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Whittaker functions, geometric crystals, and
quantum Schubert calculus

Thomas Lam

Abstract.

This mostly expository article explores recent developments in
the relations between the three objects in the title from an algebro-
combinatorial perspective.

We prove a formula for Whittaker functions of a real semisimple
group as an integral over a geometric crystal in the sense of Berenstein-
Kazhdan. We explain the connections of this formula to the program of
mirror symmetry of flag varieties developed by Givental and Rietsch;
in particular, the integral formula proves the equivariant version of
Rietsch’s mirror symmetry conjecture. We also explain the idea that
Whittaker functions should be thought of as geometric analogues of
irreducible characters of finite-dimensional representations.

The heart of this article is a proof that certain integrals over geo-
metric crystals are archimedean Whittaker functions, or equivalently,
eigenfunctions of the quantum Toda lattice.

A recent new development [BBF11a, BBF11b] in the study of au-
tomorphic forms involves expressing multiple Dirichlet series and p-adic
(metaplectic) Whittaker functions as sums over Kashiwara’s crystals.
This motivated me to observe1 that Rietsch’s mirror-symmetric solution
to the quantum Toda lattice [Rie12] could be expressed as an integral
over Berenstein and Kazhdan’s geometric crystals [BK00, BK07]. This
observation was also made in Chhaibi’s recent thesis [Chh] who devel-
oped a robust probabilistic interpretation of such integrals.
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1Konni Rietsch has pointed out that this observation had also been made

by Masaki Kashiwara.
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§1. Introduction

1.1. Whittaker functions

The original Whittaker functions ψ(z) are solutions to theWhittaker
differential equation:

d2ψ

dz2
+

dψ

dz
+

(
k

z
+

1
4 −m2

z2

)
ψ = 0.

Jacquet then introduced Whittaker functions for reductive groups over
local fields, with the original Whittaker function corresponding to the
case of SL2(R). Jacquet’s Whittaker functions play an important role
in the study of automorphic forms and automorphic representations.

Kostant [Kos78] studied the Whittaker functions of real groups in
detail, and essentially showed that they are the eigenfunctions of the
quantum Toda lattice. The quantum Toda lattice is a quantum inte-
grable system with quantum Hamiltonian

H =
1

2
Δ−

∑
i∈I

αi(t).

We take this as the definition of Whittaker functions in our paper.

1.2. Mirror symmetry for flag varieties

For a sufficiently nice complex algebraic variety M one can associate
a quantum deformation QH∗(M,C) of the cohomology ring H∗(M,C).
The structure constants of this quantum cohomology ring are called
Gromov-Witten invariants, and are obtained by enumerating rational
curves in M .

Let G be a complex semisimple algebraic group and G/B be its flag
variety. Givental-Kim [GK] initiated the study of the quantum cohomol-
ogy ring QH∗(G/B,C), and Kim [Kim] then proved that QH∗(G/B,C)
was isomorphic to the ring of functions on the nilpotent leaf of the Toda
lattice, the classical integrable system which is the quasi-classical limit
of the quantum Toda lattice. These developments have led to a growing
and vibrant subject of “quantum Schubert calculus”.
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At the heart of Givental’s approach to quantum cohomology is an
integrable system, called the quantum D-module. The commutativity
of this system of differential equations follows from deep, but general,
results in Gromov-Witten theory. Givental conjectured that solutions of
the quantum D-module could be constructed as integrals over a (con-
jectural) mirror family.

Kim [Kim] showed that the quantum D-module of the flag vari-
ety is exactly the quantum Toda lattice. So for the case of flag va-
rieties, Givental’s conjecture predicts integral formulae for Whittaker
functions. Givental [Giv] explicitly constructed a mirror family and
thus integral formula for G = SLn Whittaker functions. This integral
formula was then studied in detail by Gerasimov-Kharchev-Lebedev-
Oblezin [GKLO], and a series of works by Gerasimov-Lebedev-Oblezin,
including [GLO08, GLO12], where the formula was extended to classical
groups.

In [Rie08], Rietsch proposed a general Lie-theoretic construction of
the mirror family, and proved it for the “non-equivariant” case in [Rie12].

1.3. Geometric crystals

Developments in the representation theory of quantum groups led
Kashiwara to define a notion of a crystal graph: a combinatorial model
B for an irreducible representation V of a complex simple Lie algebra g.
The vertices of the graph represent basis vectors of V , while the action
of g is encoded in colored edges.

Berenstein and Zelevinsky [BZ] studied Kashiwara’s crystals by first
parametrizing crystal basis elements using a string of integers, and then
representing the crystal action as certain piecewise-linear formulae. At
the center of their approach is the relation between parametrizations
of the closely related canonical bases and parametrizations of totally
positive elements, observed by Lusztig [Lus].

Berenstein and Kazhdan [BK00, BK07] then defined geometric crys-
tals: these are irreducible varieties Y equipped with rational actions
ei : C

∗ × Y → Y , satisfying certain relations. Berenstein and Kazhdan
showed that geometric crystals tropicalize to combinatorial crystals: the
rational actions ei tropicalize to the piecewise-linear crystal actions, and
the finite set underlying a crystal is cut out of Z� by the tropicalization
of a decoration F : Y → C.
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1.4. Whittaker functions as integrals over geometric crys-
tals

Let G be a complex semisimple algebraic group with opposite Borels
B,B−, torus T = B ∩ B− and let U be the unipotent subgroup of B.
This article revolves around the following integral formula:

Theorem 1.1. Let λ : T → C
∗ be a character. The integral

ψλ(t) =

∫
(Xt)>0

λ(γ(x))e−F(x)ωt

as a function of t ∈ T>0 is a Whittaker function for G with infinitesimal
character ξλ−ρ.

Here Xt = B−∩Utw̄0U is the geometric crystal with highest weight
t, the functions F : Xt → C and γ : Xt → T are the decoration and
weight functions respectively, the form ωt is a holomorphic form induced
by a toric chart on Xt, and “> 0” indicates totally positive parts. The
weight function γ : Xt → T tropicalizes to the usual weight function of
a crystal.

In the mirror symmetry/quantum cohomology literature, the deco-
ration is called the “superpotential”.

We give an essentially self contained proof of Theorem 1.1, modulo
issues of converegence of this integral, referring to [Chh, Rie12] for such
issues.

Our proof follows that of Rietsch [Rie12], which in turn is moti-
vated by work of Gerasimov-Kharchev-Lebedev-Oblezin [GKLO]. Our
work improves on the existing literature in the following way. Compared
to Rietsch’s work, we now allow λ to be arbitrary: Rietsch deals with
the case λ = 1. In other words, we extend Rietsch’s proof to the “equi-
variant” case. We have also made an effort to formulate the proof within
the theory of geometric crystals, hopefully clarifying many calculations.

Compared to Chhaibi’s approach [Chh], our approach has the advan-
tage that it proves that the integral is a solution to the whole quantum
Toda lattice, rather than just the quantum Toda Hamiltonian. We have
also made an effort to make the proof as algebraic as possible, which may
appeal to some readers. Though I must say that the probabilistic inter-
pretation of this integral is also extremely attractive! Since Chhaibi’s
thesis is so comprehensive, we have basically omitted mention of the
probabilistic viewpoint from our treatment.

One of the pleasant surprises (for me) is the naturality of the holo-
morphic top-form ωt. When Xt is embedded into the flag variety it can
be identified with the open Richardson variety R1,w0 ⊂ G/B−. The
form ωt is the (unique, up to scalar) meromorphic differential form on
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G/B− with simple poles exactly along the boundary ∂R1,w0 , which is the
union of Schubert and opposite Schubert divisors. With Knutson and
Speyer, we studied (the inverses of) such forms in the setting of Frobe-
nius splittings [KLS]. This also indicates that the geometric crystal can
be thought of as an open Calabi-Yau variety sitting in the flag variety. It
may thus be most natural to formulate Theorem 1.1 as an integral over
the flag variety, where the contribution of the integral over the boundary
is zero. We remark that the open Richardson varieties R1,w0 appear to
play a special role in Lian-Song-Yau’s study of period integrals on the
flag variety where they are candidates for a large complex structure limit
point; see Huang-Lian-Zhu [HLZ, Section 6].

There are many potential generalizations to pursue, such as exten-
sions to more general geometric crystals (especially the parabolic ones),
but we have decided to focus on this one particular geometric crystal.

1.5. Geometric analogues of Schur functions and geomet-
ric RSK

The irreducible characters of g are weight generating functions of
crystal graphs. Theorem 1.1 is thus the geometric analogue of this.

For the case G = SLn this analogy is especially potent, and Whit-
taker functions behave like geometric analogues of Schur functions in
many ways. There is a geometric analogue of the Robinson-Schensted-
Knuth bijection, introduced by Kirillov [Kir], and developed further by
Noumi-Yamada [NY]. Instead of a bijection from matrices to tableaux,
the geometric RSK bijection is a map R

nm
>0 → Rnm

>0 which tropicalizes
to RSK.

As explored in the works of Corwin, O’Connell, Seppäläinen, and
Zygouras [COSZ], and O’Connell, Seppäläinen, and Zygouras [OSZ], the
geometric RSK bijection is most interesting when suitable measures are
put on Rnm

>0 . This bijection then has applications to the theory of ran-
dom directed polymers. There are many works of O’Connell exploring
these developments, see in particular [O12a, O12b]. A recent ambitious
generalization of these random processes is Borodin and Corwin’s Mac-
donald processes [BC].

The geometric RSK bijection leads to a Cauchy identity for Whit-
taker functions [COSZ], and presumably also gives rise to the Pieri-like
formula in [GLO08].

