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A note on a reaction-diffusion model describing the 
bone morphogen protein gradient in Drosophila 

embryonic patterning 

Peter van Heijster, Tasso J. Kaper and Cynthia A. Bradham 

Abstract. 

In this article, we consider the Eldar model [3] from embryology 
in which a bone morphogenic protein, a short gastrulation protein, and 
their compound react and diffuse. We carry out a perturbation analysis 
in the limit of small diffusivity of the bone morphogenic protein. This 
analysis establishes conditions under which some elementary results of 
[3] are valid. 

§1. Introduction 

Dorsal-ventral patterning of embryos is an important problem in 
the field of developmental biology. In this article, we focus on the Eldar 
model [3]. It is a system of three reaction-diffusion equations repre­
senting an elementary model of the evolution of the earliest stages of 
bone morphogenic proteins (BMPs) and other proteins in Drosophila 
embryos (fruit fly) in the dorsal region. This model helps analyze how 
a high BMP concentration develops around the dorsal midline, which is 
an essential step in the development. 

The inhibitor protein short gastrulation (Sog), BMP, and the com­
plex of these two proteins (Sog-BMP) are modeled. Let S denote the 
concentration of Sog, B the concentration of BMP, and C the complex 
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Fig. 1. Schematic depiction of the Drosophila embryo. The 
outer scale indicates the scaling of the full model. 
Typical values as used in [3] are h = 125t-tm, l2 = 
lOOttm and L = 550J,tm. The inner scale indicates 
the (re)scaling used in the dorsal region for this note 
with X E [-1, 1] 

Sog-BMP. The reaction-diffusion equations are given by 

(1) 

as 
at 
aB 
at 
ac 
at 

DB V'2 B- ,bsB +"'-be+ >.[Tld]C, 

DcV'2C + "'bSB- "'-be- >.[Tld]C. 

Here, Di denotes the diffusivity of the species i, fori= S, B, C. More­
over "'b is the binding rate of S to B to form the complex C and "'-b is 
the unbinding of the complex C. The cleavage of Sog and the complex 
by the protein tolloid [Tld] are modeled by, respectively, the cleavage 
parameters a and >.. Also, the concentration of [Tld] is assumed to be 
constant in the region of interest. The average parameter values taken 
for the diffusion coefficients and other parameters in [3] are 

(2) De = Ds = 1, DB = 0.1, "'b = 10, "'-b = 1, a[Tld] = l'[Tld] = 10. 

In [3], this model is studied numerically on the interval-h :::; x:::; h, 
where x = 0 represents the dorsal midline, see Fig. 1 and see also the 
remark in the discussion §4. Dirichlet boundary conditions are used 
for Sog and Sog-BMP, that is S(±h) = so, C(±h) = Co· Moreover, 
symmetry is assumed around the dorsal midline: Bx(O), Cx(O), Bx(O) = 
0. The parameters are varied over a wide range of possibilities. The 
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Fig. 2. A typical stationary pattern observed for (1). The 
system parameters are: Ds =De= tcb = a[Tld] = 

>..[Tld] = 1, DB = 0.1 and Kb = 10. Note that we 
scaled the domain to x E [-1, 1] 

stationary state observed of a typical simulation is shown in Fig. 2 and 
note that we scaled the spatial variable to the unit domain. This is 
actually the scaling which we will use for x in the remainder of this 
article. 

In [3], this model is also studied analytically under the simplifica­
tions that (i) Sog is not cleaved (a= 0), (ii) the complex does not unbind 
(tcb = 0), and (iii) BMP does not diffuse, i.e., DB= 0. This latter sim­
plification is motivated by the assumption that BMP has a much smaller 
diffusion coefficient than Sog and the compound. We remark that the 
magnitude of the diffusivity of BMP has been subject to much debate 
in the developmental biology community. See for example [1], [6], [7]. 
This simpler model possesses a stationary BMP concentration which is 
centered, and peaked, around the dorsal midline: 

) 2D8 1 
B(x =- 2 ()2' 

fi:b X + C(x)=co, 

where 52 depends on the system parameters and the boundary condi­
tions. With the Dirichlet boundary conditions, we get 

(4) 2 2Dss0 
5 = >.[Tld]co - 1. 

