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Abstract. 

We show the existence of infinitely many links of non-degenerate 
simple K3 singularities defined by non-quasi-homogeneous polynomials 
such that the second betti numbers of the links are 17, which do not 
appear in the case of the singularities defined by quasi-homogeneous 
polynomials. 

§1. Introduction 

Let f(zl, ... 'Zn) be a non-constant polynomial over en for n ;::: 
3, and X be the hypersurface defined by the polynomial f having an 
isolated singularity at the origin X = 0 in en. Then the intersection 

L :=X n s;n~l 

of the hypersurface X and a small ( 2n- 1 )-sphere s;n~ 1 with the center 
at the origin in JR2n is called the link of the singularity, and the link Lis a 
(n-3)-connected closed spin smooth real (2n-3)-manifold. The homeo­
morphism type of the link Land the embedding L into the sphere s;n~l 
determine the topological type of the isolated hypersurface singularity 
(see Milnor [8]). The problem is what the topology of the singularity 
(X,x) is for a given singularity (X,x). We focus on the topology of the 

Received March 16, 2012. 
Revised July 25, 2012. 
2010 Mathematics Subject Classification. 32S25, 14J17, 32S55. 
Key words and phrases. Hypersurface simple K3 singularity, link. 
This work was supported by JSPS, Grant-in-Aid for Scientific Research (C) 

(No. 22540060). 



112 A. Katanaga 

links of non-degenerate hypersurface simple K3 singularities. Then the 
links are simply-connected closed spin smooth real 5-manifolds. 

On the other hand, Boyer, Galicki and Matzeu treated the links 
from the viewpoint of the Sasakian structures on compact 5-manifolds 
(see [1], [2]). Let f be a quasi-homogeneous polynomial of degree d with 
weight-vector w = ( w1, ... , w4) such that I:i=l Wi = d. Let L be the 
link of the isolated singularity defined by f. Due to Kollar's results on 5-
dimensional Seifert bundles [6], the second homology group H 2 (L, Z) is 
free. Further, from Smale's classification theorem on simply-connected 
closed spin smooth real 5-manifolds [11], we have the following theorem: 

Theorem 1.1 (Boyer and Galicki [1] Propostion 9.2.4 and Theorem 
10.3.8, [2]). Let L be the link of the isolated singularity defined by a quasi­
homogeneous polynomial of degree d with weight-vector w = ( w1, ... , w4) 
such that I:i=l Wi = d. Let b be the second betti number of the link L. 
Then the link L is diffeomorphic to the connected sum of b copies of 
S2 x 8 3 , where 2 ::::; b ::::; 21. 

As a corollary, together with the results of non-degenerate hyper­
surface simple K3 singularities which will be stated in §2, we have the 
following: 

Corollary 1.1. Let L be the link of a non-degenerate hypersurface 
simple K3 singularity defined by a quasi-homogeneous polynomial. Let b 
be the second betti number of the link L. Then the link L is diffeomorphic 
to the connected sum of b copies of S2 x 8 3 , where 3 ::::; b ::::; 21 and b # 17. 

Hence, an interesting question is whether b = 2 or 17 can occur, 
which is an open problem in Boyer and Galicki's book [1]. In this paper, 
we will give a partial answer for this problem. The main theorem is as 
follows: 

Theorem 1.2. There exist infinitely many links of non-degenerate 
simple K3 singularities defined by non-quasi-homogeneous polynomials 
such that the second betti numbers of the links are 17. 

The plan of this paper is as follows: in §2, we recall basic facts about 
hypersurface simple K3 singularities. In §3, we review the topology of 
the link L of an isolated hypersurface singularity [8] and Smale's clas­
sification of simply-connected closed spin smooth real 5-manifolds [11]. 
In §4, we prove Theorem 1.2. 

The author would like to express her gratitude to the organizers of 
the Sixth Franco-Japanese Symposium on Singularities held in Fukuoka, 
2011 for the invitation to talk and for their hospitality. The author also 
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heartily thanks Professor Norbert A'Campo for his helpful discussions, 
and is grateful to the referee, especially for pointing out Kollar's results. 

