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Abstract.

In this paper we formulate a refined version of the Oort conjecture
on liftings of cyclic Galois covers between curves. We introduce the
notion of fake liftings of cyclic Galois covers between curves; their exis-
tence would contradict the Oort conjecture, and we study the geometry
of their semi-stable models. Finally, we introduce and investigate some
examples of the smoothening process, which ultimately aims to show
that fake liftings do not exist. This in turn would imply the Oort

conjecture.
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80. Introduction

In what follows R is a complete discrete valuation ring of unequal

characteristic, K &' Fr(R) the quotient field of R, char(K) = 0, and
k the residue field of R which we assume to be algebraically closed of
characteristic p > 0. This paper is motivated by the following problem.

Problem I. Let X be a proper, smooth, geometrically connected R-

£ . .
curve, and fr : Y — X 4 X x r k a finite Galois cover between

smooth k-curves with group G. Is it possible to lift the Galois cover
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fx to a Galois cover f : Y — X' ef x x g R’ where R'/R is a finite
extension and Y is a smooth R'-curve?

We shall refer to a lifting f as above, if it exists, as a smooth lifting
of the Galois cover f;. This problem has been considered successfully
by Grothendieck in the case where fj, is a tamely ramified cover. In this
case a smooth lifting f as above exists over R (cf. [Gr]). The answer to
this problem is however No in general. Indeed, in the case where G is the
full automorphism group of Yy there are examples where the size of G
exceeds the Hurwitz bound for the size of automorphism groups of curves
in characteristic zero (cf. [Ro]), and the cover f; can not be lifted in this
case. Also it is in general necessary to perform a finite extension of R in
order to solve this problem (cf. [Oo], 1). In the case where fj is wildly
ramified there are non liftable examples with Galois groups as simple as
G 5 Z/pZ x ZJpZ (cf. [Gr-Ma], 5). See also [Oo], 1, for an example
of a genus 2 curve in characteristic 5 and an automorphism group of
cardinality 20 which cannot lift to characteristic 0. The following was
conjectured by F. Oort.

Oort conjecture [Conj-O] Problem I has a positive answer if G =
Z/mZ is a cyclic group. Moreover, in this case one can choose R’ in a
solution to Problem I to be the minimal extension of R which contains
the m-th roots of 1.

In order to solve this conjecture one may reduce to the case where
G = Z/p"Z is a cyclic p-group (cf. Lemma 2.1.1). In this case the
Oort conjecture has been verified when n < 2 (cf. [Se-Oo-Su] for the
case n = 1, and [Gr-Ma| for the case n = 2). In the approach of Oort,
Sekiguchi, Suwa, Green, and Matignon one uses the Oort—Sekiguchi—
Suwa theory, which provides explicit equations describing the degenera-
tion of the Kummer equations in characteristic 0 to the Artin—Schreier—
Witt equations in characteristic p > 0. The conjecture [Conj-O] is still
open. Recently, Obus and Wewers claim to have proved [Conj-O] for
n = 3 and in several cases when n > 3 (cf. [Ob]). We revisit in §2, 2.1,
the Oort conjecture. We formulate the following refined version of this
conjecture (cf. 2.1, for more details).

Oort Conjecture Revisited [Conj-O-Rev] We use the same nota-
tions as in Problem I. Assume that G = Z/mZ is a cyclic group. Let
H be a quotient of G and gy : Zx — X the Galois subcover of fi, with
group H. Then there exists a smooth Galois lifting g : Z/ — X’ def
X xg R of g, over some finite extension R'/R. Furthermore, for every
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smooth lifting g of the Galois subcover g of fi as above there exists

a smooth lifting f : Y — X" ©f x x r R" of fi over some finite ex-
tension R”/R' such that f dominates g, i.e. we have a factorisation

def gxX g R
[:Y" = Z"E2 7 xp R"TES X", Moreover, R” can be chosen to
be the minimal extension of R’ which contains a primitive m-th root of
1.

As for the original Oort conjecture, to prove this revisited version
one may reduce to the case where G = Z/p"Z. In the case n = 1 both
[Conj-O] and [Conj-O-Rev] are clearly equivalent. In Section 2.2, and in
the case where n = 2, we verify [Conj-O-Rev] in some cases (cf. Lemma
2.2.1, and Lemma 2.2.2). This paper is motivated by the idea of the
search for a path, or a bridge, between Garuti’s theory developed in
[Ga] to approach Problem I and the (revisited) Oort conjecture, which
may lead to the solution of this conjecture. We introduce in §2 the
notion of fake liftings of cyclic Galois covers between curves with the
purpose of establishing such a bridge.

