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Part IV

Appendix

A Vertex superalgebras

A.1 Z,-graded vector spaces

A vector space M with a direct sum decomposition M = Mgz ® M7 is called a
Zy-graded vector space. Elements of M are called even whereas those of M7 odd.
We set

0, if v is even,
p(v) =
1, if v is odd.

For any v € M, let v’ (resp. v”) be the even (resp. odd) part of v: v = v’ +v”
where p(v') = 0 and p(v”) = 1. We will abbreviate (—1)?(*) by (1), (—1)P()p()
by (—1)*¥ and so on.

For a Zs-graded vector space M = Mz ® M7, the space End M is canonically
Zs-graded by setting

(End M); = {a € End M [a(M5) C M;, 5},

namely, by setting a’(v) = a(v’)’ + a(v”)” and a”(v) = a(v’')” + a(v")".

The supercommutator of a,b € End M is defined by

[CL, b] — (alb/ _ b/al) + (a/b// _ blla/) + (allb/ — bla//) + (allb// + b//all).
We will simply write this as [a, b] = ab—(—1)%®ba. Then we have [b, a] = —(—1)%*[a, b]
and the Jacobi identity
Ha: b]vc] = [a’ [b7 C” - (_1)ab[b’ [a’ c]]?
which is also written as
(=1)%a, (b, c]] + (=1)**[b, [, al] + (=1)%[c, [a, ] = O.
Let M and N be Z,-graded vector spaces. The tensor product M ® N of vector

spaces is canonically Zs-graded by setting

(M ® N)g = (M;® Ng) ® (M7 ® Ng), (M ®N)1p=(M;® Ny)® (Mg ® Ng).

The tensor product of @ € End M and b € End N is defined by
(a®b)(u®v) = (—1)""a(u) ® b(v).
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A.2 Mutually local fields on a Zj,-graded vector space

Let M = Mgz ® M7 be a Zj-graded vector space. Then the space of fields on M is
Zo-graded according to the Zg-grading of End M.
Turning to the Zy-graded case, we just replace the commutator by the super-

commutator in the definition of the residue products and the locality. Thus the
m-th residue product of fields A(z) and B(z) is defined by

A(2)m B(2) = Res [A(), BE))(y - )™,
and two fields A(z) and B(z) are said to be mutually local if

[A(y), B(2)|(y —2)" =0

holds for some nonnegative integer n. Then the statements in Section 1-3 remain
valid provided the skew symmetry is replaced by

(B(2)myA(2)) = (=1)ADBE S (—1)™ 100 (A(2) 1m0y B(2))
1=0

and the Borcherds identity by

> (1) s BE) g,y 0

_ Z(“”i@ (A(2)(pyr—i)(B(2) (g1 C(2))

~(~D)AOEOVB(2) (1 (A(2) 1y C(2)))

A.3 Vertex superalgebras

Definition A.3.1. A vertex superalgebra is a Zg-graded vector space V = Vo Vg
equipped with countably many binary operations

VxV — 14
(a,b) +— am)b, (nez),

such that (V5)n)(V5) C V5,5,1,J € Z2, and a vector 1 € Vj subject to the following
conditions

(S0) For each pair of vectors a,b € V, there exists a nonnegative integer ng such
that

amyb=0 forall n > ng.
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(S1) For all vectors a,b,c € V and all integers p,q,r € Z,

oo

D
Z (z) (a(r+i)b)(p+q—i)c

=0

- ifT T
=2 (-1 <L> (@(prr—0) (bg+0)€) = (=1)** bgir—i)(ap+ie)) -
1=0 .

(S2) For any a € V,

0, (n > 0),

a1l =
) a, (n=-1).

Here the conditions (S0) and (S2) are the same as (B0) and (B2) for a vertex
algebra.

The results in section 4-6 hold for the Zs-graded case if the commutator is
replaced by the supercommutator and sign factors are appropriately modified.

B Analytic method

In this section, we discuss the condition sufficient for justifying the argument of
contour deformation in two-dimensional quantum field theory. We define the notion
of admissible fields, and apply it to the Borcherds identity for local fields and that
of a vertex algebra respectively.

In this section, we will work over the complex number field C, while some of

the statements make sense over any field of characteristic zero.

B.1 Admissible fields

Let M be a C-vector space and M* the dual space of M. We denote the canonical
pairing by

(,)Y:M*x M — C.

