems to be the only general rule. From the point of view of the present paper
this fact is rather mysterious, except in some cases where the order of all nontrivial
elements in $G_{F}^{geom}$ is two. This includes all the Coxeter cases. The case of Coxeter
groups was dealt with in the paper [17], but since the argument given there is
incomplete, we will fill in the details here.

We start with some elementary relations:

Proposition 7.1 Let $g_{C,j}\in G_{W}=G_{F}^{geom}$ be the image under $\gamma$ of the basis
element $b_{C,j}$ of the lattice $L$ , defined by $(b_{C,j})_{C^{\prime},j^{\prime}}=-\delta_{C,C^{\prime}}\delta_{j,j^{\prime}}$ . Let $m_{C}$ denote
the permutation of irreducible representations of $W$ given by: $m_{C}(\tau)=\tau\otimes\chi c$ ,
where $\chi_{C}$ is the linear character associated to the pseudo invariant $\pi_{C}$ . We have
the following relations:

(i) The $g_{C,j}$ mutually commute.

(ii) $gc,0\cdots g_{C,e_{C}-1}=id$ .

(iii) $m_{C^{C}}^{e}=$ id.

(iv) $g_{C,j}m_{C^{\prime}}=m_{C^{\prime}}g_{C,j}(C\neq C’)$ .

(v) $g_{C,j}m_{C}=m_{C}g_{C,j+1}$ (cyclic).
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In particular, we have $(1 \leq j\leq e_{C})$ : $(m_{Cg_{C,1}\cdots gc_{e_{C}-1}},)^{j}=m_{C}^{j}g_{C,j}\cdots g_{C,e_{C}-1}$ .
Thus the order of $m_{C}g_{C,1}\cdots g_{C,e_{C}-1}$ divides $e_{C}$ . (Note that the powers of

$m_{C}g_{C,1}\cdots g_{C,e_{C}-1}$

are the opemtions on the representation $\tau$ that occur in the fake degree symmetry
formula Theorem 4.2.)

Proof. In the notation of Definition 3.3, assertion (ii) follows from the remark
(verified by means of direct computation) that the flat sections of $\nabla_{\tau}(b_{C,0}+\cdots+$

$b_{C,e_{C}-1})$ are of the form $\pi_{C}^{e_{C}}\cdot e$ with $e\in E$ . This has type $\tau$ since $\pi_{C}^{e_{C}}$ is W-
invariant. Likewise, (iv) and (v) follow from a direct computation of the tensor
product of the KZ-connection $\nabla_{\tau}(k)$ and the (trivial) KZ-connection $\nabla_{\chi c}(0)$ . It is
left to the reader. The remaining statements are trivial. $\square $

Remark 7.2 It is informative to have a look at Malle’s table 7.1, displaying all
the irrationalities for the primitive groups, at this point. For example, one can
check Proposition 7.1 (ii) directly from this table: when we specialize $u_{C,j}\rightarrow u_{C}$

everything becomes rational in the $u_{C}$ .

Now we may reprove the following well known results:

Proposition 7.3 Let $W$ be a Coxeter group, or of type $G(4,2, n)(n>2)$ , or $G_{31}$ ,
in which case we need hypothesis 6.5, as always. Then the elements $g_{C,j}(j=0,1)$

have order 2, and $g_{C,0}=g_{C,1}$ . (In other words, $\mathbb{C}\cdot F$ is a subfield of the field
obtained from $\mathbb{C}\cdot Q$ by adjunction of the square roots $\sqrt{q_{C,0}q_{C,1}}.$)

Proof. The point is that there exists a Kazhdan-Lusztig involution $j$ of the (cyclo-
tomic) Hecke algebra, defined by $j(T_{i})=-q_{C,0}q_{C,1}T_{i}^{-}1$ where $s_{i}$ and $s_{i^{\prime}}$ belong to
hyperplanes in $C$ . In fact, if $W$ is Coxeter we may take $i=i$ , but for the complex
cases we have to flip elements according to the symmetry axes in the diagram, in
order to preserve the circular relations. This induces an involution on the irre-
ducible representations, also denoted by $j$ , defined by $j(\tau)=\tau\circ j$ . It is simple to
see that $j(\tau)=\tau\otimes\det=\prod_{C}m_{C}(\tau)$ in the Coxeter case. In the complex cases
we mentioned this is also true because the aforementioned flip of generators is an
inner automorphism. (For $G_{31}$ this follows from a calculation in [5], Bemerkung
6.5, and for the infinite series $G(4,2, n)$ it is similar.)