Next, we explain the definition of fake liftings. Assume that G =
Z/p"Z,n > 1. Let H be the unique quotient of G with cardinality p™~!.
We use the notations in Problem I and assume that X = P}. In fact one
can reduce the solution of Problem T to this case (cf. 2.1, and Lemma
2.1.1). Let fi : Yy — P} be a finite ramified Galois cover with group G
and gy, : X — Pk the Galois subcover of f; with group H. In order to
solve [Conj-O-Rev] for the Galois cover fi and the subcover gi one may
proceed by induction on the cardinality of the group G. The case where
G has cardinality p is solved in [Se-Oo-Su]. So we may assume, by an
induction hypothesis, that gi admits a smooth lifting g : X — P} defined
over R, i.e. we assume that [Conj-O] holds for the Galois subcover g
of fr. We would like to show that [Conj-O-Rev] is true for f; and the
smooth lifting g of the sub-cover gy, i.e. show that g can be dominated
by a smooth lifting of fi, possibly after a finite extension of R. Consider
all possible Garuti liftings f: Y — X 2 PL of f; which dominate the
smooth lifting g of gx. A Garuti lifting f: Y — P} of fx : Yz — P} is
a finite Galois cover with group G such that the special fibre Yy of YV
is irreducible (not necessarily smooth), the finite morphism Yy, — P} is
generically Galois with group G, and we have a factorisation fy : Y —
Vi — IP’,lc where the morphism Y; — Vi is a morphism of normalisation
(cf. [Sal], Definition 2.5.2 for more details. Note that a smooth lifting
is a Garuti lifting). Garuti liftings f : Y — P} as above which dominate
the smooth lifting g : X — P} exist by the refined version of Garuti’s
theory established in [Sal]|, Theorem 2.5.3, and are a priori defined over
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a finite extension of R. For a Garuti lifting f as above, which we can
assume is defined over R, the degree of the different in the morphism

K Vi def VYxrK — IP’}{ between generic fibres is greater than or equal
to the degree of the different in the morphism fy : Yy — P}. Moreover,
Y is smooth over R, which implies that [Conj-O-Rev] holds in this case,
if and only if these degrees of different are equal. Next, we argue by
contradiction. Assume that [Conj-O-Rev] doesn’t hold for the Galois
cover fi and the smooth lifting g of the subcover gi. In particular, for
all possible Garuti liftings f as above ) is not smooth over R. A Garuti
lifting f : J — P} as above such that the degree of the different in the

morphism fx : Vg def VxpK — IP}{ between generic fibres is minimal,
among all possible f’s, is called a fake lifting of the Galois cover fi
relative to the smooth lifting ¢ of g (cf. Definition 2.3.2). Fake liftings
won’t exist if [Conj-O-Rev] is true. In fact in order to prove [Conj-O-
Rev] for the Galois cover fi and the smooth lifting g of g it suffices to
show that fake liftings f as above do not exist (cf. Remark 2.3.3).

One expects fake liftings to have very special properties, which pos-
sibly may lead to their non existence. Special properties of fake liftings
should be encoded in their semi-stable models. Let f: )Y — & N PL be
a fake lifting as above, assuming it exists. In §2, we study the geometry
of a minimal semi-stable model )’ — Y of )}, which we suppose defined

over R, and in which the ramified points in the morphism fg : Yk — Pk

specialise in smooth distinct points of ), def V' x g k. It turns out that

these semi-stable models have indeed very specific properties, which are
in some sense reminiscent to the properties of the minimal semi-stable
models of smooth liftings of cyclic Galois covers between curves. We
prove, among other facts, that the configuration of the special fibre
YV, €Y x g k of the semi-stable model )’ of the fake lifting f is tree-
like (cf. Theorem 2.5.4 (i)). Moreover, all the irreducible components
of positive genus in Yj, which contribute to the difference between the
generic and special different in the morphism f : Y — P}, are end ver-
tices of the tree associated to ), with special properties (cf. loc. cit).
In the course of proving this result we establish some of the properties
of the minimal semi-stable model of an order p™ automorphism of a p-
adic open disc, with no inertia at the level of special fibres, that were
established in the case n = 1 in [Gr-Mal] (cf. 2.5.3).

Finally, in §3, we introduce the smoothening process for a fake lifting
f:y—-x3 PL as above. The ultimate aim of this process is to show
that fake liftings do not exist. This in turn would prove [Conj-O-Rev].
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The basic idea of smoothening of the fake lifting f is to construct, start-
ing from f, a new Garuti lifting f; : Yy — X 5 PL which dominates
the smooth lifting g of gx and such that the degree of the different in

the morphism f x : Y1,k Yy xr K — PL between generic fibres is
smaller than the degree of the different in the morphism [ : Vg — ]P’}(.
We call such f; a smoothening of f. If this construction is possible, it
would imply that the fake lifting f doesn’t exist. Indeed, this would
contradict the minimality of the generic different in f, hence will prove
[Conj-O-Rev]| for the Galois cover f; and the smooth lifting g of the sub-
cover gi. We describe a formal way, using formal patching techniques,
to construct a smoothening f; of the fake lifting f : J — P} starting
from the minimal semi-stable model ' — Y of Y (c¢f. 3.1). This con-
struction is related to the existence of (internal) irreducible components

in the special fibre Py of the quotient P def YV'/G of the semi-stable
model )’ by G, which satisfy certain technical conditions arising from
the geometry of the semi-stable model )’ and the Galois cover )’ — P.

