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Quadratic transformations for orthogonal
polynomials in one and two variables

Tom H. Koornwinder

Abstract.

We discuss quadratic transformations for orthogonal polynomials
in one and two variables. In the one-variable case we list many (or
all) quadratic transformations between families in the Askey scheme
or q-Askey scheme. In the two-variable case we focus, after some gen-
eralities, on the polynomials associated with root system BC2, i.e.,
BC2-type Jacobi polynomials if q = 1 and Koornwinder polynomials
in two variables in the q-case.

§1. Introduction

Whenever we have a system of orthogonal polynomials {pn} in one
variable with respect to an even orthogonality measure μ on R, then
we can write p2n(x) = qn(x

2), p2n+1(x) = x rn(x
2) with {qn} and {rn}

systems of orthogonal polynomials on R≥0 with respect to orthogonality
measures which are immediately obtained from μ. These mappings from
{pn} to {qn} and {rn} are called quadratic transformations. For quite
some multi-parameter families of orthogonal polynomials in the Askey
scheme and the q-Askey scheme such quadratic transformations can be
given explicitly. Very well-known are the quadratic transformations for

Jacobi polynomials connecting
{
P

(α,α)
n

}
with

{
P

(α,± 1
2 )

n

}
. Since all such

polynomials can be expressed as (q-)hypergeomnetric functions, their
quadratic transformations are equivalent to certain quadratic transfor-
mations for terminating (q-)hypergeometric functions.

The first aim of this paper, in §2, is to survey many (maybe all) in-
stances of quadratic transformations in the (q-)Askey scheme, and how
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they are related by the limit arrows in those schemes. While the qua-
dratic transformations for Askey-Wilson polynomials were already given
in the Memoir [1] by Askey & Wilson, some of the other quadratic trans-
formations given below may occur here for the first time, in particular
the ones on the discrete side of the (q-)Askey scheme.

Quadratic transformations occur also for orthogonal polynomials in
several variables as soon as the orthogonality measure is invariant under
the transformation x1 �→ −x1 of the first variable x1. This sounds like
a trivial generalization of the one-variable case, but this reflection map
already takes some unexpected form when we look for quadratic trans-
formations within multi-parameter families of special orthogonal poly-
nomials in two variables. For the systems associated with root system
BC2 the deeper explanation for the existence of the quadratic transfor-
mations is the isomorphism between the root systems B2 and C2, both
of which are contained in BC2.

These quadratic transformations in the two-variable case will be
discussed in §3. For BC2-type Jacobi polynomials they go back to
Sprinkhuizen-Kuyper [18], while they may be new for Koornwinder poly-
nomials. We will also argue that quadratic transformations for orthogo-
nal polynomials associated with BCn cannot occur if n > 2, at least not
in the simple form as for n = 1 and 2.

The paper concludes in §4 with a discussion how quadratic trans-
formations can be helpful as heuristics for extending results to a larger
realm of parameters, and with mentioning some possible work which
would be a natural follow-up of this paper.

Conventions For definition and notation of hypergeometric and q-
hypergeometric series see [4]. Throughout we will assume that 0 < q < 1.

§2. The one-variable case

2.1. Ordinary polynomials

Let {pn(x)} be a system of monic orthogonal polynomials on R

which are orthogonal with respect to an even (nonnegative) weight func-
tion w(x) = w(−x) = v(x2). Then pn(−x) = (−1)npn(x). Put

(2.1) qn(x
2) := p2n(x), rn(x

2) := x−1p2n+1(x).

Then (see [3, Ch. 1, §8]) {qn(x)} and {rn(x)} are systems of monic
orthogonal polynomials on [0,∞):

• the qn with respect to weight function x− 1
2 v(x),

• the rn with respect to weight function x
1
2 v(x).
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Note that from (2.1) we have, for any x0 ∈ R on which the pn do
not vanish, that

(2.2)
qn(x

2)

qn(x2
0)

=
p2n(x)

p2n(x0)
,

rn(x
2)

rn(x2
0)

=
x0 p2n+1(x)

x p2n+1(x0)
.

The identities (2.2) remain valid for arbitrary normalizations of the pn,
qn, rn.

As a slight variant of the above, let {pn(x)} be a system of orthogo-
nal polynomials on [−1, 1] which are orthogonal with respect to an even
weight function w(x) = w(−x) = v(2x2 − 1). Let x0 ∈ R such that
pn(x0) �= 0 for all n. Let qn(x) and rn(x) be polynomials of degree n
such that

qn(2x
2 − 1)

qn(2x2
0 − 1)

=
p2n(x)

p2n(x0)
,

rn(2x
2 − 1)

rn(2x2
0 − 1)

=
x0 p2n+1(x)

x p2n+1(x0)
.

Then {qn(x)} and {rn(x)} are systems of orthogonal polynomials on
[−1, 1]:

• the qn with respect to weight function (1 + x)−
1
2 v(x),

• the rn with respect to weight function (1 + x)
1
2 v(x).

Example 2.1. Jacobi polynomials

P (α,β)
n (x) = (−1)nP (β,α)

n (−x)

:=
(α+ 1)n

n!
2F1

(−n, n+ α+ β + 1

α+ 1
; 1
2 (1− x)

)
are orthogonal on [−1, 1] with weight funnction (1−x)α(1+x)β (α, β >
−1). So we have quadratic transformations (see [20, Theorem 4.1])

(2.3)
P

(α,α)
2n (x)

P
(α,α)
2n (1)

=
P

(α,− 1
2 )

n (2x2 − 1)

P
(α,− 1

2 )
n (1)

,
P

(α,α)
2n+1 (x)

P
(α,α)
2n+1 (1)

=
xP

(α, 12 )
n (2x2 − 1)

P
(α, 12 )
n (1)

.

Example 2.2. Laguerre polynomials

Lα
n(x) :=

(α+ 1)n
n!

1F1

( −n

α+ 1
;x

)
are orthogonal on [0,∞) with weight function xαe−x (α > −1), while
Hermite polynomials

Hn(x) := (2x)n 2F0

(− 1
2n,− 1

2 (n− 1)

− ;−x−2

)
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are orthogonal on (−∞,∞) with weight function e−x2

. So we have
quadratic trnansformations (see [20, (5.6.1)])

(2.4)
H2n(x)

H2n(0)
=

L
− 1

2
n (x2)

L
− 1

2
n (0)

,
H2n+1(x)

H ′
2n+1(0)

=
xL

1
2
n (x2)

L
1
2
n (0)

.

These are limit cases of (2.3) by the limits [6, (9.8.16), (9.8.18)].

Remark 2.3. In connection with (2.1) and (2.2) we had weight
functions w(x) = w(−x) = v(x2). Then dμ(x) := w(x) dx is an even

measure on R and dν(x) := 2x− 1
2 v(x) dx is the pushforward measure

ν = φ∗μ on R≥0 with φ : x �→ x2 : R → R≥0. In general, the qua-
dratic transformations (2.1), (2.2) remain true if the pn are orthogonal
polynomials with respect to a (positive) even measure on R, the qn are
orthogonal with respect to the measure ν = φ∗μ on R≥0, i.e.,∫

R≥0

p(y) dν(y) =

∫
R

p(x2) dμ(x) for all polynomials p,

and the rn are orthogonal with respect to the measure x dν(x) on R≥0.
Similar remarks will apply to other quadratic transformations. This
becomes in particular relevant in examples involving discrete mass points
or q-integrals.

2.2. Symmetric Laurent polynomials

As a further variant of the above, with w(x) a weight function on
[−1, 1], we substitute x = 1

2 (z+ z−1) so that z runs from −1 to 1 on the
upper half unit circle if x runs from −1 to 1 on the interval [−1, 1]. Let
Δ(z) be a real-valued weight function on the upper half unit circle such
that

w(x) = w
(
1
2 (z + z−1)

)
=

2iΔ(z)

z − z−1
.