§2. Hypersurface simple K3 singularities 

In general, a simple K3 singularity is defined as a Gorenstein purely 
elliptic singularity of type (0, 2) in Ishii-Watanabe [4], and its geometric 
characterization is that the reduced exceptional divisor is an irreducible 
normal K3 surface for a Q-factorial terminal modification of the sin­
gularity. A K3 surface is a simply-connected compact complex surface 
with a trivial canonical line bundle. Therefore, this singularity is con­
sidered as a three-dimensional analogue of the simple elliptic singularity 
in dimension 2, whose exceptional divisor is an elliptic curve having a 
trivial canonical line bundle. In this paper, we deal with non-degenerate 
hypersurface simple K3 singularities, which are characterized in terms 
of the Newton diagram in Watanabe [13]. 

Let f(z) = ~k akzk be a polynomial in C[z1, ... , znJ, where k = 

(k1, ... , kn) E Z>o· Then the Newton diagram r +(f) off is the convex 
hull of Uak,: 0 (k + IR.~0 ) in IR.~0 and the Newton boundary r(f) off is 
the union of the compact faces of r +(f). For a face fl of r(f), we put 
ft:,.(z) := ~kEt:,. akzk. We say that the polynomial f is non-degenerate 
if 8Jt:,.j8z1 = · · · = 8/t:,_j8zn = 0 has no solutions in (C \ {0} )n for any 
face fl of r(f). A hypersurface singularity defined by fat the origin is 
called non-degenerate if f is a non-degenerate polynomial. 

The criteria for non-degenerate hypersurface simple K3 singularities 
are as follows: 

Theorem 2.1 (Watanabe [13]). Let f = ~ akzk E C[z1, ... , z4] 
be a non-degenerate polynomial defining an isolated singularity at the 
origin of C4 . Then the singularity is a simple K3 singularity if and only 
if the Newton boundary r(f) contains the point (1, 1, 1, 1), and the face 
fl0 (f) ofr(f), containing the point (1, 1, 1, 1) in its relative interior, is 
of dimension 3. 

Definition 2.1. The weight-vector a(f) off is the vector a(f) = 
(a1,a2,a3,a4) E Qt0 with :E{=1ai = 1 such that the 3-dimensional 
polygon flo (f) is perpendicular to a (f) in IR.4. 

Theorem 2.2 (Reid [10], Fletcher [3], and Yonemura [14]). The 
number of weight-vectors of the defining polynomials of non-degenerate 
hypersurface simple K3 singularities at the origin equals 95. 
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(3,0,0,0) 

(0,3,0,0) ----------------- (0 0 0 6) 
' ' ' 

(0,0,6,0) 

Fig. 1. YN3: f = x 3 + y3 + z6 + w6 

Throughout this paper, we use the numbering of the weight-vectors 
in Yonemura's list in [14]. For example, YN3: f = x 3 + y3 + z6 + w6 

means polynomial no.3 in his list (see Fig. 1). 

§3. Topology of the link L 

In the case of the hypersurface simple K3 singularity, its link is a 
simply-connected closed spin smooth real 5-manifold. By Smale's classi­
fication of these 5-manifolds in [11], the diffeomorphism type of the link 
L is only determined by the second homology group H 2 ( L, Z) of the link 
L. 

Theorem 3.1 (Smale [11]). There exists a one-to-one correspon­
dence i.fJ from the set of isomorphism classes of simply-connected closed 
spin smooth real 5-manifolds to the set of isomorphism classes of finitely 
generated abelian groups. 

Let M be a simply-connected closed spin smooth real 5-manifold, 
and let H2 (M) be FEB T, where F is the free part and T is the torsion 
part. Then the correspondence i.fJ is given by i.fJ(M) :=FEB (1/2)T, where 
T = (1/2)T EB (1/2)T. 

Corollary 3.1. If the second homology group H2 (L, Z) of the link 
L is free, then the link L is diffeomorphic to the connected sum of some 
copies of S2 X S 3 . 

For the isolated singularity defined by a quasi-homogeneous polyno­
mial, we can calculate the second betti number of the link L as follows: 
let¢: S7 \L --t S1 be the Milnor fibration. Let Fe= ¢-1 (ei8 ) c S7 \L 
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be the Milnor fiber. Note that the boundary of the closure Fo of F0 is 
L. Consider the Wang sequence corresponding to the fibration 

H3(Fo, Z) hq· H3(Fo, Z) -+ H3(S7 \ L, Z) -+ 0. 