1.6. Organization

In Section 2 we introduce some background notation, and also for-
mulate some of Berenstein-Zelevinsky’s work on parametrizations of sub-
varieties of complex semisimple algebraic groups. In Section 3 we give a
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condensed introduction to Berenstein-Kazhdan’s geometric crystals. For
brevity, we have avoided unipotent crystals and unipotent bicrystals, but
have given an example of how to tropicalize to obtain a combinatorial
crystal. In Section 4, we give a mostly self-contained introduction to
the quantum Toda lattice, and explain how it arises from Whittaker
modules. Here I partly follow Etingof’s article [Eti]. Section 5 gives
the proof of Theorem 1.1. In Section 6, we write down the integral ex-
plicitly in type A in terms of Gelfand-Tsetlin patterns. We also state
some Whittaker function identities which are geometric analogues of the
Cauchy and Pieri identities for Schur functions. In Section 7, we connect
the story back to quantum Schubert calculus, which is one of our (and
Rietsch’s) main motivations.

Acknowledgements. I have learnt a lot from Konni Rietsch on this
topic. I am also very grateful to Sasha Braverman and Reda Chhaibi
for many helpful discussions while visiting ICERM. Finally, we thank
Ben Brubaker, Dan Bump, and Sol Friedberg for interesting discus-
sions related to Whittaker functions. We also thank Ben Brubaker, Ivan
Corwin, and Viswambhara Makam for a number of comments on an
earlier version.

This article is loosely based upon two talks I gave during the ICERM
semester program “Automorphic Forms, Combinatorial Representation
Theory and Multiple Dirichlet Series”. I thank the organizers and
ICERM for inviting me. I am also grateful to the organizers of the Inter-
national summer school and conference on Schubert calculus in Osaka
2012 for allowing me to write this article for the proceedings of the
conference.

§2. Background on semisimple groups

This section follows Berenstein and Zelevinsky [BZ] and Berenstein
and Kazhdan [BK07].

2.1. Notations

Let G be a semisimple complex algebraic group with Dynkin dia-
gram I. We pick opposite Borels B,B− and set T = B ∩ B−. Write U
and U− for the unipotent radicals of B and B−. For each i ∈ I we fix a
homomorphism φi : SL2 → G, and define

xi(a) = φi

(
1 a
0 1

)
yi(a) = φi

(
1 0
a 1

)

α∨
i (a) = φi

(
a 0
0 a−1

)
x−i(a) = φi

(
a−1 0
1 a

)
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so that xi(a) ∈ B, yi(a) ∈ B−, and α∨
i (a) ∈ T . They are related by the

equality x−i(a) = yi(a)α
∨
i (a

−1). For example for G = SL4, we would
have

x2(a) =

⎛
⎜⎜⎝

1
1 a

1
1

⎞
⎟⎟⎠ and x−3(a) =

⎛
⎜⎜⎝

1
1

a−1

1 a

⎞
⎟⎟⎠

Define projections π+ : B− · U → U and π− : B− · U → U by

π+(bu) = u π−(bu) = b.

For each i ∈ I we also have a character αi : T → C
∗, which we

will often think of as characters on B or B− via the quotient maps
B → B/U � T and B− → B−/U− � T . We have αj(α

∨
i (c)) = caij

where aij = 〈αj , α
∨
i 〉 is the Cartan matrix of G. We denote the set of

roots α of T by R+, and the corresponding coroots are denoted α∨.
Also define s̄i = xi(−1)yi(1)xi(−1). Since the s̄i satisfy the braid

relations, this gives a distinguished lifting of the w → w̄ of the Weyl
group W to G. Since we have fixed such a lifting, we will often abuse
notation by writing w when we mean w̄. Denote by w0 the longest
element of W .

For each i ∈ I we have an elementary character χi : U → C given
by

χi(xj(a)) = δij · a.
Similarly define χ−

i : U− → C. These characters are extended to rational
functions on G via

χ−
i (u−tu+) = χ−

i (u−) and χ+
i (u−tu+) = χi(u+)

for u± ∈ U± and t ∈ T . We let χ =
∑

i χi. For example, if G = SL4

χ

⎛
⎜⎜⎝

1 a ∗ ∗
1 b ∗

1 c
1

⎞
⎟⎟⎠ = a+ b+ c.

2.2. Relations for xi and yi

We recall some standard relations that the one-parameter subgroups
xi(a) and yi(a) satisfy.
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Proposition 2.1. We have

xi(a)yi(a
′) = yi

(
a′

1 + aa′

)
α∨
i (1 + aa′)xi

(
a

1 + aa′

)
(1)

yi(a)xi(a
′) = xi

(
a′

1 + aa′

)
α∨
i

(
1

1 + aa′

)
yi

(
a

1 + aa′

)
(2)

and xi and yj commute for i 
= j.

By a positive rational function in the following we mean a ratio of
polynomials with nonnegative coefficients.

Proposition 2.2 ([BZ]). Let i 
= j ∈ I and suppose (sisj)
m = 1

where m = 2, 3, 4, 6. Then as rational morphisms,

xi(a)xj(b) = xj(b)xi(a)

if m = 2;

xi(a)xj(b)xi(c) = xj(bc/(a+ c))xi(a+ c)xj(ab/(a+ c))

if m = 3;

xi(a1)xj(a2)xi(a3)xj(a4) = xj(b1)xi(b2)xj(b3)xi(b4)

if m = 4;

xi(a1)xj(a2)xi(a3)xj(a4)xi(a5)xj(a6) = xj(c1)xi(c2)xj(c3)xi(c4)xj(c5)xi(c6)

if m = 6;

where b1, b2, b3, b4 (resp. c1, c2, . . . , c6) are positive rational functions of
a1, a2, a3, a4 (resp. a1, a2, . . . , a6) depending only on the Cartan matrix
entries aij and aji. Similar relations hold for x−i, and for m = 2, 3 they
are

x−i(a)x−j(b) = x−j(b)x−i(a) if m = 2

x−i(a)x−j(b)x−i(c) = x−j(bc/(b+ ac))x−i(ac)x−j(a+ b/c) if m = 3.

For a reduced word i = (i1, i2, . . . , ik), we denote xi(a1, a2, . . . , ak) :=
xi1(a1) · · · xik(ak). Proposition 2.2 shows that if i and j are two reduced
words for the same w ∈ W , then xi(a1, a2, . . . , ak) = xj(a

′
1, a

′
2, . . . , a

′
k),

for parameters a′j which are subtraction-free rational functions in the
aj-s. Similarly we use the notation x−i.

2.3. Toric charts

We now discuss positive parametrizations of spaces by tori following
[BK07, Section 3].

Let S = (C∗)r be an algebraic torus. Let X∗(S) be the group of
characters of S. A regular function f on S is positive if it is of the form
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f(s) =
∑

λ∈X∗(S) aλλ(s) for nonnegative real numbers aλ. A rational

function on S is positive if it can be expressed as a ratio of positive
regular functions. A rational function f : S → S′ between two algebraic
tori is positive if μ ◦ f is positive for every character μ ∈ X∗(S′).

A toric chart on an algebraic variety Y is a birational isomorphism
θ : S → Y . Two toric charts θ : S → Y and θ′ : S′ → Y are positively
equivalent if (θ)−1◦θ′ and (θ′)−1◦θ are both positive. A positive structure
ΘY on Y is a positive equivalence class of toric charts and call the pair
(Y,ΘY ) a positive variety. We define the totally positive part Y>0 of
(Y,ΘY ) to be the image θ(Rr

>0) ⊂ Y for any toric chart θ : S → Y in
the equivalence class ΘY . By the definitions, this does not depend on
the choice of θ.

The one-parameter subgroups xi and yi can be used to give toric
charts of certain subvarieties of G. Let Uw0 = U ∩ B−w0B− and let
X = B− ∩ Uw0U . These two varieties are the main players in this
article.

Proposition 2.3 ([BZ, Proposition 4.5]). Let i be a reduced word
for w0 and let � = �(w0). The map xi is an open embedding

xi : (C
∗)� ↪→ Uw0 .

For any reduced words i, i′ of w0, the toric charts xi and xi′ of U
w0 are

positively equivalent. The map x−i is an open embedding

x−i : (C
∗)� ↪→ X.

For any reduced words i, i′ of w0, the toric charts x−i and x−i′ of X are
positively equivalent.

Note that the “positively equivalent” statement follows from Propo-
sition 2.2. We denote the positive varieties by (Uw0 ,Θ+) and (X,Θ−).
We also have totally positive parts Uw0

>0 and X>0.

Proposition 2.4 ([BFZ, Lemma 2.13]). The union of the images
of xi, as i varies over reduced words of w0 has codimension 2 in Uw0 .
The union of the images of x−i, as i varies over reduced words of w0

has codimension 2 in X.

Proposition 2.5 ([BK00, Proposition 4.2]). The map η : Uw0 → X
given by

η(u) = π−(uw0)

is an isomorphism of positive varieties. The inverse map is given by

η−1(x) = π+(w0x
−1)−1.
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The map η is called the “twist map”; it is studied extensively in
[BZ, FZ]. It follows from Proposition 2.5 that for u ∈ Uw0 there is
a unique τ(u) ∈ U such that uw̄0τ(u) = η(u). For a reduced word
i = (i1, i2, . . . , ik), let iop = (ik, . . . , i1) denote the reversed reduced
word. The following result is essentially [BZ, Lemma 6.1]; see also [Chh,
Proof of Theorem 4.1.20].

Lemma 2.6. Let i = (i1, . . . , ik) be a reduced word. Then

xi(a1, . . . , ak) =

⎛
⎝ k∏

j=1

β∨
j (aj)

⎞
⎠x−iop(bk, . . . , b1)

T

where (a1, . . . , ak) and (b1, . . . , bk) are related by an invertible monomial
transformation, and βk = si1 · · · sik−1

αik .

(Sketch of proof.) Let g �→ gT denote the transpose map (an anti-
automorphism) of G, given on generators by xi(a)

T = yi(a) and by
(α∨

i (a))
T = α∨

i (a). We have

xT
−iop =

(
yik(bk)α

∨
ik
(b−1

k ) · · · yi1(b1)α∨
i1(b

−1
1 )

)T
= α∨

i1(b
−1
1 )xi1(b1) · · ·α∨

ik
(b−1

k )xik(bk).

Now push the torus factors through the xi’s using the basic relation
txi(a)t

−1 = xi(αi(t)a), for t ∈ T . Q.E.D.

2.4. Canonical form

Given a torus S = {(x1, x2, . . . , xr)} � (C∗)r, we have a canonical
top form

ωS =
dx1

x1

dx2

x2
· · · dxr

xr
.

