Part IV

Appendix

A Vertex superalgebras

A.1 \mathbb{Z}_2 -graded vector spaces

A vector space M with a direct sum decomposition $M=M_{\overline{0}}\oplus M_{\overline{1}}$ is called a \mathbb{Z}_2 -graded vector space. Elements of $M_{\overline{0}}$ are called even whereas those of $M_{\overline{1}}$ odd. We set

$$p(v) = \begin{cases} 0, & \text{if } v \text{ is even,} \\ 1, & \text{if } v \text{ is odd.} \end{cases}$$

For any $v \in M$, let v' (resp. v'') be the even (resp. odd) part of v: v = v' + v'' where p(v') = 0 and p(v'') = 1. We will abbreviate $(-1)^{p(v)}$ by $(-1)^{v}$, $(-1)^{p(u)p(v)}$ by $(-1)^{uv}$ and so on.

For a \mathbb{Z}_2 -graded vector space $M=M_{\overline{0}}\oplus M_{\overline{1}}$, the space End M is canonically \mathbb{Z}_2 -graded by setting

$$(\operatorname{End} M)_{\overline{i}} = \{a \in \operatorname{End} M \, | \, a(M_{\overline{j}}) \subset M_{\overline{i} + \overline{j}}\},$$

namely, by setting a'(v) = a(v')' + a(v'')'' and a''(v) = a(v')'' + a(v'')'.

The supercommutator of $a, b \in \text{End } M$ is defined by

$$[a,b] = (a'b' - b'a') + (a'b'' - b''a') + (a''b' - b'a'') + (a''b'' + b''a'').$$

We will simply write this as $[a, b] = ab - (-1)^{ab}ba$. Then we have $[b, a] = -(-1)^{ab}[a, b]$ and the Jacobi identity

$$[[a,b],c] = [a,[b,c]] - (-1)^{ab}[b,[a,c]],$$

which is also written as

$$(-1)^{ca}[a, [b, c]] + (-1)^{ab}[b, [c, a]] + (-1)^{bc}[c, [a, b]] = 0.$$

Let M and N be \mathbb{Z}_2 -graded vector spaces. The tensor product $M \otimes N$ of vector spaces is canonically \mathbb{Z}_2 -graded by setting

$$(M\otimes N)_{\overline{0}}=(M_{\overline{0}}\otimes N_{\overline{0}})\oplus (M_{\overline{1}}\otimes N_{\overline{1}}),\quad (M\otimes N)_{\overline{1}}=(M_{\overline{0}}\otimes N_{\overline{1}})\oplus (M_{\overline{1}}\otimes N_{\overline{0}}).$$

The tensor product of $a \in \text{End } M$ and $b \in \text{End } N$ is defined by

$$(a \otimes b)(u \otimes v) = (-1)^{bu} a(u) \otimes b(v).$$

A.2 Mutually local fields on a \mathbb{Z}_2 -graded vector space

Let $M = M_{\overline{0}} \oplus M_{\overline{1}}$ be a \mathbb{Z}_2 -graded vector space. Then the space of fields on M is \mathbb{Z}_2 -graded according to the \mathbb{Z}_2 -grading of End M.

Turning to the \mathbb{Z}_2 -graded case, we just replace the commutator by the supercommutator in the definition of the residue products and the locality. Thus the m-th residue product of fields A(z) and B(z) is defined by

$$A(z)_{(m)}B(z) = \mathop{\rm Res}_{y=0} \left[A(y), B(z) \right] (y-z)^m,$$

and two fields A(z) and B(z) are said to be mutually local if

$$[A(y), B(z)](y-z)^n = 0$$

holds for some nonnegative integer n. Then the statements in Section 1-3 remain valid provided the skew symmetry is replaced by

$$(B(z)_{(m)}A(z)) = (-1)^{A(z)B(z)} \sum_{i=0}^{\infty} (-1)^{m+i+1} \partial^{(i)} (A(z)_{(m+i)}B(z))$$

and the Borcherds identity by

$$\begin{split} \sum_{i=0}^{\infty} \binom{p}{i} \left(A(z)_{(r+i)} B(z) \right)_{(p+q-i)} C(z) \\ &= \sum_{i=0}^{\infty} (-1)^{i} \binom{r}{i} \left(A(z)_{(p+r-i)} (B(z)_{(q+i)} C(z)) \right. \\ &\left. - (-1)^{A(z)B(z)+r} B(z)_{(q+r-i)} (A(z)_{(p+i)} C(z)) \right). \end{split}$$