In this short article, we analyze a scaled version of (1) under the 
assumption that BMP can diffuse, but has a small diffusion coefficient. 
Also, all of the other parameters are allowed to have nonzero values. The 
main results of the analysis here include a justification of the simplifi­
cations made in [3] under an additional constraint which deals with the 
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smallness of the concentration of short gastrulation around the dorsal 
midline. We also compare our asymptotic results with results of numer­
ical simulations of the scaled, time-independent problem obtained using 
the continuation package AUT0-07P [2]. 

§2. Asymptotic analysis of (1) in the limit of small DB 

2.1. Scalings 
We first scale (1) so that we can study the influence of the small 

diffusion term, as well as the limits in which ~-b and a go to zero. Let 

'Yl = a[Tld] , 

System ( 1) becomes 

as 
at 

(5) 
1 af3 

'/'2 = .A[Tld] , 
1 

x= JDSx. 

Looking at the average values for ~b, Ds, DB and De taken in [3], see 
(2), it is reasonable to set %; = E:,-£; = 1 and scale ;b = cd with 
d = 0(1). For convenience we take d = 1 and (5) becomes 

(6) 

In order for (6) to be well-posed, we need six boundary conditions 

(7) (8(1), B(1), 0(1)) =(so, bo, eo), (Sx(O), Bx(O), Cx(O)) = (0, 0, 0). 

2.2. Stationary solutions 
In this section, we study the scaled model (6) on (x, t) E [0, 1] x JR.+ 

with c « 1. Stationary solutions satisfy (6) with the time derivatives 
on the left side set to zero. There is a coefficient of c2 in front of the 
diffusion term of BMP. Hence, a priori, one would expect the system 
to be singularly perturbed with a singular limit as E: (and DB) --+ 0. 
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However, we will show that this problem is actually not singularly per­
turbed. Instead, for the particular solutions we examine, it is a regular 
perturbation problem in which the solutions limit on Eldar's solutions 
as E-+ 0, and K:-b, ')'1 -+ 0. 

We introduce the regular expansions 

Note that since equation (6) has no explicit O(c)-terms on the right 
hand side, we also expect that the expansions do not possess these order 
terms. Implementing the regular expansions we find, to leading order, 

(8) 0 

0 

-SoBo + K:_bCo + 1'2Co, 

(Co)xx + SoBo- f£_bCo- ')'2Co. 

This is a system of two second-order differential equations combined 
with an algebraic constraint. Moreover, this system is very similar to 
the equations analyzed in [3]. 

Putting the algebraic constraint of (8) into the equation for the 
complex C and applying the boundary conditions (7), we see that the 
complex is to leading order constant, 

(9) 

Then, the equation for Sog gives 

The solution is 

So(x) = A1ev''i\x + A2e-v"7,x- 12 co. 
'/'1 

Using the boundary conditions (7), we obtain 

(10) 

Since the Sog concentration cannot become negative, we impose 

(11) So(O) > 0 
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Fig. 3. Plots of the first order approximation (circles) and 
the solution obtained from an AUT0-07P simulation 
(solid line) with so = co = ~">-b = 'Yl = 1'2 = 1, 
c = 0.01 and b0 = 2 (such that (13) is fulfilled). 
Note the different sizes of the scales in the vertical 
axes, especially, for the complex C, which ranges from 
0.9994 to 1.0. This difference is of O(c2 ) 

Finally, for B(x) we find 

(12) B(x) = B 0 (x) + O(c2 ) = (ILb ;o~~)Co(x) + O(c2 ) 

= (1Lb + 1'2)Co + O(c2). 