Then ∫ 1

−1

f(x)w(x) dx = i−1

∫
C

f
(
1
2 (z + z−1)

)
Δ(z)

dz

z
,

where the contour C is the upper half unit circle starting at 1 and ending
at −1. Now suppose that Δ(z) = Δ(−z−1) and put

(2.5) Δ̃(z2) := Δ(z) = Δ(−z−1) (|z| = 1, 0 ≤ arg z ≤ π/2).

Equivalently, w(x) = w(−x). As before, put

v(2x2 − 1) := w(x) = w(−x).
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Then

w
(
1
2 (z + z−1)

)
= v

(
1
2 (z

2 + z−2)
)
=

2iΔ̃(z2)

z − z−1
.

Hence

(
1 + 1

2 (z
2 + z−2)

)− 1
2 v

(
1
2 (z

2 + z−2)
)
= 2

1
2
2iΔ̃(z2)

z2 − z−2
,

(
1 + 1

2 (z
2 + z−2)

) 1
2 v

(
1
2 (z

2 + z−2)
)
= 2−

1
2 (1 + z2)(1 + z−2)

2iΔ̃(z2)

z2 − z−2
.

Thus, with x = 1
2 (z + z−1),

(1 + x)−
1
2 v(x) = 2

1
2
2iΔ̃(z)

z − z−1
,

(1 + x)
1
2 v(x) = 2−

1
2 (1 + z)(1 + z−1)

2iΔ̃(z)

z − z−1
.

We arrive at the following result. Let {p̃n(z)} be a system of symmetric
(i.e., invariant under z → z−1) Laurent polynomials which are orthog-
onal on C with respect to the measure Δ(z)z−1dz, where Δ satisfies
(2.5). Let z0 ∈ C such that pn(z0) �= 0 for all n. Let q̃n(z) and r̃n(z) be
symmetric Laurent polynomials of degree n such that

q̃n(z
2)

q̃n(z20)
=

p̃2n(z)

p̃2n(z0)
,

r̃n(z
2)

r̃n(z20)
=

(z0 + z−1
0 )p̃2n+1(z)

(z + z−1)p̃2n+1(z0)
.

Then {q̃n(z)} and {r̃n(z)} are systems of symmetric orthogonal Laurent
polynomials on C:

• the q̃n with orthogonality measure Δ̃(z)z−1dz,

• the r̃n with orthogonality measure (1 + z)(1 + z−1)Δ̃(z)z−1dz.
If we go back to Example 2.1 then, with the above notation and up

to constant factors,

p̃n(z) = P (α,α)
n

(
1
2 (z + z−1)

)
, q̃n(z) = P

(α,− 1
2 )

n

(
1
2 (z + z−1)

)
,

r̃n(z) = P
(α, 12 )
n

(
1
2 (z + z−1)

)
,

Δ(z) = (2− z2 − z−2)α+
1
2 , Δ̃(z) = (2− z − z−1)α+

1
2 .



424 T. H. Koornwinder

Example 2.4. Recall Askey-Wilson polynomials [1], [6, §14.1], which
we write as monic symmetric Laurent polynomials:

Pn(z) = Pn(z; a, b, c, d | q) :=
pn

(
1
2 (z + z−1); a, b, c, d | q)

(abcdqn−1; q)n
(2.6)

=
(ab, ac, ad; q)n

an(abcdqn−1; q)n
4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
.

Here Pn(z) is invariant under permutations of the parameters a, b, c, d.
Observe that

Pn(a; a, b, c, d | q) = (ab, ac, ad; q)n
an(abcdqn−1; q)n

,

pn(
1
2 (a+ a−1); a, b, c, d | q) = 1

(abcdqn−1; q)n
,

pn(
1
2 (z + z−1))

pn(
1
2 (a+ a−1))

= 4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
.(2.7)

Assume that a, b, c, d have absolute value ≤ 1 but do not have pair-
wise products equal to 1, and that non-real parameters occur in complex
conjugate pairs. The polynomials Pn(z) are orthogonal on the upper half
unit circle C with respect to the orthogonality measure Δ(z) z−1 dz,
where Δ(z) = Δ+(z)Δ+(z

−1) with

Δ+(z) = Δ+(z; a, b, c, d | q) := (z2; q)∞
(az, bz, cz, dz | q)∞ . Since

Δ(z; a, b,−a,−b | q) = Δ(z2; a2, b2,−1,−q | q2)

=
Δ(z; a2, b2,−q,−q2 | q2)

(1 + z2)(1 + z−2)
,

we have:

P2n(z; a, b,−a,−b | q) = Pn(z
2; a2, b2,−1,−q | q2),(2.8)

P2n+1(z; a, b,−a,−b; q) = (z + z−1)Pn(z
2; a2, b2,−q,−q2 | q2),(2.9)

or, in the normalization (2.7),
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p2n(x; a, b,−a,−b | q)
p2n(

1
2 (a+ a−1); a, b,−a,−b | q) =

pn(2x
2 − 1; a2, b2,−1,−q | q2)

pn(
1
2 (a

2 + a−2); a2, b2,−1,−q | q2) ,
(2.10)

p2n+1(x; a, b,−a,−b; q)

p2n+1(
1
2 (a+ a−1); a, b,−a,−b; q)

(2.11)

=
2x pn(2x

2 − 1; a2, b2,−q,−q2 | q2)
(a+ a−1) pn(

1
2 (a

2 + a−2); a2, b2,−q,−q2 | q2) .

Formula (2.10) is given by Askey & Wilson [1, Section 3.1] in terms
of q-hypergeometric functions, but similarly derived as above (a, b below
different from a, b above):

(2.12) 4φ3

(
a2, qb2, c,−d

qab,−qab, cd
; q, q

)
= 4φ3

(
a2, qb2, c2, d2

q2a2b2, cd, qcd
; q2, q2

)
when both sides terminate. The identity (2.12) can also be obtained from
Singh [17, (22)] (see also [4, (3.10.11)]) by applying Sears’ transformation
[4, (2.10.4)].

While we arrived at (2.12) in the terminating case a = q−n, the
identity holds also in the terminating case c = q−n. Then a resulting
identity for Askey-Wilson polynomials is

(2.13) Pn(z; a, b, q
1
2 ,−q

1
2 | q) = Pn(z; a, qa, b, qb | q2).

This relates two different ways of writing continuous q-Jacobi polynomi-
als as Askey-Wilson polynomials, see [1, (4.20)] or [4, (7.5.26)]. Formula
(2.13) also follows by observing that

Δ(z; a, b, q
1
2 ,−q

1
2 | q) = Δ(z; a, qa, b, qb | q2).

The quadratic transformation (2.11) can be written in terms of q-
hypergeometric functions as
(2.14)

4φ3

(
a2, qb2, c,−d

qab,−qab, cd
; q, q

)
=

c− d

1− cd
4φ3

(
qa2, q2b2, c2, d2

q2a2b2, q2cd, qcd
; q2, q2

)
when both series terminate. For c = q−n the resulting identity for Askey-
Wilson polynomials is again (2.13), with a and qa interchanged in the
parameter list on the right-hand side. Hence, if c = q−n then (2.14)
follows from (2.12) by applying Sears’ transformation to the right-hand
side of (2.12).

With ab = qα+1 formulas (2.10), (2.11) give a two-parameter q-
analogue of (2.3). Indeed if a = aq, b = bq in (2.10), (2.11) such that
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aqbq = qα+1 and aq → 1 as q ↑ 1 then the quadratic transformations
(2.10), (2.11) have the quadratic transformations (2.3) as limits for q ↑ 1.