Let yi =
∏r

j=1 x
cij
i be a monomial transformation of the torus. Then

(3)
dy1
y1

· · · dyr
yr

= det(C)
dx1

x1
· · · dxr

xr
.

The algebraic group automorphisms of S are given by invertible mono-
mial transformations, and in that case C ∈ GLn(Z) is invertible, and
thus det(C) = ±1. Thus ωS is well-defined up to sign.

If θ : S → Y is a toric chart, then the pushforward of ωS gives a top
form ωθ on Y . We say that two toric charts θ : S → Y and θ′ : S → Y are
canonically equivalent if ωθ and ωθ′ are equal up to sign. A canonically
positive variety is a triple (Y,ΘY , ωY ) where ΘY is a canonically positive
equivalence class of toric charts and ωY is the induced top form (defined
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up to sign). A birational morphism f : Y → Z of canonically positive
varieties is canonically positive if f and f−1 are both positive morphisms
and f sends ωY to ωY .

Proposition 2.7 ([Rie08, Chh]). For any reduced words i, i′ of w0,
the toric charts xi and xi′ of U

w0 are canonically equivalent. For any re-
duced words i, i′ of w0, the toric charts x−i and x−i′ of X are canonically
equivalent.

Proof. This can be verified directly by using the relations in Propo-
sition 2.2. This was done for xi in [Rie08] case-by-case. The braid rela-
tions for xi and x−i in Proposition 2.2 are related by inversion of param-
eters ([BZ, Proposition 7.3(5)]), so the statement for x−i follows. Let us
illustrate what needs to be checked for the m = 3 relation for x−i. Sup-
pose x−i(a)x−j(b)x−i(c) = x−j(e)x−i(f)x−j(g), where e = bc/(b+ ac),
f = ac, and g = a+ b/c. We need to verify that

da

a

db

b

dc

c
= ±de

e

df

f

dg

g
.

The Jacobian matrix is⎛
⎝ − c

a(b+ac)2
c

b(b+ac)2
b

ac(b+ac)2
1
ab 0 1

bc
1

abc
1

abc2 − 1
ac3

⎞
⎠

which has determinant efg
abc . Q.E.D.

We will always use the canonically positive equivalence class of
Proposition 2.7 for Uw0 and X, and generally omit this from the no-
tation. The canonical forms are denoted ωU and ωX . The following
result was first explicitly observed by Chhaibi [Chh].

Proposition 2.8 ([Chh]). The morphism η : Uw0 → X is a canon-
ically positive isomorphism.

To summarize, Uw0 and X have totally positive parts Uw0
>0 and X>0,

and canonical top forms ωU and ωX that are sent to each other via η
and η−1.

In the next section we give another explanation for why ωU and
(η−1)∗(ωX) must agree (at least up to a scalar).

2.5. Direct geometric interpretation of ωU and ωX

We give a direct geometric interpretation for ωU . By Proposition
2.4 and Proposition 2.7, the form ωU is well-defined and has no zeroes
on the whole of Uw0 . We can embed Uw0 into the flag variety G/B−
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via the map u �→ uB−/B−. The image of Uw0 is the open Richardson
variety R1,w0 : it is the intersection of the open Schubert cell with the
opposite open Schubert cell [Rie12, KLS].

Lemma 2.9. There is up to scalar only one meromorphic top-form
ω on G/B−, holomorphic and non-vanishing on R1,w0 ⊂ G/B−, and
with only simple poles on the boundary ∂R1,w0 = G/B− \R1,w0 .

Proof. The canonical bundle of G/B− is the line bundle L−2ρ �
G×B− C2ρ, where C2ρ is the one-dimensional representation of B− given
by b �→ ρ2(b). So the polar divisor of ω must have homology class
2ρ, or equivalently, twice the sum of the Schubert divisors. We have
∂R1,w0 = D1 ∪D2 ∪ · · · ∪Dr ∪D′

1 ∪ · · · ∪D′
r, where the Schubert divisor

Di and opposite Schubert divisor D′
i are homologous. Since ω only has

simple poles, we see that it has a pole of order one on each Di or D′
i.

The ratio of any two such forms will then be a holomorphic function on
G/B−, which must be constant. Q.E.D.

By a dlog form on a smooth irreducible variety Z we mean a form
which is a wedge of forms df

f where f is a rational function Z. We learnt

the following proof from David Speyer.

Lemma 2.10. A dlog form only has simple poles.

Proof. Let ω = df1
f1

df2
f2

· · · dfk
fk

, and let D be an irreducible compo-

nent of the polar divisor. By a monomial transformation of the coordi-
nates (f1, f2, . . . , fk) we may assume that only f1 vanishes on D. (By
(3) this changes ω by a constant.) But then f1 = hαg where h is the
function cutting out D, and g neither vanishes or has poles on D. So

df1
f1

= α
dh

h
+

dg

g
,

and it is clear that ω has a pole of order at most one along D. Q.E.D.

Combining Lemmas 2.9 and 2.10,

Proposition 2.11. Any holomorphic, non-vanishing dlog form on
Uw0 is a scalar multiple of the canonical form ωU . In particular, the
form (η−1)∗(ωX) is a scalar multiple of ωU .

This form, or more precisely its inverse which is an anticanonical
section, is studied for partial flag varieties in [KLS], in the setting of
Frobenius splittings.
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2.6. Example

Let us illustrate Proposition 2.8 for the case G = SL3. Pick the
reduced word i = (2, 1, 2). Then

u := xi(a, b, c) =

⎛
⎝ 1 b bc

0 1 a+ c
0 0 1

⎞
⎠

Using

w0 =

⎛
⎝ 0 0 1

0 −1 0
1 0 0

⎞
⎠

one computes that

η(u) =

⎛
⎝ bc 0 0

a+ c a
c 0

1 1
c

1
ab

⎞
⎠ and τ(u) =

⎛
⎝ 1 1

c
1
ab

0 1 a+c
ab

0 0 1

⎞
⎠ .

Note that both u and η(u) are totally nonnegative in the usual sense (all
minors are nonnegative) when (a, b, c) ∈ R

3
>0. We also compute that that

η(u) = y1(e)y2(f)y1(g), where e = 1/b, f = 1/ab, and g = 1/c. Since
the map (a, b, c) �→ (e, f, g) is an invertible monomial transformation
which sends R3

>0 → R3
>0 we see that η sends Uw0

>0 to X>0 and that

da

a

db

b

dc

c
= ±de

e

df

f

dg

g
.

§3. Geometric crystals

We follow [BK07] to introduce geometric crystals. For reasons of
brevity we have chosen to omit the notions of unipotent bicrystals and
unipotent crystals.

3.1. Decorated geometric crystals

A geometric crystal is a 5-tuple (Y, γ, ϕi, εi, ei | i ∈ I) where

(1) Y is an irreducible algebraic variety over C
(2) γ : Y → T and εi, ϕi : Y → C are rational maps
(3) ei : C∗ × Y → Y is a rational action of C∗ on Y , where we

write eci (y) = ei(c, y).

satisfying

αi(γ(y)) = εi(y)/ϕi(y), γ(eci (y)) = α∨
i (c)γ(y)

εi(e
c
i (y)) = cεi(y), ϕi(e

c
i (y)) = c−1ϕi(y)
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and the geometric braid relations

ec1i ec2j = ec2j ec1i

if 〈αi, α
∨
j 〉 = 0;

ec1i ec1c2j ec2i = ec2j ec1c2i ec1j

if 〈αj , α
∨
i 〉 = 〈αi, α

∨
j 〉 = −1;

ec1i e
c21c2
j ec1c2i ec2j = ec2j ec1c2i e

c21c2
j ec1i

if 〈αj , α
∨
i 〉 = 2〈αi, α

∨
j 〉 = −2;

ec1i e
c31c2
j e

c21c2
i e

c31c
2
2

j ec1c2i ec2j = ec2j ec1c2i e
c31c

2
2

j e
c21c2
i e

c31c2
j ec1j

if 〈αj , α
∨
i 〉 = 3〈αi, α

∨
j 〉 = −3.

In [BK07], the rational functions ϕi, εi are allowed to be zero, but
for our purposes, it is simpler to always assume that ϕi, εi are non-zero.

A decorated geometric crystal is a geometric crystal (Y, γ, ϕi, εi, ei |
i ∈ I) equipped with a rational function F : Y → T , called the decora-
tion, which satisfies

(4) F(eci (y)) = F(y) +
c− 1

ϕi(y)
+

c−1 − 1

εi(y)
.

3.2. The geometric crystal with highest weight t

Let X = T · X = B− ∩ UTw0U . Define the highest weight map
hw : X → T by

hw(u1tw̄0u2) = t

and for t ∈ T , let Xt = hw−1(t) = t ·X = X · (w0 · t). We shall call Xt

the geometric crystal with highest weight t. Clearly all the fibers Xt are
isomorphic.

Define

(1) the weight morphism γ : X → T by

γ(x) = x mod U− ∈ B−/U− � T ;

(2)
ϕi(x) = χ−

i (x) εi(x) = ϕi(x)αi(γ(x));

(3)

eci (x) = xi

(
c− 1

ϕi(x)

)
· x · xi

(
c−1 − 1

εi(x)

)
;

(4)
F(u1tw0u2) = χ(u1) + χ(u2).
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The fact that eci (x) ∈ X follows from Lemma 3.2 below. There is a
natural projection pri : B− → B− ∩ φi(SL2), and if

pri(x) =

(
a 0
b a−1

)

then ϕ(x) = b/a and ε(x) = ab.
The first statement of the following is due to Berenstein and Kazh-

dan [BK07]. The second statement is due to Chhaibi [Chh].

Theorem 3.1. Each (Xt, γ, ϕi, εi, ei,F) is a decorated geometric
crystal. Furthermore, the geometric crystal action eci preserves the canon-
ical volume form ωt.

There is a rational U -action on X given by

u(x) := u · x · π+(u · x)−1

where π+ : B− · U → U is the projection onto the right factor.

