
the following bijection,

{link diagrams with decompositions}/moves of types 1, 2 and 3

$=$ {links}/isotopy.

Outline of the proof. We show outline of the proof in the following three steps.

Stepl. We show

{link diagrams with decompositions}/moves of typel
(1.12)

$=$ {link diagrams}/restricted isotopy of $\mathbb{R}^{2}$ ,

where the isotopy in the right hand side is restricted such that the height func-

tion of $u^{l}s^{1}$ ,
$u^{\iota_{S^{1}}}\rightarrow \mathbb{R}^{2}\rightarrow \mathbb{R}$ ,

is preserved. Here the first map is an immersion of $u^{l}S^{1}$ expressing a link

diagram, and the second map is the projection to the height coordinate. The

formula (1.12) is reduced to the following formula,

{the trivial quasi-tangles with decompositions}/moves of typel

$=$ {the trivial quasi-tangles},

which is shown by elementary calculations.

Step2. The following formula holds

{link diagrams with decompositions}/moves of types 1 and 2
(1.13)

$=$ {link diagrams}/isotopy of $\mathbb{R}^{2}$ .

This equality is shown by (1.12) in Step 1 and results in [40].

Step 3. We obtain the required formula by (1.13) in Step 2 and Reidemeister’s

theorem, see [5]. $\square $

2 The modified Kontsevich invariant

2.1 Definition of the modified Kontsevich invariant

Let $L$ be an oriented framed link with $l$ components in $S^{3}$ . We fix a link diagram

of $L$ such that the framing of $L$ is expressed by the blackboard framing of the link
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diagram. Further we fix a decomposition of the diagram into elementary quasi-

tangle diagrams. We define the modified Kontsevich invariant $\hat{Z}(L)\in A(u^{\iota}S^{1})$

by gluing $\hat{Z}(T)$ for elementary quasi-tangle diagram $T$ , where we give $\hat{Z}(T)$ for

each elementary quasi-tangle $T$ as follows.

Firstly we give $\hat{Z}(T)$ for the following six elementary quasi-tangle diagrams,

$\hat{Z}(_{(!}i^{\langle}!))=\Phi$ ,

$\hat{Z}(^{\langle}i$

$\backslash $

)

$i_{\theta})=\Phi^{-1}$ ,

$\hat{Z}((\cdot)(/_{\searrow}^{\backslash })$

$\hat{Z}((\cdot)1^{\backslash })f^{/}$

$\hat{Z}(U))=\nu^{1/2}$ ,

$\hat{Z}(1^{\cap}))=\nu^{-1/2}$ ,

where we define $\Phi$ later in Section 2.2, and $\nu$ is defined by

Here $S_{2}$ denotes the antipode $S$ , defined below, acting on the second string.

Further the right hand side of the third formula means

$+\frac{1}{2}$ $+\frac{1}{8}$ $+\frac{1}{48}$ $+\cdots$

Secondly we give $\hat{Z}(\downarrow 0\circ 1^{(0}1\circ\circ$

)

$)$ and $\hat{Z}(\langle 0\downarrow 00$

)

$\backslash oI\circ\circ$

)

$)$ by applying the co-
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multiplication $\Delta$ , defined below, to $\hat{Z}(_{(}!$ $i^{(}i^{)}\circ)$ and $\hat{Z}(^{\langle}i$

$\backslash $

)

$\circ i_{)})$ ; recall

that $each\downarrow oo$ denotes a trivial elementary quasi-tangle. Let $C$ be a component of

a quasi-tangle diagram $T$ , let C’ be the corresponding component of $X$ , let $T$‘

be the diagram obtained from $T$ by taking 2-parallel along $C$ as shown below.

$T$ $:\downarrow 0\circ$
$i$

$\downarrow\circ\circ\leftrightarrow T$
$:\downarrow o\circ\langle\cdot$)\langle

$\cdot$ )

$\Downarrow\downarrow oo$

We set $\hat{Z}(T)$ by

$\hat{Z}(T)=\Delta_{(C)}(\hat{Z}(T))$ ,

where $\Delta_{(C)}$ is given by

$\Delta_{(C^{\prime})}$ : $A(X)\rightarrow A(X^{\prime})$

$-:----$

.
$\leftrightarrow\sum^{2^{k}}|_{-}^{-}- i_{-----}^{-----}-----:$.

where $X$ ‘ is the l-manifold obtained from $X$ by replacing C’ with two copies of
$C$‘. Here the sum in the right hand side runs over all possible $2^{k}$ configurations

of connecting each dashed chord to either of the two solid vertical lines, where
$k$ is the number of univalent vertices on the vertical line in the left picture. For

definition of $\Delta_{(C^{\prime})}$ see also $[3, 27]$ .
Thirdly we give $\hat{Z}(T)$ for $T$ with other orientations, by applying the antipode