The quadratic transformations (2.10), (2.11) remain valid for less
constrained parameter values by analytic continuation. In the case of
orthogonality involving additionally a finite number of mass points (see
[6, (14.1.3)]) we may still give a proof of (2.10), (2.11) by orthogonality
in view of Remark 2.3.

There are various noteworthy special cases of the quadratic transfor-
mations (2.10), (2.11). For b = q

1
2 a we get continuous q-Jacobi polyno-

mials on the left-hand sides and continuous q-ultraspherical polynomials
on the right-hand sides. For b = 0 we get Al-Salam-Chihara polyno-
mials on the left-hand sides and continuous dual q-Hahn polynomials
on the right-hand sides. For a = b = 0 we get continuous q-Hermite
polynomials on the left-hand sides and Al-Salam-Chihara polynomials
(in this context also called continuous q-Laguerre polynomials) on the
right-hand sides. See [6, Ch. 14] for details about the mentioned families
of orthogonal polynomials.

2.3. Further examples of quadratic transformations in the
q-Askey scheme

First we discuss some limit cases of the quadratic transformations
(2.10), (2.11) for Askey-Wilson polynomials, where we stay in the con-
tinuous part of the q-Askey scheme.

Example 2.5. For big q-Jacobi polynomials [6, §14.5]
Pn(x; a, b, c, d; q) = Pn(qac

−1x; a, b,−ac−1d; q)

:= 3φ2

(
q−n, qn+1ab, qac−1x

qa,−qac−1d
; q, q

)
.

and little q-Jacobi polynomials [6, §14.12], [12, §2.4]

pn(x; a, b; q) := 2φ1

(
q−n, qn+1ab

qa
; q, qx

)
,(2.15)

pn(q
−1b−1; a, b; q) =

(−1)n(qb; q)n

q
1
2n(n+1)bn(qa; q)n

there are the quadratic transformations

P2n(x; a, a, 1, 1; q) =
pn(x

2; q−1, a2; q2)

pn((qa)−2; q−1, a2; q2)
,(2.16)

P2n+1(x; a, a, 1, 1; q) =
qa x pn(x

2; q, a2; q2)

pn((qa)−2; q, a2; q2)
.(2.17)
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These were earlier given in [12, (2.48), (2.49)]. They are limit cases of
(2.10), (2.11) by the limit formulas [9, (6.2), (6.4)].

The orthogonality relations for big and little q-Jacobi polynomials
are given by q-integrals. In view of Remark 2.3 the quadratic trans-
formations (2.16) and (2.17) can be obtained in a straightforward way
by comparing the q-weights for the polynomials involved. The relevant
observation is that, with w(x) = v(x2) and polynomials p, we have

∫ 1

0

p(x)x− 1
2 v(x) dq2x = (1− q2)

∞∑
k=0

p(q2k) v(q2k) qk

= (1− q2)

∞∑
k=0

p((qk)2)w(qk) qk = (1 + q)

∫ 1

0

p(x2)w(x) dqx.

Example 2.6. For discrete q-Hermite I polynomials [6, §14.28]

hn(x; q) := q
1
2n(n−1)

2φ1

(
q−n, x−1

0
; q,−qx

)
and the little q-Laguerre polynomials (or Wall polynomials) pn(x; a; q) =
pn(x; a, 0; q) [6, §14.20] ((2.15) with b = 0) there are the quadratic trans-
formations

h2n(x; q) = (−1)nqn(n−1)(q; q2)n, pn(x
2; q−1; q2),(2.18)

h2n+1(x; q) = (−1)nqn(n−1)(q3; q2)n x pn(x
2; q; q2).(2.19)

These are limit cases of (2.16), (2.17) by the limit formula [13, §14.5]
lim
a→0

a−n Pn(x; a, a, 1, 1; q) = qn hn(x; q).

The quadratic transformations (2.18), (2.19) immediately imply qua-
dratic transformations [13, §14.21] connecting discrete q-Hermite II poly-
nomials [6, §14.29] and q-Laguerre polynomials [6, §14.21] because these
two orthogonal polynomials can be expressed as i−nhn(ix; q

−1) and
const. pn(−x; q−α; q−1) in terms of discrete q-Hermite I polynomials and
little q-Laguerre polynomials, respectively. Note that both families of
orthogonal polynomials have non-unique orthogonality measures, see
for instance [2]. Quite probably these last quadratic transformations
are limit cases of rewritings of (2.16), (2.17) which can be interpreted
as quadratic transformations for pseudo big q-Jacobi polynomials [5,
Prop. 2.2].

Next we turn to the discrete part of the q-Askey scheme.
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Example 2.7. On top there is a quadratic transformation between
q-Racah polynomials (see [6, §14.2]) (n = 0, 1, . . . , N)
(2.20)

Rn(q
−x+γδqx+1;α, β, γ, δ | q) := 4φ3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq
; q, q

)
,

where αq or βδq or γq is equal to q−N . It reads, with N ∈ { 1
2 , 1,

3
2 , . . .},

(2.21) R2n(q
−x−N− 1

2 − qx−N− 1
2 ;α, α, q−2N−2,−1 | q)

= Rn(q
−2x−2N−1 + q2x−2N−1;α2, q−1, q−2N−2, q−2N−2 | q2)

(n = 0, 1, . . . , [N + 1
2 ]). Indeed, as a function of q−x−N− 1

2 − qx−N− 1
2 the

polynomials on the left-hand side of (2.21) are orthogonal on the points

q−x−N− 1
2 − qx−N− 1

2 (x = −N − 1
2 ,−N + 1

2 , . . . , N + 1
2 ) with respect to

the weights

(qx + q−x)
(α2q2; q2)x+N+ 1

2

(q2; q2)x+N+ 1
2

(α2q2; q2)−x+N+ 1
2

(q2; q2)−x+N+ 1
2

,

while the polynomials on the right-hand side are orthogonal on the points
(q−x−N− 1

2 − qx−N− 1
2 )2 (x running over −N − 1

2 ,−N + 1
2 , . . . ,− 1

2 or 0)
with respect to the same weights. These weights are positive if −1 <
qα < 1.

In terms of q-hypergeometric functions (2.21) can be written as

4φ3

(
q−2n, α2q2n+1, q−x−N− 1

2 ,−qx−N− 1
2

qα,−qα, q−2N−1
; q, q

)

= 4φ3

(
q−2n, α2q2n+1, q−2x−2N−1, q2x−2N−1

q2α2, q−2N−1, q−2N
; q2, q2

)
,

which is the case a = q−n, b = qnα, c = q−x−N− 1
2 , d = qx−N− 1

2 of
(2.12).

Similarly, from (2.14), we have the quadratic transformation

R2n+1(q
−x−N− 1

2 − qx−N− 1
2 ;α, α, q−2N−2,−1 | q)(2.22)

=
q−x−N− 1

2 − qx−N− 1
2

1− q−2N−1

×Rn(q
−2x−2N−1 + q2x−2N−1;α2, q, q−2N−2, q−2N−2 | q2),

where N ∈ { 1
2 , 1,

3
2 , . . .} and n = 0, 1, . . . , [N ]. Formula (2.22) can also

be proved by orthogonality.
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The special case α = 0 of (2.21) and (2.22) gives quadratic transfor-
mations involving dual q-Krawtchouk polynomials [6, §14.17] and dual
q-Hahn polynomials [6, §14.7].

Remark 2.8. The quadratic transformations (2.16), (2.17) involv-
ing big and little q-Jacobi polynomials can be obtained as limit cases of
(2.21) and (2.22). For this we need the following special case of the limit
formula [11, (2.2)] from q-Racah polynomials to big q-Jacobi polynomi-
als:

lim
N→∞

Rn(q
−2N−1x; a, a, q−2N−2,−1 | q) = Pn(x; a, a, 1, 1; q)

Pn(−1; a, a, 1, 1; q)
.