We say that a subspace MV C M* is nondegenerate if the condition (MY, u) = 0
implies u = 0.
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Lemma B.1.1. Let N,,, (m € Z), be subspaces of M such that --- C N,, C
Nmpt1 C -+ and [),,cz N = {0}. Then there exists a nondegenerate subspace
MY C M* such that for any vV € MV, there exists an m € Z such that (v, Np) =
0.

Proof. Set N = |J,,,cz Nm and consider
Ny ={vY e N*|(vY,N,) =0} Cc N*.

Take a complement P of N in M so that M = N & P and define

MY = (U N,,‘,’,L)@P*CM*.
mez

Then this MV has the desired properties. O

Let us recall that a series A(2) =} ., Apz™""! on M is called a field if for
any u € M, we have Apu = 0,(n > ng), for some ng € Z. Then, a series A(z) is a
field if and only if

U < ﬁ KerAn) =M.

nog€EZ “n=ng

Now we define the dual notion as follows: A series A(z) on M is said to be cotrun-
cated if for any nonzero u € M, we have u ¢ Im A,, (n < ng), for some ny € Z.
Then, a series A(z) is cotruncated if and only if

N < i ImAn) ={0}.

Nno€Z ‘n=—o0

If A(2) is cotruncated, then by Lemma B.1.1, there exists a nondegenerate subspace
MY such that, for any v¥ € MV, there exists ng satisfying (vV, Anu) =0, (n < ng),
for all u € M.

More generally, we prepare the following notion: We say that series A! (2),...,A%2)
are admissible if, for any u € M,

N( S e

)= (o,
MEZ pi1+ - +pPe=—0 cE€ES,

where &, is the symmetric group acting on {1,...,¢}.
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Remark B.1.2. Suppose given a direct sum decomposition

M = @recMy = @ (@nezMAo+n>
[Ao]€C/Z

such that A% (My) C Mxyh,—n, (ki € Z), for AX(2),..., A%(2). If the set
{n€Z|Mysn #0}

is bounded below, then the series A!(2),..., A%(z) are admissible fields. More

generally, if there is a filtration

FoM c FIM C -, FiM = M,

s

k

Il

0

such that FxM = ®rec(FxM) N M)y, the set {n € Z| (FiM)r+n # 0} is bounded
below, and (A%)™ " (FeM) C Frtr;(k)M, then the series A'(2),...,A%(2) are ad-

missible fields.

Now, let A!(2),...,A%(z) be admissible series. Then, for any u € M, there
exists a nondegenerate subspace M,Y C M* such that for any vV € M,/ there exists
an integer mgy € Z satisfying

(WY, A .. A5Oy) =0, (p1,...,pe €Z,p1+ -+ +Ppe < mo,0 € Bp).

We call such a MY C M* a restricted dual space compatible with A!(z2),..., A%(2)
with respect to u € M.

Lemma B.1.3. Let A(z) and B(z) be admissible fields. Then for any u € M and
vV e M),

(v, A(y)B(2)u) € C((y~1,2)), (v¥,B(2)A(y)u) € C(y,271)).

Proof. Since B(z) is a field, (v¥, A(y)B(z)u) has only finitely many terms of neg-
ative degree in z. On the other hand, we have

(v, Ap,By) =0 if p+q<mo.

If p < mo — qo, then we have (vY, A,B,u) = 0 since either ¢ > go or p+q < mg
holds. Thus (vV, A(y)B(2)u) € C((y~1,2)). Similarly we have (v¥, B(z)A(y)u) €
C((y, 27 1)) O
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B.2 Borcherds identity for local fields

Now, under the admissibility, the locality is characterized as follows:

Proposition B.2.1. Let A(z) and B(z) be admissible fields. Then, A(z) and B(z)
are mutually local if and only if, for any w € M and v¥ € M), (vV, A(y)B(z)u)
and (vV, B(z)A(y)u) are the expansions of the same rational function of the form

Py, z)

N P y % EC 3 —17272_1a
=) (y,2) € Cly,y ]

to series convergent in |y| > |z| and |y| < |z| respectively.

