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Part 111

Topics and examples

In Section 7, we will explain some particular classes of vertex algebras and describe
the notion of an invariant bilinear form. Some relations to other algebraic objects
such as Lie algebras, commutative algebras and associative algebras are described
in Section 8. Section 9 is devoted to describing some famous examples: the vertex
algebras associated to the free boson, to the 3-v system, to the affine Lie algebras,
to the Virasoro algebra and to the Wj, o, algebra, and the lattice vertex algebra.

7 Summary of related notions

In this section, we will give a brief survey of various notions such as gradings,
quasiconformal structures, conformal structures and invariant bilinear forms. We
also summarize the notion and terminologies on vertex operator algebras.

7.1 Gradings of a vertex algebra

We first review the notion of a grading.
Definition 7.1.1. A grading of a vertex algebra V is a direct sum decomposition
V = &, V", where r runs over a set of scalars, such that

(7.1.1) Vin Ve C yrs—n=1

for all n € Z. A graded vertex algebra is a vertex algebra equipped with a grading.

A vector of a graded vertex algebra V' is said to be homogeneous of degree r if it
belongs to V". We denote the degree of a homogeneous vector a by A(a). (When-
ever mentioning A(a), the vector a is implicitly supposed to be homogeneous).

For a graded vertex algebra V', we consider the operator D : V — V, Da =
A(a)a. Then the condition (7.1.1) is written as

(7.1.2) D(anyb) = (Da)myb + a(n)(Db) — (n + 1)an)b
which is equivalent to

[D,Y (a,z)] = 20Y (a, z) + A(a)Y (a, 2).
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Conversely, for any semisimple operator D : V —— V satisfying (7.1.2), the
eigenvalue decomposition V = @V", V" = {a € V| Da = ra}, gives a grading of
V.

Let V be a graded vertex algebra. Then substitutinga =b=1 and n = —1 in
(7.1.2), we have D(1(_1y1) = (D1)(—1)1 + 1(_1)(D1). Hence

(7.1.3) D1 =0, ie,1€eV"

Therefore, A(Ta) = A(a_gy1) = A(a) + A(1) — (=2) — 1 = A(a) + 1, so we have
T(V") C V™1 In other words, the operators 7, D : V — V satisfy
(7.1.4) [D,T] =T.

Remark 7.1.2. Let V be a vertex algebra, and suppose given a vector w € V such
that w) = T and w(;) is semisimple. Then D = w(1) gives rise to a grading of V.
In fact, by (4.3.2) and (4.2.4),

D(a(n)b) = w(y(amn)b)

/1
= a(n)(w)b) + Z (z) (w(i)a')(n+l—i)b
i=0

= Q(p) (Db) + (Ta)(n+1)b —+ (Da)(n)b

= (Da)(n)b + a(n)(Db) - (n+ l)a(n)b.
Now, let w = )" w” be the homogeneous decomposition. Comparing the degree of
the both sides of wgya = Ta and w(;ya = A(a)a, we see that Wipa = wipa =0 if
r # 2. Therefore, we must have w(zo) = w) = T and w(zl) = w(1) = D. Thus we

may suppose that w is homogeneous of degree 2, i.e., ww = 2w, without affecting
the grading.

7.2 Quasiconformal structure on a vertex algebra

Next we turn to the quasiconformal structure on a vertex algebra. Consider the
Lie algebra sl; spanned by the matrices

0 1 1 0 0 0
0 0 )’ 0 -1 )’ 1 0
with the Lie bracket given by the commutator. This is identified with the Lie

algebra spanned by {L;,Lg, L_1} with

(L, Ln] = (m —n)Lpyn, (m,n=1,0,-1),
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by letting

0 1 — L1, 1 0 — —2Lg, 00 — —L_1.
0 0 0 -1 1 0

The action of L, on an sly-module will be denoted by the same symbol for brevity.

Definition 7.2.1. A quasiconformal vertex algebra is a vertex algebra V equipped
with an sly-module structure Ly, Lo, L_1 : V — V such that
(Q1l) For any a,b€ V and n € Z

2

m+1

Lm(a(n)b) = a’(n) (Lmb) + Z ( i )(L’i—la)(m+n+l—i)ba (m = 17 07 '—1)7
=0

(Q2) L_; coincides with T,
(Q3) Lo is semisimple.

Here the condition (Q1) for m = -1 follows from (Q2), since T'(a(m)b) =
(T'a)n)b + a(,)(Th). Note that (Q1) is written as

2
<m + 1) zm+1_iY(Li~1a, z)
1
in terms of the generating series.

Proposition 7.2.2. A quasiconformal vertex algebra is graded by D = L.
Proof. By (Q1) for m = 0 and (Q2),

Lo(amyb) = (Loa)(n)yb + a(n)(Lob) — (n + 1)(a(m)b).
Therefore, since Lg is semisimple by (Q3), it gives a grading on V. O

Proposition 7.2.3. For a quasiconformal vertex algebra, L,,1 = 0, (m = 1,0, —1).

Proof. By (Q2), L_11 =T1 = 0. Since V is graded by D = L, we have Lol = 0
by (7.1.3). Substituting @ = b = 1 and n = —1 in (Q1) for m = 1, we have
L;i1 =0. O

Remark 7.2.4. For a graded vertex algebra V, we set L_; = T and Ly = D.
Suppose given an operator L; : V — V. Then V becomes a quasiconformal
vertex algebra by these operators if and only if L satisfies (Q1) for m = 1 and
[Lo, L1] = —Ly. ( [L1,L_1] = 2Ly follows from (Q1).)
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Proposition 7.2.5. Let V be a vertex algebra and suppose given a vector w € V

such that wy = T and w(;) is semisimple. We also suppose that wyw = 2w.

Then V becomes a quasiconformal vertex algebra by setting L,, = W(m+1), (M =

1,0, —1).

Proof. By Remark 7.1.2, V is graded by D = Ly = w(1), and we have
Li(am)b) = wiz)(am)b)

. 2
= a(n)(w(2)b) + Z ( )(w< )@) (n+2—i)b

2
2
= a(n) (le) + Z (Z) (Li_la)(n_*_z_n,i)b

i=0
and

[L07L1] = [w(l),w(2)]
= (w(o)w)(g) + (w(l)w)(z) = —w = —L.

Hence it follows from Remark 7.2.4 that V is a quasiconformal vertex algebra.

We finally note that a vector in the space
AZ{QEVA'Lla:O}

is called a gquasiprimary state of degree A.

7.3 Conformal structure on a vertex algebra

O

Now we turn to the conformal structure on a vertex algebra. Let Vir = BnezkL,, D

kC be the Virasoro algebra. The subspace spanned by {L;,Lo,L_,} is a Lie

subalgebra isomorphic to sly as before.