We need also a limit formula from q-Racah polynomials to little q-Jacobi
polynomials, not yet observed in [11]:

(2.23) lim
N→∞

Rn(q
−2Nx; a, b, q−N−1, δq−N | q) = pn(δ

−1x; b, a; q)

pn(1; b, a; q)
.

This is obtained from the limit formula (straightforward from (2.20))

lim
N→∞

Rn(q
−2Nx; a, b, q−N−1, δq−N | q)

= 3φ1

(
q−n, abqn+1, δx−1

qa
; q, b−1δ−1x

)
combined with [4, (III.8)] and (2.15).

Furthermore, the quadratic transformations (2.18), (2.19) can be
obtained as limits of the cases α = 0 of (2.21) and (2.22).

Example 2.9. Rather non-standard quadratic transformations for
q-Racah polynomials can be obtained by another specialization of (2.12)
and (2.14):

4φ3

(
q−2n, q−2(N−n)−1, q−x,−γqx+1

q−N ,−q−N , γq
; q, q

)
(2.24)

= 4φ3

(
q−2n, q2n−2N−1, q−2x, γ2q2x+2

q−2N , γq, γq2
; q2, q2

)
,

4φ3

(
q−2n−1, q−2(N−n), q−x,−γqx+1

q−N ,−q−N , γq
; q, q

)
=

q−x − γqx+1

1− γq
(2.25)

× 4φ3

(
q−2n, q2n−2N+1, q−2x, γ2q2x+2

q−2N , γq2, γq3
; q2, q2

)
.

Here N is a positive integer and n = 0, 1, . . . , N . For 2n ≤ N (2.24)
is valid for all x ∈ C. However, by the subtlety of passing to a lower
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parameter q−N in (2.12) or (2.14), formula (2.24) is only valid for x =
0, 1, . . . , N if 2n > N . Similarly, (2.25) is valid for all x ∈ C if 2n+1 ≤ N ,
but only valid for x = 0, 1, . . . , N if 2n+ 1 > N .

By substitution of (2.20) in (2.24) and (2.25) we obtain quadratic
transformations for q-Racah polynomials:

(2.26) Rn(q
−2x + γ2q2x+2; q−2N−2, q−1, γ, γ | q2)

=

{
R2n(q

−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n ≤ N),

R2N−2n+1(q
−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n > N),

(2.27)
q−x − γqx+1

1− γq
Rn(q

−2x + γ2q2x+2; q−2N−2, q, γ, γ | q2)

=

{
R2n+1(q

−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n+ 1 ≤ N),

R2N−2n(q
−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n+ 1 > N).

Both in (2.26) and (2.27) the identities corresponding to the first case
of the right-hand side are valid for all complex y := q−x − γqx+1 (then
q−2x + γ2q2x+2 = y2 + 2γq). But the identities corresponding to the
second case of the right-hand side are only valid for x = 0, 1, . . . , N .

By [6, (14.2.2)] the q-Racah polynomials on the left-hand side of
(2.26) are orthogonal on the set of points q−2x+γ2q2x+2 (x = 0, 1, . . . , N)
with respect to the weights

(2.28) wx = q(2N+1)x 1 + q2x+1γ

1 + qγ

(q−2N , q2γ2; q2)x
(q2, q2N+4γ2; q2)x

.

These weights are positive if q−N < γ < q−N−2. Inspection of the
positivity of the coefficient of pn−1(x) in [6, (14.2.4)] for n = 1, . . . , N
gives the same constraint on γ. Again by [6, (14.2.2)], the q-Racah
polynomials on the right-hand side of (2.26) are orthogonal on the set of
points q−x−γqx+1 (x = 0, 1, . . . , N) with respect to the weights wx given
by (2.28). This is compatible with (2.26), but on the other hand (2.26)
can be proved from this equality of weights only if 2n ≤ N . Similar
remarks can be made about (2.27).

If we put for even respectively odd n = 0, 1, . . . , 2N + 1

pn(y) :=

{
R 1

2n
(y2 + 2qγ; q−2N−2, q−1, γ, γ | q2)

(1− γq)−1y−1 R 1
2 (n−1)(y

2 + 2qγ; q−2N−2, q, γ, γ | q2)
then pn(−y) = (−1)npn(y) and the pn are orthogonal on the set of
points ±(q−x − γqx+1) (for x = 0, 1, . . . , N) with respect to the weights
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wx given by (2.28). For n ≤ N the explicit expressions for the pn as
polynomials of general argument are given by the first cases of the right-
hand sides of (2.26), (2.27), but the expressions for n > N will be more
complicated.

2.4. Further examples of quadratic transformations in the
Askey scheme

First we discuss limit cases for q ↑ 1 of the quadratic transformations
in the continuous part of the Askey scheme.

Example 2.10. Between Wilson polynomials [6, §9.1]
Wn(x

2; a, b, c, d)

Wn(−a2; a, b, c, d)
=

Wn(x
2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n

:= 4F3

(−n, a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d
; 1

)
and continuous Hahn polynomials [6, §9.4]

pn(x; a, b, a, b)

pn(ia; a, b, a, b)
=

n! pn(x; a, b, a, b)

in(a+ a)n(a+ b)n

:= 3F2

(−n, n+ 2Re(a+ b)− 1, a+ ix

a+ a, a+ b
; 1

)
there are the quadratic transformations

p2n(x; a, b, a, b)

p2n(ia; a, b, a, b)
=

Wn(x
2; a, b, 1

2 , 0)

Wn(−a2; a, b, 1
2 , 0)

,(2.29)

p2n+1(x; a, b, a, b)

p2n+1(ia; a, b, a, b)
=

xWn(x
2; a, b, 1

2 , 1)

iaWn(−a2; a, b, 1
2 , 1)

,(2.30)

where a, b ∈ R or b = a. This follows by comparing the orthogonality
relations [6, (9,1,2), (9.4.2)] with each other.

In fact, (2.29) and (2.30) are limit cases of the quadratic transfor-
mations (2.10), (2.11) for Askey-Wilson polynomials by the limits

lim
q↑1

pn(1− 1
2x(1− q)2; qa, qb, qc, qd | q)

(1− q)3n
= Wn(x; a, b, c, d)

and

lim
q↑1

pn
(
cosφ− x(1− q) sinφ; qaeiφ, qbeiφ, qae−iφ, qbe−iφ | q)

(1− q)2n

= (−2 sinφ)n n! pn(x; a, b, a, b) (0 < φ < π).
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There are corresponding limit cases of (2.12) and (2.14):
(2.31)

3F2

(
2a, 2b+ 1, c

a+ b+ 1, c+ d
; 1

)
= 4F3

(
a, b+ 1

2 , c, d

a+ b+ 1, 1
2 (c+ d), 1

2 (c+ d+ 1)
; 1

)
,

(2.32) 3F2

(
2a, 2b+ 1, c

a+ b+ 1, c+ d
; 1

)
=

d− c

d+ c
4F3

(
a+ 1

2 , b+ 1, c, d

a+ b+ 1, 1
2 (c+ d) + 1, 1

2 (c+ d+ 1)
; 1

)
,

which are valid whenever both sides terminate.
Also note that (2.29) and (2.30) have the quadratic transformations

(2.3) as limit cases. This follows by [6, (9.4.15)] and the limit (extension
of [6, (9.1.18)])

lim
t→∞

Wn(
1
2 (1− x)t2; a, α+ 1− a, c+ it, β + 1− c− it)

t2nn!
= P (α,β)

n (x).