Lemma 3.2 ([BK00, Lemma 2.4]). This action is given explicitly
by

(xi(a))(x) = xi(a) · x · xi(a
′)

where
a′ = − a

(1 + aϕi(x))αi(γ(x))
.

Furthermore, we have

γ(xi(a)(x)) = α∨
i (1+aϕi(x))γ(x) and

1

ϕi(xi(a)(x))
=

1

ϕi(x)
+a.

Proof. Let x = ut for u ∈ U− and t ∈ T . Supposing that u =
yi1(a1) · · · yi�(a�), the right factor π+(xi(a) ·x)−1 can be computed using
Proposition (2.1) and it is clear that it is of the form xi(a

′) for some a′.

To compute a′ it is enough to suppose G = SL2 and let x =

(
b 0
c b−1

)
.

Then(
1 a
0 1

)(
b 0
c b−1

)(
1 a′

0 1

)
=

(
b+ ac a′(b+ ac) + ab−1

c b−1 + a′c

)

so that a′ = − ab−1

b+ac . But

ϕi

((
b 0
c b−1

))
=

c

b
α ◦ γ

((
b 0
c b−1

))
= b2.



226 T. Lam

The value a′ can also be directly computed using (1). Similarly, 1 +
aϕi(x) = 1 + ac/b, so that

γ(xi(a)(x)) = α∨
i (1 + aϕi(x)))γ(x).

Also ϕi(xi(a)(x)) = c/(b+ ac), satisfying the claimed equality. Q.E.D.

Sketch proof of Theorem 3.1. It follows from Lemma 3.2 and the
definition that the C∗-action ei preserves Xt. Substituting the definition
of ei into Lemma 3.2, we see that all the relations of a geometric crystal
are satisfied except possibly the geometric braid relations relating eci and

ec
′

j . We omit the proof of these relations, which are verified in [BK00].
Finally, we have χ(xi(a)u) = a+ χ(u), so that (4) just follows from

the definition of f and ei.
The final statement follows from the fact that if u = xi(a1, a2, . . . , a�)

with i = i� then η−1 ◦ eci ◦ η(u) = xi(ca1, a2, . . . , a�) which preserves the
logarithmic volume form. See [Chh]. Q.E.D.

3.3. Weight map in coordinates

The following explicit formula for γ : X → T will be helpful.

Proposition 3.3. Suppose u = xi(a1, a2, . . . , a�) ∈ Uw0 . Then

γ(η(u)) =
�∏

k=1

β∨
k (ak)

where βk = si1 · · · sik−1
αik .

Proof. Use Lemma 2.6 to write u = tb where t =
∏�

k=1 β
∨
k (ak) and

b = x−iop(bk, . . . , b1)
T . Since b ∈ B ∩ U−w0U−, we have that bw0 ∈

U− · U , thus

γ(η(u)) = γ(π−(uw0)) = γ(π−(tbw0)) = t.

Q.E.D.

In the notation we use, this is a special case of [Chh, Theorem 4.1.20].
It is also a slight variant of [BK07, Claim 7.12] or [BZ, (6.3)].

3.4. The positive decorated geometric crystal

We equip X with the toric chart T × S → X , (t, s) �→ t · θ(s) where
θ : S → X is a toric chart in θX . Fixing t ∈ T gives toric charts on each
of the highest weight geometric crystals Xt. In particular, on each Xt we
have a canonical form ωt, and a totally positive part (Xt)>0 = t ·X>0.
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Note that if t itself is not totally positive, t · X>0 will not be totally
positive in the usual sense.

Suppose Y = (Y, γ, ϕi, εi, ei,F) is a decorated geometric crystal and
Θ is a positive structure on the variety Y . Then (Y,Θ) is a positive
decorated geometric crystal if

(1) the morphism γ : Y → T is a morphism2 of positive varieties
(Y,Θ) → (T,ΘT );

(2) the functions ϕi, εi,F are Θ-positive;
(3) the map ei : C

∗ × Y → Y is a morphism of positive varieties
(C∗ × Y,ΘC∗ ×Θ) → (Y,ΘY ).

Theorem 3.4. The decorated highest weight crystal Xt, equipped
with the positive structure Θt is a positive decorated geometric crystal.

Each of the maps ϕi, εi,F can be expressed in terms of the gen-
eralized minors of [BZ, FZ]. Theorem 3.4 essentially follows from the
subtraction-free rational expressions (see [BZ, FZ]) for these minors in
terms of the parameters in (a1, . . . , a�) of xi(a1, . . . , a�).

For positive decorated geometric crystals, Berenstein and Kazhdan
define a tropicalization functor which produces a (Kashiwara) combina-
torial crystal.

3.5. Combinatorial crystals from geometric crystals

In this section, we assume the reader is familiar with Kashiwara’s
crystals; see [BK07] for further details. We do not describe Berenstein
and Kazhdan’s tropicalization procedure formally, but expain how it
works in the case G = GL4. Strictly speaking we should be using the
semisimple group SL4, but the coordinates are easier to write for GL4.
We fix a reduced word i = (3, 2, 1, 3, 2, 3) of w0, and consider the toric
chart θ : T × (C∗)6 → X given by

(t1, t2, t3, t4)× (a, b, c, d, e, f) �−→ xi(a, b, c, d, e, f)tu
′ = x

where t = diag(t1, t2, t3, t4), and u′ ∈ U is chosen so that the product
xi(a, b, c, d, e, f)tw0u

′ lies in B−. We get that

u′ =

⎛
⎜⎜⎜⎝

1 t3
ft4

t2
det4

t1
abct4

0 1 (d+f)t2
det3

(a+d+f)t1
abct3

0 0 1 (de+ab+ae)t1
abct2

0 0 0 1

⎞
⎟⎟⎟⎠

2The definition of a morphism of positive varieties in [BK07] has some
subtleties, and we do not introduce the full definitions here.
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x =

⎛
⎜⎜⎜⎝

ceft4 0 0 0

(ef + bd+ bf)t4
bdt3
f 0 0

(a+ d+ f)t4
(a+d)t3

f
at2
de 0

t4
t3
f

t2
de

t1
abc

⎞
⎟⎟⎟⎠

so that

F(x) = a+ b+ c+ d+ e+ f +
t3
ft4

+
(d+ f)t2

det3
+

(de+ ab+ ae)t1
abct2

.

(See Section 6.1 for a general formula for this.) Let A,B,C,D,E, F ,
T1, T2, T3, T4 be the “tropicalizations” of the ten variables. Fix integers
T1, T2, T3, T4 ∈ Z4, representing a highest weight vector. Our first step
is to consider the integer 6-tuples A,B,C,D,E, F satisfying trop(F) ≥
0. Here the tropicalization trop(F) is obtained by the the substitution
(+,×,÷) �→ (min,+,−) and changing variables to their tropicalizations.
We get

trop(F) = min(A,B,C,D,E, F,

T3 − F − T4, T2 − E − T3, T2 + F −D − E − T3, T1 − C − T2,

T1 + E −B − C − T2, T1 +D + E −A−B − C − T2) ≥ 0.

Thus the underlying set of the combinatorial crystal is the set of

(A,B,C,D,E, F ) ∈ Z
6

satisfying the above inequality. These variables can be arranged into a
Gelfand-Tsetlin pattern

T1 T2 T3 T4

T1 − C T2 −E T3 − F
T1 − C −B T2 −D − E

T1 −A−B − C

with the usual inequalities. The weight of such a pattern is trop(γ)
where

γ =

(
ceft4,

bdt3
f

,
at2
de

,
t1
abc

)
,

agreeing with the usual weight. Let us also calculate a single crystal
operation. We have ϕ2(x) = (a+d)/bd and ε2(x) = (de(a+d)t3)/(aft2)
and

ep2(x) =

⎛
⎜⎜⎜⎝

ceft4 0 0 0
(d(ef+bdp+bfp)+a(ef+bf+bdp))t4

a+d
bdpt3

f 0 0

(a+ d+ f)t4
(a+d)t3

f
at2
dep 0

t4
t3
f

at2+dpt2
epd2+aepd

t1
abc

⎞
⎟⎟⎟⎠ .
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Solving gives that the coordinates of ep2(x) are given by

a′ = (a2 + ad)/(a+ dp), b′ = (ab+ bdp)/(a+ d),

c′ = c, d′ = (d(a+ d)p)/(a+ dp), e′ = e, f ′ = f.

To obtain the combinatorial crystal action, we tropicalize this, and set
P = 1. Thus, for example the new value D′ of D is equal to

D′ = min(A+D + 1, 2D + 1)−min(A,D + 1).

§4. Whittaker functions and Whittaker modules

This section gives a condensed introduction to the quantum Toda
lattice, partly following the approach of Etingof [Eti]. We will return to
a discussion of the classical Toda lattice in Section 7.1.

4.1. Quantum Toda lattice

For our purposes, a Whittaker function ψ ∈ C∞(T ) will be a smooth
function on T which is an eigenvector of the quantum Toda lattice, a
system of commuting differential operators, the first one being:

H =
1

2
Δ−

∑
i∈I

αi(t)

where Δ is the Laplacian associated to the W -invariant inner product
on h. Explicitly, Δ =

∑
i(

∂
∂hi

)2 where hi are an orthonormal basis of

h. To be more precise, for X ∈ h, the differential operator ∂
∂X acts on

C∞(T ) as
∂f

∂X
(t) =

d

da
f(t exp(aX))

∣∣∣∣
a=0

Theorem 4.1. There exists a unique set of differential operators
H1,H2, . . . ,Hr on T , called the quantum Toda lattice, such that

(1) the operators Hi commute;
(2) we have H1 = H; and
(3) the symbols of Hi are the fundamental W -invariants of Sym(h).

Kazhdan and Kostant constructed this commuting set of differential
operators by quantum Hamiltonian reduction from the action of Z(g) on
C∞(G). The existence part of Theorem 4.1 is explained in Proposition
4.2 below. For G = SLn, the quantum Toda lattice are essentially the
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coefficients of the characteristic polynomial of the following matrix:

(5)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂h1

eh2−h1

1 ∂
∂h2

eh3−h2

1 ∂
∂h3

. . .