Here I is the identity map of the fiber F0 and h : Fo ---t F0 is the char­
acteristic map of the fibration. The homomorphism h* : H 3 (F0 , Z) ---t 

H 3 (Fo, Z) is called the monodromy. Together with the Alexander dual­
ity isomorphism and the Poincare duality isomorphism, we have H 3 (S7 \ 

L, Z) ~ H 3 (L, Z) ~ H 2 (L, Z). It follows from the exactness that 

H2 (L, Z) ~ Coker(h*- I*). 

We denote the characteristic polynomial of the monodromy by 6.t(t) = 

det(ti* - h*), which is a topological invariant of 5 7 \ L (see [8]). Then 
the rank of H 2 ( L, Z) is equal to the multiplicity of the root 1 of the char­
acteristic polynomial 6. f ( t). Therefore we obtain the following lemma 
by using the method of Milnor and Orlik [9]: for example, consider the 
YN3 polynomial f = x 3 + y3 + z6 + w 6 in [14]. By using the notations 
in [9], we have div6.t(t) = (A3- 1) 2 (A6- 1)2 = 16A6 + A3 + 1. This 
means that 6.t(t) = (t6 -1)16 (t3 -1)(t -1) = <P~8 <P~6 <Pj7 <P~6 , where <Pn 
denotes the nth cyclotomic polynomial. Hence the rank of H2 (L, Z) is 
equal to 18. 

Lemma 3.1. Let L be the link of the non-degenerate hypersurface 
simple K3 singularity defined by a quasi-homogeneous polynomial. Let 
b be the second betti number of the link L. Then 3 ::; b::; 21 and b # 17. 
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b YN 

3 YN52,YN5~YN73 

4 YN17, YN30, YN46, YN61, YN65, YN80, YN84, YN86, YN91 
5 YN57, YN64, YN68, YN74, YN83, YN90, YN92 
6 YN16, YN29, YN35, YN43, YN48, YN54, YN62, YN88, YN93, YN94 
7 YN31, YN47, YN53, YN55, YN79 
8 YN15, YN26, YN27, YN34, YN49, YN67, YN70, YN76, YN95 
9 YN3~YN41,YN6~YJV7~YN81,YJV85 

10 YJV2, YJV11, YJV20, YJV33, YJV59 
11 YN23, YJV38, YJV58, YJV60, YJV77 
12 YlV4,YN9,YlV14,YlV22,YJV28,YlV32,YN45,YN51,YN71,YN78,YN87 
13 YN37, YJV39, YN50, YN82 
14 YlV13,YN18,YlV24,YlV63,YN72,YlV89 
15 YJV8, YJV19, YlV40, YlV44 
16 YJV6, YN12 
17 
18 YN3, YJV25, YN66 
19 YJV7, YJV42 
20 YN10, YlV21 
21 YJV1,YJV5 

Table 

We have Corollary 1.1 since the defining polynomials are quasi­
homogeneous, due to Kollar's results on the freeness for H2 (L, Z) and 
Smale's results on the diffeomorphism types of the links. 

Remark 3.1. There are many hypersurface singularities which are 
not simple K3 singularities such that their links are the connected sum 
of some copies of 8 2 x 8 3 : for example, let f = x 2 + y2 + zc + wd for 
2 :<:; c :<:; d and c, d E z. Then the singularity defined by f is not a 
simple K3 singularity by Watanabe's criteria [13]. However, the link is 
diffeomorphic to the connected sum of ( c, d) - 1 copies of 8 2 x 8 3 , where 
(c, d) is their greatest common divisor (see Katanaga and Nakamoto [5]). 

§4. Proof of Theorem 1.2 

In order to prove Theorem 1.2, we consider a polynomial in Yone­
mura's list such that the second betti number of the associated link 
is 18. There are three polynomials: YN3, YN25 and YN66 (see Ta­
ble in Lemma 3.1). We choose the simplest polynomial YN3 : f = 
x3 + y3 + z6 + w6 . By calculating the monodromy h* -I*, we have 
H2(L, Z) ~ Coker(h* -I*)~ Z18 . From Smale's results in Theorem 3.1, 
the link L associated with f is diffeomorphic to the connected sum of 
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(3,0,0,0) 

(0, 0, 0, 6 + s) 

(0,0,6,0) 

18 copies of 8 2 x 8 3 (see also [5] for more details). We change this 
polynomial f slightly into a new polynomial fs = x 3 + y 3 + z 6 + (x2 + 
y2 + z2w2 )w2 + w6+s for any non-negative integer s as in Fig. 2. The 
new polynomial fs is non-degenerate and satisfies Watanabe's criteria in 
Theorem 2.1 for having a simple K3 singularity at the origin. Note that 
fs is non-quasi-homogeneous. Then the following proposition holds. 