Example 2.11. Between continuous dual Hahn polynomials [6,
§9.3]

Sn(x
2; a, b, c)

Sn(−a2; a, b, c)
:= 3F2

(−n, a+ ix, a− ix

a+ b, a+ c
; 1

)
,

Sn(−a2; a, b, c) = (a+ b)n(a+ c)n,

and Meixner-Pollaczek polynomials [6, §9.7]
P

(λ)
n (x;φ)

P
(λ)
n (iλ;φ)

:= 2F1

(−n, λ+ ix

2λ
; 1− e−2iφ

)
, P (λ)

n (iλ;φ) =
(2λ)n
n!

einφ,

there are the quadratic transformations

P
(a)
2n (x; 1

2π)

P
(a)
2n (ia; 1

2π)
=

Sn(x
2; a, 1

2 , 0)

Sn(−a2; a, 1
2 , 0)

,(2.33)

P
(a)
2n+1(x;

1
2π)

P
(a)
2n+1(ia;

1
2π)

=
xSn(x

2; a, 1
2 , 1)

iaSn(−a2; a, 1
2 , 1)

.(2.34)

These are limit cases of (2.29) and (2.30) by the limits [6, (9.1.16),
(9.4.14)] Furthermore, (2.33) and (2.34) have the quadratic transforma-
tions (2.4) as limit cases by [6, (9.7.15)] and the limit

(2.35) lim
a→∞

Sn(ax; a, b, c)

ann!
= Lb+c−1

n (x).



Quadratic transformations 433

For the proof of (2.35) compare the recurrence relations [6, (9.3.5),
(9.12.4)] with each other.

Next we turn to the discrete part of the Askey scheme.

Example 2.12. On top there is a quadratic transformation between
Racah polynomials [6, §9.2]

Rn

(
x(x+ γ + δ + 1);α, β, γ, δ

)
:= 4F3

(−n, n+ α+ β + 1,−x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1

)
(α+ 1 or β + δ + 1 or γ + 1 = −N ; n = 0, 1, . . . , N)

and Hahn polynomials [6, §9.5]

Qn(x;α, β,N) := 3F2

(−n, n+ α+ β + 1,−x

α+ 1,−N
; 1

)
(n = 0, 1, . . . , N).

It reads

(2.36)

Q2n

(
x+N+ 1

2 ;α, α, 2N+1
)
= Rn

(
x2−(N+ 1

2 )
2;α,− 1

2 ,−N−1,−N−1
)

(N ∈ { 1
2 , 1,

3
2 , . . .}, n = 0, 1, . . . , [N + 1

2 ]).

Indeed, as a function of x the polynomials on the left-hand side of (2.36)
are orthogonal on the points x = −N− 1

2 ,−N+ 1
2 , . . . , N+ 1

2 with respect
to the weights

(α+ 1)N+ 1
2+x(α+ 1)N+ 1

2−x

(N + 1
2 + x)! (N + 1

2 − x)!
,

while the polynomials on the right-hand side are orthogonal on the points
x2 (x running over −N − 1

2 ,−N + 1
2 , . . . ,− 1

2 or 0) with respect to the
same weights.

The quadratic transformation (2.36) is the case a = −n, b = n+ α,
c = −x − N − 1

2 , d = x − N − 1
2 of formula (2.31). By specialization

of (2.32), also as a limit case for q ↑ 1 of (2.22), we have the quadratic
transformation

(2.37) Q2n+1(x+N + 1
2 ;α, α, 2N + 1)

=
2N + 1− 2x

2N + 1
Rn(x

2 − (N + 1
2 )

2;α+ 1, 1
2 ,−N − 1,−N − 1)

(N ∈ { 1
2 , 1,

3
2 , . . .}, n = 0, 1, . . . , [N ]).

The quadratic transformations (2.3) for Jacobi polynomials can be
obtained as limit cases of (2.36) and (2.37).



434 T. H. Koornwinder

Example 2.13. Quadratic transformations involving Krawtchouk
polynomials [6, §9.11]

Kn(x; p,N) := 2F1

(−n,−x

−N
; p−1

)
and dual Hahn polynomials [6, §9.6]

Rn(x(x+ γ + δ + 1); γ, δ,N) := 3F2

(−n,−x, x+ γ + δ + 1

γ + 1,−N
; 1

)
are given by

K2m(x+N ; 1
2 , 2N) =

( 12 )m

(−N + 1
2 )m

Rm(x2;− 1
2 ,− 1

2 , N),

(2.38)

K2m+1(x+N ; 1
2 , 2N) = − ( 32 )m

N (−N+ 1
2 )m

xRm(x2− 1; 1
2 ,

1
2 , N− 1),

(2.39)

K2m(x+N+1; 1
2 , 2N+1) =

( 12 )m

(−N − 1
2 )m

Rm(x(x+ 1);− 1
2 ,

1
2 , N),

(2.40)

K2m+1(x+N+1; 1
2 , 2N+1) =

( 32 )m(x+ 1
2 )

(−N − 1
2 )m+1

Rm(x(x+ 1); 1
2 ,− 1

2 , N).

(2.41)

They can be proved by orthogonality, they are limit cases of (2.36)
and (2.37), and they have the quadratic transformations (2.4) involving
Hermite and Laguerre polynomials as limit cases.

2.5. The (q-)Askey scheme of quadratic transformations

Let us summarize the quadratic transformations for families in the
(q-)Askey scheme. In the q-case we have:

1a: Askey-Wilson (2.10), (2.11)
1b: q-Racah (2.21), (2.22)
2 : big q-Jacobi to little q-Jacobi (2.16), (2.17)
3a: Askey-Wilson (2.10), (2.11) for b = 0
3b: q-Racah (2.21), (2.22) for α = 0
4 : discrete q-Hermite to Wall (2.18), (2.19)
5 : Askey-Wilson (2.10), (2.11) for a = b = 0



Quadratic transformations 435

The transformations 1a and 1b in q-hypergeometric form are related by
analytic continuation, similarly for 3a and 3b. The limit arrows between
the various cases are as follows.

1a 1b
↓ ↘ ↙ ↓
3a 2 3b
↓ ↘ ↓ ↙
5 4

In the case q = 1 we have:

1a: continuous Hahn to Wilson (2.29), (2.30)
1b: Hahn to Racah (2.36), (2.37)
2 : Jacobi (2.3)
3a: Meixner-Pollaczek to continuous dual Hahn (2.33), (2.34)
3b: Krawtchouk to dual Hahn (2.38)–(2.41)
4 : Hermite to Laguerre (2.4)

The transformations 1a and 1b in hypergeometric form are related by
analytic continuation, similarly for 3a and 3b. The limit arrows between
the various cases are as above, except that the case 5 is missing. There
are limits for q ↑ 1 from the q-cases to the corresponding q = 1 cases.
The q-case 5 also has a limit to the q = 1 case 4.

§3. The two-variable case

3.1. General polynomials

For an analogue of (2.1) in two variables we generalize the proof
of Theorem 10.1 in Sprinkhuizen [18]. We will work with monomials
xm−lyl (m, l ∈ Z, m ≥ l ≥ 0) with a dominance partial ordering

(m, l) ≤ (n, k) iff m ≤ n and m+ l ≤ n+ k.

Let w(x, y) be a (nonnegative) weight function on a domain Ω ⊂ R2

such that ∫
Ω

|x|m−l|y|lw(x, y) dx dy < ∞ for all m, l.

Let pn,k(x, y) be polynomials of the form

(3.1) pn,k(x, y) =
∑

(m,l)≤(n,k)

cm,lx
m−lyl, cn,k �= 0,
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such that

(3.2)

∫
Ω

pn,k(x, y)x
m−lyl w(x, y) dx dy = 0 if (m, l) < (n, k).

We call the polynomials pn,k(x, y) dominance orthogonal polynomials.
For convenience we assume that they are monic, i.e., cn,k = 1 in (3.1).
Thus pn,k(x, y) and pm,l(x, y) with (n, k) �= (m, l) are orthogonal on Ω
with weight function w(x, y) if (n, k) and (m, l) are related in the partial
ordering ≤, but the orthogonality will usually fail if (n, k) and (m, l)
are not related in this partial ordering, except for very special Ω and
w(x, y), as will occur for cases related to root systems.