A.3 Vertex superalgebras

Definition A.3.1. A vertex superalgebra is a \mathbb{Z}_2 -graded vector space $V = V_{\overline{0}} \oplus V_{\overline{1}}$ equipped with countably many binary operations

$$V \times V \longrightarrow V$$

 $(a,b) \longmapsto a_{(n)}b, (n \in \mathbb{Z}),$

such that $(V_{\overline{i}})_{(n)}(V_{\overline{j}}) \subset V_{\overline{i}+\overline{j}}, i, j \in \mathbb{Z}_2$, and a vector $\mathbf{1} \in V_{\overline{0}}$ subject to the following conditions

(S0) For each pair of vectors $a, b \in V$, there exists a nonnegative integer n_0 such that

$$a_{(n)}b = 0$$
 for all $n \ge n_0$.

(S1) For all vectors $a, b, c \in V$ and all integers $p, q, r \in \mathbb{Z}$,

$$\sum_{i=0}^{\infty} {p \choose i} (a_{(r+i)}b)_{(p+q-i)}c$$

$$= \sum_{i=0}^{\infty} (-1)^i {r \choose i} \left(a_{(p+r-i)}(b_{(q+i)}c) - (-1)^{ab+r} b_{(q+r-i)}(a_{(p+i)}c) \right).$$

(S2) For any $a \in V$,

$$a_{(n)}\mathbf{1} = \begin{cases} 0, & (n \ge 0), \\ a, & (n = -1). \end{cases}$$

Here the conditions (S0) and (S2) are the same as (B0) and (B2) for a vertex algebra.

The results in section 4-6 hold for the \mathbb{Z}_2 -graded case if the commutator is replaced by the supercommutator and sign factors are appropriately modified.

B Analytic method

In this section, we discuss the condition sufficient for justifying the argument of contour deformation in two-dimensional quantum field theory. We define the notion of admissible fields, and apply it to the Borcherds identity for local fields and that of a vertex algebra respectively.

In this section, we will work over the complex number field \mathbb{C} , while some of the statements make sense over any field of characteristic zero.

B.1 Admissible fields

Let M be a \mathbb{C} -vector space and M^* the dual space of M. We denote the canonical pairing by

$$\langle , \rangle : M^* \times M \longrightarrow \mathbb{C}.$$

We say that a subspace $M^{\vee} \subset M^*$ is nondegenerate if the condition $\langle M^{\vee}, u \rangle = 0$ implies u = 0.

Lemma B.1.1. Let N_m , $(m \in \mathbb{Z})$, be subspaces of M such that $\cdots \subset N_m \subset N_{m+1} \subset \cdots$ and $\bigcap_{m \in \mathbb{Z}} N_m = \{0\}$. Then there exists a nondegenerate subspace $M^{\vee} \subset M^*$ such that for any $v^{\vee} \in M^{\vee}$, there exists an $m \in \mathbb{Z}$ such that $\langle v^{\vee}, N_m \rangle = 0$.

Proof. Set $N = \bigcup_{m \in \mathbb{Z}} N_m$ and consider

$$N_m^{\vee} = \{ v^{\vee} \in N^* \mid \langle v^{\vee}, N_m \rangle = 0 \} \subset N^*.$$

Take a complement P of N in M so that $M = N \oplus P$ and define

$$M^{\vee} = \left(\bigcup_{m \in \mathbb{Z}} N_m^{\vee}\right) \oplus P^* \subset M^*.$$

Then this M^{\vee} has the desired properties.