We call such a component a removable vertex of the tree associated to

Pr P xrk (cf. Definition 3.1.2). The existence of a removable vertex

in Py leads immediately to the existence of a smoothening f; of the fake
lifting f as above (cf. Definition 3.1.3).

‘We show that the smoothening process is possible in the case where
G > Z/pZ (cf Proposition 3.2.2). This gives an alternative proof of the
Oort conjecture in this case. This proof, though simple, is striking in the
view of the author in many respects. First, this proof is not explicit, in
the sense that it doesn’t produce an explicit lifting of the Galois cover fx.
Second, the proof doesn’t rely (in any form) on the degeneration of the
Kummer equation to the Artin—Schreier equation as in [Se-Oo-Su] (cf.
also [Gr-Ma]), but rather on the degeneration of the Kummer equation
to a radicial equation (cf. proof of Proposition 3.2.2). This suggests the
possibility of proving [Conj-O] without using the Oort—Sekiguchi-Suwa
theory. In the case where n = 2, i.e. G = Z/p?Z, we give, in 3.3, some
sufficient conditions for the existence of removable vertices which lead
to the execution of the smoothening process (cf. cf. Proposition 3.3.1).

Next, we briefly review the content of each section of this paper.
In §1 we collect some background material which is used in this paper.
In §2 we revisit the Qort conjecture and introduce the notion of fake
liftings of cyclic Galois covers between curves. We then establish the
main properties of their minimal semi-stable models in 2.5.4. In §3 we
introduce the notion of the smoothening process for fake liftings and we
investigate on some examples, in degree p and p?, this process.
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§1. Background

In this section we collect some background material which is used
in this paper.

1.1. Formal Patching

In this subsection we explain the procedure which allows to con-
struct (Galois) covers of curves in the setting of formal geometry, by
patching covers of formal affine curves with covers of formal fibres at
closed points of the special fibre (cf. [Sal, 1, for more details). Let R be
a complete discrete valuation ring with fraction field K, residue field k,
and uniformiser 7. Let X be an admissible formal R-scheme which is
an R-curve; meaning that the special fibre X} f x « r k is a reduced

one-dimensional scheme of finite type over k. Let Z be a finite set of

closed points of X. For a point z € Z let X, def Spf(’)x « be the formal

completion of X at z, which is the formal fibre at the point z. Let X’
be a formal open subscheme of X whose special fibre is X \ Z. For
each closed point x € Z let {P;}™, be the set of minimal prime ideals

of Ox , which contain 7; they correspond to the branches {n;}™_; of the

completion of X at x, and let X, ; def SpfOx p, be the formal comple-

tion of the localisation of X, at P;. The local ring (’)x,pi is a complete
discrete valuation ring. The set {X ;}7 , is the set of boundaries of the
formal fibre X,. For each ¢ € {1,...,n} we have a canonical morphism
Xxﬂg — Xz

Definition 1.1.1. With the same notations as above a (G-)cover
patching data for the pair (X, Z) consists of the following.
(i) A finite (Galois) cover Y/ — X' (with group G).
(ii) For each point z € Z is given a finite (Galois) cover Y, — X, (with
group G).

The above data (i) and (ii) must satisfy the following compatibility
condition.
(i) If {X;;}7; are the boundaries of the formal fibre at the point z,
then for each i € {1,...,n} is given a (G-equivariant) X,-isomorphism

o; Y, XX, Xz,i 3y’ Xxr Xm,i
Property (iii) should hold for each z € Z.

The following is the main patching result that we will use in this
paper (cf [Sa] 1) for more details).
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Proposition 1.1.2. We use the same notations as above. Given a
(G- )cover patching data as in Definition 1.1.1 there exists a unique, up
to isomorphism, (Galois) cover Y — X (with group G) which induces
the above (G-)cover in Definition 1.1.1 (i) when restricted to X', and
induces the above (G-)cover in Definition 1.1.1 (i) when pulled-back to
X, for each point x € Z.

1.1.3.  'We use the same notations as above. Let z € Z and X}, the
normalisation of Xj. There is a one-to-one correspondence between the
set of points of X; above z and the set of boundaries of the formal fibre
at the point z. Let z; be the point of X, above z which corresponds to
the boundary X, ;, for i € {1,...,n}. Assume that the point z € Xy (k) is
rational. Then the completion of X}, at z; is isomorphic to the spectrum
of a ring of formal power series k[[t;]] in one variable over k, where t;
is a local parameter at x;. The complete local ring O, p, is a discrete
valuation ring with residue field isomorphic to k((t;)). Let Tj € O, p,
be an element which lifts ¢;. Such an element is called a parameter of
O,.p,. Then there exists an isomorphism O, p, = R[[T;]]{T;"'} where

RITIHT (S o, lim_Jai] = 0},

1=—00

and | | is a normalised absolute value of R.

As a direct consequence of the above patching result, and the theo-
rems of liftings of étale covers (cf. [Gr]), one obtains the following (well-
known) local-global principle for liftings of (Galois) covers of curves.