Now suppose that Ω is invariant under (x, y) → (−x, y), and also
w(x, y) = w(−x, y). Then, by (3.2), pn,k(−x, y) = (−1)n−kpn,k(x, y),
and in (3.1) cm,l = 0 if n− k and m− l do not have the same parity.

Put
(3.3)

Ω′ := {(y, x2) | (x, y) ∈ Ω} and v(x, y) := w(y
1
2 , x) ((x, y ∈ Ω′).

Proposition 3.1. Let qn,k(x, y) and rn,k(x, y) be dominance or-

thogonal polynomials on Ω′ with respect to weight functions y−
1
2 v(x, y)

and y
1
2 v(x, y), respectively. Then

(3.4) qn,k(y, x
2) = pn+k,n−k(x, y), x rn,k(y, x

2) = pn+k+1,n−k(x, y).

Proof. We have

pn+k,n−k(x, y) =
∑

(i,j)≤(n+k,n−k)

ci,jx
i−jyj ,

where only terms with i− j even occur. So we can substitute i− j = 2l
and i+j = 2m, ci,j = c′m,l. Then (i, j) ≤ (n+k, n−k) iff (m, l) ≤ (n, k).
Hence

pn+k,n−k(x, y) =
∑

(m,l)≤(n,k)

c′m,ly
m−lx2l,

while from (3.2) we have∫
Ω′

pn+k,n−k(y
1
2 , x)xm−lyl v(x, y)y−

1
2 dx dy = 0 if (m, l) < (n, k).

This settles (3.4) for qn,k. A similar proof can be given for rn,k . Q.E.D.

In particular, let Ω be the region

(3.5) Ω := {(x, y) ∈ R
2 | 1− x+ y, 1 + x+ y, x2 − 4y > 0}.
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Then (3.3) and (3.5) yield that

Ω′ = {(x, y) ∈ R
2 | y, y − 4x, (1 + x)2 − y > 0}(3.6)

= {( 12x, 1 + x+ y) | (x, y) ∈ Ω}.
So if Ω is given by (3.5) then, by (3.6), an affine transformation respect-
ing the dominance partial order of monomials maps Ω′ onto Ω. Thus we
can formulate a variant of Proposition 3.1 which again generalizes the
proof of Theorem 10.1 in Sprinkhuizen [18]:

Proposition 3.2. Let Ω be given by (3.5). Let the pn,k(x, y) be
monic dominance orthogonal polynomials on Ω with respect to a weight
function w(x, y) = w(−x, y). Define v(x, y) on Ω by

v(2y, x2 − 2y − 1) = w(x, y).

Let qn,k(x, y) and rn,k(x, y) be dominance orthogonal polynomials on

Ω with respect to weight functions (1 + x + y)−
1
2 v(x, y) and (1 + x +

y)
1
2 v(x, y), respectively. Then

2−n+kqn,k(2y, x
2 − 2y − 1) = pn+k,n−k(x, y),(3.7)

2−n+kxrn,k(2y, x
2 − 2y − 1) = pn+k+1,n−k(x, y).(3.8)

If the pn,k(x, y) in the above Proposition are not monic but satisfy
pn,k(2, 1) �= 0 (which probably is implied by the dominance orthogonal-
ity) then we can replace (3.7), (3.8) by

qn,k(2y, x
2 − 2y − 1)

qn,k(2, 1)
=

pn+k,n−k(x, y)

pn+k,n−k(2, 1)
,(3.9)

xrn,k(2y, x
2 − 2y − 1)

2rn,k(2, 1)
=

pn+k+1,n−k(x, y)

pn+k+1,n−k(2, 1)
.(3.10)

In further variants of these results, to be discussed below, we will
formulate results in a normalization as in (3.9), (3.10). If the assumption
corresponding to pn,k(2, 1) �= 0 would fail then formulations in terms of
monic polynomials would still be true.

3.2. Symmetric polynomials

In Proposition 3.2 replace x, y by ξ, η, and next put ξ = x + y,
η = xy. Then we can rephrase this proposition in terms of symmetric
polynomials in x, y. For this purpose make the following observations.

• The map (x, y) → (ξ, η) is a diffeomorphism from

(3.11) Λ := {(x, y) | −1 < y < x < 1}
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onto Ω given by (3.5). Furthermore dξ dη = (x− y) dx dy.
• Let n > k. Then, for certain ai, bi with a0 = b0 = 1 we have

(x+ y)n−k(xy)k =

[ 12 (n−k)]∑
i=0

ai(x
n−iyk+i + xk+iyn−i),

xnyk + xkyn =

[ 12 (n−k)]∑
i=0

bi(x+ y)n−k−2i(xy)k+i.

• If

(3.12) p(ξ, η) =
∑

(m,l)≤(n,k)

am,lξ
m−lηl

for certain am,l with an,k �= 0 then

(3.13) p(x+ y, xy) =
∑

(m,l)≤(n,k)

bm,l(x
myl + xlym)

for certain bm,l with bn,k �= 0. Conversely, any symmetric
polynomial given by the right-hand side of (3.13) can be written
as p(x+ y, xy) for some polynomial p(ξ, η) of the form (3.12).

Now let W (x, y) be a weight function on Λ and let Pn,k(x, y) be
symmetric polynomials of the form of the right-hand side of (3.13) with
bn,k �= 0 such that∫
Λ

Pn,k(x, y)(x
myl+xlym)W (x, y)(x−y) dx dy = 0 if (m, l) < (n, k).

We call the polynomials Pn,k(x, y) dominance orthogonal symmetric
polynomials. Observe that the polynomials pn,k(ξ, η) are dominance or-
thogonal on Ω with weight function w(ξ, η) iff the polynomials Pn,k(x, y)
:= pn,k(x + y, xy) are dominance orthogonal on Λ with orthogonality
measure W (x, y)(x− y) dx dy, where W (x, y) := w(x+ y, xy).

Now we can rephrase Proposition 3.2 as follows.

Proposition 3.3. Let the Pn,k(x, y) be dominance orthogonal sym-
metric polynomials on Λ with respect to a measure W (x, y)(x−y) dx dy,
where W (x, y) = W (−y,−x). Define a weight function V on Λ by

(3.14) V (xy+ (1− x2)
1
2 (1− y2)

1
2 , xy− (1− x2)

1
2 (1− y2)

1
2 ) = W (x, y).

Let Qn,k(x, y) and Rn,k(x, y) be dominance orthogonal symmetric poly-

nomials on Λ with respect to measures (1+x)−
1
2 (1+y)−

1
2V (x, y)(x−y)
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dx dy and (1 + x)
1
2 (1 + y)

1
2V (x, y)(x− y), dx dy, respectively. Then

Qn,k(xy + (1− x2)
1
2 (1− y2)

1
2 , xy − (1− x2)

1
2 (1− y2)

1
2 )

Qn,k(1, 1)
(3.15)

=
Pn+k,n−k(x, y)

Pn+k,n−k(1, 1)
,

(x+ y)Rn,k(xy + (1− x2)
1
2 (1− y2)

1
2 , xy − (1− x2)

1
2 (1− y2)

1
2 )

2Rn,k(1, 1)

(3.16)

=
Pn+k+1,n−k(x, y)

Pn+k+1,n−k(1, 1)
.

if Pn,k(1, 1) �= 0 for all n, k, or the same identities without denominators
for monic polynomials.