(so+ ~co) sech(J'Yl) cosh (y"Y1x)- ~co 

This leading order solution agrees well with the numerically observed 
solutions, see Fig. 3. 

At the dorsal midline B'(O) = 0 as desired. However, we note that 
the value for BMP given by (12) at the right boundary is 

(13) - ~ 2 
B(1) = (!Lb + 1'2)- + O(c ) . 

so 

So, the leading order analysis is compatible with the boundary condi­
tion B(1) = bo as long as b0 in (7) equals B(1) in (13). Moreover, 
when one considers this problem on the full domain [-L/2, L/2], then 
this compatibility condition at ±1!1 must be satisfied by the part of the 
solution closer to the ventral side. On the other hand, if b0 in (7) is 
different from (13), the approximation becomes inaccurate and there is 
a boundary layer around x = 1 for (6). 
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2.3. Peaks in B(x) 

High peaks in the BMP concentration around the dorsal midline 
arise when the denominator of B(x) is small, i.e., when the Sog concen­
tration is small at x = 0. This gives 

(14) 

In order to quantify this better, we study the "half-width" x E [0, 1] 
- B(O) of the BMP component: B(x) =-e-. We define 

'Y2 K3 =-co, 
'Yl 

and note that (11) implies K 2 > K 3 > 0, which in turn implies that 
0 < K 1 < 1. Now the half-width is, to leading order, 

_ arccosh(e + K 1 (1- e)) 
X= . 

v"h 

Since the arccosh(e + K 1(1- e))) is a decreasing function for K 1 E 

(0, 1), which approaches zero for K 1 ---+ 1, we get that the half-width 
x gets closer to zero for increasing K 1 . In other words, we can get the 
half-width as small as we want by choosing K 1 ,:S 1, i.e., by choosing 
K 3 ,:S K 2 . Note that this is similar to expression (14). So, by letting the 
Sog concentration go to zero at the dorsal midline, the half-width of B 
becomes arbitrary small. 

From the above analysis, it appears that (besides the matching 
boundary condition (13) of BMP) a regular perturbation expansion, and 
thus the analysis as done in [3], gives valid approximations as long as 
(11) holds. Moreover, if the concentration of Sog becomes small around 
the dorsal midline, the leading order approximation predicts sharp peaks 
in BMP. However, when Sog becomes too small, the higher order terms 
in the regular expansion start to have an influence, see Fig. 4, and the 
leading approximation is thus not valid anymore. In §4, we will briefly 
discuss how the analysis changes when Sis too small. 
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Fig. 4. Plots of the first order approximation (circles) and 
the solution obtained from an AUT0-07P simulation 
(solid line) with so = co = "-b = 11 = 1,12 = 
1.8, c = 0.01 and b0 = 2.8 (such that (13) is fulfilled). 
For these values, the left-hand side of (14) is 0.01455, 
which is of the asymptotic magnitude of c. Note the 
different sizes of the scales in the vertical axes 

2.4. Geometric analysis 

We write the stationary problem of (6) as a 6-dimensional system 
of first order equations 

Sx u, 

Ux sb- A;_ be+ 'YlS, 

(15) cbx v, 

cVx sb- A;_ be- 'Y2C 

Cx w, 

Wx -sb + A;_bC + "(2C. 

For c = 0, this system has a critical 4-dimensional invariant manifold 
Mo given by 

Mo = {(s,u,b,v,c,w): v =0, s =1- 0} 0 

The dynamics of (15) may readily be studied by examining the fast 
dynamics in the directions normal to Mo and the slow dynamics on the 
manifold Mo. We begin with the former. The fast flow, off M 0 , is 
governed by 

bf, v' 
(16) 
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Fig. 5. The flow of (17) in the (s,u) plane and in the (c,w) 
plane 

where s, care positive constants and the variable~= x/e is a stretched 
variable. This system has a positive eigenvalue and a negative eigen­
value. Hence, in the directions normal to Mo, the fast flow is hyper­
bolic, with the linearization at every point on Mo having one unstable 
direction and one stable direction. More precisely, the manifold Mo is 
said to be normally hyperbolic, with one-dimensional stable fast fibers 
and one-dimensional unstable fast fibers. 

