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Abstract.

The notes are aimed at a reasonably self-contained introduction
to the theory of Schubert polynomials (in a wider sense) for all the
classical Lie types in the setting of torus equivariant cohomology. As a
powerful combinatorial device, we use the restriction maps to the set
of torus fixed points throughout the lectures.
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§0. Introduction

The article is based on a series of lectures delivered in 5th MSJ
Seasonal Institute, Schubert calculus 2012, Osaka, where I tried to give
a survey on the theory of Schubert polynomials, with particular emphasis
on a combinatorial approach which is available in the torus equivariant
cohomology.

The theory of Schubert polynomials aims to produce explicit repre-
sentatives for Schubert classes in the cohomology ring of the flag variety.
In the classical literature, cohomology ring of a (generalized) flag variety
is naturally presented as a quotient of some polynomial ring. Many at-
tempts to find “canonical” representatives of the Scubert classes in the
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quotient ring have been done. As far as the group G is classical type,
a principle of such a choice is given by considering infinite rank setting.
In fact, if Gn be the classical group of types An, Bn, Cn, and Dn, we
can consider the Weyl group of the infinite rank which contains all finite
rank Weyl groups of any fixed type. Then we can introduce a Schubert
class for each element in the infinite Weyl group. In fact, for the full flag
variety of type A, Les Polynômes de Schubert introduced by Lascoux
and Schützenberger in [37] can be characterized by this principle (cf.
[11]). For other classical types, it was pointed out by Fomin-Kirillov
[10] that the Borel type presentation of cohomology ring is not suited
for this purpose. However, as Billey and Haiman [3] showed, a presenta-
tion using Schur’s Q-functions (or P -functions) introduced in [46] gives a
satisfactory theory of Schubert polynomials in the infinite rank setting.
This is our model to develop the theory of Schubert polynomials in the
setting of torus equivariant cohomology.

The purpose of this whole lectures is to show some fundamental
ideas of introducing the double version of the Billey-Haiman polynomi-
als [20]. By the equivariant Schubert polynomials , I mean the Schubert
polynomials in these context. Although the original papers were pub-
lished in [18], [20], [21]. I will try to put them in a simple frame so that
the basic ideas become manifest.

I intended to include an introduction to the theory of Schubert poly-
nomials relevant for the torus equivariant K-theory also. In fact, the last
lecture of this series was an account of the results in [22] which provides
a natural K-theoretic analogue of the contents in §2. I had tried to make
the results in [22] more comprehensive, however, I finally gave up doing
that. This is because, although the formalism goes parallel as in the case
of cohomology, we can not avoid some of complicated calculations, up to
my knowledge now. Here I just expect the reader to consult the original
article [22], and more fundamental papers by Kostant and Kumar [29]
and Buch [6].

In Section 1, we consider the torus equivariant cohomology of the
Grassmannian. The goal is to identify the equivariant Schubert classes
with the so-called factorial Schur functions . Our approach is purely
combinatorial and uses the GKM ([14]) description of the equivariant
cohomology and its Schubert basis. I also emphasize the role of the
“left” divided difference operators, which play a fundamental role when
we consider the extension of the story to the equivariant K-theory. I
just briefly discuss how the role of the double Schubert polynomial in
this context. The last subsection on the Kempf-Laksov formula is added
so that we can reinterpret the results in the context of degeneracy loci
formulas.
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In Section 2, we discuss the Lagrangian Grassmannian (the maximal
isotropic Grassmannian of orthogonal type is treated similarly, however
we mainly consider The Lagrangian case) which is the key geometric
object related to the construction of double Schubert polynomials. The
first important result is to relate the equivariant Schubert class with the
factorialQ-function, which is a deformation of theQ-function introduced
by V. N. Ivanov in [23]. Next we extend this to the full flag variety and
introduce the double Schubert polynomials. Also in the last subsection,
I included a review on a result by Kazarian in [25] which corresponds to
the Kempf-Laksov formula in the Lagrangian case.

Section 3 is an application of the previous section. We study the
singularity of the Schubert variety by using the equivariant Schubert
polynomials. If the generalized flag variety is cominuscule type, we can
calculate the Hilbert-Samuel multiplicity of the singular points by using
the equivariant Schubert polynomials.

Open questions and related works.
Recently, Anderson and Fulton reconstructed in [2] the double

Schubert polynomials of the classical types by a geometric method in
the context of the degeneracy loci of vector bundles. They also obtained
explicit formulas for the double Schubert polynomials for a class of Weyl
group element which they call Vexillary signed permutations. These for-
mula extends Theorem 2.2 and Theorem 2.5. This result makes up for
the present article from geometric point of view. For more on the de-
generacy loci approach, the recent paper [49] by Tamvakis will be an
excellent guide. See also the references therein.

We do not discuss the problem to determine the multiplicative struc-
ture constants for the various Schubert basis. Of course, this is a main
question in Schubert calculus. So I briefly mention about what is known.
The results are classical for the Schur functions and known for the facto-
rial Schur functions (Morev-Sagan [42], Knutson-Tao [27], Kreiman [30])
and also for the Schur Q-functions (Stembridge [47], Cho [8]). The case
of the factorial Q-function is open.

Acknowledgements. I am particularly grateful to my collabora-
tors H. Naruse and L. Mihalcea for the wonderful conversation and the
work over a period of years. Since the early stage of the works pre-
sented in the lecture, I have been very much inspired by [23], [27], and
[34]. I am deeply indebted to their authors. V. N. Ivanov, A. Knutson,
V. Lakshmibai, K. N. Raghavan, P. Sankaran, T. Tao. Without their
works, I could not even start the research on the Schubert calculus.
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Moreover, I learned the crucial meaning of cominuscule property in Sec-
tion 3 by A. Knutson. On this occasion, I would like to express my
thanks to K. N. Raghavan and his collaborators for sharing some re-
sults on the multiplicities of the singular points on the Schubert variety.
Impressively enough, M. Kazarian [25] had proved essentially the same
result in my paper [18] by using completely different languages. This
experience gives me a great pleasure. I would like to also thank him for
deep understanding on my work. I also thank Tomoo Matsumura and
Takashi Sato for valuable comments on the draft.

§1. Grassmannians and Factorial Schur functions

We review a combinatorial description of equivariant Schubert classes
in the ordinary Grassmannian. We put much emphasis on combinatorial
properties of special polynomials called the factorial Schur functions.

1.1. Schubert varieties in Grassmannians

We start with the ordinary Grassmannian Gd,n of linear d-spaces in
Cn. We fix d throughout in this section, while we take a limit of n tends
to infinity later. An element in Gd,n has unique basis vvv1, . . . , vvvd such
that the matrix (vvv1, . . . , vvvd) is a column echelon form like (Cell) in the
following

(Cell)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
∗ 0 0
0 1 0
∗ ∗ 0
∗ ∗ 0
0 0 1
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Pivot ones in this example have the row indices 1, 3, 6. We denote by

nCd the set of all subsets in {1, . . . , n} of cardinality d. The elements of
the Grassmannian Gd,n are divided into the parts labeled by their set
of pivot ones in nCd. Collecting the elements in Gd,n of a fixed label in

nCd, we define a Schubert cell.
It is convenient to consider nCd as the coset space Sn/(Sd×Sn−d) in

the following way, where Sn is the symmetric group of degree n. In fact,
Sn acts transitively on nCd and the stabilizer of {1, . . . , d} is Sd ×Sn−d.
Let J ∈ nCd (we consider J as the set of row indices of pivot ones). We
can choose a permutation w ∈ Sn so that

(1.1) 1 ≤ w(1) < . . . < w(d) ≤ n, 1 ≤ w(d+ 1) < . . . < w(n) ≤ n.
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and J = {w(1), . . . , w(d)}. Then we call w the Grassmannian permu-
tation corresponding to J. For the above example, the corresponding
Grassmannian permutation is w = 1362457 in one line notation.

One more interpretation of the index set is given by Young diagrams
(or partition). Let Pd,n be the set of partitions λ = (λ1 ≥ · · · ≥ λd)
such that λ1 ≤ n − d. From a Grassmannian permutation w we form
λ ∈ Pd,n in a way illustrated by the following example:

Figure 1.
�
�
�
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Let J = {w(1), . . . , w(d)}. Consider d × (n − d) rectangular. Starting
from SW corner, we walk to NE corner as follows: If i ∈ J , then the
i-th step is vertical (upper direction), if not, horizontal (right direction).
Then the corresponding Young diagram is the set of boxes sitting upper
left side of the route. Thus in the above example we have λ = (3, 1).

Let λ ∈ Pd,n and J be the corresponding element in nCd. Consider
the set of matrices of the form (Nbd) below. The rows which are not
labeled by the elements of J are arbitrary. This set can be considered
to be an open set in Gd,n isomorphic to the affine space Cd(n−d). We
denote this open set by Uλ. The Schubert cell labeled by λ is denoted by
X◦

λ, which form a “coordinate subspace” in Uλ. The coordinate functions
vanishing on the cell can be naturally identified with the Young diagram
rotated by 90◦ clockwise as follows:

(Nbd)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
∗ ∗ ∗
0 1 0
∗ ∗ ∗
∗ ∗ ∗
0 0 1
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

∗ 0 0
0 1 0

∗ ∗ 0

∗ ∗ 0
0 0 1
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This in particular implies the codimension of X◦
λ is |λ| = ∑d

i=1 λi. The
set Pd,n is partially ordered by λ ≤ μ ⇐⇒ λ ⊂ μ (the inclusion as

Young diagrams). If we set Xλ = 	μ≥λX
◦
μ, then Xλ = X◦

λ (the Zariski
closure) which is the Schubert variety. The condition for V to be in Xλ

is equivalent to the following:

(1.2) dim(V ∩ Fn−d−λi+i) ≥ i (1 ≤ i ≤ d),



102 T. Ikeda

where Fi = 〈eeen−i+1, . . . , eeen〉 (1 ≤ i ≤ n).
The (rational) cohomology of Gd,n is given as a Q-vector space by

H∗(Gd,n) =
⊕

λ∈Pd,n

Qσλ,

where σ = [Xλ] ∈ H2|λ|(Gd,n) is the fundamental class of Xλ called the
Schubert class.

1.2. Weights of coordinate functions

We denote the standard coordinate functions zij on Uμ as follows.

1 3 6
1

2
3

4

5
6
7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
z21 z23 z26
0 1 0
z41 z43 z46
z51 z53 z56
0 0 1
z71 z73 z76

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the column index j of zij is the row index of pivot one in the
column, i.e., the indices corresponding to the elements of J. We assign
zij the weight tj − ti. This records the action of T = (C×)n given by the
left multiplication.