$S$ , defined below, to $\hat{Z}(T)$ given above. Let $T$ be the diagram with the opposite

orientation on $C$ . We set $\hat{Z}(T^{\prime})$ by

$\hat{Z}(T^{\prime})=S_{(C^{\prime})}(\hat{Z}(T))$ (2.1)

where $S_{(C^{\prime})}$ is given by

$s_{(C^{\prime})}$ : $A(X)\rightarrow A(X)$

(2.2)
$-:--\leftrightarrow(-1)^{k}----:--$

.
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where $X$ is $X$ with opposite orientation on $C$‘, and $k$ is the number of univalent

vertices on the vertical line in the left picture. For definition of $s_{(C^{\prime})}$ see also

$[3, 27]$ . When $X$ is a set of vertical lines, for the ith component $C_{i}$ of $X$ , we

often denote $s_{(C.)}$ simply by $S_{i}$ .

Lastly we define $\hat{Z}(L)$ for an oriented framed link $L$ with a fixed diagram

and a fixed decomposition into elementary quasi-tangle diagrams $\{T_{i}\}$ , by gluing
$\hat{Z}(T_{i})$ defined as above.

2.2 Associator $\Phi$

In the above definition of $\hat{Z}(L)$ , we used an undefined element $\Phi\in \mathcal{A}(\downarrow\downarrow\downarrow)$ . We

define $\Phi$ to be a solution of the four properties (2.3) to (2.6) below, though the

solution is not unique. We call it an associator, since $\Phi$ corresponds to a quasi-

tangle changing connection order of its end points. It is known [26] that $\hat{Z}(L)$ is

uniquely determined for a link $L$ , not depending on the choice of the solutions

of the four properties, though $\hat{Z}(T)$ depends on the choice for a quasi-tangle $T$ .

When we consider $\hat{Z}(T)$ later in this lecture, we put $\Phi$ to be, what is called,

Knizhnik-Zamolodchikov associator, whose concrete expression is given in [25]

by

$\Phi=\varphi(\}-\downarrow\downarrow, \downarrow|-\{)$
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with a certain power series $\varphi(A, B)$ of non-commutative variables $A$ and $B$

defined as2

$\varphi(A, B)=1+\frac{1}{24}[A, B]-\frac{\zeta(3)}{(2\pi\sqrt{-1})^{3}}([A, [A, B]]+[B, [A, B]])+\cdots$

where $\zeta(3)$ is a special value of the zeta function $\zeta(s)=\sum_{k=1}^{\infty}k^{-\epsilon}$ and we put

[X, $Y$ ] $=XY-YX$ . Instead of the definition, we use the following 4 properties

of $\Phi$ ; we will prove the isotopy invariance of $\hat{Z}(L)$ based on the properties.

The first property is

$\epsilon_{1}\Phi=\epsilon_{2}\Phi=\epsilon_{3}\Phi=$
$\downarrow$ $\downarrow$ (2.3)

Here, for a component $C$ of $X$ , the map $\epsilon_{(C)}$ : $A(X)\rightarrow A(X-C)$ is defined as
follows. For a chord diagram $D$ , we put $\epsilon_{(C)}(D)=0$ if there exist chords on $C$ ,

$\epsilon_{(C)}(D)=D-C$ otherwise. When $X$ is a set of vertical lines, we often denote

by $\epsilon_{i}$ the map $\epsilon_{(C_{i})}$ for the ith component $C_{i}$ of $X$ .

The second property is

function by

$\zeta(a_{1}, a_{2}, \cdots a_{k})=\sum_{n_{1}<n_{2<}\cdots<n_{k}\in N}n_{1}^{-a_{1}}n_{2}^{-a_{2}}\cdots n_{k}^{-a_{k}}$
.

For $a=(a_{1}, \cdots a_{l})$ and $b=(b_{1}, \cdots , b_{l})$ we put

$\eta(a, b)=\zeta(b_{1}\frac{1,1,\cdots,1}{a_{1}-1},+1,1,1,\cdots,1, b_{2}+1\sim a_{1}-1 \sim 1,1,\cdots,1, b_{l}a’-1+1)$

,

$|a|=a_{1}+a_{2}+\cdots+a_{l}$ ,

$\left(\begin{array}{l}a\\b\end{array}\right)=\left(\begin{array}{l}a_{1}\\b_{1}\end{array}\right)\left(\begin{array}{l}a_{2}\\b_{2}\end{array}\right)\cdots\left(\begin{array}{l}a_{l}\\b_{l}\end{array}\right)$ ,

$(A, B)^{(a,b)}=A^{a_{1}}B^{b_{1}}\cdots A^{a_{l}}B^{b_{l}}$ .