On passing to trigonometric coordinates (3.15) and (3.16) can be
rewritten as

Qn,k(cos(θ1 − θ2), cos(θ1 + θ2))

Qn,k(1, 1)
=

Pn+k,n−k(cos θ1, cos θ2)

Pn+k,n−k(1, 1)
,(3.17)

(cos θ1 + cos θ2)Rn,k(cos(θ1 − θ2), cos(θ1 + θ2))

2Rn,k(1, 1)
(3.18)

=
Pn+k+1,n−k(cos θ1, cos θ2)

Pn+k+1,n−k(1, 1)
.

Example 3.4. In the notation of Proposition 3.2 let

w(ξ, η) = wα,β,γ(ξ, η) := (1− ξ + η)α(1 + ξ + η)β(ξ2 − 4η)γ

(α, β, γ > −1, α+ γ, β + γ > − 3
2 ),

and put pn,k(ξ, η) = pα,β,γn,k (ξ, η) for the corresponding dominance or-

thogonal polynomials on the region Ω defined by (3.5). These polyno-
mials, nowadays known as Jacobi polynomials for root system BC2, were
first studied in [7] and subsequently in [18]. It follows from [7, (3.14)]
and [18, Theorem 8.1] that these polynomials, even if they are defined as
dominance orthogonal polynomials, still satisfy full orthogonality, and
that they are nonzero at (2, 1) by the explicit value [18, (7.3)].

Since
wγ,0,α(2η, ξ

2 − 2η − 1) = 4αwα,α,γ(ξ, η),
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we have

p
γ,− 1

2 ,α

n,k (2η, ξ2 − 2η − 1)

p
γ,− 1

2 ,α

n,k (2, 1)
=

pα,α,γn+k,n−k(ξ, η)

pα,α,γn+k,n−k(2, 1)
,(3.19)

ξ p
γ, 12 ,α

n,k (2η, ξ2 − 2η − 1)

2p
γ, 12 ,α

n,k (2, 1)
=

pα,α,γn+k+1,n−k(ξ, η)

pα,α,γn+k+1,n−k(2, 1)
.(3.20)

These quadratic transformations were first given by Sprinkhuizen [18,
Theorem 10.1]. They can be conceptually explained by the fact that B2

and C2, while special cases of BC2, are isomorphic root systems.
Equivalently, in the notation of Proposition 3.3, let

W (x, y) = Wα,β,γ(x, y) := (1− x)α(1− y)α(1 + x)β(1 + y)β(x− y)2γ

and put Pn,k(x, y) = Pα,β,γ
n,k (x, y) for the corresponding dominance or-

thogonal symmetric polynomials on the region Λ. Then

P
γ,− 1

2 ,α

n,k (cos(θ1 − θ2), cos(θ1 + θ2))

P
γ,− 1

2 ,α

n,k (1, 1)
=

Pα,α,γ
n+k,n−k(cos θ1, cos θ2)

Pα,α,γ
n+k,n−k(1, 1)

,

(cos θ1 + cos θ2)P
γ, 12 ,α

n,k (cos(θ1 − θ2), cos(θ1 + θ2))

2P
γ, 12 ,α

n,k (1, 1)

=
Pα,α,γ
n+k+1,n−k(cos θ1, cos θ2)

Pα,α,γ
n+k+1,n−k(1, 1)

.

3.3. Symmetric Laurent polynomials

Let S2 be the symmetric group in 2 letters and W2 := S2 � (Z2)
2

(the Weyl group of BC2). These groups naturally act on Z2. For λ =

(λ1, λ2) ∈ Z
2 and x = (x1, x2) ∈ C

2 put xλ := xλ1
1 xλ2

2 . Put

mλ(x) :=
∑

μ∈S2λ

xμ, m̃λ(z) :=
∑

μ∈W2λ

zμ (λ1 ≥ λ2 ≥ 0).

For certain aμ, bμ with aλ, bλ �= 0 we have

mλ

(
1
2 (z1 + z−1

1 ), 1
2 (z2 + z−1

2 )
)
=

∑
μ≤λ

aμm̃μ(z1, z2),

m̃λ(z1, z2) =
∑
μ≤λ

bμmμ

(
1
2 (z1 + z−1

1 ), 1
2 (z2 + z−1

2 )
)
.
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Let W (x, y) be a weight function on the region Λ given by (3.11).
Let

(3.21) Γ :=
{
(z1, z2) ∈ C

2
∣∣ |z1| = |z2| = 1, 0 < arg z1 < arg z2 < π

}
.

Then (z1, z2) �→
(
1
2 (z1 + z−1

1 ), 1
2 (z2 + z−1

2 )
)
is a diffeomorphism from Γ

onto Λ. On Γ define a weight function Δ(z1, z2) such that

W
(
1
2 (z1+z−1

1 ), 1
2 (z2+z−1

2 )
)
=

8Δ(z1, z2)

(z1 − z−1
1 )(z2 − z−1

2 )(z1 + z−1
1 − z2 − z−1

2 )
.

Then∫
Δ

f(x, y)W (x, y) (x− y) dx dy

=

∫
Γ

f
(
1
2 (z1 + z−1

1 ), 1
2 (z2 + z−1

2 )
)
Δ(z1, z2)

dz1
z1

dz2
z2

.

Hence, if the Pn,k(x, y) are dominance orthogonal symmetric polynomi-
als on Λ with orthogonality measure W (x, y)(x− y) dx dy and if

pn,k(z1, z2) := Pn,k

(
1
2 (z1 + z−1

1 ), 1
2 (z2 + z−1

2 )
)

then the pn,k(z1, z2) are dominance orthogonal W2-invariant Laurent
polynomials on Γ with weight function Δ(z1, z2), i.e., we have for certain
cm,l with cn,k �= 0 that

(3.22) pn,k(z1, z2) =
∑

(m,l)≤(n,k)

cm,l m̃m,l(z1, z2)

such that∫
Δ

pn,k(z1, z2) m̃m,l(z1, z2)Δ(z1, z2)
dz1
z1

dz2
z2

= 0 if (m, l) < (n, k).

Call the polynomials pn,k(z1, z2) monic if cn,k = 1 in (3.22).
Now we can rephrase Proposition 3.3 as follows.

Proposition 3.5. Let the pn,k(z1, z2) be dominance orthogonal W2-
invariant polynomials on Γ with respect to a weight function Δ(z1, z2),

where Δ(z1, z2) = Δ(−z−1
2 ,−z−1

1 ). Define a weight function Δ̃ on Γ by

Δ̃(z1z2, z1z
−1
2 ) = Δ(z1, z2).
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Let qn,k(x, y) and rn,k(x, y) be dominance orthogonal W2-invariant

polynomials on Γ with respect to weight functions Δ̃(z1, z2) and

(1 + z1)(1 + z−1
1 )(1 + z2)(1 + z−1

2 )Δ̃(z1, z2), respectively. Then

qn,k(z1z2, z1z
−1
2 )

qn,k(1, 1)
=

pn+k,n−k(z1, z2)

pn,k(1, 1)
,(3.23)

(z1 + z−1
1 + z2 + z−1

2 )rn,k(z1z2, z1z
−1
2 )

4rn,k(1, 1)
=

pn+k+1,n−k(z1, z2)

pn+k+1,n−k(1, 1)
.(3.24)

if pn,k(1, 1) �= 0 for all n, k, or the same identities without denominators
for monic polynomials.