In the affine space Uλ, the variety Xλ ∩Uλ is a coordinate subspace
defined by zij = 0 with i < j. Let us fill in the boxes of the Young
diagram with the corresponding weights as follows. We call this the
weighted Young diagram.

Figure 2.

t3 − t2

t6 − t2 t6 − t4 t6 − t5

Let J ∈ dCn. Then the inversion set of J is defined by

Inv(J) = {(i, j) | j ∈ J (pivot), i /∈ J (non-pivot), i < j}.
We depict J = {1, 3, 6} ∈ 3C7 by a diagram with dots, as follows. These
diagrams are called Maya diagrams. We draw n boxes in one line such
that the dots correspond to the elements of J. Then an element in Inv(J)
is represented a move on the dots in a pivot diagram as follows:
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Figure 3.

i j
↓

• • •
Pick out a dot at j and move it down (left) to a vacant box of position
i. We equip the element (i, j) ∈ Inv(J) a weight tj − ti.

Proposition 1.1. Let J ∈ dCn and let λ be the corresponding
Young diagram in Pd,n. There is a weight preserving bijection

Inv(J) ∼= {the boxes of the Young diagram λ}.
We explain this bijection by the following example. The element

(i, j) ∈ Inv(J) in Figure 3 corresponds to the box indicated by × in the
Young diagram of λ = (3, 1). Note the the weight of this box is t6 − t4
(see Figure 2).

Figure 4.
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Let P = ⊕n
i=1Qti. The set of positive roots (type An−1) is Δ+ =

{tj − ti | 1 ≤ i < j ≤ n} ⊂ P. For α = tj − ti ∈ Δ+ denote sα =
(i, j) ∈ Sn, the transposition of i and j. Recall that Sn acts on Pd,n

∼=
Sn/(Sd × Sn−d).

Proposition 1.2. The set of weights associated with the boxes of
the weighted Young diagram of λ ∈ Pd,n is given by

(1.3) {α ∈ Δ+ | sαλ < λ}.
Proof. Let J be the element in dCn corresponding to λ. We see that

sαλ < λ if and only if the transposition sα = (i, j) is in Inv(J). Then the
corresponding box of the Young diagram of λ has the weight α = tj − ti.
Thus the proposition follows from Proposition 1.1. Q.E.D.

1.3. GKM graph and equivariant Schubert classes

Let T be the subgroup of GLn(C) consisting of the diagonal matri-
ces. Then T is isomorphic to the algebraic torus (C×)n. Let T act on
Gd,n through the natural action of GLn(C) on Gd,n. We consider the T -
equivariant (rational) cohomology ring H∗

T (Gd,n) of the Grassmannian
variety Gd,n. It is known that this cohomology ring can be calculated
purely combinatorial way. There are many excellent expositions (e.g.
[1]) and related papers ([15]).
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1.3.1. Geometric background Here we briefly explain the geometric
idea underlying the following combinatorial description. The set of T -
fixed points in Gd,n is naturally labeled by the set Pd,n. If w ∈ Sn

represents the element λ ∈ Pd,n, we define eλ = span{eeew(1), . . . , eeew(d)},
which is the origin of the cell Uλ. Then the set GT

d,n of T -fixed points

Pd,n is given by {eλ | λ ∈ Pd,n}. The embedding map i : GT
d,n ↪→ Gd,n

induces the pull-back morphism i∗ : H∗
T (Gd,n) → H∗

T (G
T
d,n). Since GT

d,n

is a discrete finite set, we haveH∗
T (G

T
d,n) =

∏
eλ∈Pd,n

H∗
T (eλ). It is known

that i∗ is injective. Each H∗
T (eλ) is isomorphic to the polynomial ring

Q[t1, . . . , tn], where ti corresponds to a character of T, i.e., a group
homomorphism from T to C×. Thus we can identify H∗

T (G
T
d,n) with

Map(Pd,n,Q[t1, . . . , tn]) with pointwise multiplication.
Thus we have an embedding of rings:

i∗ : H∗
T (Gd,n) ↪→ Map(Pd,n,Q[t1, . . . , tn]).

Let us denote the inclusion map {eλ} ↪→ Gd,n by iλ, which is T -
equivariant. The induced map i∗λ : H∗

T (Gd,n) → H∗
T (eλ)

∼= Q[t1, . . . , tn]
is called the restriction (localization) map. For φ ∈ H∗

T (Gd,n), we de-
note by φ|λ for λ ∈ Pd,n the polynomial i∗λ(φ). There is a remarkable
result due to Chang and Skjelbred [7], and in more general context, by
Goresky-Kottwitz-MacPherson [14] that describes the image of the lo-
calization map i∗ in a purely combinatorial manner. In this article, we
adopt this description as the definition of the equivariant cohomology
ring.

1.3.2. Combinatorial description of H∗
T (Gd,n) Here we set up the

combinatorial framework to discuss the equivariant cohomology of the
Grassmannian.

Definition 1.1 (The graph Gd,n). Let us consider the following
weighted oriented graph:

• vertices: Pd,n
∼= Sn/(Sd × Sn−d) ∼= dCn,

• oriented edges : if there is a positive root α such that μ =

sαλ > λ, we draw an oriented edge λ
α→ μ,

• weight of λ
α→ μ is α.

If n = 4 and d = 2 the graph looks as follows. Here we depict each
element of 4C2 as the corresponding Maya diagram.
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t4 − t2

t4 − t2

t3 − t1

t3 − t1

t2 − t1

t2 − t1t4 − t3

t4 − t3

t4 − t1

t4 − t1

t3 − t2

t3 − t2

Definition 1.2 (Combinatorial definition of equivariant cohomol-
ogy ring). An element φ ∈ Map(Pd,n,Q[t1, . . . , tn]) is in H∗

T (Gd,n) if for

all edge λ
α→ μ the difference φ|λ − φ|μ is divisible by α.

Clearly H∗
T (Gd,n) is a Q[t1, . . . , tn]-subalgebra of the product ring.

Next is a fundamental property of the ring H∗
T (Gd,n). If λ ∈ Pd,n corre-

sponds to J ∈ nCn, we also denote Inv(J) by Inv(λ).

Proposition 1.3. Let φ ∈ H∗
T (Gd,n). If ν ∈ Pd,n is a minimal

element in Supp(φ) := {μ ∈ Pd,n | φ|μ �= 0}, then φ|ν is divisible by

dν :=
∏

α∈Inv(ν)

α.

Proof. Consider the set of all arrows μ
α→ ν, which is naturally

in bijection with Inv(ν) by (1.1). Since μ < ν, we have φ|μ = 0 by
the assumption minimality of ν. Then the GKM condition implies that
φ|ν is divisible by all α in Inv(ν). Note that Q[t1, . . . , tn] is a unique
factorization domain and the elements in Inv(ν) are pairwise relatively
prime elements. Hence φ|ν is divisible by their product

∏
α∈Inv(ν) α.

Q.E.D.

Definition 1.3. Let λ ∈ Pd,n. An element σλ in H∗
T (Gd,n) is called

a Schubert class indexed by λ if it satisfies the following properties:

(i) σλ|μ is homogeneous of degree |λ| with deg(ti) = 1,
(ii) σλ|μ = 0 unless λ ≤ μ,
(iii) σλ|λ = dλ.
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Existence of the Schubert classes follows from general results by
Kostant-Kumar [28] (see also Kumar [33]). We give a constructive proof
later.

Proposition 1.4 ([27], Lemma 1). Let λ ∈ Pd,n. There is at most
one Schubert class corresponding to λ.

Proof. Suppose both σλ and σ′
λ satisfy the defining properties

(i),(ii),(iii) in Definition 1.3. Put τ = σλ − σ′
λ and assume τ �= 0.

Let ν be any minimal element of Supp(τ) �= ∅. Then by (ii) we have
ν ≥ λ. By (iii) we have τ |λ = 0. So λ /∈ Supp(τ). Hence we have ν � λ.
In particular, we have |ν| > |λ|. By Proposition 1.3, τ |ν is divisible by
dν . This means deg(τ |ν) ≥ deg(dν) = |ν|. However from (i) we have
|λ| = deg(τ |ν). This is a contradiction. Q.E.D.

Proposition 1.5 ([27]). H∗
T (Gd,n) is a free Q[t1, . . . , tn]-module

with basis {σλ}λ∈Pd,n
.

Proof. We first show that the set {σλ| λ ∈ Pd,n} spans H∗
T (Gd,n)

as a Q[t1, . . . , tn]-module. Let φ be an arbitrary nonzero element in
H∗

T (Gd,n). We may suppose that φ is homogeneous. Let ν ∈ Pd,n be a
minimal element in Supp(φ) then write φ|ν = cνdν (cν ∈ Q[t1, . . . , tn])
by Proposition 1.3. So φ′ = φ − cνσν vanishes at ν. By the minimality
of ν, φ′ vanishes on D(ν) := {κ | κ ≤ ν}. If φ′ = 0 then we have
φ = cνσν so we are done. Suppose φ′ �= 0. Let ν′ be a minimal element
in Supp(φ′). Then ν′ /∈ D(ν) i.e., ν′ �≤ ν. By the same procedure, we
set φ′′ = φ′ − cν′σν′ , which vanishes on D(ν′). Moreover, φ′′ vanishes
on D(ν). In fact, if κ ≤ ν, since ν′ �≤ ν as above we have ν′ �≤ κ, and
so σν′ |κ = 0 by (ii). Since D(ν) � D(ν) ∪ D(ν′), we can deduce the
support successively to make it empty by subtracting a suitable linear
combination of the Schubert classes.

Now we prove the linear independence. Suppose we have a non-
trivial linear relation

∑
λ cλσλ = 0 over Q[t1, . . . , tn]. Among λ such

that cλ �= 0 we choose a minimal one. Then by (ii), we have cλσλ|λ = 0.
But we have σλ|λ = dλ �= 0, and that cλ = 0. This is a contradiction.
Q.E.D.

Example 1.1. We first consider the projective space G1,n = Pn−1.
For each codimension k, there is a unique Schubert class σ(k) represented
by sk · · · s1 (a row of k boxes). If we define the generalized factorial

(1.4) (z|t)k = (z − t1) · · · (z − tk),

the class σ(k) evaluated at the element si · · · s2s1 is given by

(ti+1|t)k = (ti+1 − t1) · · · (ti+1 − tk).
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Example 1.2. It is strongly recommended to work out the table
for equivariant Schubert classes in G2,4, by any convincing way. Here
we write tij = ti − tj .