Proposition 1 1 4. Let X be a proper, flat, algebraic (or formal)
R-curve and let 7 % {xl 1 be a finite set of closed points of X. Let f, :
Yr — Xk be a finite genemcally separable (Galois) cover (with group G)
whose branch locus is contained in Z. Assume that for eachi € {1,...,n}
there exists a (Galois) cover f; : Vi — SpfOx , (with group G) whzch
lifts the (Galois) cover Vi z, — SpecOx, , induced by fi, where Ox, x,
(resp. Ykm ) denotes the completion of Xy, at z; (resp. the completion of
Yi above x;). Then there exists a unique, up to isomorphism, (Galois)
cover [ Y — X (with group G) which lifts the (Galois) cover fr and
which is isomorphic to the cover f; when pulled back to Spf@x,xi, for
each i € {1,...,n}.

1.2. Degeneration of ,-torsors

In this subsection we recall the (well-known) degeneration of -
torsors from zero to positive characteristic above the boundaries of for-
mal fibres of formal R-curves at closed points. Here R denotes a complete
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discrete valuation ring of unequal characteristic with fraction field K,
residue field &k of characteristic p > 0, uniformiser 7, and which contains
{: a primitive p-th root of 1. We write A def ¢ — 1. We denote by vg -
the valuation of K which is normalised by vk (7) = 1. First, we recall
the definition of a certain class of R-group schemes (cf. [Se-Oo-Su], for
more details).

1.2.1. Torsors under finite and flat R-group schemes of rank
p: the group schemes G,, and H,. Letn > 1 be an integer. Define

the affine R-group scheme G, g def Spec(A,) as follows.

. def
(i) An < RIX, 2%
def

(ii) The comultiplication ¢, : 4, — A, ®r A, is defined by ¢,(X) =
X®1+1 X+ X ® X.

(iii) The coinverse @y, : A, — A, is defined by i, (X) ef _ML"X'

(iv) The counit €, : A,, — R is defined by €,(X) <.

One verifies that G, Lf Gn r is an affine, commutative, and smooth
R-group scheme with generic fibre (G,)x — G, x and special fibre
(Gn)k = Gy . Assume that n satisfies the following condition

(%) 0 <n(p—1) <vk(p)
Consider the map ¢, : G, = Gpr, given by:

14+ 7"X)P -1
.—>—( + ' X) .

TP

X

Then ¢, is a surjective homomorphism of R—group schemes. Denote

by H, Lef Hnr def Ker(¢y). The group scheme H,, is finite, flat, and

commutative of rank p. Under the assumption (*) one verifies that

the generic fibre H,, x def H, s K 5 Up, i is étale, the special fibre

Hn ke &f Hn ®r k = oy is radicial of type «, if n < vg()), and

Hok i, or kS (Z/pZ)y, is étale if n = v (N).

Let U & SpfA be a formal affine R-scheme and f : )V — U a torsor

under the group scheme H,,, for some n as above satisfying (x). Then

there exists a regular function u € A such that the image 4 of u in

AL A/mA is not a p power if n < vg(A), 1+ 7P"u is defined up to

multiplication by a p-th power of the form (1 + 7™v)?, and the torsor f
is given by an equation (X)? = (1 + 7" X)? = 1 + 7™y where X’ and
X are indeterminates. Moreover, the natural morphism fi : Vi — Uy
between the special fibres is either the ayp-torsor given by the equation
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2P = 4 where x = X mod 7, and @ = u mod 7, if n < vg(A). Oris
the Z/pZ-torsor given by the equation 2P —x = @ where x = X mod ,
and @ =u mod 7, if n = vk (A).

Next, we recall the degeneration of p,-torsors on the boundary

x SpfR[[T]J{T'} of formal fibres of germs of formal R-curves. Here

R[[T|{T~1} is as in 1.1.3. Note that R[[T]]{T'} is a complete discrete
valuation ring with uniformising parameter m and residue field k((t)),
where t =T mod .

Proposition 1.2.2. Let A % R[[T]{T '} (¢f 1.1.3) and f :

SpfB — SpfA a non trivial Galois cover of degree p. Assume that the
ramification index of the corresponding extension of discrete valuation
rings equals 1. Then f is a torsor under a finite and flat R-group scheme
G of rank p. Let § be the degree of the different in the above extension.
The following cases occur.

(a) 6 = vk (p). Then f is a torsor under the group scheme G = p, g
and two cases occur.

(al) For a suitable choice of the parameter T of A the torsor f is
given, after possibly a finite extension of R, by an equation ZP = T". In
this case we say that the torsor f has a degeneration of type (tp,0,h).

(a2) For a suitable choice of the parameter T of A the torsor f is
given, after possibly a finite extension of R, by an equation ZP = 1+T™
where m is a positive integer prime to p. In this case we say that the
torsor [ has a degeneration of type (pp, —m,0).

(b) 0 < 6 < vk(p). Then f is a torsor under the group scheme
Hn,r, where n is such that § = vix(p) — n(p — 1). Moreover, for a
suitable choice of the parameter T the torsor f is given, after possibly a
finite extension of R, by an equation ZP = 147P*T™ with m € Z prime
to p. In this case we say that the torsor f has a degeneration of type
(apa —-m, O) .