. . .
. . . ehn−hn−1

1 ∂
∂hn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where hi are standard coordinates on h, satisfying
∑

i hi = 0. The
characteristic polynomial is well-defined even though the matrix has
non-commutative entries.

4.2. Center and Harish-Chandra homomorphism

The reader is referred to [Hum] for further details of the material in
this section.

For each α ∈ R+ pick weight vectors eα, fα, hα ∈ g satisfying
[eα, fα] = hα. As usual we write ei = eαi and so on. We assume
that xi(a) = exp(aei), yi(a) = exp(afi) and α∨

i (a) = exp(ahi).
We recall some standard facts concerning the center Z(g) ⊂ U(g)

of the universal enveloping algebra. We have a decomposition U(g) =
U(h)⊕ (n−U(g) + U(g)n+). This gives a projection map U(g) → U(h).
Restricted to Z(g), this projection is an algebra homomorphism HC ′ :
Z(g) → U(h). We may identify U(h) with the ring of polynomial func-
tions O(h∗) on h∗. Composing HC ′ with the algebra automorphism
p(λ) �→ p(λ− ρ) induces the Harish-Chandra isomorphism

HC : Z(g) �−→ O(h∗)W ,

where ρ = 1
2

∑
α∈R+ α is the half-sum of positive roots.

Suppose that z ∈ Z(g). Note that if we write z = x + y where
x ∈ n−U(g) and y ∈ U(b+), then automatically y = HC ′(z). This
follows easily from the fact that Z(g) lies in the centralizer of h in U(g),
and thus every element of Z(g) has weight 0.

Now let ξλ : Z(g) → C be the central character of Z(g) by which
Z(g) acts on the highest weight irreducible representation of g with
highest weight λ ∈ h∗. The Harish-Chandra isomorphism satisfies

ξλ(z) = HC(z)(λ+ ρ) for all z ∈ Z(g).

Note that ξλ = ξw·λ where as usual the dotted action is given by w ·λ =
w(λ+ ρ)− ρ. We also define ρ∨ = 1

2

∑
α∈R+ α∨.
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If V is a g-module then so is V ∗ under the action (X · v∗)(v) =
v∗(−X · v) for v ∈ V, v∗ ∈ V ∗. Note that if Vλ is finite-dimensional then
(Vλ)

∗ � V−w0λ. It follows that if V has central character ξλ, then V ∗

has central character ξ−w0λ.
Let (·, ·) be the Killing form of g which restricts to a nondegenerate

symmetric bilinear form on h. Using (·, ·) we can identify h with h∗, and
we also use (·, ·) to denote the corresponding form on h∗. Define the
Casimir element C ∈ Z(g) ⊂ U(g) by

C =
∑
i

aibi

where {ai} and {bi} are dual bases with respect to the nondegenerate
symmetric bilinear form (·, ·). It can be expressed in terms of Chevalley
generators as

C =
r∑

i=1

h2
i + 2

∑
α∈R+

fαeα + 2hρ∨

where hi is an orthonormal basis of h and 2hρ∨ =
∑

α∈R+ hα. To obtain
this formula, we used the commutation relation [eα, fα] = α∨. Note that
HC ′(C) =

∑r
i=1 h

2
i + 2hρ∨ which can be identified with the function

λ �→ (λ, λ+ 2ρ) on h∗. Thus we have

(6) HC(C)(λ) = (λ, λ)− (ρ, ρ).

4.3. Whittaker modules

Let V be a (g, T )-module. That is, V is a complex vector space with
compatible actions of U(g) and of T : if X ∈ h, we have

(7) X · v =
d

ds
exp(aX) · v

∣∣∣∣
a=0

and for X ∈ g we have

t ·X · t−1 · v = ad(t)(X) · v
where ad(t) : g → g is the adjoint action of T on g. We will mostly
use the compatibility of the g and T actions in a formal way, ignoring
topological considerations.

A vector v ∈ V is a n+-Whittaker vector (resp. n−-Whittaker vector)
if ei · v = −v (resp. fi · v = −v ) for i ∈ I. If V± are two (g, T )-modules,
we say that a bilinear pairing 〈·, ·〉 : V− × V+ → C is g-invariant if we
have

〈X · v, w〉+ 〈v,X · w〉 = 0

for all X ∈ g.
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Proposition 4.2. Let 〈., .〉 : V−×V+ → C be a g-invariant bilinear
pairing. Suppose v+ ∈ V+ and v− ∈ V− are n+- and n−-Whittaker
vectors respectively. Suppose that V+ has central character ξ. Then the
function ψ ∈ C∞(T ) given by

ψ : t �−→ ρ−1(t)〈v−, t−1 · v+〉
is a Whittaker function.

Proof. Let ψ′(t) = 〈v−, t−1 · v+〉. Let C be the Casimir element.
We calculate the function

t �−→ 〈v−, t−1 · C · v+〉 ∈ C∞(T )

in two ways. On the one hand, since V has central character ξ, we have

〈v−, t−1 · C · v+〉 = ξ(C)ψ′(t).

On the other hand, noting that for X ∈ h we have 〈v−, t−1 ·X · v+〉 =
−∂ψ′

∂X (t) by (7),

(C.ψ′)(t) = 〈v−, t−1 ·
⎛
⎝ r∑

i=1

h2
i + 2

∑
α∈R+

fαeα + 2hρ∨

⎞
⎠ · v+〉

=
r∑

i=1

〈v−, t−1 · hi · hi · v+〉

− 2
∑

α∈R+

α(t)〈fα · v−, t−1eα · v+〉+ 2〈v−, t−1 · hρ∨ · v+〉

= Δ(ψ′)(t)− 2
∑
i∈I

αi(t)ψ
′(t)− 2

(
∂ψ′

∂hρ∨

)
(t)

= 2

(
H − ∂

∂hρ∨

)
ψ′(t)

where we have used that eα · v+ = 0 for α not simple, and

t−1fαt = ad(t−1)(fα) = α(t)fα.

Thus ψ′ is an eigenfunction of H − ∂
∂hρ∨

with eigenvalue 1
2ξ(C). But a

term by term calculation gives the equality of differential operators

(ρ(t))−1

(
H − ∂

∂hρ∨

)
ρ(t) = H − 1

2
(ρ∨, ρ∨).
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Thus the function ψ(t) = ρ(t)−1ψ′(t) is an eigenfunction of H with
eigenvalue 1

2ξ(C
′) where by (6) C ′ = C − (ρ∨, ρ∨) can be succinctly

described as the element in Z(g) satisfying HC(C ′)(λ) = (λ, λ).
Now let z ∈ Z(g) be arbitrary. By the PBW-theorem, we can ex-

press the element z as a linear combination of monomials of the form
fβ1 · · · fβahβ′

1
· · ·hβ′

b
eβ′′

1
· · · eβ′′

c
where the βi, β

′
j , β

′′
k are positive roots.

Repeating the argument above for this expression, we obtain a differen-
tial operator Dz on T so that ψ is an eigenfunction of Dz. Note that the
differential operator Dz only depends on the central character ξ, and not
on the other choices (v±, V±). If z, z′ ∈ Z(g) then Dz commutes with
Dz′ since Z(g) is commutative. The collection {Dz | z ∈ Z(g)} of dif-
ferential operators is the algebra generated by the differential operators
H1,H2, . . . ,Hr of Theorem 4.1.

To see this, we observe that O(h∗)W � Sym(h)W , so that for each
fundamental W -invariant ζi of Sym(h) we have an element HC−1(ζi) ∈
Z(g). Then the differential operator Hi in Theorem 4.1 is equal to
DHC−1(ζi), up to a modification by lower-order differential operators.

Q.E.D.

We call the function of Proposition 4.2, an eigenvector corresponding
to central character ξ. Thus a Whittaker function with central character
ξ−ρ has eigenvalue HC(C ′)(−ρ + ρ) = 0; that is, it is a solution to the
Toda Hamiltonian.

The proof of Proposition 4.2 essentially establishes the following
reformulation of Theorem 4.1. Let D(T ) denote the ring of differential
operators on T .

Theorem 4.3. There is an algebra embedding κq : Sym(h)W →
D(T ) such that κq(

1
2 (C + (ρ, ρ))) = H, and the symbol of κq(z) is equal

to z.

4.4. Principal series representations

Consider the space Wμ of holomorphic functions on B−Uw0 satisfy-
ing

f(bu) = μ(b)f(u) for b ∈ B−

Since B−Uw0 is open in G, the universal enveloping algebra U(g) acts
on Wμ in the usual way:

(X.f)(g) =
d

da
f(g exp(aX))

∣∣∣∣
a=0

(t.f)(g) = f(gt)

Proposition 4.4. The space Wμ has infinitesimal character ξμ.
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Proof. Let z ∈ Z(g). Since z is G-invariant: gzg−1 = ad(g)(z) = z
for all g ∈ G, we have that z.f = f.z, where the right action of U(g) on
Wμ is given by the formula:

(f.X)(g) =
d

da
f(exp(aX) g)

∣∣∣∣
a=0

Let us write z = x+y where x ∈ n−U(g) and y = HC ′(z) ∈ U(h). Then
f.x = 0 so that f.z = f.y = μ(y), where we think of μ as an element of
h∗. Thus Wμ has infinitesimal character ξμ. Q.E.D.

§5. Whittaker functions as integrals over geometric crystals

5.1. Definition

Let λ : T → C
∗ be a character of T . Define the integral function

(8) ψλ(t) =

∫
(Xt)>0⊂Xt

λ(γ(x))e−F(x)ωt.

Let T>0 � R
r
>0 be the totally positive part of T . It is generated by

the elements {α∨
i (a) | a ∈ R>0}.

Theorem 5.1. The function ψλ(t) is a Whittaker function on T>0

with infinitesimal character ξλ−ρ.

The reason to only consider the integral for t ∈ T>0 is to simplify
issues of convergence: for t ∈ T>0 the integral becomes a real integral.

This formula is a rather elegant analogue of the formula for the
character of an irreducible representation for G. In that case, we have a
summation over a crystal instead of an integral over a geometric crystal.
See Section 6.1 for further discussion.