Let us recall that a series $A(z) = \sum_{n \in \mathbb{Z}} A_n z^{-n-1}$ on M is called a field if for any $u \in M$, we have $A_n u = 0$, $(n \ge n_0)$, for some $n_0 \in \mathbb{Z}$. Then, a series A(z) is a field if and only if

$$\bigcup_{n_0 \in \mathbb{Z}} \left(\bigcap_{n=n_0}^{\infty} \operatorname{Ker} A_n \right) = M.$$

Now we define the dual notion as follows: A series A(z) on M is said to be *cotruncated* if for any nonzero $u \in M$, we have $u \notin \text{Im } A_n, (n < n_0)$, for some $n_0 \in \mathbb{Z}$. Then, a series A(z) is cotruncated if and only if

$$\bigcap_{n_0 \in \mathbb{Z}} \left(\sum_{n = -\infty}^{n_0} \operatorname{Im} A_n \right) = \{ 0 \}.$$

If A(z) is cotruncated, then by Lemma B.1.1, there exists a nondegenerate subspace M^{\vee} such that, for any $v^{\vee} \in M^{\vee}$, there exists n_0 satisfying $\langle v^{\vee}, A_n u \rangle = 0$, $(n < n_0)$, for all $u \in M$.

More generally, we prepare the following notion: We say that series $A^1(z), \ldots, A^{\ell}(z)$ are admissible if, for any $u \in M$,

$$\bigcap_{m\in\mathbb{Z}} \left(\sum_{p_1+\dots+p_\ell=-\infty}^m \sum_{\sigma\in\mathfrak{S}_\ell} \mathbb{C} A_{p_1}^{\sigma(1)} \cdots A_{p_\ell}^{\sigma(\ell)} u \right) = \{\,0\,\},\,$$

where \mathfrak{S}_{ℓ} is the symmetric group acting on $\{1,\ldots,\ell\}$.

Remark B.1.2. Suppose given a direct sum decomposition

$$M = \bigoplus_{\lambda \in \mathbb{C}} M_{\lambda} = \bigoplus_{[\lambda_0] \in \mathbb{C}/\mathbb{Z}} \left(\bigoplus_{n \in \mathbb{Z}} M_{\lambda_0 + n} \right)$$

such that $A_n^i(M_\lambda) \subset M_{\lambda+h_i-n}, (h_i \in \mathbb{Z}), \text{ for } A^1(z), \ldots, A^{\ell}(z).$ If the set

$$\{ n \in \mathbb{Z} \mid M_{\lambda_0 + n} \neq 0 \}$$

is bounded below, then the series $A^1(z), \ldots, A^{\ell}(z)$ are admissible fields. More generally, if there is a filtration

$$\mathcal{F}_0M\subset\mathcal{F}_1M\subset\cdots,\quad \bigcup_{k=0}^\infty\mathcal{F}_kM=M,$$

such that $\mathcal{F}_k M = \bigoplus_{\lambda \in \mathbb{C}} (\mathcal{F}_k M) \cap M_{\lambda}$, the set $\{n \in \mathbb{Z} \mid (\mathcal{F}_k M)_{\lambda+n} \neq 0\}$ is bounded below, and $(A_n^i)^{-1}(\mathcal{F}_k M) \subset \mathcal{F}_{k+r_i(k)} M$, then the series $A^1(z), \ldots, A^{\ell}(z)$ are admissible fields.

Now, let $A^1(z), \ldots, A^{\ell}(z)$ be admissible series. Then, for any $u \in M$, there exists a nondegenerate subspace $M_u^{\vee} \subset M^*$ such that for any $v^{\vee} \in M_u^{\vee}$ there exists an integer $m_0 \in \mathbb{Z}$ satisfying

$$\langle v^{\vee}, A_{p_1}^{\sigma(1)} \cdots A_{p_{\ell}}^{\sigma(\ell)} u \rangle = 0, \quad (p_1, \dots, p_{\ell} \in \mathbb{Z}, p_1 + \dots + p_{\ell} < m_0, \sigma \in \mathfrak{S}_{\ell}).$$

We call such a $M_u^{\vee} \subset M^*$ a restricted dual space compatible with $A^1(z), \ldots, A^{\ell}(z)$ with respect to $u \in M$.