λ\μ (0, 0) (1, 0) (1, 1) (2) (2, 1) (2, 2)
σ0 1 1 1 1 1 1
σ1 0 t32 t31 t42 t41 t41 + t32
σ1,1 0 0 t31t21 0 t41t21 t41t31
σ2 0 0 0 t42t43 t41t43 t41t42
σ2,1 0 0 0 0 t41t43t21 t41t42t31
σ2,2 0 0 0 0 0 t41t42t31t32

1.3.3. Digression on Gröbner degeneration So far we have set up
the algebraic and combinatorial framework for the computation of the
equivariant Schubert classes. Now we want to turn ourselves to the
geometric aspect that underlies the construction. The following results
in this subsection are not used in the rest of the paper, but they will
help us to understand the whole picture.

Proposition 1.6. If Xλ ∩ Uμ is a coordinate subspace defined by
zα = 0 (α ∈ I) for some subset I ⊂ Δ+, then σλ|μ =

∏
α∈I α.

For the proof, see Theorem 3, [34] for more general results and the
idea of Gröbner degeneration. See also Remark 3.2.

By using Proposition 1.6, we can calculate some σλ|μ.
Example 1.3. We consider the equivariant Schubert classes of G2,4.

Let λ = (1, 1) and μ = (2, 1). The condition that V ∈ G2,4 is in Xλ is
given by V ⊂ F3. Now Uμ and F3 is described as follows:

Uμ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
z12 z14
1 0
z32 z34
0 1

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ , F3 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0
∗
∗
∗

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

We see that the affine patch Xλ ∩ Uμ is given by the equations

z12 = z14 = 0.

So by Proposion 1.6, we have σλ|μ = (t4 − t1)(t2 − t1).

Example 1.4. The only exception that we can calculate σλ|μ for
G2,4 using Proposition 1.6 is the case λ = (1, 0), μ = (2, 2). The
Schubert condition is

dim(V ∩ F2) ≥ 1,
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where V ∈ G2,4. Now Uμ and F2 is described as follows:

Uμ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
z13 z14
z23 z24
1 0
0 1

⎞
⎟⎟⎠ = (vvv1, vvv2)

⎫⎪⎪⎬
⎪⎪⎭ , F2 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0
0
∗
∗

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

In order that V = 〈vvv1, vvv2〉 ∈ Uμ has non-zero intersection with F2, we
must have

(1.5)

∣∣∣∣z13 z14
z23 z24

∣∣∣∣ = 0.

Thus Xλ ∩ Uμ is defined by the equation (1.5). In section §3.2 below,
we see how the ideal determine the polynomial σλ|μ in general. Here
we give a rough idea of Gröbner degeneration employed in [34]. The
equation is deformed into z14z23 = 0 in a certain sense, and thus the
corresponding variety is deformed into the union of hyperplanes defined
by z14 = 0 and z23 = 0. Each components (hyperplanes) contribute to
t41 and t32 as a summand of σλ|μ.

This naive idea in the last example also shows how the polynomial
σλ|μ is related to the singularity of Xλ at eμ. Later in §3, we discuss the
Hilbert-Samuel multiplicity of the point eμ in Xλ. In fact, in the above
example, the multiplicity of the local ring OXλ,eμ at eμ is two.

1.4. Factorial Schur functions

Let us introduce the functions, called the factorial Schur functions ,
which play the leading part in this lecture.

1.4.1. Definition and basic properties of factorial Schur functions
For any partition λ = (λ1 ≥ · · · ≥ λd ≥ 0) we set

sλ(z1, . . . , zd|t) = det((zi|t)λj+d−j)d×d∏
1≤i<j≤d(zi − zj)

,

where we used the generalized factorial defined by (1.4). Here t is the
infinite sequence of (t1, t2, . . .). Since the numerator is an anti-symmetric
polynomial in z’s with coefficients in t’s, it is divisible by the difference
product in the denominator. Thus this rational function is indeed a
polynomial in z’s and t’s which is symmetric in z1, . . . , zd. One sees that
it is homogeneous of degree |λ| with deg(zi) = deg(ti) = 1.

Remark 1.1. Note that sλ(z1, . . . , zd|t) and sλ(z1, . . . , zd,
zd+1|t)|zd+1=0 are different.
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Let μ ∈ Pd,n, and f = f(z1, . . . , zd) be any symmetric polynomial
in Q[z1, . . . , zd]. Take any permutation v in Sn representing μ. Then the
following polynomial in Q[t1, . . . , tn] given by substitution

f(tv(1), . . . , tv(d))

does not depend on v but only on μ. We denote the resulting poly-
nomial by f(tμ). If you want to be more explicit, take v ∈ Sn to
be the Grassmannian permutation corresponding to μ. Then we have
zi �→ tμd−i+1+i for 1 ≤ i ≤ d.

First important result about this function is the vanishing property.

Lemma 1.1. We have sλ(tμ|t) = 0 unless λ ≤ μ.

Proof. Since the polynomial is symmetric in z1, . . . , zd, we can sub-
stitute zi �→ tμi+d−i+1 instead (in the reverse order). Then the (i, j)
component of the matrix in the numerator is (tμi+d−i+1|t)λj+d−j . If
λk > μk for some k, then all (i, j) components such that i ≥ k, j ≤ k
are vanish. The numerator vanishes while the denominator does not.
Q.E.D.

Lemma 1.2. We have sλ(tλ|t) =
∏

α∈Inv(λ) α.

Proof. We substitute zi �→ tλi+d−i+1. Then the matrix in the nu-
merator is upper triangular, so we have

sλ(tλ|t) =
d∏

i=1

(tλi+d−i+1|t)λi+d−i∏
i<s≤d(tλi+d−i+1 − tλs+d−s+1)

.

For each i, after some cancelation, this corresponds to the ith row of the
corresponding weighted Young diagram (cf. (1.3)). Q.E.D.

1.4.2. Factorial Schur function represents the Schubert class

Lemma 1.3. Let f be any symmetric polynomial in Q[z1, . . . , zd].
Then the family of polynomials (f(tμ))μ∈Pd,n

), considered as an element
of Map(Pd,n,Q[t1, . . . , tn]), belongs to H∗

T (Gd,n).

Proof. Let μ → sαμ be an arbitrary edge of the graph Gd,n. Let
v ∈ Sn be any permutation representing μ. We have to show that

f(tv(1), . . . , tv(d))− f(tsαv(1), . . . , tsαv(d))

is divisible by α. Let α = tj − ti (1 ≤ i < j ≤ n). Then sα = (i, j). Since
sαμ < μ, we have j ∈ Jμ, i /∈ Jμ, where Jμ = {v(1), . . . , v(d)}. Then the
divisibility is obvious. Q.E.D.
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Theorem 1.1 ([27]). Let λ ∈ Pd,n. Then the family of polynomi-
als (sλ(tμ|t))μ∈Pd,n

is the Schubert class associated to λ. Therefore the
Schubert class σλ exists.

Proof. Note first that sλ(tμ|t) ∈ Q[t1, . . . , tn] for λ, μ ∈ Pd,n. By
lemma 1.3, we know that this family of polynomials satisfy the GKM
condition. The first conditions in Definition 1.1 is obviously satisfied.
The second and the third hold by Lemmas 1.1 and 1.2. Q.E.D.

1.5. Localization map

Let Pd =
⋃

n≥d Pd,n, and let Q[t] = Q[t1, t2, . . .]. A homomorphism

of Q[t]-algebras defined by

Φ : Q[t][z1, . . . , zd]
Sd → Map(Pd,Q[t]),

(1.6) f(z1, . . . , zd|t) �→ (μ �→ f(tμ|t))
is called the localization map.

We can naturally consider the graph Gd,∞ as the union
⋃

n≥d Gd,n.

Let H∗
T (Gd,∞) be the set of φ ∈ Map(Pd,Q[t]) satisfying the following

conditions:

• the GKM condition, i.e. the condition in Definition 1.2
• deg(φμ) (μ ∈ Pd) is bounded above.

We define the notion of the Schubert classes σ
(∞)
λ (λ ∈ Pd) for

H∗
T (Gd,∞) in the same way as in Definition 1.3.

Proposition 1.7. There exists a unique family of Schubert classes

{σ(∞)
λ }λ∈Pd

.

Proof. We have established the existence and uniqueness of the

Schubert classes of Gd,n (Proposition 1.4 , Theorem 1.1). Let σ
(n)
λ denote

the Schubert class for Gd,n associated to λ ∈ Pd,n. If n ≤ m, we claim
that

(1.7) σ
(m)
λ |μ = σ

(n)
λ |μ (μ ∈ Pd,n).

In fact, the polynomials σ
(m)
λ |μ, μ ∈ Pd,n(⊂ Pd,m) satisfy the defining

property for σ
(n)
λ , because the weighted graph Gd,n is embedded in Gd,m,

so by the uniqueness of Schubert class, we have (1.7).

We can define σ
(∞)
λ for λ ∈ Pd as follows. Choose n so that λ ∈ Pd,n.

For any μ ∈ Pd, we choose m such that n ≤ m and μ ∈ Pd,m. Then set

σ
(∞)
λ |μ = σ

(m)
λ |μ. This does not depend on the choices of n and m since

we have (1.7). From the construction, σ
(∞)
λ clearly satisfies the defining

property of Schubert class for Gd,∞ associated with λ ∈ Pd. Q.E.D.
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Proposition 1.8. The set {σ(∞)
λ }λ∈Pd

form aQ[t]-basis ofH∗
T (Gd,∞).

Proof. Let φ be a homogeneous element in H∗
T (Gd,∞). The same

procedure in the proof for Proposition 1.5 works also for φ. We can

successively extract Q[t]-linear combinations of σ
(∞)
λ ’s so that the dif-

ferences of them to φ have smaller and smaller supports. By the degree

reason, only a finite number of σ
(∞)
λ ’s can appear in the linear combina-

tion. Hence φ is a finite Q[t]-linear combination of the Schubert classes.
The linear independence is proved by the same argument. Q.E.D.

The next is the main result of this section.

Theorem 1.2. The map Φ gives an isomorphism of Q[t]-algebras

Q[t][z1, . . . , zd]
Sd

∼=→ H∗
T (Gd,∞),

sending sλ(z1, . . . , zd|t) to σ
(∞)
λ (λ ∈ Pd).