(c) 6 = 0. Then f is an étale torsor under the R-group scheme
G = Hy,(n),r and is given, after possibly a finite extension of R, by an
equation ZP = 1 + APT™ where m is a negative integer prime to p, for
a suitable choice of the parameter T' of A. In this case we say that the
torsor f has a degeneration of type (Z/pZ,—m,0).

Proof. See [Sa|, Proposition 2.3. Q.ED.

§2. Fake liftings of cyclic covers between smooth curves

In this section we formulate a refined version of Oort conjecture
on liftings of cyclic covers between curves. We introduce the notion of
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fake liftings of cyclic covers between curves and study their semi-stable
models.

2.1. The Oort conjecture

First, we recall the following main conjecture which was formulated
by F. Oort and several of its variants. In what.follows R is as in 1.1.

The Original Oort conjecture [Conj-O] (c¢f. [Oo] and [Ool]) Let
f& : Y = X}, be a finite (possibly ramified) Galois cover between smooth
k-curves with group G = Z/mZ a cyclic group. Then there exists a finite

extension R'/R and a Galois cover f’ : Y’ — X' between smooth R'-

curves with group G, such that the special fibre X df X7 x r k (resp.
Y, Ly’ xr k) is isomorphic to X}, (resp. is isomorphic to Y;) and the

natural morphism f;, Lef f' xr kY, — X which is induced by f’ on
the level of special fibres is isomorphic to f.

In the original version of the conjecture one doesn’t fix R but fixes
k, fr, and asks for the existence of a local domain R dominating the
ring of Witt vectors W (k) over which a lifting of f; exists as part of the
conjecture (cf. [Oo]). One can formulate several variants of the above
conjecture that we will list below. ’

[Conj-0O1] Let X be a proper, smooth, geometrically connected R-curve
and fi : Yy — Xi df x « R k a finite (possibly ramified) Galois cover
between smooth k-curves with group G = Z/mZ. Then there exists
a finite extension R'/R and a Galois cover f’ : V' — X’ X xg R
between smooth R’-curves with group G, such that the special fibre
X, Lf x7 rk (resp. Y/ Ly % r k) equals X}, (resp. is isomorphic to
Yy) and the natural morphism f}, def f'xrk:Y] — X = X which is
induced by f’ on the level of special fibres is isomorphic to fr. We call
f' as above a smooth lifting of f;, over R'.

[Conj-02] Let fr : Yy — P} be a finite ramified Galois cover, with
Yi a smooth k-curve, and with group G = Z/mZ. Then there exists
a finite extension R'/R and a finite Galois cover f’ : V' — PL, with
Y’ a smooth R’-curve, with group G, such that the natural morphism
I def I’ xr k : Y. — P} which is induced by f’ on the level of special
fibres is isomorphic to fx.

[Conj-O3] Let fi : Yy — P} be a finite Galois cover with Y; a smooth
k-curve and with group G — Z/mZ, which is (totally) ramified above a
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unique point co € Pi. Then there exists a finite extension R'/R, a finite
Galois cover f': V' — Pk, with Y’ a smooth R'-curve, with group G,

and such that the natural morphism f;, def ' xr k : Y] — P} which is
induced by f’ on the level of special fibres is isomorphic to f.

[Conj-04] Let X oof SpecR[[T]] and X, &of Speck[[t]]. Let fr : Yi — Xy
be a finite morphism which is generically Galois with group G = Z/mZ,
with Y, normal and connected. Then there exists a finite extension
R'/R and a smooth lifting f' : Y/ — X’ X xr R of fe, le. Y/ 5

SpecR/[[T"]] is R'-smooth and the natural morphism f : Y, — Xi = X,
which is induced by f’ at the level of special fibres is isomorphic to fy.

Moreover, in the above conjectures [Conj-O1], [Conj-02], [Conj-
03], and [Conj-04] one predicts that R’ can be chosen to be the min-
imal extension of R which contains a primitive m-th root of 1. In fact
all the above variants of the Qort conjecture turn out to be equivalent.
More precisely, we have the following.

Lemma 2.1.1. The above conjectures [Conj-O], [Conj-O1],
[Conj-02], [Conj-03], and [Conj-04] are all equivalent. Moreover,
in order to solve the above conjecture(s) it suffices to treat the case where
G 5 Z/p"Z is a cyclic p-group.

Proof. Follows easily from the local-global principle for the lift-
ing of Galois covers between curves (cf. Proposition 1.1.4), the result
of approximation of local extensions by global extensions due to Katz,
Gabber, and Harbater, (cf. [Hal], and [Kal]), and the formal patching
result in Proposition 1.1.2. The last assertion can also be easily verified
(see for example the arguments in [Gr-Mal, 6). QE.D.

Oort conjecture holds true in the case where the Galois cover f is
étale, as follows from the theorems of liftings of étale covers (cf. [Gr]).
In this case the statement of the conjecture is true for any finite group G
(not necessarily cyclic), and a smooth lifting exists over R. In the case
where G = Z/p™Z is a cyclic p-group the conjecture has been verified
in the cases where n = 1 and n = 2 (cf. [Se-Oo-Su] for the case n = 1
and [Gr-Ma] for the case n = 2). In this paper we propose the following
refined version of the Oort conjecture. More precisely, we will formulate
a refined version of [Conj-O1].