Let ¢ be a scalar.

Definition 7.3.1. A Virasoro vector of central charge ¢ of a vertex algebra V is a

vector e € V such that

(V) the map L, — e(, 1) form a representation of the Virasoro algebra of central

charge c.
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We note that the condition (V) is equivalent to

(0 (n>4),
(c/2)1  (n=3),
e(n)€ = 0 (n = 2),
2e (n =1),
( Te (n =0),

which further reduces to the condition

0 (n > 5),
eme =4 (c/2)1  (n=3),
2e (n=1)

by the skew symmetry.
A conformal vector of central charge ¢ of a vertex algebra V is a vector w € V
such that,
(C1) w is a Virasoro vector of central charge c,
(C2) the action of L_; coincides with T, i.e., wya = a(_2)1 for any a € V,
(C3) the action of Ly on V is semisimple.
A vertex algebra equipped with a conformal vector is called a conformal vertez
algebra.

It follows from Proposition 7.2.5 that a conformal vertex algebra is a quasicon-
formal vertex algebra. Thus we have the implication

conformal == quasiconformal = graded.
For a conformal vertex algebra with the conformal vector w, we set
P*={aeV?|La=0,(n>1)}

whose elements are called primary states of conformal weight A.

Remark 7.3.2. For a conformal vertex algebra V, we have KerT' C P° ([Li,p.292,
Corollary 4.2]). To show this, suppose T'a = 0. Then since 8Y (a,z) = Y (Ta, z) =
0, we have a(,) = 0 for n # 0. Hence

o0
L,a = Wint1)@ = Z(“l)n+i;2T(i)(a(n+z‘+1)w) =90
1=0

for n > —1, so a € PO.



64 III  Topics and examples

7.4 Vertex operator algebras and their modules

For reader’s convenience, we summarize the terminologies in the theory of vertex
operator algebras.

The notion of a vertex operator algebra (VOA) is defined in the literature as
follows (cf. [FLM], [FHL], [DL]):

Definition 7.4.1. A VOA is a Z-graded vector space V = @,czV" such that
dim V"™ < oo and V" = 0 for sufficiently small n, equipped with a linear map

Y: V. — (EndV)[z,2z71)

a — Y(a,z) = ZnEZ a(”)z—n—l

and with distinguished vectors 1 € V° and w € V? satisfying the following condi-
tions
(1) a(n)b = 0 for sufficiently large n;
(2) Y(1,2) =idy;
(3) Y(a,2)1 € V[[z]] and Iim(.)(Y(a, z)1) = a.
zZ—
(4)

22_15 (z1

=216 (”’1 — zQ) Y(a,21)Y (b 2) - z5'6 (Lzzl> Y (b, 22)Y (a, 21);
0 — <0

ZO) Y (Y (a, 20)b, z2)

(5)

m3—m

[Lm, Ln] = (m — n)Lm+n + T

5m+n,OC;

(6) Loa = na for a € V7
(7) Y (a,z) =Y (L_1a, z);
Here L, = w41, and the delta function is defined by

(57)-5 (5], -mEe ()
20 ez 20 |z1]>] 22| n€Z i=0

thus

5(‘2"Zl> ZZ( 1)n+%( >z0 Zian,

nez i=0

(222) - S (s

n€zZ i=0
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The identity (4) is called the (Cauchy-) Jacobi identity, which is easily seen to be
equivalent to the Borcherds identity by taking the coefficients to zg 7"121_ P nlz; -1
Since the conditions (1), (4) and (3) are equivalent to (B0),(B1) and (B2) respec-
tively, from which the condition (2) follows. Now the conditions (5),(6) and (7)
show that w is a conformal vector and V' = @V™ is the associated grading. There-

fore,

Proposition 7.4.2. A vertex operator algebra is nothing but a conformal vertex
algebra such that dim V"™ < oo for alln and V™ =0, (n < N), for some N.

Note 7.4.3. In the literature of vertex operator algebras, the conformal vector w is
called the Virasoro element and the central charge is called the rank of the vertex

operator algebra.

Now we are in the position to give a definition of modules for a vertex operator

algebra V.

Definition 7.4.4. A weak module for a VOA V is a vector space M equipped with
a linear map

Yv: V. — (End M)[[z,271]]
a YM(a,z) = ZnGZ a[n]z“”‘l,a[n] € End M

satisfying

(WO0) For each pair (a,v) € V x M, there exists a nonnegative integer ng such that
appv = 0 for all n > ny.

(Wl) YM(I,Z) = idM.

(W2) For all a,b € V and v € M,

2516 (zl - ZO) Yar(Y(a, 20)b, 22)v

zZ2

22 — 21

= zo“lci (Zl Z_o ZQ) Yr(a, z1)Yar (b, z2)v — zo—lé ( ) Y (b, 22)Yar(a, 21)v.

In other words, a weak module for a VOA V is just a module for the vertex
algebra V. Then (4.6.1) says that

6YM (CL, Z) = YM (L_la, Z)

holds for a weak module, and (4.6.2) applied to a = b = w is nothing but
m —m
12

where Yy (w,2) =Y, cz Lnz™""? and c is the rank of V.

[Lm, Ln] = (m - n)Lm+n + 6m—+—n,00
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Definition 7.4.5. A weak module M for a VOA V is called N-gradable if there
exists a grading M = ®,enM,, such that

(N) Vi Mg C Mpyq—n-1.
A weak module equipped with such a grading is called an admissible module (cf.
[Li3], [DLM2)).

We finally show the definition of a module for a VOA:

Definition 7.4.6. A module for a VOA V is a weak module with a grading M =
@rek M) satisfying

(1) dim M)y < oo for all X € k.

(2) For each A € k, My,,, =0 for n > 0.

(3) Lolam, = A-id.

Note that a module for a VOA is always N-gradable as a weak module.

7.5 Invariant bilinear form

Let V be a quasiconformal vertex algebra such that it is integrally graded by Lo,
and suppose that L; is locally nilpotent on V. Then the expression

_Y(e”Ll(——z'z)LOa, z7h

makes sense as an element of (End V)[[z, z71]].

Definition 7.5.1. A bilinear form ( | ) : V x V — k on V is called invariant if
(7.5.1) (Y(a,2)blc) = (b|Y(e*F (=272)Loq, 271)¢), and

(7.5.2) (Lnalb) = (a|L_pxb), (n=-1,0,1)

hold for any a,b,c € V.