Lemma B.1.3. Let A(z) and B(z) be admissible fields. Then for any $u \in M$ and $v^{\vee} \in M_u^{\vee}$,

$$\langle v^{\vee}, A(y)B(z)u \rangle \in \mathbb{C}((y^{-1}, z)), \quad \langle v^{\vee}, B(z)A(y)u \rangle \in \mathbb{C}((y, z^{-1})).$$

Proof. Since B(z) is a field, $\langle v^{\vee}, A(y)B(z)u \rangle$ has only finitely many terms of negative degree in z. On the other hand, we have

$$\langle v^{\vee}, A_p B_q \rangle = 0$$
 if $p + q \le m_0$.

If $p \leq m_0 - q_0$, then we have $\langle v^{\vee}, A_p B_q u \rangle = 0$ since either $q \geq q_0$ or $p + q \leq m_0$ holds. Thus $\langle v^{\vee}, A(y)B(z)u \rangle \in \mathbb{C}((y^{-1}, z))$. Similarly we have $\langle v^{\vee}, B(z)A(y)u \rangle \in \mathbb{C}((y, z^{-1}))$.

B.2 Borcherds identity for local fields

Now, under the admissibility, the locality is characterized as follows:

Proposition B.2.1. Let A(z) and B(z) be admissible fields. Then, A(z) and B(z) are mutually local if and only if, for any $u \in M$ and $v^{\vee} \in M_u^{\vee}$, $\langle v^{\vee}, A(y)B(z)u \rangle$ and $\langle v^{\vee}, B(z)A(y)u \rangle$ are the expansions of the same rational function of the form

$$\frac{P(y,z)}{(y-z)^m}, \quad P(y,z) \in \mathbb{C}[y,y^{-1},z,z^{-1}],$$

to series convergent in |y| > |z| and |y| < |z| respectively.

Proof. Suppose A(z) and B(z) are local. Then,

$$\langle v^{\vee}, A(y)B(z)u\rangle(y-z)^m = \langle v^{\vee}, B(z)A(y)u\rangle(y-z)^m$$

for some $m \gg 0$. Since

(B.2.1)
$$\langle v^{\vee}, A(y)B(z)u\rangle(y-z)^{m} \in \mathbb{C}((y^{-1}, z)),$$

$$\langle v^{\vee}, B(z)A(y)u\rangle(y-z)^{m} \in \mathbb{C}((y, z^{-1})),$$

they are equal to a Laurent polynomial $P(y,z) \in \mathbb{C}[y,y^{-1},z,z^{-1}]$. By (B.2.1), we have

$$\langle v^{\vee}, A(y)B(z)u \rangle = \left. \frac{P(y,z)}{(y-z)^m} \right|_{|y|>|z|}, \quad \langle v^{\vee}, B(z)A(y)u \rangle = \left. \frac{P(y,z)}{(y-z)^m} \right|_{|y|<|z|}$$

by Lemma 1.1.1.

Conversely, if (B.2.2) holds for any $u \in M, v^{\vee} \in M_u^{\vee}$, then

$$\langle v^{\vee}, (A(y)B(z)(y-z)^m - B(z)A(y)(y-z)^m)u \rangle = 0.$$

Therefore, since M_u^{\vee} is nondegenerate,

$$(A(y)B(z)(y-z)^m - B(z)A(y)(y-z)^m)u = 0$$

and the fields A(z) and B(z) are local by definition.

Theorem B.2.2. Let $A^1(z), \ldots, A^{\ell}(z)$ be admissible fields. If they are local, then for any $u \in M$ and $v^{\vee} \in M_u^{\vee}$,

$$\langle v^{\vee}, A^1(z_1), \dots, A^{\ell}(z_{\ell})u \rangle$$

and its permutations with respect to $A^1(z), \ldots, A^{\ell}(z)$ are the expansions of the same rational functions of the form

$$\frac{P(z_1,\ldots,z_{\ell})}{\prod\limits_{i< j}(z_i-z_j)^{m_{ij}}}, \quad P(z_1,\ldots,z_{\ell}) \in \mathbb{C}[z_1,z_1^{-1},\ldots,z_{\ell},z_{\ell}^{-1}],$$

into the series of convergent in the corresponding regions.