Further we define

$\varphi(A,B)=1+\sum_{al=1}^{\infty},\sum_{b,pq},(-1)^{|b|+|p|}\eta(a+p,b+q)\left(\begin{array}{l}a+p\\p\end{array}\right)\left(\begin{array}{l}b+q\\q\end{array}\right)B^{|q|}(A,B)^{(a,b)}A^{|p|}$

where the second sum is taken over a $,$

$b,$ $p,$ $q$ such that the sum of their length is $l$ and entries

of them are non-negative integers.
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The third property is

(2.5)

which is called the pentagon relation.

The fourth property is

and (2.6)

to the lower left.

The property (2.3) implies that the degree $0$ part of $\Phi$ does not vanish.

This guarantees the existence of $\Phi^{-1},$ $\nu^{-1}$ and $\nu^{1/2}$ ; they are computed like

computation of formal power series.

Remark 2.1. At the present, the properties (2.5) and (2.6) can be proved only

by using Kontsevich integral. We expect that the existence of $\Phi$ satisfying the

above four relations should be proved in a combinatorial way.

2.3 Isotopy invariance of $\hat{Z}(L)$

We show the following theorem in this section.

Theorem 2.2. $\hat{Z}(L)$ is an isotopy invariant of a framed oriented link $L$ .

Outline of the proof. By Theorem 1.9 it is sufficient to show that $\hat{Z}(L)$ is in-

variant under the moves in the theorem, using the above properties of $\Phi$ . We

show outlines of proofs of the invariance under the moves. The detailed proofs

are left to the reader.

Invariance under (1.2) and (1.3). The invariance is derived from $\Phi\cdot\Phi^{-1}=$

$\Phi^{-1}\cdot\Phi=1$ .
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Invariance under (1.4). We obtain the invariance by the pentagon relation

(2.5) of $\Phi$ .
Invariance under (1.5) and (1.7). The invariance is trivially obtained by

definition of $\hat{Z}$ .
Invariance under (1.6) and (1.8). We obtain the invariance by definition of
$\Delta$ .

Invariance under (1.9). We obtain the invariance under the move $=$

$\downarrow by$ definition of $\nu$ . Further, applying (2.4) to the above invariance, we obtain

invariance of $\hat{Z}$ under the following change.

Applying the first formula in (2.6) to the above invariance, we obtain the in-

variance under the move (1.10). The invariance under (1.11) is also obtained

from the second formula in (2.6) similarly.

$\hat{z}(\dagger_{p)=\hat{Z}(\uparrow)\# e^{\Theta/2}}$ , (2.7)

see also [27], where $\#$ denotes the connected sum of chord diagrams, and $\Theta$

denotes the chord diagram consisting of a solid circle together with a dashed

chord, see Figure 2.1. Since $e^{e/2}$ is central in $\mathcal{A}(\uparrow)$ , we obtain the invariance3
under RI.

3To be precise, we obtain the exact change of $\hat{Z}$ under the move RI. Since the change is

central, we obtain the isotopy invariance of $\hat{Z}(L)$ for framed links $L$ .
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Figure 2.1: The chord diagram $\Theta$

Invariance under RII. The invariance is derived from $R\cdot R^{-1}=R^{-1}\cdot R=1$ .
Invariance under RIII. We obtain the invariance by the hexagon relations

(2.6).

$\square $

3 The modified Kontsevich invariant and quan-

tum invariants

In this section we show that quantum invariants recover from the modified

Kontsevich invariant; we expect the recovery because of the following historical

development from quantum invariants to the modified Kontsevich invariant.

T. Kohno [16] gave an expression of quantum invariants using an iterated in-

tegral solution of the Knizhnik-Zamolodchikov equation [15]. Based on Kohno’s

work, Drinfeld [7] led the universal version of the Knizhnik-Zamolodchikov equa-

tion; the solution of it consists of chord diagrams, not depending on a Lie algebra

and its representation, and the ordinary solution recovers from the “universal”
solution by substituting a Lie algebra and its representation to chord diagrams.

After that, Kontsevich gave a definition of an invariant (the Kontsevich in-

variant) of knots using the universal solution written by the iterated integral.

Further J. Murakami and Le [25] gave a combinatorial construction of the in-

variant (the modified Kontsevich invariant), modifying the invariant for framed

links; we denote it by $\hat{Z}(L)$ for an oriented framed link $L$ . Therefore quantum

invariants should recover from the modified Kontsevich invariant by substituting

a Lie algebra and its representation into chord diagrams.
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