To prove Theorem 5.1, we follow Rietsch [Rie12] and Gerasimov-
Kharchev-Lebedev-Oblezin [GKLO] to express this integral as a matrix
coefficient of dual Whittaker modules. Theorem 5.1 was conjectured
by Rietsch [Rie08] without the language of geometric crystals, and she
proved it in [Rie12] for the case λ = 1. The proof here is essentially the
same as hers. Theorem 5.1 was also established by Chhaibi [Chh] using
probabilistic methods, though I believe he checked only that it is an
eigenfunction of the quantum Toda Hamiltonian, and not of the whole
quantum Toda lattice.

Remark 5.2. The approach of [Rie12, GKLO], and ours, remain
valid for other families of integration cycles Γt ⊂ Xt where the integrand
has exponential decay in the infinite directions. In particular, Rietsch
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[Rie12] identifies a particular family of compact cycles. Givental [Giv]
suggests taking a non-degenerate critical point of the decoration f on Xt

and taking the union of descending gradient trajectories of the function
Re(f |Xt) with respect to a suitable Riemannian metric. However, it does
not seem easy to explicitly identify all the possible families of integration
cycles. Nevertheless, it seems reasonable to conjecture that as we vary
the integration cycle we obtain allWhittaker functions with infinitesimal
character ξλ−ρ.

Remark 5.3. Since γ(x) ∈ T>0 � R
r
>0, instead of the factor

λ(γ(x)) we could use the factor e〈log(γ(x)),h〉 for h ∈ C
r to define ψh(t).

Theorem 5.1 still holds in this setting. Indeed, the functions ψh(t) then
become analytic in h. See [Chh].

5.2. Convergence

Let us begin by commenting on the convergence of the integral (8),
but only briefly. By Theorem 3.4, the decoration f : X>0 → C is
positive. Indeed, as shown in [BK07], f(x) is a positive sum of ratios of
minors of x. Since x is totally nonnegative, it follows that f(x) > 0. To
show that the integral converges, in [Rie12] and [Chh] it is shown that
the sets {x ∈ (Xt)>0 | f(x) ≤ M} are bounded for any M > 0. They
obtain:

Proposition 5.4 ([Rie12, Chh]). The function e−F(x) has exponen-
tial decay in all directions of (Xt)>0 for t ∈ T>0 and thus the integral
(8) converges for t ∈ T>0.

In the rest of this section, there will be related integrals where parts
of the integrands have been differentiated (arising from the action of
U(g) on Wμ). This produces only extra rational factors in the integral
and do not affect convergence. We will thus not comment on convergence
issues, and work only formally from now on.

Chhaibi’s work [Chh] contains a more serious treatment of analytic
properties of this integral.

5.3. Whittaker vectors in Wμ

Let us define γ̃ : Uw0 → T by γ̃(u) := γ(η(u)). In the following we
will regard functions on Uw0 as elements of Wμ in the obvious way.

Proposition 5.5. The function f+(u) = e−χ(u) is a n+-Whittaker
vector of Wμ.

Proof. We have

(ei · f+)(u) = d

da
(uxi(a))

∣∣∣∣
a=0

=
d

da
(e−af+(u))

∣∣∣∣
a=0

= −f+(u).
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Q.E.D.

Lemma 5.6. Suppose u ∈ U . Let uyi(a) = bu′ for b ∈ B− and
u′ ∈ U . Then

τ(u′) = xi∗(a)τ(u) and γ̃(u′) = γ(b−1)γ̃(u)

where i �→ i∗ is the automorphism of I induced by −w0.

Proof. Since xi∗(a) = (w̄0)
−1yi(−a)w̄0, we compute that η(u′) =

(b−1uyi(a))w0(xi∗(a)τ(u)) = b−1η(u). Q.E.D.

Proposition 5.7. The function f−(u) = ν(γ̃(u))e−χ(τ(u)) is a n−-
Whittaker vector of Wν .

Proof. By Lemma 5.6,

f−(uyi(a)) = f−(bu′) = ν(b−1)ν(γ̃(u′))e−χi(τ(u
′)) = ν(γ̃(u))e−χi(τ(u))e−a.

Differentiating, we get fi · f− = −f−. Q.E.D.

5.4. Pairing

Suppose V+ has central character ξμ and V− has central character
ξν . Then the existence of a g-invariant pairing 〈·, ·〉 : V− × V+ → C

implies that ξμ = ξ−w0ν . Note that this is satisfied if μ+ ν = −2ρ, since
then μ = w0(−w0ν + ρ)− ρ = w0 · (−w0ν) so that ξμ = ξ−w0ν .

Proposition 5.8. Suppose f ∈ Wν and f ′ ∈ Wμ where ν+μ = −2ρ.
Then assuming it converges, the pairing

〈f, f ′〉 =
∫
U

w0
>0

f(u)f ′(u)ρ(γ̃(u))ωU

is a g-invariant pairing.

There is an embedding of Uw0 into the flag variety F l = B−\G via
u �→ B−\B−u (we use the left quotient here to match the choices of our
principal series representations). As a first step we establish that

Lemma 5.9. The rational n-form ω′ = ω(u)ρ(γ̃(u)), considered as
a meromorphic n-form on B−\G, is U -invariant.

For g ∈ G, let Rg : F l → F l denote the isomorphism given by right
multiplication by g. We let R∗

g denote the pullback of forms.

Proof. Let u′ = uxi(a). Suppose u = xi1(a1) · · · xi�(a�) and i� = i.
Then

R∗
xi(a)

(ω)(u) = ω(u)
a�

a� + a
.
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But by Proposition 3.3 we also have γ̃(u′) = γ̃(u)α∨
i∗(

a�+a
a ) and the

equality ρ(α∨
i∗(

a�+a
a )) = a�+a

a , cancelling the above factor. Q.E.D.

Thus the form ω′ has no poles on the open Schubert cell B−\B−U
but a double pole along the Schubert divisors, the irreducible compo-
nents of the complement in F l.

The space Wμ can be identified with the space of smooth sections
of the line bundle Lμ = Cμ ×B− G → B−\G over the open subset
B−\B−Uw0 . Since U acts transitively on B− · U , we obviously have
dim(Γhol(B−\B−U,Lμ)

U ) ≤ 1. The restriction of these U -invariant sec-
tions to B−Uw0 can be identified with the functions f ∈ Wμ satisfying
f(bu) = cμ(b) for some constant c. The canonical bundle of the flag
variety F l is known to be G-equivariantly isomorphic to L−2ρ. It then
follows that under this isomorphism ω′ can be identified with the the
meromorphic section of L−2ρ on F l which is identified with a function
f ∈ W−2ρ satisfying

f(bu) = cρ(b)−2

for some constant c.

Proof of Proposition 5.8. Let X ∈ g. We first claim that
(9)
(exp(aX) · f)(exp(aX) · f ′)ρ(γ̃(u))ωU = R∗

exp(aX)(f(u)f
′(u)ρ(γ̃(u))ωU )

where on the left hand side we have the local G-action in the spaces
Wν ,Wμ, and on the right hand side we have pullbacks of meromorphic
forms. (The equality is to be interpreted locally: for each u ∈ U , the
LHS makes sense for sufficiently small a.)

To see this notice that the pointwise product f(u)f ′(u) can be
thought of as an element of Wν+μ = W−2ρ. The local G-action on
this space is identified with the action of G on sections of L−2ρ, which
can in turn be identified with the action of G on meromorphic n-forms.
Under this identification, by the previous discussion, f(u)f ′(u) ∈ W−2ρ

can be identified with the meromorphic n-form f(u)f ′(u)ρ(γ̃(u))ωU on
B−\G. Differentiating (9), we get

(X · f)f ′ + f(X · f ′)ρ(γ̃(u))ωU

=
d

da
R∗

exp(aX)(f(u)f
′(u)ρ(γ̃(u))ωU )

∣∣∣∣
a=0

= d ◦ iX(f(u)f ′(u)ρ(γ̃(u))ωU ),

where iX denotes the contraction with respect to the vector field on
B−\G given by X ∈ g. (We have used the Cartan formula LXω =
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iXdω + d ◦ iXω, and the fact that our form is a top form.) Thus

〈X · f, f ′〉+ 〈f,X · f ′〉 =
∫
Γ

d ◦ iX(f(u)f ′(u)ρ(γ̃(u))ωU ).

We want to apply Stoke’s theorem to the right hand side even though Γ =
Uw0
>0 is not compact. To that end, suppose Γ lies in a compactification

Γ̄ = Γ � ∂Γ. Then by Stoke’s formula the right hand side is equal to∫
∂Γ

iX(f(u)f ′(u)ρ(γ̃(u))ωU ). The form (f(u)f ′(u)ρ(γ̃(u)) and with it,
iX(f(u)f ′(u)ρ(γ̃(u)), has exponential decay in all directions on Γ and so
is identically 0 on ∂Γ (see Proposition 5.4). This argument can also be
carried out by approximating Γ by an increasing sequence Γ1 ⊂ Γ2 ⊂ · · ·
of open submanifolds which cover Γ. See also [Rie12, p.20]. Q.E.D.

5.5. Proof of Theorem 5.1

Let us compute the function t �→ ρ(t)〈f−, t · f+〉:

ρ(t)

∫
U≥0

f−(u)(t · f+)(u)ρ(γ̃(u))ωU

= ρ(t)μ(t)

∫
U≥0

f−(u)f+(t−1ut)ρ(γ̃(u))ωU

= ρ(t)μ(t)

∫
U≥0

(ν + ρ)(γ̃(u))e−χ(τ(u))e−χ(t−1ut)ωU

= (ρ+ μ)(t)

∫
U≥0

(ν + ρ)(γ(uw0τ(u)))e
−F(t−1uw0τ(u))ωU

= (ρ+ μ)(t)(ν + ρ)(t)

∫
(Xt−1 )≥0

(ν + ρ)(γ(x))e−F(x)ωt−1

=

∫
(Xt−1 )≥0

(ν + ρ)(γ(x))e−F(x)ωt−1

where we have used that ν + μ + 2ρ = 0, γ(x = (t−1ut)t−1w0τ(u)) =
t−1γ(uw0τ(u)), and that the form ω on U is invariant under conjugation
by t ∈ T .