Proof. By Theorem 1.1 and the proof of Proposition 1.7, we see

that Φ sends sλ(z1, . . . , zd|t) to σ
(∞)
λ . By a standard argument, one can

show that the polynomials sλ(z1, . . . , zd|t), λ ∈ Pd,n form a Q[t]-basis.
Hence the theorem follows from Proposition 1.8. Q.E.D.

1.6. Left divided difference operators

This subsection is supplementary in the sense that we do not need
it in order to prove Theorem 1.2 which is the main result of this section,
however, I would like to show how naturally the left divided difference
operators behave in our framework.

Consider the action of S∞ =
⋃

n≥1 Sn on Q[t][z1, . . . , zd] by permu-

tation of the variables t1, t2, . . . . There is an action of S∞ on Map(Pd,Q[t])
such that Φ is a S∞-module homomorphism. Let φ ∈ Map(Pd,Q[t]) and
w ∈ S∞. We define

(w · φ)|μ = w(φ|w−1μ) (μ ∈ Pd).

We will show that H∗
T (Gd,∞) is a S∞-submodule of Map(Pd,Q[t]).

Definition 1.4 (Local form of the left divided difference operator).
We can define an operator δi on H∗

T (Gd,∞) by

(1.8) δiφ =
φ− si · φ

αi
.
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As for the well-definedness of δi on H∗
T (Gd,∞), we refer the reader

to Appendix of [27]. The next result is important because it can be
considered as a definition of the Schubert classes {σλ} (cf. [27], see also
Exercise 1.1).

Proposition 1.9 ([27]). We have δiσ
(∞)
λ =

{
σ
(∞)
siλ

if siλ < λ,

0 if siλ ≥ λ.

Proof. See Lemma 6 in [27]. Q.E.D.

Remark 1.2. There is a nice combinatorial description of the action
of S∞ on Pd. See for example [21], [27].

Definition 1.5 (Global form of the left divided difference opera-
tors). Let f ∈ Q[t][z1, . . . , zd]

Sd . For i ≥ 1, we define

δif =
f − si · f

αi
, αi = ti+1 − ti,

where si · f is obtained from f by exchanging ti and ti+1.

Since Φ is Q[t]-linear and commutes with the action of S∞, we have
Φ ◦ δi = δi ◦ Φ. From this commutativity, Theorem 1.2, and Proposi-
tion 1.9, we have the following results. However, the analogous results
play crucial roles in [22], where we developed K-theory analogue of the
factorial Q-functions. Furthermore, the left divided difference operators
turns out to be quite useful when we study the non-maximal isotropic
Grassmannian ([19]). So we give a direct proof of this fact.

Proposition 1.10. We have δisλ(z|t) =
{
ssiλ(x|t) if siλ < λ,

0 if siλ ≥ λ.

Proof. We only have to calculate the numerator det((zi|t)λj+d−j).
We first remark that (z|t)k for k �= i is invariant the exchange of variables
ti and ti+1. One easily see that

(1.9) δi(z|t)i = (z|t)i−1.

If siλ < λ then there is an index j such that the jth columns are all of
the form (z|t)i. Then by the above remark and (1.9) we easily obtain the
result. If siλ ≥ λ then by the above remark all the entries (zi|t)λj+d−j

are symmetric under sti. In fact, there is no j such that λj + d. Hence
the result follows. Q.E.D.

Exercise 1.1 (cf. [36]). Suppose μ �= ∅. We can choose some i
such that siμ < μ. Then the restrictions to μ of all the Schubert classes
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σλ can be calculated by restrictions to siμ by the following recurrence
equation

σλ|μ =

{
si(σλ|siμ) + αi · si(σsiλ|siμ) if siλ < λ,

si(σλ|siμ) if siλ ≥ λ.

Derive the equation from the divided difference equation in Proposition
1.9.

Exercise 1.2. Let m ≥ 1 and λ ∈ Pd. Let md ∪ λ denote the
following Young diagram.

λ

m

d

Then

smd∪λ(z1, . . . , zd|t) = smd(z1, . . . , zd|t) · sλ(z1, . . . , zd|tm+1, tm+2, . . .),

where smd(z1, . . . , zd|t) =
∏

1≤i≤d, 1≤j≤m

(zi − tj).

1.7. Double Schubert polynomials

Now we discuss briefly how the story is extended to the full flag
variety F ln = GLn(C)/B, where B is the Borel subgroup of GLn(C)
consisting of the upper triangular matrices in GLn(C). The proofs for
the results in this section are omitted.

Let f be a polynomial in z = (z1, z2, . . .). For i ≥ 1, define

∂if =
f − szi f

zi − zi+1
,

where szi exchanges zi and zi+1.
Let Q[z, t] denote the polynomial ring Q[z1, z2, . . . , t1, t2, . . .] in two

set of infinite variables z = (z1, z2, . . .) and t = (t1, t2, . . .).

Proposition 1.11 ([37], cf. [20]). There is a unique family of poly-
nomials {Sw(z, t)}w∈S∞ in Q[z, t] satisfying the following conditions:

• Se(z, t) = 1,

• δiSw(z, t) =

{
Ssiw(z, t) if �(siw) = �(w)− 1,

0 if �(siw) = �(w) + 1,

• ∂iSw(z, t) =

{
Swsi(z, t) if �(wsi) = �(w)− 1,

0 if �(wsi) = �(w) + 1.
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Remark 1.3. For the longest element w
(n)
0 = (n, . . . , 2, 1) of Sn,

the following explicit formula is known:

(1.10) S
w

(n)
0

(z, t) =
∏

i+j≤n

(zi − tj).

Let w ∈ S∞. We can choose n ≥ 1 such that w ∈ Sn. Then we can
calculate Sw(z, t) by successive applications of ∂i’s (or δi’s also) to the
“top” polynomial (1.10) for Sn. One can prove that the resulting poly-
nomial does not depend on the choice of n. This is the way the double
Schubert polynomials are originally introduced in [37]. Here we adopt
the above definition in order to emphasize the infinite rank situation and
the symmetry of left and right divided difference operators.

Define V =
⊕

i≥1 Qti, Δ+ = {tj − ti | 1 ≤ i < j} ⊂ V, and Δ− =

−Δ+. For α = (i, j) ∈ Δ+, denote by sα the transposition (i, j) ∈ S∞.
The Bruhat order on S∞ is denoted by ≤ . We define the GKM graph
for F l∞ =

⋃
n≥1 F ln. The vertex set is S∞. The oriented edges are given

by the reflections with respect to all the positive roots, the elements in
Δ+. If α is a positive root such that v = sαw, v > w in the Bruhat

order, then we draw an oriented edge v
α→ w with the weight α.

Definition 1.6. An element φ ∈ Map(S∞,Q[t]) is in H∗
T (F l∞)

if for all edge v
α→ w the difference φ|w − φ|v is divisible by α, and

deg(φ|w) (w ∈ S∞) is bounded.

The Schubert class σ
(∞)
w ∈ H∗

T (F l∞) (w ∈ S∞) is defined by the
following conditions :

(1) σ
(∞)
w |v is homogeneous of degree �(w) for each v ≥ w,

(2) σ
(∞)
w |w =

∏
α∈Δ+∩w(Δ−) α,

(3) σ
(∞)
w |v vanishes unless v ≥ w.

For v ∈ S∞ , let Φv : Q[z, t] → Q[t] be the Q[t]-algebra homomor-
phim defined by zi �→ tv(i) (i ≥ 1). Define the Q[t]-algebra homomor-
phism Φ : Q[z, t] → Map(S∞,Q[t]) by f �→ (Φv(f))v∈S∞ .

Proposition 1.12 ([20]). The map Φ is an isomorphism of Q[t]-
algebras

Φ : Q[z, t]
∼=−→ H∗

T (F l∞)

such that Sw(z, t) �→ σ
(∞)
w .

In the rest of this section, we discuss the relation between the
double Schubert polynomials and the equivariant cohomology of the
Grassmannian.
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Let S∞,(d) be the subgroups of S∞ formed by the permutations
which preserves both {1, . . . , d} and {d + 1, d + 2, . . .}. One sees that
S∞,(d) is the stabilizer of S∞ action on Pd, and there is a natural bijec-

tion Pd
∼= S∞/S∞,(d). Let us denote by S

(d)
∞ be the set of all Grassmann-

ian permutations in S∞, which is the representatives for the coset space
S∞/S∞,(d).

Remark 1.4. The left multiplication induces an action of S∞ on

S
(d)
∞ ∼= Pd, whereas the right multiplication does not. This is the reason

we introduced only δi’s in the Grassmannian case.

Let S∞ act on Map(S∞,Q[t]) by the right multiplication, i.e.,
(φv)v∈S∞ �→ (φvw)v∈S∞ , for w ∈ S∞. If we denote by Map(S∞,Q[t])S∞,(d)

the subring of Map(S∞,Q[t]) invariant under the subgroup S∞,(d) of S∞.
Via the bijection Pd

∼= S∞/S∞,(d), we have the following isomorphisms

(1.11) Map(Pd,Q[t]) ∼= Map(S∞/S∞,(d),Q[t]) ∼= Map(S∞,Q[t])S∞,(d) .

Then we have the following commutative diagram:

Q[t][z1, . . . , zd]
Sd

Φ−−−−→ Map(S∞,Q[t])S∞,(d) ←−−−−
i∗

H∗
T (Gd,∞)

j

⏐⏐� k

⏐⏐� l

⏐⏐�
Q[z, t]

Φ−−−−→ Map(S∞,Q[t]) ←−−−−
i∗

H∗
T (F l∞),

where j and k are the natural injections, and we use the identification
(1.11) in the upper row. The map l above is induced by k. Note that l can
be thought of the “pull-back” π∗ of the “projection” π : F l∞ → Gd,∞,
although we do not discuss such geometric constructions here.

Note that Q[t][z1, . . . , zd]
Sd is the invariant subalgebra of Q[z, t] with

respect to the action of S∞,(d) given by the permutations of the variables
z’s. Furthermore, we have

S
dwλ

(z, t) = sλ(z1, . . . , zd|t),
where λ ∈ Pd and dwλ is the corresponding Grassmannian permutations

in S
(d)
∞ . This last fact can be directly proved (for example, we can use

similar argument in §2.6.4, [39]).
1.8. Appendix to §1— Kempf-Laksov formula

Here we give a supplementary discussion on how the factorial Schur
functions had been appeared in the study of degeneracy loci formulas of
the vector bundles. See [12] for a more thorough account on the theory
of the degeneracy loci formula up to the 1990’s.
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Let E be a vector bundle of rank n on a variety X. We denote by
Gd(E) the Grassmann bundle over X parametrizing vector bundles C
of rank d with C ⊂ E. Suppose we are given a flag of vector bundles on
X such that

A : 0 � A1 � A2 � · · · � Ad ⊂ E

Let a(i) = rank(Ai). So we have

1 ≤ a(1) < · · · < a(d) ≤ n.