Proof. Consider $\langle v^{\vee}, A^1(z_1) \cdots A^{\ell}(z_{\ell})u \rangle$. It has only finitely many terms of negative degree in z_{ℓ} because $A^{\ell}(z)$ is a field. On the other hand, by Proposition 2.1.6, there exists $m \in \mathbb{N}$ such that

$$A_{p_2}^2 \cdots A_{p_\ell}^\ell u = 0, \quad (p_2 + \cdots + p_\ell \ge m),$$

and by the admissibility, there exists $n \in \mathbb{N}$ such that

$$\langle v^{\vee}, A_{p_1}^1 \cdots A_{p_{\ell}}^{\ell} u \rangle = 0, \quad (p_1 + \cdots + p_{\ell} < n).$$

Therefore, $\langle v^{\vee}, A^1(z_1) \cdots A^{\ell}(z_{\ell}) u \rangle$ has only finitely many terms of positive degree in z_1 . Similar statements holds for its permutations.

Now, take sufficiently large $n_{ij} \in \mathbb{N}, (i < j)$, and consider the series

$$\langle v^{\vee}, A^{1}(z_{1}) \cdots A^{\ell}(z_{\ell}) u \rangle \prod_{i < j} (z_{i} - z_{j})^{n_{i\ell}}$$

and its permutations. Then by the locality, they are equal to each other. In particular, they are equal to the same Laurent polynomial $P(z_1, \ldots, z_\ell)$. Therefore, we have by Lemma 1.1.1, for example,

$$\langle v^{\vee}, A^1(z_1) \cdots A^{\ell}(z_{\ell}) u \rangle = \left. \frac{P(z_1, \dots, z_{\ell})}{\prod_{i < j} (z_i - z_j)^{n_{i\ell}}} \right|_{|z_1| > \dots > |z_{\ell}|}.$$

In particular, if A(z), B(z) and C(z) are admissible mutually local fields, then the series $\langle v^{\vee}, A(x)B(y)C(z)u \rangle$ is analytically continued to its permutations as a rational function. Therefore, we are allowed to prove the Borcherds identity for

local fields (Corollary 3.4.2) in the following way¹⁶:

$$\begin{split} \sum_{i=0}^{\infty} \binom{p}{i} (A(z)_{(r+i)} B(z))_{(p+q-i)} C(z) \\ &= \sum_{i=0}^{\infty} \binom{p}{i} \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_y} \frac{dx}{2\pi\sqrt{-1}} (x-y)^{r+i} (y-z)^{p+q-i} C(z) A(x) B(y) \\ &= \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_y} \frac{dx}{2\pi\sqrt{-1}} (x-y)^r (y-z)^q (x-z)^p C(z) A(x) B(y) \\ &= \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_{y,z}} \frac{dx}{2\pi\sqrt{-1}} (x-y)^r (y-z)^q (x-z)^p A(x) B(y) C(z) \\ &- \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_z} \frac{dx}{2\pi\sqrt{-1}} (x-y)^r (y-z)^q (x-z)^p B(y) A(x) C(z) \\ &= \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_z} \frac{dx}{2\pi\sqrt{-1}} (x-y)^r (y-z)^q (x-z)^p A(x) B(y) C(z) \\ &- \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_z} \frac{dx}{2\pi\sqrt{-1}} (x-y)^r (y-z)^q (x-z)^p B(y) A(x) C(z) \\ &= \sum_{i=0}^{\infty} (-1)^i \binom{r}{i} \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_z} \frac{dx}{2\pi\sqrt{-1}} (x-y)^{p+r-i} (y-z)^{q+i} A(x) B(y) C(z) \\ &- \sum_{i=0}^{\infty} (-1)^{r+i} \binom{r}{i} \oint_{C_z} \frac{dy}{2\pi\sqrt{-1}} \oint_{C_z} \frac{dx}{2\pi\sqrt{-1}} (x-y)^{p+r-i} (y-z)^{q+i} B(y) A(x) C(z) \\ &= \sum_{i=0}^{\infty} (-1)^i \binom{r}{i} (A(z)_{(p+r-i)} (B(z)_{(q+i)} C(z)) - (-1)^r B(z)_{(q+r-i)} (A(z)_{(p+i)} C(z))) \end{split}$$

where C_y is a contour around y, C_z is around z, and $C_{y,z}$ is around both y and z. Here we have omitted writing $\langle v^{\vee}$, and $u \rangle$.