If ( | ) is an invariant bilinear form, then

(Y(e*tr(=z72)Log, z7 Vb |c) = (b] Y(ez—lLl(—zz)LOeZLl(——z”Q)LOa, z)c)
= (b|Y(ez—lL‘e_Z_lL1a, z)c)

= (b|Y(a,z)c).



8. Relation to other algebraic structures 67

Let ( | ) : V x V — k be an invariant bilinear form. If Lia = 0, then since

Y(eZLl (_Z—Z)Loa’ z—l) _ (__1)A(a)z—2A(a)Y(a, z_l)

— (__1)A(a) Z a(n)zn——2A(a)+1
nez

= (_1)&((1) Z a’(—n+2A(a)——2)Z_n—1a
nez

we have (ap,)b|c) = (—l)A(a)(bla(_n+2A(a)_2)C). Therefore, setting
Gn = Q(ntAla)—1)>
we have
(anb|c) = (bla-nc).
For example, if V is a conformal vertex algebra with the conformal vector w € V,
(Wintnyble) ={blw—nt1)C).

Hence, the condition (7.5;2) follows from (7.5.1) for a conformal vertex algebra.

The reader can find further information and applications in [FHL], [Lil], [Li3]
and [S].
8 Relation to other algebraic structures

In this section we construct various algebraic structures out of the structure of a
vertex algebra.

8.1 Lie algebras related to a vertex algebra

We first consider structures induced from the (0)-th product of a vertex algebra.
Let V be a vertex algebra and set

[a, b] = a(o)b
for a,b € V. Then the bilinear map

(8.1.1) L]: VXV —V
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satisfies the Jacobi identity
([a,b], c] = [a, [b, c]] = [b,[a,c]],

but [b,a] # —la,b] in general, because
[b,a) = —[a,b] + > _(=1)""' T (a(;b)
i=0
by the skew symmetry. Since [T'a,b] = (Ta))b = 0, and [a,Tb] = a(g)(Th) =
T(a(b) for any a,b € V, the map (8.1.1) induces a map
[,]:V/TV x V/TV — V/TV
on the quotient space. Then we have

Proposition 8.1.1 (Borcherds). For a vertex algebra V', the (0)-th product in-
duces a Lie algebra structure on V/TV.

Remark 8.1.2. Let V be a vertex algebra and let M be a V-module. Since (T'a)jojv =
0 for any a € V and v € M, the map (a,v) — a.v = ajgv induces a well-defined
action

V/TVXM————)M.

Since [a,blov = (aj0}b))v = ao)(bjojv) — bjoj(aev) = a.(b.v) — b.(a.v) for any
a,b € V and v € M, the above action gives a structure of a module over the Lie
algebra V/TV on M.

We next suppose that V = @V 2 is a graded vertex algebra. Then V1, V2] ¢
V& and in particular, [V, V1] c V!,

Proposition 8.1.3. For a graded vertex algebra V. = ®V*, the (0)-th product
induces a Lie algebra structure on V1 /TV?°.

If dimV? =1, then TV® = 0 for V° is spanned by 1, so V!/TV? = V!, In this
case, consider the bilinear form

(): V! xvl —vy!
given by the (1) st product:

(alb)l =a@)b for a,be V1%
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Proposition 8.1.4. If a graded vertex algebra V. = @V* satisfies dimV? = 1,
then the (0)-th product equips V1 with a Lie algebra structure and the (1) st
product gives an invariant bilinear form, which is symmetric if TV N V° = {0}.

Proof. The bilinear form (|) is invariant since
(la, blle)1 = = (b@ya)w)e
= ~by(a@)c) +aq) (b))

= —(alc)b(oy1 + (al[b, c])1
= (al[b, c])1.

If TV N V0 = {0}, then the form is symmetric since

((alb) = (b]a))1 = anyb — bya
= i(—l)*’T"'Na(m)b) e TV N VO.

1=0

We next suppose that V is quasiconformal. Consider the space
Q2 ={a € V?|Lia =0},
of quasiprimary states of conformal weight A. Then, for a € V1,

Lifa,b] = Li(a()b)
= a()(L1b) + (L1a)0)b + 2(Loa) )b+ (L_-1a)2)b
= a(0)(L1b) + (L1a)o)b
= [a, L1b] + [L1a, b],

by (Q1) since 2a(1)b + (Ta)(2)b = 0. Hence [Q}, Q%] C Q%. Therefore,

Proposition 8.1.5. For a quasi-primary vertex algebra V', (0)-th product induces
a Lie algebra structure on Q1/(Q! N TV?).

We finally consider the case of a conformal vertex algebra. Consider the space

PA={aeV?|Lya=0,(n>1)}
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of primary states of conformal weight A. Then, for a € V1,

Ln[a, b} = w(n+1)(a(0)b)

2 (n+1
= a()(Wn+nb) + D ( . )(w(i)a)(n+l—i)b

‘ 1
=0
= /n+1
= [a,, Lnb] -+ Z (Z +1 ) (Liaa)(n—i)ba
=1

since (L_1a)(m+1)b + (n+1)(Loa)n)b = 0. Hence [P, PA] C P, and the bilinear
map|, | induces a Lie algebra structure on P'/(P! N TV?).

Lemma 8.1.6. For a conformal vertex algebra V, PN TV? = T PO,

Proof. (cf. [S,Proof of Proposition 2.5].) Let T'a € P! where a € V°. Then, since
L,(Ta) =0 for all n > 1, we have

(8.1.2) T(Lna) = Lo(Ta) — (n+1)Lyp_ja = —(n+1)Lp_1a, (n>1).

Since L, = w(n41), there exists an ng such that L,, = 0 for all n > ng. Then, by
induction on n using (8.1.2), we deduce L,a = 0 for all n > 0. Hence a € P°, and
we have P' N TV? C TP°. The other inclusion easily follows from (8.1.2). O

Therefore ([B1, Section 5], cf. [S]),

Proposition 8.1.7 (Borcherds). For a conformal vertex algebra V', the (0)-th
product induces a Lie algebra structure on P'/TP°.

We refer the reader to [B2], [Geb], [J], [S] for its very important relation to
generalized Kac-Moody algebras.

8.2 Griess algebra
Let V be a graded vertex algebra such that
(8.2.1) Vr=0,(n<-1), V®=k1 and V!=0.

Let B denote the subspace V2 of degree 2. Define bilinear maps - : Bx B — B
and (|) : B x B — k by setting

1
a-b= 5&(1)b and (a|b)1l = 2a3)b

for a,b € B.
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Proposition 8.2.1. Let V be a graded vertex algebra satisfying the condition
(8.2.1). Then the bilinear map - defines a commutative nonassociative algebra
structure on B such that (|) is a symmetric invariant bilinear form.