Oort Conjecture revisited [Conj-O1-Rev] Let X be a proper, smooth,

geometrically connected R-curve and f : Yy — Xk dof %« r k a finite
(possibly ramified) Galois cover between smooth k-curves with group
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G = Z/mZ. Let H be a quotient of G and g : Zr — X} the cor-
responding Galois subcover of fr with group H. Then there exists a

smooth Galois lifting g : Z' — X' f ¥« r R’ of g over some fi-
nite extension R'/R, i.e. g is a Galois cover with group H between
smooth R’-curves which is a lifting of gi (cf. [Conj-O1]). Further-
more, for every smooth lifting g of the Galois subcover gp of fi as
above there exists a finite extension R”/R’ and a finite Galois cover

f:Y" - X" 2 X xr R” between smooth R”-curves with group G,
which is a smooth lifting of fx, and such that f dominates g, i.e. we

.. def X g/ R
have a factorisation f : Y — 2" < Z' x g R" V25" X", Moreover,
R can be chosen to be the minimal extension of R’ which contains a
primitive m-th root of 1.

Remark 2.1.2. In a similar way as in the above discussion one can
revisit the above (equivalent) variants of the original Oort conjecture,
and formulate the revisited versions [Conj-O2-Rev], [Conj-O3-Rev],
and [Conj-O4-Rev], which turn out to be all equivalent to [Conj-O1-
Rev] (use similar arguments as in the proof of Lemma 2.1.1). Moreover,
in order to solve these revisited versions one can reduce to the case where
G = Z/p"Z is a cyclic p-group. In the case where n = 1 (i.e. G is a
cyclic group of cardinality p) the revisited Oort conjecture is clearly true,
since the (original) Oort conjecture is true in this case (see [Se-Oo-Su)).

2.2.

Next, we give examples where the revisited Oort conjecture can be
verified in the case where G = Z/p*Z.

Assume that G = Z/p?Z. We will work within the framework of
[Conj-O4-Rev] (cf. Remark 2.1.2). More precisely, let X« SpecR[[T])]
and X, & Speck][t]] its special fibre (¢t =71 mod 7). Let fi : Z — ):(k
be a cyclic Galois cover of degree p? with Zj normal, and hy, : Z; — Xj
its unique Galois subcover of degree p. A smooth local lifting of fi
(cf. [Conj-04]) exists by [Gr-Ma|, Theorem 5.5, over R if R contains
the p?-th roots of 1. Assume that R contains a primitive p-th root

of 1. Let h : Z' — X be a smooth Galois lifting of hy, i.e. h is a

Galois cover of degree p, 7’ def SpecA’, A’ 5 R[[S]] is an open disc,

and h induces the Galois cover hy on the level of special fibres. Then
in order to verify the [Conj-O4-Rev] for the Galois cover fi and the
smooth lifting h of hi one has to show that there exists a smooth Galois

lifting f : Z — X of fi, ie. fisa cyclic Galois cover of degree p?,

7z SpecA, A = R][S]] is an open disc, and f induces the Galois cover
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fr on the level of special fibres, which dominates h; i.e. such that we

have a factorisation f : Z — Z' L'd

We use arguments similar to the ones used in [Gr-Ma]. The Galois
cover fi is generically given, for an appropriate choice of the parameter
t, by the equations: ‘

(%) o —x =t

(%) xh — zy =c(af, —z1) + Z a,t™?
0<s<my(p—1)

+ Y P (@ - m) (el — 2)P,

0<j<my 0<i<p

where a; € k, pjp—; € k[z] are polynomials of respective degrees d; ,_;,
ged(my,p) = 1, and c(z,y) % @w (see [Gr-Ma], Lemma

5.1). Moreover, the degree of the different in the Galois cover f, is
def
ds = (m1 +1)(p — )p + (m2 + 1)(p — 1),

def . .
where mg = maxo§j<m1 (p?*ma, p(jp+ (i+pdjp—i)m1)) — (p— 1)my (cf.
<w<p
loc. cit.). Let (3 € R be a primitive p?>-th root of 1. Let (3 def ¢¥ and
A E ¢1 — 1. The smooth lifting h : Z’ — X of hy is generically given
(by the Oort-Sekiguchi-Suwa theory (cf. [Se-Oo-Su])) by an equation

L]

where f(T) = %%, hT) € R[[T]], g(T) € R[T] is a distinguished
polynomial (i.e. its highest coefficient is a unit in R), the degree of g(T")
is m, the Weierstrass degree of h(T) is m/, m > m/, and m —m’ = m;.

Furthermore, % =T~™ mod m. The smoothness of Z’ is equivalent,

by the local criterion for smoothness (cf. [Gr-Mal, 3.4), to the fact that
the Galois cover hg : Zj — Xk which is induced by h between generic

fibres, and which is given by the equation (AX; 4+ 1)? = )‘—pﬁ%%%g—(T——)

ramified above m1+1 distinct geometric points of X . Moreover, X 1_ i
is a parameter for the open disc Z’, as follows easily from arguments
similar to the ones given in the proof of Theorem 4.1 in [Gr-Ma| (cf.