But by Proposition 4.2, the function

ψλ(t) =

∫
(Xt)≥0

λ(γ(x))e−F(x)ωt

is a solution of the quantum Toda lattice with infinitesimal character
ξλ−ρ.
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§6. Whittaker functions as geometric analogues of Schur func-
tions

In this section we assume G = GLn+1. While in the previous sec-
tions we have supposed that G is semisimple, all the results extend
naturally to this case. Using GLn+1 instead of SLn+1 makes the com-
binatorics slightly more elegant.

6.1. Integrals over Gelfand-Tsetlin patterns

We fix the reduced word

i = (n, n− 1, . . . , 1, n, n− 1, . . . , 2, . . . , n)

of w0. So for n = 4 we would have i = (4, 3, 2, 1, 4, 3, 2, 4, 3, 4). Let

u = xi(an,n+1, an−1,n+1, . . . , a1,n+1, an−1,n, an−2,n, . . . , a1,2)

and
t = diag(tn+1, tn, . . . , t1).

Proposition 6.1. Let x = utw0u
′ ∈ X. Then

γ(x) = t
∏

1≤i<j≤n+1

α∨
i,j(ai,j).

Thus γ(x) = diag(γ1(x), . . . , γn+1(x)) where

γi(x) = ti

∏n+1
k=i+1 ai,k∏i−1
k=1 ak,i

.

Proof. This just follows from Proposition 3.3. Q.E.D.

We omit the proof of the following, which can be deduced from [BZ],
or through a straightforward but lengthy calculation. See Section 3.5 for
an example.

Proposition 6.2. Let x = utw0u
′ ∈ X. Then

F(x) =
∑

1≤i<j≤n+1

ai,j +
∑

1≤i<j≤n+1

tj
tj−1ai,j

ai−1,j−1

ai−1,j
· · · a1,j−1

a1,j
.

Define new variables

zi,j =
tj

a1,ja2,j · · · an+1−i,n+1−i+j
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where we assume that zn+1,j = tj . Then

F(x) =
∑

1≤i<j≤n+1

zn+2−i,j−i+1

zn+1−i,j−i
+

zn+1−i,j−i

zn+2−i,j−i

=
∑

1≤b≤a≤n

za+1,b+1

za,b
+

za,b
za+1,b

and weight given by γi(x) =

∏n+1−i
j=1 zn+1−i,j∏n−i

j=1 zn−i,j

.

For fixed positive parameters tj the transformation ai,j �→ zi,j is
an invertible monomial transformation, so our Whittaker function from
Theorem 5.1 is

ψμ(t)

(10)

=

∫
R

n(n+1)/2
>0

exp

⎛
⎝−

∑
1≤j≤i≤n

zi+1,j+1

zi,j
+

zi,j
zi+1,j

⎞
⎠ n+1∏

i=1

γμi

i

∏
1≤j≤i≤n

dzi,j
zi,j

where μ = (μ1, μ2, . . . , μn+1) ∈ Zn is a character of T .
If we make the substitutions λ = (−μn+1, . . . ,−μ1), and ti = xi

then we see that one has

ψμ(t1, t2, . . . , tn+1) = Ψn+1
λ (x1, x2, . . . , xn+1)

where Ψn
λ(x) are the Whittaker functions studied by Corwin, O’Connell,

Seppäläinen, and Zygouras [COSZ], and O’Connell, Seppäläinen, and
Zygouras [OSZ, (2.11)]. Essentially the same formula was studied by
Givental [Giv], and also by Gerasimov, Kharchev, Lebedev, and Oblezin
[GKLO].

The parameters zi,j can be put into a Gelfand-Tsetlin pattern of the
form

t5 t4 t3 t2 t1
z4,4 z4,3 z4,2 z4,1

z3,3 z3,2 z3,1
z2,2 z2,1

z1,1

Equation (10) should thus be compared to the formula

sλ(x1, x2, . . . , xn) =
∑
T

xweight(T )
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for a Schur function as a generating function of semistandard Young
tableaux. In this analogy, the summation is replaced by an integral, the
shape λ is replaced by the highest weight t of a geometric crystal, the
variables xi are replaced by the parameter μ, and finally the condition
that a tableau be semistandard is replaced by e−f(x) where the “poten-
tial” f(x) discourages, rather than forbids, certain inequalities between
the variables.

6.2. Identities

These Whittaker functions satisfy many integral identities remini-
scient of Schur function identities. The following analogue of the Cauchy
identity is [COSZ, (3.21)], and was first proved by Stade [Sta].

Theorem 6.3. Suppose s > 0 and λ, ν ∈ C
n, where Re(λi+νj) > 0

for all i, j. Then∫
Rn

>0

e−s/xnΨn
ν (x)Ψ

n
λ(x)

n∏
i=1

dxi

xi
= s−

∑n
i=1(νi+λi)

∏
i,j

Γ(νi + λj).

Note that for Ψn
λ(x), the ‘shape’ is x and so the above formula is

indeed an analogue of a summation over the shape. Here the Gamma-
function takes the place of the familiar factor 1

1−λiνi
in the Schur func-

tion identity. In [OSZ] the Whittaker analogue of the identity∑
λ

sλ(x) =
∏
i

1/(1− xi)
∏
i<j

1/(1− xixj)

can also be found.
Define the “Baxter operator” [OSZ, GLO08] for λ ∈ C

Qn
λ(x, y) =

(
n∏

i=1

yi
xi

)λ

exp

(
−

n∑
i=1

yi
xi

−
n−1∑
i=1

xi+1

yi

)
.

The following analogue of the Pieri rule is [GLO08, Corollary 2.2].

Theorem 6.4. For suitable γ ∈ C and λ ∈ Cn, we have∫
Rn

>0

Qγ(x, y)Ψ
n
λ(x)

n∏
i=1

dxi

xi
=

n∏
i=1

Γ(γ − λi)Ψ
n
λ(y).

This is the an analogue of the generating function of Pieri rules
over all homogeneous symmetric functions. In this case, the product∏n

i=1 Γ(γ−λi) takes the place of a generating function
∑

k hkt
k of homo-

geneous symmetric functions. The Baxter operator is thus the geometric
analogue of adding a horizontal strip to a Young tableaux.
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Remark 6.5. The Cauchy and Pieri identities for Schur functions,
and many other properties, follow from the Robinson-Schensted-Knuth
algorithm. Corwin, O’Connell, Seppäläinen, and Zygouras [COSZ] study
Whittaker functions using the geometric RSK algorithm of Kirillov [Kir]
and Noumi-Yamada [NY].

Remark 6.6. Chhaibi [Chh] establishes many interesting properties
of the functions (8), including a geometric analogue of the Littlewood-
Richardson rule.

§7. Mirror symmetry for flag varieties

The formula (10) for the Whittaker function was discovered by
Givental [Giv] in the context of mirror symmetry for flag varieties. From
this point of view, the family hw : X → T equipped with volume forms
ωt and decoaration/superpotential F : X → C is a “mirror family” to
the Langlands dual flag variety G∨/B∨. As we have remarked, the fibers
Xt ⊂ X are themselves the complement in G/B− of an anticanonical
divisor, and so can be thought of as open Calabi-Yau varieties.

There are no proofs in this section; we merely hope to connect the
previous discussion to the literature on quantum Schubert calculus and
mirror symmetry.

7.1. Toda lattice

The Toda lattice of G is the Hamiltonian integrable system on T
with Hamiltonian

H(t, h∗) =
1

2
(h∗, h∗)−

∑
i∈I

αi(t)

where (t, h∗) ∈ T × h∗ is identified with the cotangent space T ∗(T ). For
example, for G = SLn we have

H =
1

2

n∑
i=1

p2i −
n−1∑
i=1

exi+1−xi

where to be compatible with the classical defintions, here we use coor-
dinates xi on h, rather than T . This models n particles traveling on
the line with position xi, momentum pi (with 0 total momentum). The
energy of the system is given by the kinetic energy 1

2

∑n
i=1 p

2
i and a

potential where only adjacent particles interact.
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Let e =
∑

i∈I f
∨
i ∈ g∨ be a principal nilpotent. Also identify h∗

with h∨. We consider the map

(t, h∗) �−→ e+ h∗ +
∑
i∈I

αi(t)e
∨
i ∈ e+ h∨ +

⊕
i∈I

C · e∨i ⊂ g∨

sending the cotangent space T ∗(T ) to a tridiagonal space of matrices.
We denote by A∨ ⊂ g∨ the image of this map. Kostant [Kos79] shows
that the Toda Hamiltonian is essentially the Killing form (., .)∨ of g∨

restricted to A∨, and the other integrals of motion are given by the
map A∨ → h∨/W arising from O(h∨)W � O(h∨/W ) � O(g∨)G ↪→
O(g∨) → O(A∨), where the first map is Chevalley’s restriction theorem.
The images of the generators of Sym(h)W � O(h∨/W ) in O(A∨) are
the integrals of motion of the Toda lattice.

Under the isomorphism A∨ � T ∗(T ), we get an embedding κ :
Sym(h)W ↪→ O(T ∗(T )), whose image consists of Poisson commuting
elements. This embedding is the quasi-classical limit of the quantum
Toda lattice κq : Sym(h)W ↪→ D(T ) of Theorem 4.3. The quasi-classical
limit is obtained by ∂/∂h �→ h∨, for h ∈ h.

For example, for G = SLn, we have

(11) A∨ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 eh2−h1

1 p2 eh3−h2

1 p3
. . .

. . .
. . . ehn−hn−1

1 pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where {pi} is the basis of h∨ dual to {hi} (cf. (5)). The integrals
of motion of the Toda lattice are the coefficients of the characteristic
polynomial of this matrix.

7.2. Cohomology of flag varieties

We use the same notation as in previous sections, with the caution
that objects for G previously are now associated to the Langlands dual
G∨.