Proof. By the assumption (8.2.1) on the grading, we have a(2b = 0,T(a3)b) = 0,
and a¢yb = 0 for i > 4, since Aa)h) =2+2~-i-1=3-ifora,be B = vz,
Therefore, by the skew symmetry,

o0
bya = ayb + Z(“l)iT(z)(a(Hl)b) = a(yb,
i=1
hence b-a = a-b. Similarly, bisya = aig)b and we have (bla) = (alb). Finally,
Borcherds identity for p = 1,q = 2,r = 1 yields
(ab)@)c = —(a@b)@¢ — aw)(be)c) + b)(an)e) +a@) (b)) — b (ap)c)
= —a(1) (b(3)c) -+ b(3)(a(1)c).

Since a(1)(b(zyc) = 0 by a(1)1 = 0, we have
(a-ble)1l = (aq)b)(3)c = bsy(a(yc) = (bla - ¢).
(|

The algebra B equipped with the invariant symmetric bilinear form is called
the Griess algebra of V (cf. [FLM]). ‘

Remark 8.2.2. An element e € B is an idempotent of the Griess algebra if and only
if it is a Virasoro vector of central charge ¢ = (e|e). Two idempotents e, f € B are
mutually orthogonal, i.e., e - f = 0, if and only if [Y(e,y),Y(f,2)] =0. If V is a
conformal vertex algebra with the conformal vector w € V, then w is an identity
element of the Griess algebra.

8.3 Commutative Poisson algebra V/Cy(V)

Let V be a vertex algebra and consider the (—1) st product:

VxV — \%
(a, b) — ab= a(_l)b.
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Then we have

oo
(8.3.1) ac-nb —bna =Y _(=1)'T D (a,)b)
1=0

Z a(l)b i_g)l

by the skew symmetry (4.2.6), and

(8.3.2) (a(_l)b)(_l)c—a(_l)(b(_l)c)

o ]

(a(—i—Z)(b(i)C) + b(—i—2)(a(z’)c))
i=0

by the Borcherds identity (B1) for p =0,g =r = —1.

Hence, if V(,,)V = 0 for all n > 0, then the (—1) st product endows V with a
structure of a commutative associative algebra (cf. Note 4.2.2). Now, recall that
Vin-1)V C V)V if n # 0. Following Zhu [Z], consider the subspace

Co(V) =ViegV = > ViyV.
n<—2

It is an ideal with respect to the (—1) st product, for

(a(_g)b)(_l)c = Z(—l)i (—12> (a(_Q_i)(b(_Hi)c) + b(_3_i)(a(i)c)) (S CQ(V)

by the Borcherds identity (B1) for p =0,¢9¢ = —1,r = -2, and

/-1
a-1y(b—2y¢) = b_ay(anc) + Y ( ; )(a(i)b)(—-B—i)C € Ca(V)
i=0

by (B1l) for p = —1,9 = —2,7 = 0. Therefore, the (—1) st product induces a
well-defined bilinear multiplication

V/Cy(V) x V/Co(V) — V/Ca(V)
(u,v) — uv
on the quotient space V/Ca (V) = V(_)V/V(_5)V. It is commutative and associa-

tive since (8.3.1) and (8.3.2) belong to Ca(V).
Therefore,

Proposition 8.3.1. For a vertex algebra V', the (—1) st product induces a com-
mutative associative algebra structure on V/Cy(V).
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We next consider the relation of this algebra structure and the Lie algebra
structure induced by the (0)-th product.
First note that the subspace C3(V') is also an ideal with respect to the (0)-th

product. In fact,

o

(a-2)b)0yc = D (-1)* <22> (a(—2—5)(buyc) — b2y (agyc)) € C2(V)

i=0
by (B1) for p=¢q=0,7r = —2 and
a)(b(—2)c) = b_2)y(a)c) + (a(—2)b)yc € C2(V)
by (B1) for p = 0,9 = —2,r = 0, the (0)-th product induces a bilinear map
{}:V/C(V) x V/Cao(V) — V/Ca(V).

Since T'a = a(—2)1, we have TV C C3(V'). Hence the bracket { } gives a Lie algebra
structure on V/Cy(V'), which is a quotient Lie algebra of V = V/TV.

Moreover, since
(a-1)0)0)¢ ~ a(-1)(b)e) ~ b-1)(a(0)e)
o0
= Z(a(_i_l)(b(i)c) + b(ﬁ_l)(a(i)c)) € CQ(V)

i=1

by (B1) for p = ¢ = 0,7 = —1, the bracket { } and the multiplication induced by
the (—1) st product satisfy the Leibniz rule:

{aB,v} = a{B,7} + {a,7}5

for o, 8,7 € V/Co(V).

Summarizing:

Proposition 8.3.2 (Zhu). For a vertex algebra V', the (0)-th product and the
(—1) st product induce a commutative Poisson algebra structure on V/Cy(V').

This result is useful in verifying the finiteness of dim V/C5(V'), which is impor-
tant in the study of modular invariance of the trace functions (cf. [Z]).

Remark 8.8.3. Though the (—1) st product is not associative on the original space
V', it satisfies

(a-1)b)(-n¢ = (b-na)(-ne = a-1)(b-1)¢) = b= (ac-1¢)
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as it immediately follows from (8.3.2). (cf. Subsection 1.4). We set
la,b] = Vab — Vya, where V, b= a(—1)b.
Then the above relation is written as
[Va, Vil = Vias,

from which it follows that the bracket [] gives a Lie algebra structure on V.

8.4 Zhu’s algebra
Let V be a graded vertex algebra. Consider the binary operations
o:VxV—5V

defined by

(]

aob= (AEa)) A(m4)b

o]
" i=0
for a,b € V. Here a is implicitly supposed to be homogeneous of degree A(a).