We denote by Ω(A) the subscheme of Gd(E) parameterzing C ⊂ E of
rank d such that

rank(Ai ∩ C) ≥ i (1 ≤ i ≤ d).

The goal of this section is to express [Ω(A)] in H∗(Gd(E)) as a polyno-
mial of the Chern classes of the vector bundles involved in the present
situation. It is useful to introduce the following sequence which we con-
sider as a Young diagram

λi = n− d− a(i) + i (1 ≤ i ≤ d).

Then we have
(n− d) ≥ λ1 ≥ · · · ≥ λd ≥ 0,

so our Young diagram is included in the rectangular shape (n − d)d.
Let S denote the tautological subbundle of ϕ∗E on Gd(E), where ϕ :
Gd(E) → X is the structure morphism. The following exact sequence
of vector bundles on Gd(E) is called the universal sequence:

0 −→ S −→ ϕ∗E −→ Q −→ 0,

where Q is the quotient bundle ϕ∗E/S.
For vector bundles E,F on a variety, set ci(E − F ) be the term of

degree i in c(E −F ) = c(E)c(F )−1, where c(F )−1 is the inverse of c(F )

1− c1(F ) + (c1(F )2 − c2(F ))− (c1(F )3 − 2c1(F )c2(F ) + c3(F )) + · · · .
For example, we have

c1(E − F ) = c1(E)− c1(F ),

c2(E − F ) = c2(E)− c1(E)c1(F ) + c1(F )2 − c2(F ), . . . .

Let [Ω(A)] denote the fundamental class of Ω(A) in H∗(Gd(E)).
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Theorem 1.3 (Kempf-Laksov [26]). We have

[Ω(A)] = det (cλi+j−i(Q− ϕ∗Ai))d×d .

Note that this expression is universal in the sense that it does not
depend on X apparently. Another important feature of this formula is
that it does not depend on n. We will show the more precise meaning
of this claim in the next section.

Now we discuss the relation between the Kempf-Laksov formula to
the factorial Schur polynomials. Consider a full flag of vector bundles
over X

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E, rank(Ei) = i

such that
Ai = En−d−λi+i (1 ≤ i ≤ d).

We introduce variables t1, t2, . . . , tn by

ti = −c1(En−i+1/En−i).

Let z1, . . . , zd be the Chern roots of S∗, the dual bundle of the tautologi-
cal subbundle S. Define the polynomials h

(k)
r (z1, . . . , zd) by the following

generating function:

∞∑
r=0

h(k)
r (z1, . . . , zd) =

d∏
i=1

1

1− zi

k∏
i=1

(1− ti).

Using these notation we can rewrite the Kempf-Laksov formula in
the following way.

Proposition 1.13. [Ω(A)] = det(h
(d+λi−i)
λi+j−i (z1, . . . , zd))d×d.

Remark 1.5. d+λi−i is the co-rank ofAi.Note that the polynomial
in the right hand side does not deepend on n.

Proof. It suffices to show

cr(Q− ϕ∗Ai) = h(d+λi−i)
r (z1, . . . , zd).

By the universal exact sequence we have

d∏
i=1

(1− zi)× c(Q) =
n∏

j=1

(1− tj).
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Then we have

c(Q− ϕ∗Ai) =

∏n
j=1(1− tj)∏d
j=1(1− zj)

1∏n
j>d+λi−i(1− tj)

=

∏d+λi−i
j=1 (1− tj)∏d
j=1(1− zj)

.

Q.E.D.

Exercise 1.3. Prove that the polynomial in the right hand side of
Proposition 1.13 is sλ(z1, . . . , zd|t).

Remark 1.6. There is a general principle that the study of the
T -equivariant Schubert class is equivalent to the problem of degeneracy
loci of vector bundles. This is repeatedly pointed out in the literature
(e.g. [1], [2], [41]).

§2. Schur’s Q-functions and the Lagrangian
Grassmannian

We generalize the results in the previous section to the Lagrangian
Grassmannian, which is a homogeneous space of the symplectic group.
Main results in this section were proved in [18], [20], [21].

2.1. Lagrangian Grassmannian

Let V be an even finite dimensional complex vector space. Suppose
there is a non degenerate skew symmetric bilinear form 〈·, ·〉 on V. A
linear subspace U of V is isotropic if 〈u, u′〉 = 0 for all u, u′ ∈ U. A max-
imal isotropic subspace is called a Lagrangian subspace. An isotropic
subspace L is Lagrangian if and only if dimL = n, when dimV = 2n.
The bilinear form gives a natural isomorphism φ : V → V ∗ of vector
spaces such that

φ(v)(w) = 〈v, w〉 (v, w ∈ V ).

Proposition 2.1. Let L be a Lagrangian subspace in the symplectic
vector space V ∼= C2n. There is a natural isomorphism of vector spaces:

V/L −→ L∗.

Proof. For v ∈ V , the restriction φ(v)|L of φ(v) to L is an element
of L∗. Let α : V → L∗ denote the map sending v ∈ L to φ(v)|L ∈ L∗.
We will prove that Ker(α) = L. Let v ∈ Ker(α), i.e., φ(v)(l) = 〈v, l〉 = 0
for all l ∈ L. Then L+Cv is an isotropic subspace containing L, because
〈v, v〉 = 0 for any v ∈ V. Since L is a maximal isotropic subspace, we
have v ∈ L. Hence we have Ker(α) ⊂ L. Since L is isotropic we have
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Ker(α) ⊃ L. Thus we have Ker(α) = L. Now we know that the image
of α, which is isomorphic to V/Ker(α) = V/L, has dimension n. So the
map α is surjective, and it induces the isomorphism V/L → L∗. Q.E.D.

Let LG(n) denote the set of all Lagrangian subspaces of V ∼= C2n.
This is a closed subvariety of the Grassmannian of n-dimensional sub-
spaces in V. Let E be the trivial vector bundle on LG(n) with fiber V.
Let S be the tautological subbundle of E, whose the fiber over each
point L ∈ LG(n) is given by L. By using Proposition 2.1, we identify
the quotient bundle E/S with S∗. Thus we have the following exact
sequence

0 −→ S −→ E −→ S∗ −→ 0.

By the Whitney formula, we have c(S)c(S∗) = 1. Actually we have the
following presentation of cohomology ring:

(2.1) H∗(LG(n)) = Q[c1(S), . . . , cn(S)]/〈c(S)c(S∗) = 1〉.
Since ci(S

∗) = (−1)ici(S) we have

(2.2) ci(S)
2 + 2

i∑
j=1

(−1)jci+j(S)ci−j(S) = 0 (i ≥ 1).

Remark 2.1. If we use the Chern roots z1, . . . , zn of S, then ci(S) =
ei(z1, . . . , zn), where ei is the ith elementary symmetric function in the
corresponding variables. The relation c(S)c(S∗) = 1 is written in the
following from:

n∏
i=1

(1− zi)(1 + zi) = 1,

which is also equivalent to the following:

(2.3) ei(z
2
1 , . . . , z

2
n) = 0 (1 ≤ i ≤ n).

Then the presentation (2.1) reads

(2.4) H∗(LG(n)) = Q[z1, . . . , zn]
Sn/〈ei(z21 , . . . , z2n) (1 ≤ i ≤ n)〉.

2.2. Schubert varieties in LG(n)

For the Lagrangian Grassmannian LG(n), we develop the analogous
argument to §1.2.

Fix a basis {eeei, eee∗i |1 ≤ i ≤ n} of V on which we define a skew
symmetric bilinear form by 〈eeei, eeej〉 = 〈eee∗i , eee∗j 〉 = 0 and 〈eee∗i , eeej〉 = δi,j . Let
G = Sp(V ) be the associated symplectic group i.e. the group of linear
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automorphisms of V preserving the skew symmetric form. Fix a flag
F• : F1 ⊂ · · · ⊂ Fn defined by

(2.5) Fi = 〈eeen−i+1, . . . , eeen〉 (1 ≤ i ≤ n),

which is isotropic in the sense that each Fi is isotropic, so in particular,
Fn is a Lagrangian subspace. The stabilizer B of F• is a Borel sub-
group of G. Let T denote the torus of the symplectic group G = Sp(V )
diagonalized by the above basis.

Let Wn be the Weyl group of (G,T ). We can identify Wn with the
group of signed permutations of 1̄, . . . , n̄, 1, . . . , n; that is, an element in
Wn is a permutation w of {1̄, . . . , n̄, 1, . . . , n} such that w(̄i) = w(i) for
1 ≤ i ≤ n. Here we use ī to denote the negative element −i, and so we

understand that i = i.
Let λ = (λ1, . . . , λr) be a strict partition such that λ1 ≤ n. We

denote the set of such λ’s by SP(n). For each λ ∈ SP(n), there is a
unique element wλ of Wn such that

(2.6) wλ(i) = λi (1 ≤ i ≤ r), wλ(r + 1) < · · · < wλ(n),

where n̄ < · · · < 1̄ < 1 < · · · < n. the Grassmannian element cor-
responding to λ. Let eλ be the point 〈eee∗wλ(1)

, . . . , eee∗ewλ
(n)〉 in LG(n). If

B− is the opposite Borel subgroup of B, the Schubert variety Xλ is the
Zariski closure of B−-orbit of eλ. The Schubert variety for λ ∈ SP(n)
can be also defined as

Xλ = {L ∈ LG(n) | dim(L ∩ Fn+1−λi) ≥ i (1 ≤ i ≤ r)},
where F1 ⊂ · · · ⊂ Fn ⊂ V is the isotropic flag defined by (2.5).

Then we have
H∗(LG(n)) =

⊕
λ

Q[Xλ],

where λ runs for all strict partition such that λ1 ≤ n.
There is a T -stable affine neighbourhood Uλ of eλ such that Uλ is

naturally identified with the space of symmetric n × n matrices with
respect to the anti-diagonal. For example, let λ = (3, 1), wλ = 3̄1̄2. The
Schubert cell and the canonical neighborhood Uλ are represented by the
following matrices:

(Cell)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0

• 0 0
0 1 0

∗ ∗ 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (Nbd)

⎛
⎜⎜⎜⎜⎜⎜⎝

• • ∗
1 0 0
• ∗ ∗
0 1 0
∗ ∗ ∗
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where ∗ are arbitrary element in C and • are determined by ∗ by the
isotropic condition. In fact, we can introduce the coordinate functions
on Uλ as in the following example:

3̄

2̄
1̄

1
2

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z3̄2̄ z3̄1 z3̄3
1 0 0
z1̄2̄ z1̄1 z1̄3
0 1 0
z22̄ z21 z23
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2t1

2t3 t3 + t1 t3 − t2

We have
zij = zj̄ī.