On Mo, the dynamics is governed by 

Sx u, 

(17) 

Cx w, 

Wx 0. 

This system has a double zero eigenvalue and two eigenvalues with op­
posite signs>.±= ±v'fl. More specifically, the flow in the (c,w) plane 
is a shear flow, while the flow in the (s, u) plane is of saddle type, see 
Fig. 5. In this figure, condition (11) can be interpreted as follows: for 
given s0 and c0 , u(1) is determined uniquely by (10), and u(1) should 
be positive and below the dashed dotted curve, i.e., the solution curve 
that crosses (0, 0). 

Since the manifold Mo is normally hyperbolic, Fenichel's persistence 
theorem [4], [5] implies that (15) has a locally invariant manifold Me for 
E: small enough. Moreover, this manifold is O(e) close to M 0 . The solu­
tions constructed in the previous sections lie on the persisting manifold 
Me. Therefore, this is actually a regularly perturbed problem as long 
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as the concentrations of Sog and the compound are larger than O(c:"') 
with a < 1, see Figs. 4 and 6. 

Moreover, there could be solutions that approach Me asymptoti­
cally. However, since the system of equations for BMP is linear in B, 
see (16), it is not possible to construct non-trivial homoclinic solutions 
to Me. 

§3. Comparison with the results of [3] 

To compare to the results of the elementary model in [3], we take 
the limit of 1 1 -+ 0 in the expression of BMP (12) and also set 1\:_b = 0. 
We get 

This is equal to Eldar's expression for BMP in (3) in the new scaling 
(with Ds = 1): 

B(x) _ 2Ds 1 ===} B(x) = 2 
- ll:b x2 + (~ -1) x2 + (~ -1) · 

.\[T!d]co /2CO 

To get sharp peaks in the BMP concentration around the dorsal midline, 
the short gastrulation concentration must be small. This led to the 
condition (14). For 1 1 -+ 0, condition (14) becomes 

12co so--- R:; 0 
2 ' 

which is exactly the value for which the concentration of Sog vanishes at 
the dorsal midline. This condition is also assumed in the supplementary 
material of [3]. 

§4. Conclusion and discussion 

The conclusions which can be drawn from the above analysis are 
twofold. First, when the concentration of Sog around the dorsal midline 
is not too small, the results obtained in [3] are valid. Second, these 
approximations are not justified anymore when this concentration does 
get small, see Fig. 4. 

In the latter case, we need to take into account the small diffusivity 
of BMP and rescale ( 6) to the correct asymptotic magnitudes. Moreover, 
as shown in Fig. 6, if we choose the system parameters such that (11) 
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Fig. 6. Plots of the first order approximation (circles) and 
the solution obtained from an AUT0-07P simulation 
(solid line) with so = co = 1\;_b = 1'1 = 1,'")'2 = 
2.2, s = 0.01 and b0 = 3.2 (such that (13) is ful­
filled). For these values, the left-hand side of (14) is 
negative, which yields the physically irrelevant case 
that the concentration of Sog becomes negative. The 
striking result is that the simulation of the full model 
(6) actually shows that the concentration does not 
become negative but is very close to zero, and that 
the concentration of BMP stills exhibits a peak 

is violated, the full model (6) still predicts peak formations for BMP 
around the dorsal midline. This is the subject of further research. 

Finally, we remark that in [3], this elementary model (1) is also 
extended to a more realistic, multi-component model on the whole em­
bryo. In later papers, see for example [6], [7], different reaction-diffusion 
models have been proposed to better describe and explain the embry­
onic patterns. These models are more complicated and harder to study 
analytically. 
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