Lemma 8.4.1. Let V' be a graded vertex algebra and let a € V be homogeneous
of degree A(a). Then

(Ta) ob+ (A(a)+m+1)aob=—ma o b
m m

m—1

holds for any b€ V and m € Z.
Proof. Since A(Ta) = A(a) + 1,

COPUED B Gy Comn

(4
1=0

B SGURL [E

2
1=0

~(A@ DY (Aga))a(mﬂ)b

1=0

= —ma olb-(A(a)+m+1)aob.

m—
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For example,
(Ta) o b=—(Aa) + 1)a ° b, (Ta) ° b=—-A(a)a ° b+a °, b.
Lemma 8.4.2. Let V be a graded vertex algebra. Then

(aob) oc
n m

o0
1) — (-1
Z < ) Z( ) (2)((1 n?—i (bm+ok:+i C) ( ) m+no+k z (G?C))
holds for any a,b,c € V and m,n € Z.
Proof. Using the binomial identities

(A(a)—l—A(b).—i—n—l) i( n—1> (A(a){rAéb)—i),
J J—

(Ag@) (A(a) +jA(b) — z) _ Z N (Aia)) (Aib)) (j>’

s,t>20,54+t=1i+j

and noting A(ap+1)b) = Aa) + A(b) —n — i — 1, we have
(aob) oc
n m

0 (Aga)> (A(a) + A(b; —i-n

( " 1) 2 2 | (Ai )) <A§b))( >(a(n+z>b)<m+y>c

1,720 5,t>0,s+t=1i4+75—k

S (N2 2 ) () () estrosere

By the Borcherds identity (B1) for p = s,¢q = m 4+t + k,r = n, this becomes
i (——n - 1) Z <A(a)> (A(b))
k=0 k 520 N ° t
ad (n
X z(_l)z( )(a(n+s z)(b(m+t+k+z)c) — (=" b(m+n+t+k z)(a(s-i-z)c))

= i (‘”k" 1) i(_w(?;) (@ o (b o =(=1% o (acc).

-1
) (aa(n+i) b) (m+35)C

il
I M8 I Mg r\»/

m+n+k—1
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Now, for a graded vertex algebra V, we set
VoV =Span{aocbl|a,be V}.
n n
Note that V ° V =V since a = a(_1)1. It follows from Lemma 8.4.1 that

V o VCVoV if m#0.
m

m—1

Consider the subspace

OV)=V o V= > VoV

n<—2

and set
AV)=V/O(V)=V ° V/V ° V.

Proposition 8.4.3 (Zhu). Let V be a graded vertex algebra. Then the operation
° induces an associative algebra structure on A(V).

Proof. By Lemma 8.4.2,
(a 0 b) o c= i(—-l)i —2 (@ o (b o ¢)+b o (aoc))
-2 7 -1 = 1 —2—i —1+3 -3—i

#30 (Vg oa+b o @eaneow)

1 —i 24
1=0
and
o0 oo
a o (b_02c) = (a —O1b) fQC—;a_IO_i(b_onc) —;b_éa_i(a?c) € O(V).

Thus O(V) is an ideal with respect to o Hence o induces an operation on the

quotient space A(V'), which is associative since

(a_olb) oc—aco (6—016) = Ea_lo_i (b_loHc) +§b_§_i (aci)c) € O(V).

O

Note that the image of the vacuum vector 1 in A(V) is the unit of the algebra.
The algebra A(V') is called Zhu’s algebra associated to V.
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Note 8.4.4. Zhu’s algebra plays a very important role in the representation theory
of vertex operator algebras; There is a functor from the category of admissible V-
modules to the category of A(V')-modules such that the set of equivalence classes
of irreducible admissible V-modules are in one-to-one correspondence with the set
of equivalence classes of irreducible A(V')-modules. See [Z] and [DLM2] for further

information on this topic.

9 Examples

In this section, we will describe various examples of vertex algebras. Here we will
restrict our attention to the existence of vertex algebra structure, and we refer the
reader to appropriate references for further topics such as those we have briefly
described in the preceding sections. We will work over the field C of complex
numbers for simplicity.

9.1 Vertex algebra associated to the free boson

Let v be a fixed nonzero scalar. Let A = A" be the associative algebra generated
by {an |n € Z} subject to the defining relations

[ama an] = mV(Sm-{—n,O

where [, ] denotes the commutator.
Consider the polynomial ring Clz1, z2,...] which we regard as an .A-module by
0
—— >1
vn o (n>1),
On = §r (n = 0),
Top (n < -1)

where r is a scalar. This A-module is called the Fock representation of charge r,
which we will denote by F|r] = FZ[r]. Since we have assumed that v # 0, the Fock
space representation is irreducible. We set |r) = 1, the unit of the polynomial ring.
The Fock representation of charge r is characterized as an .A-module generated by
a nonzero vector |r) satisfying

0 (n21),
an|r) =
T (n = 0).
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Such a vector |r) is called the vacuum of charge r. Consider the following generating
series; a(z) = >, cz @nz” ™1, Then this is a field on F[r] which is local to itself
with the OPE

a(y)a(z) ~ W=

In other words,

0 (n > 2),
(9.1.1) a(z)(mya(z) = S vI(z) (n=1),
0 (n = 0).

Let O be the vertex algebra generated by the field a(z) on M = @®,ccF|r].
Then it becomes an .4-module via

A — End(O0), an+— a(z)m.

In fact, by (4.3.2) and (9.1.1), we have

o0

2@ el = 2 (7)) @@wal)men-s

i=0
= m(a(z)1)a(2)) (m+n-1)
= mI(2)(m+n-1)
= MVUm+n,0
Now, the identity field I(z) satisfies
anl(z) = a(z)(n)l(z) =0

not only for n > 1 but also for n = 0; it is the vacuum of charge 0. Since
O is generated by I(z) as an .A-module, it is isomorphic to F[0] by the unique
homomorphism F[0] — O of A-modules that sends |0) to I(z). Since F[0] is an
irreducible .4-module, this homomorphism is an isomorphism of A-modules, which
provides us with a structure of a vertex algebra on F/0].

To be more precise, consider the state map

slo: O — M
A(z) — |4), |A)=A_yI).
Then it is a homomorphism of .A-modules by Lemma 5.1.2. Since s(I(z)) =

I_1]0) = |0), the map s|o is injective and the image coincides with F[0]. Therefore,
by Theorem 5.2.3, we obtain
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Proposition 9.1.1. There exists a unique structure of a vertex algebra on V =
F|0] with the vacuum vector |0) such that

Y(la),2) = a(z), |a) =a1|0),

which endows F|r] with a structure of a V-module for any r € C.

\

This is called the vertex algebra associated to the Fock representation of the
free boson. The generating series Y (q, z), (a € F[0]), are given by

Y (i, - xi,,2) = 208 HDa(z) -8 Va(z) 2.
The OPEs of them are given by Wick’s formula:

g a(pl)a(y) . a(an)a(y) g Z a(QI)a(z) . a(Qn)a(z) g

max (m,n) 1

d
= Y = 2 [eEea@)aesaz) x

d=0 ¢ [1,d — [1,m], i=1
P [{1,d] — [1,n])

X © H 8P a(y) H 89 a(z) e

JE€[1,d\Im ¢ je[1,d\Im v
where the second summation is over all injective maps ¢ and ¥ and

pp+q+1)! 1

<3(P)a(y)8(q)a(z)> = (—-1) p!q! (y — Z)p+q+2 V.