The diagram illustrates the corresponding weighted shifted Young dia-
gram.

Exercise 2.1. The defining equation of X(2) ∩ U(3,1) is given by

z3̄3 = z1̄3 = 0.

Deduce that σ(2)|(3,1) = 2t3(t3 + t1).

Example 2.1. The defining equation of X(1) ∩ U(3,1) is given by∣∣∣∣z3̄1 z3̄3
z1̄1 z1̄3

∣∣∣∣ = 0.

As was illustrated in the Grassmannian case in Example 1.4, the defining
equation can be deformed into z1̄1z3̄3 = 0. Thus we have σ(1)|(3,1) = 2t1+
2t3. See [13] by Ghorpde and Raghavan for the Gröbner degeneration of
the Schubert varieties in the Lagrangian Grassmannian.

Here we briefly comment on the general case. For example, let
λ = (2) and μ = (3, 2). Then the weighted shifted Young diagram of μ
is the following:

2t1

2t3 t3 + t2 t3 − t1

t2 − t1

Figure 5

The equivariant Schubert class σλ restricted to eμ is given by

σλ|μ = 2t3(t3 + t2) + 2t3(t2 − t1) + 2t1(t2 − t1).

By a combinatorial description given in [21], each term of the above
expression is interpreted as the contribution of the following diagram
respectively:
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We called these kind of combinatorial object as Excited Young diagrams ,
EYD for short. See the original article for the precise definition of the
EYD.

Remark 2.2. The same notion of EYD was independently discov-
ered by V. Kreiman [31], [32].

Remark 2.3. The number of EYDs is shown to be the Hilbert-
Samuel multiplicity of Xλ at eμ. See Theorem 3.1 and Remark 3.2.

2.3. Schur’s Q-functions

In this subsection, we collect some definitions and results of the
Schur Q-functions ([46]) which will be used in the rest of this section.
Detailed proofs can be found in [38] Chap. III, §8, and [17].

2.3.1. Definition and basic properties of the Schur Q-functions Let
x1, x2, . . . be countably many variables. Define the formal power series
qk(x) (k ≥ 0) by the following generating function:

(2.7) q(u) =

∞∏
i=1

1 + xiu

1− xiu
=

∞∑
k=0

qk(x)u
k,

where
1

1− xiu
=

∞∑
k=0

xk
i u

k.

For example, we have

q0(x) = 1, q1(x) = 2
∑
i≥1

xi, q2(x) = 2
∑
i≥1

x2
i + 4

∑
i<j

xixj , . . . .

We have q(u)q(−u) = 1, or equivalently,

(2.8) qi(x)
2 + 2

i∑
j=1

(−1)jqi+j(x)qi−j(x) = 0 (i ≥ 1).

Let k, l be positive integers. Then we set

(2.9) Qk,l(x) = qk(x)ql(x) + 2
l∑

i=1

(−1)iqk+i(x)ql−i(x).

We have Qk,l(x) = −Ql,k(x). In fact, if k �= l, then it obviously from the
definition that we have Qk,l(x) = −Ql,k(x), and Qk,k(x) = 0 by (2.9).
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For arbitrary strict partition λ = (λ1 > · · · > λr > 0), we define
Qλ(x) as follows. If r is even, Qλ(x) is the Pfaffian of the skew-symmetric
matrixMλ of size r with k, l entriesQλi,λj (x). If r is odd, we set λr+1 = 0
and consider the skew symmetric matrix Mλ = (Qλi,λj (x))1≤i,j≤r+1 of
size (r + 1), with Qk,0(x) = qk(x) (k ≥ 1). Then Qλ(x) is also the
Pfaffian of Mλ. Let ε = 0 if r is even and ε = 1 if r is odd. With the
convention λr+1 = 0 as above, we have

(2.10) Qλ(x) = Pf(Qλi,λj (x))1≤i,j≤r+ε.

The functions Qλ1,...,λr(x) can be also defined recursively as follows.
If r is even

Qλ1,...,λr(x) =
r∑

i=2

(−1)i−1Qλ1,λi(x)Qλ2,...,λ̂i,...λr
(x),

and if r is odd

Qλ1,...,λr(x) =
r∑

i=1

(−1)i−1qλi(x)Qλ1,...,λ̂i,...λr
(x).

Now we define the ring Γ to be

Q[q1(x), q2(x), . . .],

which is naturally Q-graded so that the degree of qk(x) is k.

Proposition 2.2 ([38], (8.9), Chap. III). The set of Qλ(x)’s, λ ∈
SP∞, form a Q-basis of Γ.

Proposition 2.3 ([17], Corollary 7.6, (ii)). Γ is isomorphic to the
quotient ring of the polynomial ring Q[q1, q2, . . .] by the ideal generated

by q2i + 2
∑i

j=1(−1)jqi+jqi−j(i ≥ 1).

2.3.2. Schur Q-function represents the Schubert class
of the Lagrangian Grassmannian The following fact is a key to the geo-
metric applications of the Schur Q-functions.

Proposition 2.4. There is a surjective homomorphism of graded
rings:

πn : Γ −→ H∗(LG(n))

sending qi(x) to ci(S) for 1 ≤ i ≤ n and qi(x) to zero for i > n.

Proof. The proposition follows from the presentation ofH∗(LG(n))
given by (2.1), (2.2), or equivalently (2.2), if we use Proposition 2.3.

Q.E.D.
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Theorem 2.1 (Pragacz [43]). Let λ be a strict partition such that
λ1 ≤ n. ThenQλ(x) is sent by πn to the Schubert class [Xλ] ∈ H∗(LG(n)).

The first proof in [43] was given by comparing the Pieri rules for the
Schubert classes by Hiller-Boe [16] and for the Q-functions. We later
prove the equivariant version of this result (Theorem 2.2).

2.4. GKM graph and Schubert classes for LG(∞)

2.4.1. W∞ and its quotient SP∞ We consider the Weyl group W∞
of type C∞. This is defined by generators s0, s1, s2, . . . and relations

s2i = 1, s0s1s0s1 = s1s0s1s0, sisi+1si = si+1sisi+1 (i ≥ 1),

sisj = sjsi (|i− j| ≥ 2).

The subgroup S∞ = 〈s1, s2, . . .〉 is isomorphic to the symmetric group
of infinite order.

Proposition 2.5. There is a natural bijection between the left coset
space W∞/S∞ and the set of all strict partitions SP∞.

Proof. The correspondence is given by (2.6). Q.E.D.

2.4.2. GKM graph and the equivariant cohomology of LG(∞) We
have a natural action of W∞ on the vector space

⊕∞
i=1 Qti. The element

s0 exchanges t1 to −t1 and ti �→ ti for i ≥ 1, while si (i ≥ 1) exchanges
ti and ti+1 and tj �→ tj (j �= i, i+ 1). We introduce the simple roots

α0 = 2t1, αi = ti+1 − ti (i ≥ 1)

and the set of roots Δ as the orbit of W∞ of the simple roots. In fact,
if we set

Δ+ = {2ti | i ≥ 1} ∪ {ti − tj | i > j},
then Δ = Δ+ ∪ (−Δ+). For α ∈ Δ+, define sα = wsiw

−1 with α =
w(si) (w ∈ W∞). Note that W∞ acts naturally on SP∞ ∼= W∞/S∞.

Definition 2.1 (GKM graph for LG(∞)). Define the following
graph with weights

• vertices: SP∞ ∼= W∞/S∞,
• oriented edges: if there is a positive root α such that μ = sαλ >

λ, we draw an oriented edge λ
α→ μ,

• weight of λ
α→ μ is α.

For λ ∈ SP∞, define

Inv(λ) = {α ∈ Δ+ | sαλ < λ}.
We denote dμ =

∏
α∈Inv(λ) α as in the type A case.
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Example 2.2. If λ = (3, 1), then Inv(λ) = {2t3, t3 + t2, t3 −
t1, 2t1, t2 − t1}. These are the weights in the shifted weighted Young
diagram of λ ( see Figure 5 in §2.2). It shows that an analogous result
to Proposition 1.2 holds. For the precise statement and proof, we refer
to [21], Proposition 7.2.

Definition 2.2. Define H∗
T (LG(∞)) to be the set of all φ ∈

Map(SP∞,Q[t]) satisfying the following properties:

(1) the GKM condition, i.e. for all edge λ
α→ μ the difference

φ|λ − φ|μ is divisible by α,
(2) deg(φμ) (μ ∈ SP∞) is bounded from above,

2.4.3. Schubert classes for LG(∞) We define the Schubert classes

σ
(∞)
λ , λ ∈ SP∞, by the similar conditions as in Definition 1.3.

Definition 2.3. Let λ ∈ SP∞. An element σλ in H∗
T (LG(∞)) is

called a Schubert class indexed by λ if it satisfies the following properties:

(i) σλ|μ is homogeneous of degree |λ| with deg(ti) = 1,
(ii) σλ|μ = 0 unless λ ≤ μ,
(iii) σλ|λ = dλ.

We will give an algebraic proof of the existence of the Schubert
classes in §2.5 using the factorial Q-functions.

Proposition 2.6. For λ ∈ SP∞, the Schubert class associated with
λ, if exists, is unique.

Proof. Now we are assuming, as (3) of Definition 2.2, the analogue
of the consequence of Proposition 1.3. Hence the uniqueness follows
from the similar proof for Proposition 1.4. Q.E.D.

Proposition 2.7. The set {σ(∞)
λ }λ∈SP∞ of Schubert classes, if ex-

ists, form a Q[t]-basis of H∗
T (LG(∞)).

Proof. The proof is similar to the proofs for Proposition 1.5 and
Proposition 1.8. Q.E.D.

2.5. Factorial Q-functions

We introduce a deformed version of Schur Q-functions called the
factorial Schur Q-function Qλ(x|t) introduced by Ivanov in [23].