, 18
1
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also [Gr-Maj, proof of 3.4). We will consider two cases, depending on
the lift & of hy, where we can prove the revisited Oort conjecture [Conj-
04-Rev] for the smooth lifting & : Z’ — X (i.e. we can dominate h by
a smooth lifting f of fi). These two cases are considered separately in
the following Lemmas 2.2.1 and 2.2.2. '

Lemma 2.2.1. With the same notations as above assume thal in
the above second equation (xx) defining the Galois cover f, we have

Do at ik Xt 3 (@ ) py il —aa)” =0,

0<s<mi(p—1) 0<j<ma 0<i<p

and also assume that the degree of g(T) above equals my. (In particular,
h(T) € R[[T]] above is a unit in this case). Then there exists a smooth
lifting f of fr which dominates the smooth lifting h of hy,. In particular,
[Conj-O4-rev] is true under these conditions for the Galois cover fi
and the smooth lifting h of the subcover hy.

Proof. Consider the cover f : Z — X which is generically given by
the equations

0) e L]
where f(T) = h(T)/g(T) is as above, and
(i) (AXs + Exp, (1X1))? = (AXy + 1)Exp, (4PY),

where Exp X df + X4+ ...+ %"1 is the truncated exponential,
p (p—1)!

1 def log,(¢2) = 1 — G2 + weovn. + (—1)?‘1§§Tl1 (Exp, and log, denote
the truncation of the exponential and the logarithm, respectively, by
terms of degree > p — 1), and Y def % = g%. Then f is a
cyclic Galois cover of degree p? which generically lifts the Galois cover
fi (cf. [Gr-Mal], the discussion in the beginning of 3, and Lemma 5.2).
We claim that Z is smooth over R. Indeed, the degree of the different
in the morphism fi : Z — X} in this case is

ds = (m1 +1)(p = Vp + (p*m1 — (p — Dma + 1) (p - 1).
Moreover, the above second equation (ii) defining the lifting f is
(X3)? = (A X1 + 1)Exp, (bPY)

h(T) pP®=1 h(T)P—1)

= (L+AX1)(1+ u”g(T) et G T D D
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h(T) Mp(p 1) h(T)(P 1)

and 1+ pP Sy + - + oy gemyeo equals

(p = Dg(T)P~" + pP(p = DIW(T)g(T)P~> 4 ... + pp® - Dp(T) P~
(p—D)lg(T)P~1 '
Furthermore, (p — 1)! g(T)P~* + pP(p — 1)! A(T)g(T)P 2 + - --
1

PP~ B(T)P=1) can be written as a series in X, ™ whose Weier-
strass degree is pmq(p — 1) (since we assumed the degree of g(T') to be

my). From this we deduce that the degree of the generic different d,, in
the cover fx : Zx — Xx satisfies dy < (my+1)(p* = 1) +pmyi(p—1)?,
which implies d,, < ds. One then concludes that d, = ds, hence that
Z is smooth over R, since in general we must have d, < d,. More-

over, we have (by construction) a natural factorisation f : Z — Z’ N
X. Q.E.D.

Lemma 2.2.2. With the same notations as above. Assume that
g(T) =T™. Thus, h(T) € R[[T]] is a unit. (This case is rather special,
since the corresponding smooth lifting h of the Galois subcover hy, has the
property that all branched points are equidistant in the p-adic topology
of K). Then there exists a smooth lifting f of fr which dominates the
smooth lifting h of hy. In particular, [Conj-O4-rev] is true under these
conditions for the Galois cover fi, and the smooth lifting h of the subcover
hi.

Proof. Consider the lifting f : Z — X of the Galois cover fj :
Z — X, which is generically given by the equations

) OO =L i,

where f(T) = ;(,31) satisfies the above condition in the Lemma, and

(i) Xo+Exp,(uX)(1+ Y T4 (p = )Py i (E(T)))]P

0<j<my
0<i<p

= (GT ) +pu? Y AT *)AX1 +1),

0<s<r

where Exp,X defy + X+ ...+ o= ;;, is the truncated exponential, and

def log,(¢2) = 1 — Ca + oo + (=1)P~ 1%_1, are as in the proof of

Lemma 2.2.1, the polynomial G e (g/\il;—r,l,)—p_l) is defined in a similar
way as in [Gr-Mal, Lemma 5.4, P; ,—; € R[X] are primitive polynomials
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which lift the p; ,—; € k[z], and A, € R lift the as (cf. loc. cit). Then
f:Z = X is a Galois cover with a cyclic Galois group (isomorphic
to Z/p*7Z) and Z is smooth over R, as follows from the local criterion
for good reduction {(cf. [Gr-Mal, 3.4), by using Lemma 5.4 in [Gr-Ma]
(where among others the degree of G in T~! is computed), and the same
argument as i]il the proof of Theorem 5.5 in loc. cit. The key points here

are that X ; ™ is a parameter for the disc Z’ and the key Lemma 5.4
in [Gr-Ma] is valid by replacing G &ef G(T—™) there by G aof G(f(1))
in our case (formally speaking only the degree in T—! of f(T), which
is mq, plays a role in loc. cit.). Moreover, we have (by construction) a

natural factorisation f : Z — Z’ X Q.E.D.