Note 9.1.2. To supply the vertex algebra structure on F[0], we could have used
the existence theorem. In fact, the map T : F[0] — F[0] defined by T =
oot nacm_l%n has the desired properties T|0) = 0, [T, a(z)] = da(z) to ap-
ply the theorem.

Note 9.1.8. For pu,v # 0, the vertex algebras associated to F[0] and FX[0] are
isomorphic. In fact, the isomorphism

Filo] — F20)
of polynomial rings defined by

Tn — \VV/pxp

gives rise to an isomorphism of vertex algebras.
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9.2 Vertex algebra associated to [ ~y-system

Let A = APY be the associative algebra generated by {8, |n € Z} U {v,|n € Z}
subject to the defining relations

[6m7'7n] = —5m+n,07 [ﬁm,ﬁn] = ['Ym,’Yn] =0

where [, | is the commutator.
Let F denote the polynomial ring F = C[...,z_1, 20, z1,...]. This becomes an
A-module by letting it act as

50, (n2>1), o, (n20),

ﬁ _ _ Oz _,
n = -

Tn, (n S 0)7 " T—n, (n < _1)

We call it the Fock representation of A, which is easily seen to be irreducible. -
We set |0) = 1, the unit of the polynomial ring. Then the Fock representation is

characterized as an .A-module generated by a nonzero vector |0) satisfying
Brl0) = 0,(k > 1), 7[0) =0,(£=>0).

Consider the following generating series:
Blz) = Brz™, (z) =D vztL
kEZ €€z

Then these are mutually local fields on F with the OPE

B(y)v(Z)N—yl L BWB() ~0, A(y)(z) ~0.

-z
Further, the fields 3(z) and v(z) are creative with respect to |0). Now, since F is
a polynomial ring, there exists a unique derivation 7" : F — F such that

NTni1, (n>1),

(—TL + 1)$n—17 (n < 0)'

Tx, =

In other words.
TBr|0) = (—n +1)Bn-1]0),(n < 0), Tv,|0) = —nv,—1]0), (n < —1).

The derivation T is explicitly written as

T = an’rﬁl@_i: + ;)(—n + 1)xn_1% = — Z kBre.

n>1 k+e=—1
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Then we easily see that
T0) =T1=0, [T,B(2)]=08(2), [T,7(2)]=07(2)

Therefore, by the existence theorem, there exists a unique structure of a vertex
algebra on F with |I') = |0) such that

Y(18),2) = B(z), Y(ln),2) =7(2)

where

18) = Bol0) = zo, |7) =7-1/0) = z1.

This vertex algebra is called the By-system. We note that B, = |8)m-1),Yn =

|'7> (n)-
Now consider the vector

|J) = =18) (=17}
= —BoY-110) = —ToZ1.

By (4.3.3), we have, for n > 0,
1) my1B8) = —(18) (1|7 () 18)
= >0 ()18 -s M + M0l 8)I8)
=0

= — Z(/B_z’)’z+n,60]0> + '7—i+n—1181l+1180]0))

=0

= —BoYnPo|0)
f-m w=0,
0 (n>1).

Similarly,

), (n=0),
[T (myly) = {0’ (n>1)
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Therefore, by (4.3.2),

Y| ) = =)y (18) (= 1y|7))

oo

801D = 3 () 10018 a-1-51)

1=0

= —=18) (D) 17)) = (1) (0)18)) (-1 |7)
= 0n,0(=18) = 1)|7)) + 1B) (=) |7)
= 0n,o(—|8) (=1)|7) +18)(=1)|7)) + n,1(18) 0y 7))

— _’IO>7 (n = 1)’
0, (n=0,n>2).

The corresponding field

J(z) =Y (|J),2) = =3 B(2)v(2) ¢
is called the number current, and the relations are summarized as the OPE

J()B(z) ~ ~PEL

Yy—z

I ~ 22,

J(y)J(z) ~ —ﬁ-

Note 9.2.1. There exists an automorphism 09 : A — A such that
0l(Bn) = Bn-q, () = Trn+q
for each integer q. Then the composition
A L5 A — End(F)

gives another structure of an A-module on F, which we denote by Fq. We set
lg9 = 1. Then the module F; is characterized as an A-module generated by a
nonzero vector |q) satisfying

Such a vector |q) is called the g-vacuum. The modules F, are not isomorphic to
each other.
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9.3 Vertex algebras associated to affine algebras

Let g be a Lie algebra equipped with a symmetric bilinear form (]):gxg—C
which is invariant (or associative): ([X,Y]|Z) = (X]|[Y,Z]) for all X,Y,Z € g.
Then the associated affine Lie algebra § is defined to be § = g ®c C[t,t~!] @ CK
with the Lie bracket
(9.3.1) (X @t™Yt"] =[X,Y]@t"™" + m(Y|Y)éminoK,

K, X®t™] =0.

Consider the Lie subalgebras
g+ = g®Clt*t*, go=g®ClCK.
Then we have the triangular decomposition

U(g) = U(g-) ® U(go) ® U(a+)

where U(g) etc denote the universal enveloping algebra of g etc. Let V, be a g-
module. We regard it as a go @ g4-module by letting K act by a scalar k£ and g
act trivially. The induced module

M{ (Vo) = U(8) Qu(gomar) Vo

is called the (generalized) Verma module associated to Vg at level k.
For each X € g, we set

X(2)=> Xp2™7 X, =Xt
nezZ
Then S, (Vo) = {X(2) | X € g} is a set of pairwise mutually local fields on M2(V),
with the OPE
Xk X YE)

X(y)Y(2) (= 2)2 p—

In other words,

[X,Y](Z), (’I‘L:O),
(9.3.2) X(2)m)Y (2) = ¢ (X|Y)k, (n=1),
0, (n>2).
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Now, consider the module M} (C) induced from the trivial g-module C. We set
|0) = 1®1. Let OF denote the vertex algebra generated by the fields S (C). Then
Of has a g-module structure by letting X ® t™ act by X(z)(n)- In fact, by (4.3.2)
and (9.3.2), we have

(. ¢]

X Y Gl = 3 (T ) XY (Dmens

1=0

= [Xv Y](z)(m+n) + m(X[Y)kdm-{-n,O’
which is nothing but (9.3.1). The identity field I(z) € O} satisfies
(X ®t™)I(z) = X(2)(n)I(z) =0, (n 2 0)

by (1.4.3), and the space O} is generated by I(z) as a g-module. Therefore, by
the universal property of the Verma module, there exists a unique surjective ho-
momorphism f : ME(C) — O} of g-module such that f(]0)) = I(z).

Next we consider the state map

s: Of — MZ(C), A(z) — A_1|0).