Let t be the infinite sequence of the variables t1, t2, . . . . For l ≥ 1,

let q
(l)
k (x|t) (k ≥ 0) be defined by the generating function

∞∑
k=0

q
(l)
k (x|t)zk =

∞∏
i=1

1 + xiz

1− xiz

l−1∏
j=1

(1− tjz).
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Note that q
(1)
k (x|t) = qk(x). Let k, l be integers such that k > l ≥ 0.

Then we set

(2.11) Qk,l(x|t) = q
(k)
k (x|t)q(l)l (x|t) + 2

l∑
i=1

(−1)iq
(k)
k+i(x|t)q(l)l−i(x|t).

Note that Qk,0(x|t) = q
(k)
k (x|t). For arbitrary strict partition λ, we define

(2.12) Qλ(x|t) = Pf(Qλi,λj (x|t))1≤i<j≤r+ε

as in (2.12), or the recursive definition also works1.

Remark 2.4. The expression (2.11) is from [20], but essentially the
formula was in Kazarian’s work [25].

Proposition 2.8 ([23]). The set of Qλ(x|t)’s with λ ∈ SP∞ form
a Q[t]-basis of the ring Γ[t].

2.5.1. Localization map Let μ ∈ SP∞ and v ∈ W∞ be a represen-
tative of μ. We can regard v as a signed permutation v which acts on
the set {±1,±2, . . .}. Then consider the following substitution

xi �→
{
t−v(i) if v(i) < 0,

0 if v(i) > 0,

into Qλ(x|t). This makes sense as an element in Q[t]. We denote it by
Qλ(tμ|t) since it does not depend on the representatives.

The most important property of these functions is the following:

Lemma 2.1 ([23]). Let λ ∈ SP∞.
(1) Qλ(tμ|t) �= 0 if and only if λ ≤ μ,
(2) Qλ(tλ|t) = dλ.

A proof of this lemma is given by using an alternative expression
similar to Hall-Littlewood symmetric function, which is valid for finite
variable version, i.e. Qλ(x1, . . . , xn|t) is equal to

(2.13)
1

(n− r)!

∑
w∈Sn

w

⎛
⎝ r∏

i=1

2xi(xi|t)λi−1
r∏

i=1

n∏
j=r+1

xi + xj

xi − xj

⎞
⎠ ,

1Here we only defined Qk,l(x|t) for k > l in (2.11). We

can also define Ql,k(x|t) just as −Qk,l(x|t), or as q
(k)
l (x|t)q(l)k (x|t) +

2
∑k

j=1(−1)jq
(k)
l+j(x|t)q(l)k−j(x|t), so that Ql,k(x|t) = −Qk,l(x|t) holds and the

Pfaffian is defined. Note also that the recursive definition makes sense, when we
only have Qk,l(x|t) with k > l.
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where we assume the number r of nonzero parts in λ is less than or equal
to n. We have Qλ(x1, . . . , xn, 0|t) = Qλ(x1, . . . , xn|t). Then Qλ(x|t) is
defined as the projective limit of Qλ(x1, . . . , xn|t).

Let Φ be the map defined as follows:

Γ[t] → Map(SP∞,Q[t]), f(x|t) �→ (μ �→ f(tμ|t))μ∈SP∞ .

Lemma 2.2. We have Φ(Qλ(x|t)) ∈ H∗
T (LG(∞)).

Proof. The condition (2) in Definition 2.2 is obvious. For the GKM
condition, it suffices to consider Φ(qk(x)). Let μ → sαμ be an arrow in
the graph for LG(∞). We have to show qk(tμ)− qk(tsαμ) is divisible by
α. If α = 2ti, then it is easy to see that qk(tμ) − qk(tsαμ) is divisible
by ti. On the other hand, one sees that the coefficients of qk (k ≥ 1) is
divisible by 2. The case of α = tj − ti (i < j) is similar to type A case
and is left to the reader. Q.E.D.

Lemma 2.3. Let λ ∈ SP∞. Then the family of polynomials
(Qλ(tμ|t))μ∈SP∞ is the Schubert class associated to λ. In particular,
the Schubert class σλ exists.

Proof. By Lemma 2.2, Φ(Qλ(x|t)) is in H∗
T (LG(∞)). Lemma 2.1

shows it satisfies the defining condition for σ
(∞)
λ . Q.E.D.

Theorem 2.2 ([18]). There is an isomorphism of Q[t]-algebras

Φ : Γ[t]
∼=→ H∗

T (LG(∞))

sending Qλ(x|t) to σ
(∞)
λ for all strict partitions λ.

Proof. The theorem follows from Proposition 2.7, Proposition 2.8,
and Lemma 2.3. Q.E.D.

Remark 2.5. Original proof [18] is based on the equivariant Cheval-
ley formula.

2.6. Double Schubert polynomials for the symplectic flag
variety

Let me briefly show you how the story is extended to the full flag
variety.

Now we discuss an action of W on Q[t] ⊗ Γ. The natural action of
S∞ on Q[t] can be extended to Q[t] ⊗ Γ by letting it act on Γ trivially.
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The element s0 acts in a funny way. But this is the heart of our theory.
One may describe this action by

φ(x1, x2, . . . ; t1, t2, t3, . . .) �→ φ(−t1, x1, x2, . . . ;−t1, t2, t3, . . .).

More explicitly, on the algebra generators, s0 operates

st0 : qk(x) �→ qk(x) + 2
k∑

i=1

(−t1)
iqk−i(x), t1 �→ −t1, tj �→ tj (j ≥ 2).

Or more essential way of description is

∞∏
i=1

1 + xi

1− xi
�→ 1− t1

1 + t1

∞∏
i=1

1 + xi

1− xi
.

From this, one easily sees that (st0)
2 = id. Define sti (i ≥ 1) on Γ[t] by

sti(ti) = ti+1, sti(ti+1) = ti and sti(tj) = tj (j �= i, i + 1). Then si �→ sti
gives an action of W∞ on Γ[z, t].

Let us define the left divided difference oparators on Γ[t]:

δif =
f − stif

αi
.

Theorem 2.3 ([20]). We have δiQλ(x|t) =
{
Qsiλ(x|t) if siλ < λ,

0 if siλ ≥ λ.

This is a part of results in [20]. A proof can be carried out by a direct
calculation using expression (2.13). See [22] for the similar calculation
in the case of equivariant K-theory.

Let Γ[z, t] denote the polynomial ring of the variables t = (t1, t2, . . .)
and z = (z1, z2, . . .) with coefficients in Γ. There are operators szi (i ≥ 0)
on Γ[z, t] such that si �→ szi (i ≥ 0) gives an action of W∞ on Γ[z, t] as
Q[z]-algebra automorphisms. In order to define this second action, we
can use the following ring automorphism:

ω(ti) = −zi, ω(zi) = −ti, ω(Qi(x)) = Qi(x).

Then szi = ωstiω (i ≥ 0). Define the right divided difference operators
by

∂if =
f − szi f

ω(αi)
(i ≥ 0).

We define H∗
T (F lC∞) as the Q[t]-subalgebra of Map(W∞,Q[t]).
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Theorem 2.4 ([20]). There is an isomorphism of Q[t]-algebras

Γ[z, t]
∼=→ H∗

T (F lC∞).

Explicitly, the map is given by specialization zi �→ tw(i), xi �→ tμ for all
w ∈ W, where μ ∈ SP∞ corresponds to the coset wS∞.

Let Cw(x; z, t) denote the element in Γ[z, t] corresponding to σw (w ∈
W∞). We call this double Schubert polynomials rather than “triple”
Schubert polynomials. This is a natural extension of functions Cw(x; z)
introduced by Billey and Haiman, which is the “single” Schubert poly-
nomial that correspond to the non-equivariant cohomology H∗(F lC∞).

Proposition 2.9. {Cw(x; z, t)}w∈W∞ are characterized by the fol-
lowing conditions:

• Ce(x; z, t) = 1,

• δiCw(x; z, t) =

{
Csiw(x; z, t) �(siw) = �(w)− 1,

0 �(siw) = �(w) + 1,

• ∂iCw(x; z, t) =

{
Cwsi(x; z, t) �(wsi) = �(w)− 1,

0 �(wsi) = �(w) + 1.

We have the following explicit formula.

Theorem 2.5 ([20]). Let w
(n)
0 be the longest element of Wn =

〈s0, s1, . . . , sn−1〉. Then we have

C
w

(n)
0

(x; z, t) = Q2n−1,2n−3,··· ,3,1(x|t1,−z1, t2,−z2, . . .).

This is a remarkable expression, since the right hand side is a single
Pfaffian. Even more remarkably, Anderson and Fulton [2] proved Pfaf-
fian formula for a wider class of Weyl group elements called “Vexillary
signed permutations” introduced there.

2.7. Factorial Q-functions and Kazarian’s formula

Recall the universal sequence:

0 −→ S −→ E −→ S∗ −→ 0.

Now we consider T -equivariant cohomology of LG(n). Note that E is a
trivial vector bundle but it is not equivariantly trivial. Let ±t1, . . . ,±tn
be the equivariant Chern roots of E.

Let E = E0⊕E⊥
0 (E0 =

⊕n
i=1 Li is a standard Lagrangian subspace

of E and E⊥
0 is the orthocomplement). For 1 ≤ k ≤ n, let Uk =

⊕n
i=k Li.
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Proposition 2.10 (cf. [20]). There is a natural homomorphism
Γ[t] → H∗

T (LG(n)) such that

q
(k)
i (x|t) �→ cTi (E − S − Uk).

Moreover, the map equals the composition of the map Φ of Theorem 2.2
and the natural projection H∗

T (LG(∞)) → H∗
T (LG(n)).

Proof. By the Whitney relation cT (E0)c
T (E⊥

0 ) = cT (S)cT (S∗) we
have

cTi (S
∗ − E0) = cTi (E

⊥
0 − S).

We denote the class by βi. Then βi’s satisfy the quadratic relations

β2
i + 2

i−1∑
j=1

(−1)jβi+jβi−j = 0 (i ≥ 1).

as a consequence of the Whitney relation. So we can define Γ[t] →
H∗

T (LG(n)) by sending qi(x) to βi. The second statement is directly
checked (see [20]). Q.E.D.

Kazarian [25] proved the Lagrangian degeneracy loci formula in
terms of multi-Schur Pfaffian with the entry of the right hand the above
proposition. This means that Kazarian’s formula is nothing but the
factorial Q-function!