B.3 Borcherds identity of vertex algebra

Let V be a vector space and suppose given a map $Y:V\longrightarrow (\operatorname{End} V)[[z,z^{-1}]]$. We further assume that the series Y(a,z) and Y(b,z) are admissible fields for any $a,b\in V$. For each $a,b,c\in V$, we denote by V_{abc}^{\vee} the restricted dual space compatible with Y(a,z) and Y(b,z) with respect c.

Consider the binary operations $a_{(n)}b$ defined by $Y(a,z)b = \sum_{n \in \mathbb{Z}} a_{(n)}bz^{-n-1}$. Then by Proposition B.2.1, the locality (4.3.4) holds if and only if, for any $c \in V$

¹⁶Special cases of such derivations are found in physics literatures, e.g., [BBS], [BS], [T].

and $v^{\vee} \in V_{abc}^{\vee}$,

$$\langle v^{\vee}, Y(a, y)Y(b, z)c \rangle = \frac{Q(y, z)}{y^k z^{\ell} (y - z)^m} \Big|_{|y| > |z|},$$
$$\langle v^{\vee}, Y(b, z)Y(a, y)c \rangle = \frac{Q(y, z)}{y^k z^{\ell} (y - z)^m} \Big|_{|y| < |z|},$$

holds for some polynomial $Q(y, z) \in \mathbb{C}[y, z]$.

Then, under the locality, the duality (4.3.5) means that

$$\langle v^{\vee}, Y(Y(a,x)b,z)c\rangle(x+z)^{p} = \langle v^{\vee}, Y(a,x+z)Y(b,z)c\rangle|_{|x|<|z|} (x+z)^{p}$$
$$= \frac{Q(x+z,z)}{(x+z)^{k}z^{\ell}x^{m}}\Big|_{|x|<|z|} (x+z)^{p}$$

for the polynomial Q(y, z) as above. Substituting x = y - z and using Lemma 1.1.1, we rewrite this as

$$\langle v^{\vee}, Y(Y(a, y-z)b, z)c \rangle = \left. \frac{Q(y, z)}{y^k z^{\ell} (y-z)^m} \right|_{|y-z|<|z|}.$$

Thus we arrive at the following condition:

(R) For any $a, b, c \in V$ and any $v^{\vee} \in V_{abc}^{\vee}$, the series

$$\langle v^{\vee}, Y(a, y)Y(b, z)c \rangle, \quad |y| > |z|,$$

$$\langle v^{\vee}, Y(b, z)Y(a, y)c \rangle, \quad |y| < |z|,$$

$$\langle v^{\vee}, Y(Y(a, y - z)b, z)c \rangle, \quad |y - z| < |z|$$

are the expansions of the same rational function of the form

$$\frac{Q(y,z)}{y^k z^\ell (y-z)^m}, \quad Q(y,z) \in \mathbb{C}[y,z],$$

into series convergent in the respective regions.

Summarizing the consideration above, we have (cf. [FHL, Proposition 3.4.1])

Proposition B.3.1. Let V be a vector space and suppose given a map $Y: V \mapsto (\operatorname{End} V)[[z, z^{-1}]]$. If Y(a, z) and Y(b, z) are admissible fields for any $a, b \in V$, then the axiom (B1) is equivalent to the property (R).

C List of expansions of $(x-y)^r(y-z)^q(x-z)^p$

Let $F(x,y,z) = (x-y)^r (y-z)^q (x-z)^p$. We will give the list of power series expansions of F(x,y,z) in various regions.