Lemma 5.1.2 shows that it is a homomorphism of g-modules such that s(I(z)) = |0).
Therefore, the composition of s o f is a homomorphism of g-modules which sends
|0) to |0). By the universal property again, s o f must coincide with the identity
map, which shows that the map f is injective. Hence the map f, as well as s, is an
isomorphism of g-modules.

Therefore, by Theorem 5.3.2 applied to V. = M2(C) and V = Of, we obtain
(FZ))

Proposition 9.3.1. There exists a unique vertex algebra structure on MZ(C) with
the vacuum vector 1 = |0) such that

Y(X_1]0),2) = X(z)
for any X € g.

This is called the vertex algebra associated to the Verma module of the affine
Lie algebra g. Note that the vertex algebra associated to the free boson described
in Subsection 9.1 is a particular case of this construction, for which g is the one-
dimensional abelian Lie algebra.

See [FZ], [Lian] for further information on this vertex algebra.
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9.4 Vertex algebra associated to the Virasoro algebra

Recall that the Virasoro algebra Vir is, by deﬁnitioh, the Lie algebra
Vir = (®,ezCL,) & CC

with the Lie bracket

m3 —m

(9.4.1) [Lm, Ln] = (M = n)Linyn + EETEE

Om+n,0C,
(C,L,] =0.
Consider the subalgebras
Viry = (@p>0CL,) @ CC, Vir_ = ®p<oCL,.
Then we have the decomposition
UWVir) =2 UVir-) @ U(Viry).

For each scalar ¢ and h, consider the one-dimensional Vir-module Cl|c, h) with
the action given by

Lnlc,h) =0, (n>1), Lglc,h) =hlc,h), Clc,h) =c|c,h).

The module M.(h) = U(Vir) ®uy(vir,) Cle, h) is called the Verma module with the
conformal weight h of central charge c.

We set T(z) = 3 ,cz Lnz™™ 2. This is a field on M,(h), which is mutually
local itself, with OPE

c/2 27T(2) n 0T (z)

T(y)T(z)N(y—Z)4 (y—2)2 y—2z

In other words

(or(2)  (n=0),
2T(z)  (n=1),
c/2 (n = 3),
0 (n=2,n2>4).

T(2)m)T(2) = ¢

\

Now, consider the module M.(h) for h = 0. Let O, denote the vertex algebra
generated by the field T'(2) on M.(0). We set [0) = 1®1. Then O, has a Vir-module
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structure by letting L, act by T'(2)(n4+1). In fact, we have

[T(z)(mH), T(Z)(n+1)]

- g (m j 1)(T(Z)(i)T(Z))(m+n+2—i)

m+1
= 0T (2)(m4n+2) +2(m + 1)T(2) (mtn+1) + 0/2( 3 )I(z)(m-f-n—l)

3

m° —m
= —(m+n+2)T(2)(min+1) + 2(m + 1)T(2) (min+1) + TCI(Z)(m+n—1)
m3 —m

12
which is nothing but (9.4.1). This time, the module O, is not isomorphic to M,(0),
since the identity field satisfies L,I(z) = 0 not only for n > 0 but also for n = —1.

= (m - n)T(z)(m+n+1) + 5m+n,oc,

Since the vector L_q|c, h) satisfies
Ln(L-1]e,0)) = (n+ 1)Ln_1]c,0) + L_1(Lnlc,0)) = 0, (n > 1),
Lo(L-1lc,0)) = L_1]c,0),
it generates a proper submodule. Consider the quotient module
Ve = Mc(0)/U(Vir)L_1|c,0)

and let |0) denote the image of |c,0). Then we have a unique surjective homomor-
phism f: V. — O, of Vir-modules such that f(]0)) = I(z), which is shown to be
the inverse to the state map

5:0, — V,, A(z) — A_1]0).
Here we have regarded O, as a set of fields on V.. Therefore ([FZ])

Proposition 9.4.1. There exists a unique vertex algebra structure on V, with
1 = |0) such that

Y(L_2|0),2) = T(z).

This is called the vertex algebra associated to the Verma module of the Virasoro
algebra of central charge c.

Now, let J.(0) be the unique proper maximal submodule of M_.(0) and let J,
be the image of J.(0) by the projection M.(0) — V.. Then J. is an ideal of the
vertex algebra V.. Let

Le(0) = Mo(0)/J.(0) = V../J..
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Then ([FZ)])

Proposition 9.4.2. There exists a unique vertex algebra structure on L.(0) with
1 = |0) such that

Y(L_5|0), 2) = T(2).

Here we have denoted the image of |0) in L.(0) by the same symbol.
This is called the vertex algebra associated to the irreducible module of the

Virasoro algebra of central charge c.

9.5 Lattice vertex algebras

Let L be an even lattice, i.e., a finitely generated free Z-module equipped with a
symmetric biadditive map (|) : L x L — Z such that (A|\) € 2Z for all A € L.
We set h = L ®z C and regard L as a subset of j. We extend (|) to a symmetric
bilinear form on §, and let 6 be the corresponding affine Lie algebra where b is
regarded as an abelian Lie algebra.

For each p € L, let F|u] denote the Verma module at level 1 induced from the
one-dimensional h-module Clu) with

0 (n>1),

hol) =
W Gy = 0)

for all h € h: F = U(h) ®u s,y Clu), which is isomorphic to U(h-) = S(h-)
as a vector space, where S(f)_) denotes the symmetric algebra. We set F[L] =
@BperF[u]- Then we have

FIL} = S(h-) &c C[L]

as a vector space, where C[L] denotes the group ring of the abelian group L. The
series h(z) = >, cz hnz™™ 1, h € b are pairwise mutually local fields on F[L).
Now, associated to the lattice L, there exists amap € : LxL — {%1} satisfying

(9.5.1) e e+ u,v) =e(p, )e(Mp+v), €A,0)=¢e(0,1) =1
such that

(9.5.2) e\, pe(u, A) = (=1)AL)
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Let us fix such a map ¢, and set
MNP &) = e\ )P & |+ p)

for P® |u) € Flu). Then it defines a map e* : Flu] — F[X + p], which gives us
an operator on F[L]. Then we have [h,,e*] = (h|)\)d, oe*. Further, by (9.5.1) and
(9.5.2), we easily see

(9.5.3) etet = e(\, p)ertH = (—=1)Allerer
On the other hand, we set 2% (P ® |u)) = (") P ® |u). Then we have
(9.5.4) Aot = (Al gh Zro,
Now, consider the series ¢ e®" (2)* defined by
16 ()1 = exp (¢ (2)) exp (¢} (2)) 20

where
A
A — Mmoo —-n
¢4 (z) = Z n
and where the exponential is defined by

_ _ = a(z)f
exp (a(2)) =Y~

£=0

Then the series :e?" (3¢ is a field on F[L), called the vertex operator.
Let us discuss the locality of the fields h(z) and e®*(2) ¢ First note that