Proposition 4.1. Let s be a non-negative integer, and let fs = 
x 3 + y 3 + z 6 + (x2 + y 2 + z2w2 )w2 + w6+s. Then the Milnor number 
J.LUs) of fs is equal to 100 + s, and the second betti number of the link 
associated with fs is equal to 17 for s odd, and 18 for s even. 

Proof. The Milnor number 

J.L(fs) :=dime rc[[z1, ... , Z4]]/Jts 

where Its = (8fs/8zl, ... , 8fs/8z4) is the Jacobian ideal of fs, which is 
a topological invariant by the result of Le Dung Trang [7]. 

In order to determine the second betti number of the link associated 
with fs, we calculate the characteristic polynomial 6. fs ( t) by following 
the method of Varchenko [12]: the characteristic polynomial flts (t) is 
expressed by means of the zeta-function (Js (t) according to the formula 

where 

CtJt) = IJ { det[I* - th*; Hq (Po, C)]}( -l)q. 

q>O 
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Note that Hq(Fg, C) = 0 for q =f. 0, 3. Since fs is non-degenerate, the 
zeta-function (Js (t) is equal to the zeta-function 

4 

(rCfs)(t) = IJ ((l(t))(-l)L~l 
l=l 

of the Newton boundary f(f8 ). By calculating ( 1(t) for l = 1, ... , 4, we 
have 

( 1(t) = (1- t3)2(1- t6)(1- t6+ 8 ), 

{ (1 _ t3)3(1 _ t6)12(1 _ t2s+12)3 
( 2(t) = (1 _ t3)3(1 _ t6)12(1 _ ts+6)6 

for s odd, 
for seven, 

(3(t) = { 

(4(t) = { 

Hence, 

(1 _ t6)42(1 _ t2s+12)6 for s odd, 
(1 _ t6)42(1- ts+6)12 for seven, 

(1 _ t6)46(1 _ t2s+12)4 for s odd, 
(1 _ t6)46(1- ts+6)8 for seven. 

(1 _ t3)(1 _ t6)15(1- t2s+12) 

1 

Therefore the characteristic polynomial 

for s odd, 

for seven. 

Since the second betti number is the exponent of <P1 , we have the 
required results. Q.E.D. 

From this proposition, Theorem 1.2 is proved. 

Remark 4.1. In general, there is no simple relationship between 
the second betti numbers of the links and the Milnor numbers. 
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(3,0,0,0) 

(1,1,1,1) 
(0,4,0,0) (0, 0, 1, 4) 

(1,0,3,0) 

Fig. 3. YN52: f = x 3 + y4 + xz3 + zw4 

(2, 1, 0, 0) 

(0,3,1,0) (0,0,0,6) 

(0,0,5,0) 

Fig. 4. YN56: f = x 2 y + y3 z + z5 + w 6 

Remark 4.2. The method for producing the second betti number 
17 does not produce the second betti number 2. In fact, there are three 
polynomials whose links have the second betti number 3 in Table of 
Lemma 3.1: YN52, YN56, YN73. However, there are no monomials 
which produce a new Newton boundary satisfying Watanabe's criteria 
for each polynomial since the number of monomials is very few (see 
also [14]): let T(a) = {n E Z5,0 la · n = 1} be a set of monomials 
in the Newton boundary of the -defining polynomial with the weight­
vector a. The number of the elements of T(a) is denoted by #T(a). 
For YN52, the weight-vector a= (1/3, 1/4,2/9,7 /36), #T(a) = 5, and 
the Newton boundary is in Fig. 3. For YN56, the weight-vector a = 
(11/30, 4/15,1/5, 1/6), #T(a) = 6, and the Newton boundary is in Fig. 
4. For YN73, the weight-vector a= (1/2, 1/5,4/25,7 /50), #T(a) = 6, 
and the Newton boundary is in Fig. 5. 
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(2,0,0,0) 

(1,1,1,1) 
(0,5,0,0) (0, 0, 1, 6) 

(0,1,5,0) 

Fig. 5. YN73: f = x 2 + y5 + yz5 + zw6 
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