Proof. Suppose A(z) and B(z) are local. Then,

(v¥, A(y)B(2)u)(y — 2)™ = (v, B(2) A(y)u)(y — z)™
for some m > 0. Since

(v¥, A(y)B(2)u)(y — 2)™ € C((y~ 1, 2)),

(B.2.1)
(v, B(2)A(y)u)(y — 2)™ € C((y, 27 1)),

they are equal to a Laurent polynomial P(y,z) € Cly,y™ !, z,271]. By (B.2.1), we
have

(B.2.2)

(v, A(y)B()u) = 22

'UV u) = P(y,Z)
(y_. Z)m [yl>|z|, ( ’B(Z)A(y) )

(Y = 2)" 1y1<)

by Lemma 1.1.1.
Conversely, if (B.2.2) holds for any v € M,vY € M./, then

(v", (A(W)B(2)(y — 2)™ — B(2)A(y)(y — 2)™)u) = 0.
Therefore, since MY is nondegenerate,
(AW)B(2)(y — 2)™ = B(2)A(y)(y — 2)™)u =0
and the fields A(z) and B(z) are local by definition. O

Theorem B.2.2. Let Al(z),..., A%(z) be admissible fields. If they are local, then
for any u € M and vV € M/,

(WY, AY(z1), ..., A%(z¢)u)
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and its permutations with respect to AMz),..., A%(z) are the expansions of the

same rational functions of the form

P(zy,...,20)
I (2 — z5)ms’

i<j

P(zy,...,2) € C[Z]_,Zl_l,...,Zg,Ze_l],

into the series of convergent in the corresponding regions.

Proof. Consider (vV, Al(21) - - A%(2z¢)u). It has only finitely many terms of negative
degree in zy because A%(z) is a field. On the other hand, by Proposition 2.1.6, there
exists m € N such that

Ap, o Apu=0, (p2+--+pg2m)
and by the admissibility, there exists n € N such that
('UV,A},]---Aﬁeu)zo, (pr+ - +pe <n).

Therefore, (vV, Al(z1)--- A%(2¢)u) has only finitely many terms of positive degree
in z;. Similar statements holds for its permutations.

Now, take sufficiently large n,;; € N, (i < j), and consider the series

(WY, A (z1) - A%(20)u) H(Zz' )i

1<j

and its permutations. Then by the locality, they are equal to each other. In
particular, they are equal to the same Laurent polynomial P(zy, ..., z;). Therefore,
we have by Lemma 1.1.1, for example,

P(z1, ..., z)

(v, AY(z1) - - A¥(zo)u) = Toe, (i — 2;)7

[21{>--->| 2]

In particular, if A(z), B(z) and C(z) are admissible mutually local fields, then
the series (vY, A(z)B(y)C(z)u) is analytically continued to its permutations as a
rational function. Therefore, we are allowed to prove the Borcherds identity for
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local fields (Corollary 3.4.2) in the following way'6

/"\

) (r+1)B( ))(p‘f‘q_i)c(z)

S ()1 = f, s -9 - AW
;{ T %f/"“”_ ) (v~ 2)%(x - 2°C(z)Ax) Bw)
= f g b g (W = 2 = P AR B
f S e e - B AR
-4 zw‘ﬁ’— ¥ df—( ) (y ~ )z — 2P A@)B)C(2)
s 7{) QWy—l | = G0 - ) - P BWAEROE)

—Z<—1>"+’(i) }{J 27(‘3"-_—1 ) T -y - B AWC()

1=0 z z

=30 () A0 (B 1O ~ (17 BEgar— (A 0 C2))
1=0

I

where Cy is a contour around y, C, is around z, and Cy,> i1s around both y and z.

\

Here we have omitted writing (vY, and u).

B.3 Borcherds identity of vertex algebra

Let V' be a vector space and suppose given a map Y : V — (End V)[[z,271]].
We further assume that the series Y(a,z) and Y (b, z) are admissible fields for
any a,b € V. For each a,b,c € V, we denote by VY,

e the restricted dual space

compatible with Y (a, z) and Y (b, z) with respect c.
Consider the binary operations a(,)b defined by Y (a, 2)b = Y omez Omybz L
Then by Proposition B.2.1, the locality (4.3.4) holds if and only if, for any c € V

16Special cases of such derivations are found in physics literatures, e.g., [BBS], [BS], [T].
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and vV € VY

abc?
\% a 2Ve) = Q(y)z)
<'U 7Y( ,y)Y(b, ) > ykzg(y — Z)m w121 3
\ — Q(y,Z)
(U ’ Y(b’ Z)Y(a7 y)C) - ykze(y __ Z)m |y|<|2.

holds for some polynomial Q(y, z) € Cly, z].
Then, under the locality, the duality (4.3.5) means that