On the other hand, $j$ obviously commutes with the elements $g_{C,i}$ since it is
rational in the $q_{C,i}$ . Combining this with Proposition 7.1 we obtain the result. $\square $

There is a bewildering number of groups acting on $\hat{W}$ : $Gal(F/Q)$ , the group
of linear characters (via tensoring), complex conjugation, diagram automorphisms,
and the symmetric groups $\mathfrak{S}_{C}$ of permutations of $\{u_{C,j}|0\leq j\leq e_{C}-1\}$ . There
are some easy observations about the groups that some of these actions generate.
For example, the actions of symmetric group $\mathfrak{S}_{C}$ and the lattice $L_{C}$ (i.e. all the
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parameters are $0$ for hyperplanes not in $C$ ) combine to give an action of the affine
Weyl group $\mathfrak{S}_{C}^{aff}$ . Or, as remarked in [16], complex conjugation and $g_{C,0}$ generate
an action of the infinite dihedral group. Another example is the cyclic group of
order $e_{C}$ described in Proposition 7.1. Maybe it is important to investigate this
systematically, but I did not see anything useful other than Proposition 7.3

The next issue (iii) from Malle’s paper, the Beynon-Lusztig type of “semi-
palindromicity” of the fake degrees of rational representations, can be fully un-
derstood in terms of our results. The Galois operation $\delta$ he introduces is easily
identified in our notations as $\delta=(\prod_{C}g_{C,0})^{-1}$ (recall how $R$ is embedded in $S$ , see
Theorem 6.3). With this notation, Malle observes the following:

Proposition 7.4 ([1 $6J$, Theorem 6.5) Let $\mathcal{R}$ denote the set of reflections in $W$ .
In the notations of Definition 1.5, we have

$R_{\tau}(T)=T^{c}R_{\delta(\overline{\tau})}(T^{-1})$ (7.1)

where $c=\#\mathcal{R}-\sum_{r\in \mathcal{R}}\chi_{\tau}(r)/\chi_{\tau}(1)$ .

Proof. Replace $T$ by $T^{-1}$ in (7.1), multiply both sides by $\tau\#\mathcal{R}$ and rewrite the left
hand side using the well known and elementary formula:

$T^{\#\mathcal{R}}R_{\tau}(T^{-1})=F_{\tau\otimes\det}(T)$ .

On the right hand side we use Definition 1.5 and the observation $\delta(\overline{\tau})=\delta^{-1}(\tau)$ , to
obtain

$F_{\tau\otimes\det}(T)=T^{N-c}F_{\delta^{-1}(\tau)}(T)$

Finally replace $\tau$ by $\delta(\tau)$ and use Proposition 7.1(ii) to see that (in the notation of
Theorem 4.2) $\delta(\tau)\otimes\det=\tau(k_{b})\otimes\chi_{b}$ where the vector $b$ is defined by $b_{C}=1\forall C$ .
The $re$sult now follows from Theorem 4.2. $\square $

Finally, we have quoted assertion (iv) of Malle’s paper because it is such a nice
result related to fake degees. It goes back to Orlik and Solomon, who proved it
by inspection. Malle suggests an alternative approach to this result, based on two
empirical facts. First, the reflection character of the “l-parameter specialisation”
of the Hecke algebra is rational if and only if $W$ is generated by $n$ reflections. Next,
the reflection character of the “l-parameter specialisation” of the Hecke algebra is
rational if and only if its fake degree is semi-palindromic (see [16], Corollary 4.9
and Proposition 6.12). Hence 7.4 gives an a priori proof of one out of the four
implications in these two statements.
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