Remark 2.6. Proposition 2.10 explains ad hoc introduction of the
ring Γ[z, t] of the double Schubert polynomials. In the recent survey pa-
per [49] by Tamvakis, he call the construction the geometrization map.
Also this shows the image of Q-functions in H∗

T (F lCn) are written as
polynomials of the equivariant Chern roots z1, . . . , zn of S with coeffi-
cients in H∗

T (pt) = Q[t1, . . . , tn]. This justifies the formula of the action
of st0 and sz0 on the Q-functions. Note that these polynomial expres-
sions in the variables zi, ti are not at all unique but the expression using
Q-functions is unique in Γ[z, t].

§3. Equivariant multiplicity

So far we have used the map of restriction to a torus fixed point as
a convenient algebraic tool to describe the equivariant Schubert classes.
In this section we will describe an image of the restriction map as a
special kind of more general notion called equivariant multiplicity ([45]).
This is a multi-variable polynomial while the classical multiplicity of
Hilbert-Samuel is a natural number. The notion has been called in many
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different ways, Joseph’s characteristic polynomials ([24]), multidegrees
([48]), equivariant Hilbert polynomials ([9]).

Let T be an algebraic torus, and V be a finite dimensional vector
space with algebraic T -action such that all weights of V in T are in one
side of a hyperplane in the weight space of T. The equivariant multi-
plicity can be defined for any T -equivariant coherent sheaf F on such U.
In this lecture, however, we restrict ourselves to the case of our inter-
est, namely U = Uμ is the standard T -stable neighbourhood of a torus
fixed point eμ, and F is the structure sheaf of the Schubert variety Xλ.
Note that most of the arguments are applicable to more general setting
mentioned above.

Combined with some combinatorial results in the previous sections,
we deduce some combinatorial results for the classical multiplicity of the
Schubert variety at a T -fixed point.

3.1. Notation

For some general geometric background related to this section, we
refer to [4]. Let G be a complex semisimple, connected and simply
connected, linear algebraic group. Let B be a Borel subgroup of G.
There is a unique maximal torus T contained in B. Any subgroup P of
G containing B is called a standard parabolic subgroup. Let W and WP

be Weyl groups of G and P respectively. Each left coset of W/WP has
a unique element of the minimum length. We denote by WP the set of
all such elements. For λ ∈ WP , set X◦

λ = B−eλ, with eλ = wλP ∈ G/P,
where wλ ∈ W is a representative of λ. The Schubert variety is defined
to be the closure Xλ = X◦

λ.

Let Ru(P ) denote the unipotent radical of P, and let Δ+
P = {β ∈

Δ+ | Uβ ⊂ Ru(P ), where Uβ is the root subgroup associated to β. For
a given μ ∈ WP , let U−

μ be the subgroup of G generated by the root

subgroups U−β , β ∈ wμ(Δ
+−Δ+

P ). Under the map G → G/P, g �→ geμ,
U−
μ is mapped isomorphically onto its image Uμ = U−

μ eμ. Thus we obtain
a canonical T -stable affine neighbourhood of eμ.

3.2. Formal character

The characters χ : T → C× of T form a free abelian group X∗(T ).
The differential of χ ∈ X∗(T ) is a linear form dχ : t → C on the Lie

algebra t of T , called an integral weight . Let T̂ denote the lattice in t∗

of all integral weights.
LetM be a T -module. For each character χ with differential dχ = λ,

we denote by Mλ the corresponding weight space

Mλ = {v ∈ M | tv = χ(t)v (t ∈ T )}
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If M =
⊕

λ∈T̂ Mλ is a direct sum of weight spaces such dimMλ are all
finite, we define the formal character of M as the formal sum

ch(M) :=
∑
λ∈T̂

(dimMλ)e
λ.

For example, for μ ∈ WP , the coordinate ring C[Uμ] of the T -stable affine
neighbourhood of eμ is a T -module with the formal character D−1

μ with

Dμ =
∏

γ∈Δμ

(1− e−γ),

where Δμ = wμ(Δ
+−Δ+

P ). More generally we have the following result.

Proposition 3.1. Let λ, μ ∈ WP . There exists ψλ|μ ∈ R(T ) such
that

chT C[Xλ ∩ Uμ] =
ψλ|μ
Dμ

.

Proof. For a proof, we refer to [5], Cor. 3.6. Q.E.D.

Remark 3.1. The most natural interpretation for ψλ|μ is given in
T -equivariant K-theory. Namely, if OXλ

is the structure sheaf of Xλ,
the restriction of its class [OXλ

] at eμ is ψλ|μ. For the proof of this fact,
see for example [9, Claim 6.6.8].

For each γ ∈ T̂ , we define the formal power series

eγ =

∞∑
i=0

γi

i!

considered as element of Ŝ(t∗), where Ŝ(t∗) is the completion of the
symmetric algebra S(t∗) by the ideal t∗S(t∗).

Proposition 3.2. Suppose λ ≤ μ. The lowest non-vanishing degree
of ψλ|μ considered as an element of Ŝ(t∗) equals codim(Xλ). Moreover
we have

ψλ|μ = σλ|μ + higher degree terms,

where σλ|μ is the image of the equivariant Schubert class σλ by the
restriction map ι∗μ : H∗

T (G/P ) → H∗
T (eμ)

∼= S.

Proof. A proof of this fact in general framework is given in [5],
Theorem 3.10. See also [9], Theorem 6.6.12 for a more geometric proof.
Q.E.D.
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3.3. Restriction to one-parameter subgroups

Now we will describe a passage from the equivariant multiplicity to
the classical multiplicity.

Let X∗(T ) denote the set of one-parameter subgroups of T, i.e. the
set of all homomorphisms φ : C× → T as algebraic groups. Let φ ∈
X∗(T ). Let R(T ) denote the representation ring of the algebraic torus
T . We can consider the natural restriction map

φ∗ : R(T ) → Z[z, z−1] = R(C×), eγ �→ z〈γ,φ〉,

where 〈·, ·〉 : T̂ ×X∗(T ) → Z is the natural pairing. We also denote by
φ∗ the map from S(t∗) to Z given by γ �→ 〈γ, φ〉 (γ ∈ t∗).

By Proposition 3.2, we have that the Taylor expansion of φ∗(ψλ|μ) ∈
Q[z, z−1] at z = 1 has the following form:

(3.1) φ∗(ψλ|μ) = φ∗(σλ|μ) · (1− z)codim(Xλ) + higher order terms.

In particular, if φ∗(σλ|μ) �= 0, then the order of zero of φ∗(ψλ|μ) at z = 1
is codim(Xλ).

3.4. G/P of cominuscule type

A maximal (standard) parabolic subgroup P is of cominuscule type
if the corresponding simple root α occurs with coefficient 1 in the ex-
pression of the highest root as a linear combination of the simple roots.
Let �∨

α be the fundamental coweight corresponding to α. Note that
�∨

α ∈ X∗(T ).
The following pairs of Dynkin diagrams and simple roots corre-

sponds to cominuscule G/P :

•>(Cn, α0) (Dn+1, α1̂)◦ ◦ ◦ ◦ ◦
α0 α1 α2 αn−1· · ·

•

◦
��
��

◦ ◦ ◦ ◦ ◦α1̂

α1

α2 α3 αn· · ·

The pair (Cn, α0) corresponds to LG(n) and (Dn+1, α1̂) corresponds to
the maximal isotropic Grassmannian OG(n) for orthogonal (2n + 2)-
dimensional linear space. In both cases, there is a natural bijection
WP ∼= SP(n).

Lemma 3.1. Let P be a maximal parabolic subgroup of cominus-
cule type, and α be the corresponding simple root. For μ ∈ WP , let
φμ = wμ(�

∨
α). Then

Δμ = {β ∈ Δ+ | 〈β, φμ〉 = 1}.



134 T. Ikeda

Proof. It suffices to consider the identity coset id. By assumption
on α, we have 0 ≤ 〈β,�∨

α〉 ≤ 1 for any positive root β. Since β /∈ Δ+
P

is equivalent to 〈β,�∨
α〉 = 0, this is also equivalent to the condition

〈β,�∨
α〉 = 1. Q.E.D.

Let Tμ = φμ(C×) ∼= C× be the image of φμ. Then Tμ ⊂ T acts on
Uμ by scaler multiplication. This implies that Xλ ∩ Uμ is a cone, i.e.
a subvariety of Uμ which is stable under the scaler multiplication. This
also implies that C[Xλ ∩ Uμ] is naturally a Z-graded ring isomorphic
to grmOXλ,eμ , the associated graded ring of the local ring OXλ,eμ with
respect to the maximal ideal m.

Note for γ ∈ Δμ we have φ∗
μ(e

−γ) = z. Denote by multeμ(Xλ) the
multiplicity of Xλ at eμ.

Proposition 3.3. Let P and φμ be as in Lemma 3.1. Then for
λ ∈ WP , we have

φ∗
μ(σλ|μ) = multeμ(Xλ).

Proof. By Proposition 3.1 and φ∗
μ(e

−γ) = z for γ ∈ Δμ, we see that
the Poincare series of C[Xλ ∩ Uμ] ∼= grmOXλ,eμ is given by

φ∗
μchT C[Xλ ∩ Uμ] =

φ∗
μ(ψλ|μ)

(1− z)dimG/P

=
φ∗
μ(σλ|μ) + (term vanishes at z = 1)

(1− z)dimC[Xλ∩Uμ]
,

where we used (3.1) and dimC[Xλ∩Uμ] = dimG/P −codim(Xλ). Then
by the definition of the Hilbert-Samuel multiplicity (e.g. [40, Chap. 5])
we have the result. Q.E.D.

Theorem 3.1 ([21], cf. [18]). Let X = G/P be the generalized flag
veriety of type (Dn+1, α1̂) or (Cn, α0). Let λ, μ be elements in SP(n) ∼=
WP . Then

Pf(multeμ(Xλi,λj ))1≤i<j≤r = multeμ(Xλ).

Proof. Since G/P is cominuscule, for the case (Cn, α0), the result
follows immediately from Theorem 2.2 and Proposition 3.3 and (2.12).
The case (Dn+1, α1̂) is similar (see [21]). Q.E.D.

Exercise 3.1. Lakshmibai and Weyman [35] derived a recurrence
equation for multeμ(Xλ). By comparing this with Pieri formula for
Qλ(x|t) due to Ivanov [23], prove Theorem 3.1. (See [21, Remark af-
ter Proposition 9.1].)
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Remark 3.2. By using Gröbner degeneration, Ghorpade and Ragha-
van [13] and Raghavan and Upadhyay [44] proved combinatorial descrip-
tions of the multiplicity of the local rings of the Schubert variety for G/P
corresponding to (Cn, α0) and (Dn+1, α1̂) respectively.
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