[h(2), @2 (2)] = = > Z (hons ApJy ™™ 1z~7

mEZnGZi
-3 5 (nino,
meZn€ly n
= (h|A) )yl
ne€Zy

Therefore, since [hy,, An] is central,

[h(y), exp (9™ (2)£)] = (hIA) D v 1z " exp (¢2(2)).

n€Z4
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We also have [h(z), 2*°] = 0 and [h(2), e*] = (h|]A\)z~te*. Therefore, we have

\ s
[h(y), se® P 2] = (RN Dy leTm e (D
nez

= (ANS(y - 2)ze? 1.
Hence h(z) and *e#*(2) ¢ are local, with the OPE

bzt et @ o B ot
y—z

We next consider the locality of :e‘f’k(z): and *e? (¥ ¢ Since [Am, tn] is

central, we have

exp (% (y)) exp (2 (2))
= exp (¢} (), 8" (2)] exp (¢* (2)) exp (43 (v))

= exp (—(Alu) > -j;y-mzm) exp (¢ (2)) exp (62 (v))
m=1
= exp (A1) log (1 — 2/y)) exp (¢ (2)) exp (¢} (v))

= (1 — z/y) W exp (¢* (2)) exp (¢ (¥)),

where (1 — z/y)*I# is expanded into the series convergent in the region |y| > |z|.
We also have yroet = yQCllerydo by (9.5.4), and ere* = e(\, u)e** by (9.5.3).

Therefore, we have
e WD = e\ )y — )M 1P OB 1 (jy] > 2)
where
Pt W)L = exp (62 () + 9(2)) exp (93 () + ¢ () X FHyo s,
Similarly,
1D 1e” O = e(u M) (z — ) MW 1 WD 2 (jy) < 2.
Therefore, by (9.5.2), we see that

(y — Z)I(MH)I[: e () o 2 e?(2) '] =0.

Hence the fields $e? (2 ¢ and ¢ e?”(2) ¢ are local.
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Thus, we have seen that

S={nz)hehtu{se?” @z:|re L}

is a set of pairwise mutually local fields on F[L]. Then we have (cf. [B1], [FLM))

Proposition 9.5.1 (Borcherds). There exists a unique vertex algebra structure

on F[L] with 1 = |0) such that
Y(h_1]0),2) = h(z), and Y(|A),z) = :645’\(2) .

Proof. Let VI denote the vertex algebra generated by S. The fields in V; are

creative with respect to |0), and it is easy to see that the state map s : V, — F[L]

is surjective. Now, let T : F[L] — F[L] be the operator defined by

T(P®|p) = (TP+p_1)® ),

where T' P is defined by the vertex algebra structure on F as described in Subsection

9.3. Then we easily verify that
T|0) =0, [T,h(z)] =08h(2), [T,:1e?i]=02e? @,
Therefore, by the existence theorem (Corollary 6.4.1), we get the result.

Note that the generating series is given by a linear combination of

. . A
Y(h{_sy 1y his, _1ylA), 2) = 28R (2) - 80 (2)e? () o |

) (“7;11

for h',..., A" € h, A € L.

9.6 W;,, algebra
Let W be the vector space

W = @k>0,nezCLE @ CC”.

Introduce a Lie bracket [, ] : W x W — W by setting
‘e 5k
k ey _ £—ik+i k—i  e+i
(9'6'1) [Lmv Ln] - ; (’L)m Lm+n - 12:; (Z)n Lm+n
m—1
+ Z (—Z)k(m - i)e5m+n,00,, (m Z n)a
i=1
(L, L) = =[L5,, Ly], (m < n),

[C',LF] =0.

O
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In terms of the generating series

En(.’L') = -H‘ZL' ,

k=0

the bracket (9.6.1) turns to the following simple form:
enT —e™

[Em(z), En(y)] = (" = ™) Emin(z +y) + T— 1

5m—i—'rz OC

By this expression, the Jacobi identity is easily veriﬁed, and we see that (9.6.1)
endows W with a structure of a Lie algebra.

Consider the algebra D = C[t,t71][0;]. Then the set {t"D* |k € Z>o,n €
Z},D = t0, is a basis of D. Since the commutator is given by

[tmea:D7 tneyD] — tm+n(enx - emy)e(:c+y)D,
the map n: W — D,
Lk r— —t"DF, C'+——0

is a homomorphism of Lie algebras; W is a central extension of D:

0 — CC' — W — D — 0,

of which the cocycle is given by

m—

U (tm Dk, t" D) = Z Y (m — ) 6man0, (M >n).

Let us consider another basis {t"**9F |k € Z>o,n € Z} of D. Note that
th*moF = t"[Dlx, [Dlx=D(D—1)---(D—k+1).

Then the commutator is given by

k

¢
[thHm gl ¢n gl — (Z <k> n+ 0 Z ( )[k tm ) ghHEtmtn—ightl=i

=0 i=

and the cocycle turns out to be
U (tFtmok t4479f) = W (t™ D), t"[D)e)

m-— 1

—1 £5m+n 0
i:l

m—k
= (—l)kk!E! (k nyn 1>5m+n,0, (m >n).
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Therefore, the Lie bracket of W is also described as

[Tms Tn] = <é (f) [k +m]; — i (f) [+ n]i) TR

=0 1=0

m — k

—1)kkt / >
+( 1) ké(k+€+1>5m+n,00, (m—n)

in term of the basis

k
Iy =Y %L,
—

where Zf:o v:D* = [D]; such that n(J%) = t**"0F. In terms of the generating
series J*(z) = > 5 J¥27%""~1 the Lie bracket is written as

(9.62) [T5@), J()] =~ 3 ((5)7+w - vy ()7 @) 89w -2

i=0
k!

MR ey

5(k+2+1)(y - 2).

We set P = EBk+nZOCJ,’§.
Now let us fix ¢ € C and consider the vacuum module
M. = UWw) ®uracc Cle, 0)
where

TEe,0) =0, (k+n 20), C'le,0) = Sle.0).

Then the series J*(z) are fields on M, which are pairwise mutually local to each
other thanks to (9.6.2).

Proposition 9.6.1. There exists a unique structure of a vertex algebra on M,
with 1 = |¢,0) such that

Y(Jfk—llc’ 0>’Z) = 'Jk(z)‘

We refer the reader to [FKRW]| for further information.