C.1 The expansion in the region |y-z| > |x-y|

$$F(x,y,z) = \sum_{i=0}^{\infty} \binom{p}{i} (x-y)^{r+i} (y-z)^{p+q-i}$$

$$= * \sum_{i,j,k=0}^{\infty} (-1)^{j+k} \binom{p}{i} \binom{r+i}{j} \binom{p+q-i}{k} x^{r+i-j} y^{p+q-i+j-k} z^k,$$

$$(|x| > |y| > |z|)$$

$$= * \sum_{i,j,k=0}^{\infty} (-1)^{r+i+j+k} \binom{p}{i} \binom{r+i}{j} \binom{p+q-i}{k} x^j y^{p+q+r-j-k} z^k,$$

$$(|y| > |x| > |z|)$$

$$= \sum_{i,j,k=0}^{\infty} (-1)^{p+q+i+j+k} \binom{p}{i} \binom{r+i}{j} \binom{p+q-i}{k} x^{r+i-j} y^{j+k} z^{p+q-i-k},$$

$$(|z| > |x| > |y|)$$

$$= \sum_{i,j,k=0}^{\infty} (-1)^{j+k} \binom{p}{i} \binom{r+i}{j} \binom{p+q-i}{k} x^j y^{r+i-j+k} z^{p+q-i-k},$$

$$(|z| > |y| > |x|)$$

Here the expressions with $=^*$ do not make sense for p < 0.

C.2 The expansion in the region |x-z| > |y-z|

$$\begin{split} F(x,y,z) &= \sum_{i=0}^{\infty} (-1)^i \binom{p}{i} (x-z)^{p+r-i} (y-z)^{q+i} \\ &= \sum_{i,j,k=0}^{\infty} (-1)^{i+j+k} \binom{r}{i} \binom{p+r-i}{j} \binom{q+i}{k} x^{p+r-i-j} y^{q+i-k} z^{j+k}, \\ &\qquad \qquad (|x| > |y| > |z|) \\ &= \sum_{i,j,k=0}^{\infty} (-1)^{p+r+i+j+k} \binom{r}{i} \binom{p+r-i}{j} \binom{q+i}{k} x^{p+r-i-j} y^k z^{j+q+i-k}, \\ &\qquad \qquad (|x| > |z| > |y|) \\ &=^{**} \sum_{i,j,k=0}^{\infty} (-1)^{i+j+k} \binom{r}{i} \binom{p+r-i}{j} \binom{q+i}{k} x^j y^{q+i-k} z^{p+r-i-j+k}, \\ &\qquad \qquad (|y| > |z| > |x|) \\ &=^{**} \sum_{i,j,k=0}^{\infty} (-1)^{p+q+r+i+j+k} \binom{r}{i} \binom{p+r-i}{j} \binom{q+i}{k} x^j y^k z^{p+q+r-j-k}, \\ &\qquad \qquad (|z| > |y| > |x|) \end{split}$$

Here the expressions with $=^{**}$ do not make sense for r < 0.

C.3 The expansion in the region |y-z| > |x-z|

$$\begin{split} F(x,y,z) &= \sum_{i=0}^{\infty} (-1)^{r+i} \binom{r}{i} (y-z)^{q+r-i} (x-z)^{p+i} \\ &= \sum_{i,j,k=0}^{\infty} (-1)^{r+i+j+k} \binom{r}{i} \binom{q+r-i}{j} \binom{p+i}{k} x^{p+i-k} y^{q+r-i-j} z^{j+k}, \\ &\qquad \qquad (|y| > |x| > |z|) \\ &= \sum_{i,j,k=0}^{\infty} (-1)^{p+r+j+k} \binom{r}{i} \binom{q+r-i}{j} \binom{p+i}{k} x^k y^{q+r-i-j} z^{p+i+j-k}, \\ &\qquad \qquad (|y| > |z| > |x|) \\ &= ^{**} \sum_{i,j,k=0}^{\infty} (-1)^{r+i+j+k} \binom{r}{i} \binom{q+r-i}{j} \binom{p+i}{k} x^{p+i-k} y^j z^{p+r-i-j+k}, \\ &\qquad \qquad (|x| > |z| > |y|) \\ &= ^{**} \sum_{i,j,k=0}^{\infty} (-1)^{p+q+i+j+k} \binom{r}{i} \binom{q+r-i}{j} \binom{p+i}{k} x^k y^j z^{p+q+r-j-k}, \\ &\qquad \qquad (|z| > |x| > |y|) \end{split}$$

Here the expressions with $=^{**}$ do not make sense for r < 0.