(¥, Y (Y (a,2)b, z)c)(z + 2)P = (vV,Y(a,z + 2)Y (b, 2)c)| |5 <5 (T + 2)P

_ Qz+2,2)
T (x4 2)kztzm

(x + 2)?
lz|<|=|

for the polynomial Q(y, z) as above. Substituting z = y — z and using Lemma
1.1.1, we rewrite this as

Q(y, 2)
ykzt(y — 2)™

WY, Y(Y(a,y — 2)b, 2)c) =

ly—z|<|z|
Thus we arrive at the following condition:
(R) For any a,b,c € V and any vV € V¥

be» the series

(v, Y (a,n)Y (b, 2)c), |yl > |zl
Y, Y(b,2)Y (a,y)c), |yl <lzl,
(’UV,Y(Y(G,,y - Z)b’ Z)C>7 ly - Zl < lzl

are the expansions of the same rational function of the form

Q(y, 2)
ykzt(y — 2)™’

into series convergent in the respective regions.

Q(y, 2) € Cly, 2],

Summarizing the consideration above, we have (cf. [FHL, Proposition 3.4.1})

Proposition B.3.1. Let V be a vector space and suppose given amapyY : V ——
(End V)[[2,271]]. If Y(a, 2) and Y (b, z) are admissible fields for any a,b € V, then
the axiom (B1) is equivalent to the property (R).

C List of expansions of (z — y)"(y — 2)¥(x — 2)P

Let F(z,y,z) = (x —y)"(y — 2)¥(z — z)P. We will give the list of powér series
expansions of F(z,y, z) in various regions.



102 IV Appendix

C.1 The expansion in the region |y — z| > |z — y|

F(z,y,z) = i (f) (z —y)"Hi(y — 2)PHa—i

i=0
i );+k< ) <r+z) (p+q—i)xr+z‘—jyp+q—i+j—kzk,
1,5,k=0 J k
(Iz| > |yl > |=[)
oo . .
_ Z (=1)r+i+o+k (P (T T\ (ptqg—1 gIyPratr—i=k k
1,5,k=0 ¢ J k 7
(lyl > |z| > |2|)
oo B .
_ Z 1)Pratititk (p) (7" "‘ Z) <P +q - ") gt Iyitk pra—i=k
,7,k=0 ¢ J k

(12l > || > |yl)

o0 . .
= Z (—1)7+* (p> (T + ’) (p +q- 1) gy HiItk pta—ik
4 1 J k '

(Iz] > |yl > |z|)

Here the expressions with =* do not make sense for p < 0.



C. List of expansions of (x — y)"(y — 2)%(x — 2)?
C.2 The expansion in the region |z — z| > |y — 2|
= ifP r—i i
Fap2) =3 (10 (D)@ = 27y - o
1=0

oo . .
_ Z (_1>z’+j+k (7"> (p +7r = Z) (CI + Z) xp+r—i—qu+i—kzj+k’
i,5,6=0 ¢ J k
(lz| > |yl > |2])
oo . .
_ Z (—1)ptrrititk (T (P tr—1\(g+t gPHT—imdyk itatick
4,5,k=0 ¢ J k ’
(lz] > |z > |y])
o0 . .
= S0 (cayark (T (P T[4 poyatiok ot itk
4,5, k=0 ¢ J k ’
(lyl > |2| > |z|)
o0 . .
ok Z (—1)PHatritith T\(P+tT—1\[(q+1 g yk pratr—i=k
4,j,k=0 ’ J k ’

(Iz] > Iy > |=l)

Here the expressions with =** do not make sense for r < 0.
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C.3 The expansion in the region |y — 2| > |z — 2|

oo
— -1 r+1 r _ q+r—1 - p+1
Pz = S0 () w276 -
oo . .
= Z (—1)rHitith (:) (q +; - Z) (p : Z) gPFimkyatr—i=j itk

i,7,k=0

(lyl > |z > |2])

= Z (—1)PHrHith (:) (q + rT Z) (p Z‘ Z) ghyatr—i=i priti-k
J

%,7,k=0

(lyl > |zl > |=])

oC . .
_xx Z (—1)r+itith <T) (q + 7" - ’) (p + 2) gPHi=kyd ptr—i=jt+k
4,7,k=0 ¢ J k
(lz| > |z > |y
ad ™ [(q+r—i\ [p+i
o _1\ptratiti+k - ko d oprat+r—j—k
= 3 s (T (7 e

i,5,k=0

(Izl > |z > lyl)

Here the expressions with =** do not make sense for r < 0.