Example 3.6. In the notation of Proposition 3.2 let

Δ(z1, z2) = Δ(z1, z2; q, t; a, b, c, d) = Δ+(z1, z2)Δ+(z
−1
1 , z−1

2 ),

where

Δ+(z1, z2) :=
(z21 ; q)∞

(az1, bz1, cz1, dz1; q)∞
(z22 ; q)∞

(az2, bz2, cz2, dz2; q)∞

× (z1z2, z1z
−1
2 ; q)∞

(tz1z2, tz1z
−1
2 ; q)∞

,

and put pn,k(z1, z2) = pn,k(z1, z2; q, t; a, b, c, d) for the corresponding
dominance orthogonal W2-invariant monic Laurent polynomials on the
region Γ defined by (3.21). These polynomials are the two-variable case
of the n-variable Koornwinder polynomials [8], [14], which are associated
with root system BCn. These polynomials are fully orthogonal [8]. Now
observe that

Δ(z1, z2; q, t; a,−a, q
1
2 ,−q

1
2 ) = Δ(z1z2, z1z

−1
2 ; q2, a2; t, qt,−1,−q).

Hence, by Proposition 3.2, we have for n+ k even that

Pn,k(z1, z2; q, t; a,−a, q
1
2 ,−q

1
2 )(3.25)

= P 1
2 (n+k), 12 (n−k)(z1z2, z1z

−1
2 ; q2, a2; t, qt,−1,−q),

Pn+1,k(z1, z2; q, t; a,−a, q
1
2 ,−q

1
2 ) = (z1 + z2 + z−1

1 + z−1
2 )(3.26)

× P 1
2 (n+k), 12 (n−k)(z1z2, z1z

−1
2 ; q2, a2; t, qt,−q,−q2).

3.4. Failure of quadratic transformations in the n-variable
case if n > 2

There are no straightforward analogues in n > 2 variables of Propo-
sitions 3.2 and 3.3. Indeed, symmetric polynomials in x1, . . . , xn in-
variant under xi → −xi (i = 1, . . . , n) correspond to polynomials in
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e1, . . . , en (the elementary symmetric polynomials in x1, . . . , xn) which
are invariant under e2i−1 → −e2i−1 (i = 1, . . . , [ 12 (n+1)]). If n > 2 then
this last involutive linear transformation has more than one eigenvalue
unequal to 1. Therefore, by Stanley [19, Theorem 4.1] (a theorem go-
ing back to Shephard & Todd [16]), there do not exist n algebraically
independent invariants for this involution if n > 2.

§4. Discussion of results and further perspective

4.1. New results suggested by extrapolation from very few
data

In all examples of quadratic transformations within multi-parameter
families of special orthogonal polynomials in one or two variables we start
with a subfamily depending on less than the full number of parameters,
and then there is an even degree case and an odd degree case giving rise
to two systems of orthogonal polynomials for which one of the parame-
ters takes two special values, say − 1

2 in the even case and 1
2 in the odd

case. Thus formulas and other results already known for the system with
which we started give results for these parameter values ± 1

2 which can
be tentatively extrapolated for more general values of the parameter.

Example 4.1. Consider the quadratic tranformations (2.3) for
Jacobi polynomials. They map from the Gegenbauer case of parame-
ters (α, α) to the Jacobi cases (α,± 1

2 ). The Gegenbauer case is easier
than the general Jacobi case, so (2.3) may be helpful as a start to derive
from known results in the Gegenbauer case yet unknown results in the
general Jacobi case. For instance, for a system of orthogonal polynomials
{pn} it is remarkable to have a lowering formula of the form

d

dx

(
ψ(x)n pn(φ(x))

)
= λnψ(x)

n−1 pn−1(φ(x)).

For Gegenbauer polynomials such a formula does exist (see [10, (3.3)]):

(4.1)
d

dx

(
(1 + x2)

1
2n P (α,α)

n

(
x√

1 + x2

))
= (n+ α) (1 + x2)

1
2 (n−1) P

(α,α)
n−1

(
x√

1 + x2

)
,

but probably not for general Jacobi polynomials. But let us see what
we get for (α,± 1

2 ) by quadratic transformation of (4.1). First we have
to iterate (4.1) once. Then apply (2.3). We obtain
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d2

dx2

(
(1 + x2)n P

(α,− 1
2 )

n

(
x2 − 1

x2 + 1

))
= 4(n+ α)(n− 1

2 ) (1 + x2)n−1 P
(α,− 1

2 )
n−1

(
x2 − 1

x2 + 1

)
,(

d2

dx2
+

2

x

d

dx

)(
(1 + x2)n P

(α, 12 )
n

(
x2 − 1

x2 + 1

))
= 4(n+ α)(n+ 1

2 ) (1 + x2)n−1 P
(α, 12 )
n−1

(
x2 − 1

x2 + 1

)
.

Then the straightforward extrrapolation(
d2

dx2
+

2β + 1

x

d

dx

)(
(1 + x2)n P (α,β)

n

(
x2 − 1

x2 + 1

))
= 4(n+ α)(n+ β) (1 + x2)n−1 P

(α,β)
n−1

(
x2 − 1

x2 + 1

)
can indeed be proved, see [10, (4.4)].

Example 4.2. In this example we again have a result obtaiend by
quadratic transformation, now valid on a two-dimensional subdomain of
a three-dimensional parameter space, but still can make a meaningful
guess how to extrapolate.

The BC2-type Jacobi polynomials pα,β,γn,k (ξ, η) given in Example 3.4

have an explicit expansion [15, (6.11)] (with different notation following
[15, (3.3)]) in terms of polynomials
(4.2)

(1− ξ + η)
1
2 (m+l) P

(γ,γ)
m−l

(
1− 1

2ξ

(1− ξ + η)
1
2

)
(0 ≤ l ≤ m ≤ n, l ≤ k).

The polynomials (4.2) can be recognized as Jack polynomials in two
variables and the mentioned expansion was seen in [14, Section 11.2] as
a limit case of Okounkov’s binomial formula for Koornwinder polyno-
mials in two variables. Now by (3.19) and parity we have a quadratic
transformation

(4.3) pα,α,γn+k,n−k(ξ, η) = const. p
− 1

2 ,γ,α

n,k (−2η, ξ2 − 2η − 1).

We can explicitly expand the right-hand side of (4.3) in terms of poly-
nomials

(4.4) ξm+lP
(α,α)
m−l

(
1 + η

ξ

)
,
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and thus this is also an explicit expansion for the left-hand side of
(4.3). The quadratic transformation (3.20) gives a similar result for
pα,α,γn+k+1,n−k(ξ, η) (with xm+l in (4.4) replaced by xm+l+1). This sug-

gests, and is indeed confirmed in [15, Section 7], that pα,β,γn,k (ξ, η) has a
nice expansion in terms of the polynomials

(4.5) ξmP
(α,β)
l

(
1 + η

ξ

)
(0 ≤ m− l ≤ n− k, m+ l ≤ n+ k),

which can be considered as a two-parameter extension of the Jack poly-
nomials in two variables.

In fact, by [15, Theorem 7.7], the polynomials (4.2) and (4.5) are

limit cases of pα,β,γn,k (ξ, η) for β → ∞ and γ → ∞, respectively.

4.2. Further perspective

In the one-variable part of this paper we gave a quite extensive treat-
ment of quadratic transformations between families in the Askey and
q-Askey scheme. Similar treatments should be given in the two-variable
case. On the one hand we have orthogonal polynomials in two vari-
ables which are products of two polynomials from the (q-)Askey scheme
and an elementary function, of which the orthogonal polynomials on the
triangle involving products of two Jacobi polynomials are a well-known
example. Quadratic transformations for such polynomials can be derived
by suitable substitutions of quadratic transformations for polynomials
in one variable. On the other hand there are the orthogonal polynomials
associated with root system BC2. By work of various authors a large
part of the (q-)Askey scheme has now been realized for BC2. It can be
expected that corresponding schemes of quadratic transformations can
also be given in the BC2 case.

Finally it would be interesting to do further explicit work for Koorn-
winder polynomials in two variables analogous to the q = 1 case treated
in (3.2) and extending [14, Section 11.1]. Analogous to Example 4.2 for
q = 1, the quadratic transformations (3.25), (3.26) may be helpful for
making a start in such work.
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