By Borel’s Theorem the cohomology and equivariant cohomology of
a flag variety have the ring presentations

H∗(G/B,C) � Sym(h∗)/〈Sym(h∗)W+ 〉 and H∗
G(G/B,C) � Sym(h∗).

where 〈Sym(h∗)W+ 〉 denotes the ideal generated by the positive degree

elements of the invariants W -invariants Sym(h∗)W . The Schubert cell
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decomposition {BwB/B | w ∈ W} of G/B gives a Schubert basis

H∗(G/B,C) � ⊕w∈WC ·σw and H∗
G(G/B,C) � ⊕w∈WSym(h∗)W ·σw

G,

where H∗
G(pt,C) � Sym(h∗)W . From our point of view, it is instructive

to think of Sym(h∗) as functions on h: the H∗
G(pt,C)-module struc-

ture on H∗
G(G/B,C) comes from the projection p : h → h/W :=

Spec(Sym(h∗)W ). Then H∗(G/B,C) is identified with functions on the
scheme theoretic fiber of p−1(0). The Schubert classes are certain dis-
tinguished functions on these spaces.

7.3. Quantum cohomology of flag varieties

The quantum cohomology rings QH∗(G/B,C) are defined using
Gromov-Witten invariants, arising from the enumeration of rational
curves in the flag variety. We will not present the details here, but
only some formal properties. We have vector space isomorphisms

QH∗(G/B,C) � O(T∨)⊗H∗(G/B,C)

and
QH∗

G(G/B,C) � O(T∨)⊗H∗
G(G/B,C),

where (simple coroot) coordinates on T∨, denoted {qi | i ∈ I} are called
quantum parameters, so that O(T∨) � C[q±1

i | i ∈ I]. (Often, quantum
cohomology rings are defined without inverting the quantum parameters
qi.) It is convenient, and part of the quantum cohomology setup, to
identify h∗ with the Lie algebra, or tangent space, of T∨, so thatO(T∨)⊗
Sym(h∗) � O(T ∗T∨), the coordinate ring of the cotangent bundle of T∨.
We also have quantum Schubert bases

QH∗(G/B,C) � ⊕w∈WO(T∨) · σw
q

and
QH∗

G(G/B,C) � ⊕w∈WO(T∨)⊗ Sym(h∗)W · σw
q,G.

Kim [Kim], following work of Givental-Kim [GK] in type A, relate
the ring structure of QH∗(G/B,C) with Toda lattices.

Theorem 7.1 ([Kim]). We have ring isomorphisms

QH∗(G/B,C) � O(A×h/W {0}) and QH∗
G(G/B,C) � O(A)

where the H∗
G(pt,C)-module structure on QH∗

G(G/B,C) is given by the
map A → h/W .
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The space A ×h/W {0} is the set of tridiagonal matrices where the
integrals of motion of the Toda lattice vanish, often called the nilpotent
leaf. Thus the Schubert bases {σw

q } should be thought of as functions
on the nilpotent leaf A ×h/W {0} of the Toda lattice, and {σw

q,G} as
functions on the Toda lattice A. For example, for G = PGL3, using
(11) we would have that QH∗(G/B,C) is isomorphic to

C[p1, p2, p3, q
±1
1 , q±1

2 ]/

〈p1 + p2 + p3, q1 + q2 − p1p2 − p1p3 − p2p3, p1p2p3 − p3q1 − p1q2〉

where q1 = eh2−h1 and q2 = eh3−h2 .

Remark 7.2. The proof of Theorem 7.1 utilizes heavily the formal
properties of quantum cohomology, and remarkably few properties of
rational curves in G/B. The crucial fact is that H2(G/B,C) � h �
⊕i∈IC · hαi and the only rational curves of degree hαi in G/B are the
fibers of the projection map G/B → G/Pi, where Pi denotes a minimal
parabolic subgroup. In particular, there is exactly one rational curve of
degree hαi through each point of G/B.

7.4. Mirror conjecture and quantum D-module

The quantum cohomology ring QH∗(M) is only part of the remark-
able structure encoded in enumeration of rational curves in a (suitable)
space M . There is also a system of commuting differential equations
called the quantum D-module. We explain this now for the flag variety.

Just as the equivariant quantum cohomology ring of G/B is a map
T ∗T∨ → h/W , the quantum integrable system of the flag variety is an
embedding

Sym(h∗)W → D(T∨)

with quasi-classical limit given by the map Sym(h∗)W → O(T ∗T∨) aris-
ing from the H∗

G(pt,C)-module structure of QH∗
G(G/B,C). Here D(T∨)

denotes the (non-commutative) ring of differential operators on T∨.

Theorem 7.3 ([Kim]). The quantum cohomology D-module is given
by the quantum Toda lattice of Theorem 4.1 for G∨.

Motivated by considerations from singularity theory, Givental [Giv]
proposed (in the general setting of a compact symplectic manifold M)
that the quantum D-module had solutions which are stationary phase
integrals over a conjectural “mirror family” Y → T∨:

ψ(t) =

∫
Γt⊂Yt

eFtωt



246 T. Lam

where Yt is a family of possibly non-compact complex manifolds, Ft :
Yt → C is a family of holomorphic functions called the “superpotential”,
and ωt a family of non-vanishing top-dimensional holomorphic forms.
As the family of real (again, possibly non-compact) middle-dimensional
cycles varies, one hopefully obtains all the solutions to the quantum
D-module. In the setting of equivariant quantum cohomology, one is
supposed to be able to produce arbitrary eigenfunctions of the quantum
D-module. Givental proved this for G = GLn in the non-equivariant
setting and Joe and Kim [JK] extended this to the equivariant setting.
Rietsch [Rie08] then proposed a conjectural mirror family for arbitrary
partial flag varieties, and proves it in the non-equivariant setting for the
full flag variety [Rie12]. Our Theorem 5.1 proves Rietsch’s conjecture in
the equivariant setting.

In Givental’s mirror conjecture, the critical points of the functions
Ft recover the Lagrangian variety that is the spectrum of the quantum
cohomology ring. Rietsch [Rie08] verified this for G/B in the following

Theorem 7.4. The set of critical points of the superpotential (or
decoration) f |Xt : X∨

t → C, as t varies, is given by the centralizer
subvariety

(X∨)critical = Z∨
e := {x ∈ X∨ | ad(x)(e) = e}

where e =
∑r

i=1 fi ∈ g is the principal nilpotent element.

The action ad(x) is the coadjoint action of G∨ on g � (g∨)∗. The
variety Z∨

e is related to Kim’s presentation of QH∗(G/B) by the map
η. The map

(12) x �−→ ad(η−1(x))−1 · e
maps Z∨

e isomorphically onto A×h/W {0} � Spec(QH∗(G/B,C)). This
map is an important part of Kostant’s solution of the Toda lattice
[Kos79]: it provides action coordinates for the nilpotent leaf. In other
words, the twist map is a part of the solution of the Toda lattice.

The closure of the image Z∨
e w0B

∨
− ⊂ G∨/B∨

− of Z∨
e in the flag

variety is called the Peterson variety. We refer the reader to Rietsch’s
work [Rie03, Rie08] for further discussion of this.

7.5. Quantum equals affine and Schubert bases

Let GrG = G(C((t)))/G(C[[t]]) denote the affine Grassmannian of
G. Here C((t)) is the field of formal Laurent series, and C[[t]] is the
subring of formal power series. The affine Grassmannian also has a
Schubert decomposition and we have a Schubert basis:

H∗(GrG,C) � ⊕x∈Waf/WC · ξx
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where Wafdenotes the affine Weyl group.
The affine Grassmannian is homotopy equivalent to the based loop

group ΩK, where K ⊂ G denotes a maximal compact subgroup. Thus
the group multiplication of ΩK endows the homology H∗(GrG,C) with
a ring structure (indeed, a Hopf algebra structure). This homology ring
was studied by Ginzburg [Gin] and Peterson [Pet], who showed:

Theorem 7.5. We have H∗(GrG,C)ξ−1
tλ

� O(Z∨
e ).

Here ξtλ is a Schubert class labeled by a translation element. We
refer the reader to [LS10, LS12] for further details. Peterson [Pet]
noticed the remarkable fact that the isomorphism H∗(GrG,C)ξ−1

tλ

�
QH∗(G/B,C) induced by (12) is compatible with Schubert bases. The
following result is established by Lam and Shimozono [LS10] following
Peterson’s work (see also Leung and Li [LL]).

Theorem 7.6. We have a ring isomorphism H∗(GrG,C)ξ−1
tλ

→
QH∗(G/B,C) sending each affine Schubert class ξx to some product
qdσw

q of a monomial in the quantum parameters, and a quantum Schubert
class.

It is convenient to think of H∗(GrG,C) as more closely related to
Z∨
e and the mirror family, while QH∗(G/B,C) is more closely related

to the nilpotent leaf of the Toda lattice A. This is because the cen-
tralizer subgroup Z∨

e ⊂ G∨ naturally appears in the geometric Satake
correspondence underlying Theorem 7.5, while the quantum parameters
are explicit in the tridiagonal form A. So in some sense the twist map
η connects quantum with affine.

Now, let us define the totally positive part of the centralizer variety
(Z∨

e )>0 := Z∨
e ∩ X∨

>0, where X∨
>0 = T∨

>0 · U∨
>0. Surprisingly, we can

use Schubert bases (thought of as functions on Z∨
e ) to pick out the

totally positive part, linking quantum and affine Schubert calculus back
to the positivity discussions in previous sections. The following result
was established by Rietsch and myself [LR]:

Theorem 7.7.

(1) (Z∨
e )>0 = {x ∈ Z∨

e | ξw(z) > 0 for all w ∈ Waf/W};
(2) the map Z∨

e → T∨ restricts to a homeomorphism (Z∨
e )>0 →

T∨
>0 � R

r
>0.

Part (2) was conjectured by Rietsch [Rie03] who established it in
type A. Combined with Theorem 7.4, it shows that F|(Xt)>0

has a
unique critical point for t ∈ T>0. Chhaibi [Chh, Theorem 5.2.11] proved
the related result that each the decoration f |X∨

t
has a unique minimum

on (X∨
t )>0, for t ∈ T∨

>0.
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