2.3.

Next, we will introduce the notion of fake liftings of cyclic Galois
covers between smooth curves. We will work within the framework of
[Conj-O2-Rev].

Let n > 1 be a positive integer. Let fx : Yy — P} be a finite ramified
Galois cover, where Y is a smooth k-curve, with group G = Z/p"Z.
We denote by g : Xi — ]P’,lC the unique subcover of fi which is Galois
with group H = Z/p™~1Z. We have a canonical factorisation

h
fre: Vi =5 Xy, 25 pL

where hy : Yy — X} is a cyclic Galois cover between smooth k-curves of
degree p. We assume that the Galois cover gi : X — P} can be lifted
to a Galois cover between smooth R-curves, i.e. there exists a finite

Galois cover g : X — P} with group H, where X is smooth over R,

X, 4f x x r k is isomorphic to X, and such that the morphism induced

by g at the level of special fibres g : Xy — P} is isomorphic to the
Galois cover gy : X, — Pj. There exists a Garuti lifting of the Galois
cover f which dominates g (cf. [Sal], Definition 2.5.2. for the definition
of Garuti liftings of Galois covers between smooth curves). We assume
(for simplicity) that such a Garuti lifting is defined over R, i.e. there
exists a finite Galois cover f : Y — PL with group G and Y normal,

which dominates g, i.e. we have a factorisation f : Y Kax Pk,

and such that the morphism fk Ve def Y Xpk — IP),lc between special
fibres is generically étale, Galois with group G, dominates g (i.e. we
have a factorisation fk W — X EL3 ]P’,lc), the normalisation Vg of Vi
is isomorphic to Yj (in particular, Y is irreducible), and the natural
morphism between the normalisations Yp°* — P} (which is Galois) is
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isomorphic to fr (cf. loc. cit. Theorem 2.5.3). (Note that a smooth
lifting of the Galois cover fi : Y — P} is by definition a Garuti lifting).

Let 6y, Lf 65, (resp. &, & dr.) be the degree of the different in the

morphism fK Vi def YV xr K — IP’}< between generic fibres (resp. in
the morphism f : Y, — PL). It is well known (and easy to verify)
that we have the inequality d,, > d,. Furthermore, the equality 6, = 4,
holds if and only if ) is smooth over R (which is equivalent to Yy being
isomorphic to Yy), as follows from the local criterion for good reduction
(cf. [Gr-Ma], 3.4). We will consider the following assumption.

2.3.1. Assumption (A): Let n > 1 be a positive integer and
fx © Y = PL a cyclic Galois cover with group G = Z/p"Z, with Y;
a smooth k-curve. Let g; : Xi — ]P)k be the unique Galois subcover
of fi of degree p"~!. Assume that g; has a smooth Galois lifting ¢ :
X — PL, (over some finite extension R'/R). We say that the Galois
cover fi : Y, — P} satisfies the assumption (A), with respect to the
smooth lifting g of the subcover gi, if for all possible Garuti liftings
f:y— PL, of the Galois cover fy : Y, — PL which dominate g (see

preceding discussion) and are defined over a finite extension R”/R’, the

strict inequality 4, ef 07, > 0s et s, (where K" &of Fr(R")) holds.

In other words the assumption (A) is satisfied if there doesn’t exist a
smooth lifting of fi which dominates the given smooth lifting g of the
subcover g of fx. Note that if [Conj-O2-Rev] (cf Remark 2.1.2) is
true then no Galois cover f : Y, — P} as above satisfies the assumption
(A).

Next, we introduce the notion of fake liftings of cyclic Galois covers
between curves which naturally arise if cyclic Galois covers satisfy the
above assumption (A).

Definition 2.3.2. Fake liftings of cyclic covers between
curves: Agsume that the Galois cover fr : Y — ]P’i satisfies the as-
sumption (A) with respect to the smooth lifting g of the subcover g
(cf. 2.3.1). Let & df min{de”}, where the minimum is taken among
all possible Garuti liftings f Y — IP’}%,, of fr as above which domi-
nate the smooth lifting g : X — Pk, of the subcover gy : Xj — P}.
Note that § > 5 by assumption. We call a lifting f:y - PL, as
above satisfying the equality ¢ Fn = 4 a fake lifting of the Galois cover
fr : Yi — PL relative to the smooth lifting g of the sub-cover gi. Note
that if f: Y — PL,, is a fake lifting of the Galois cover fi then Y is (by
definition) not smooth over R".
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Remark 2.3.3. Fake liftings as in Definition 2.3.2 won’t exist if
[Conj-O2-Rev] is true, hence the reason we call them fake. Moreover,
in order to prove the (revisited) Oort conjecture it suffices to prove that
fake liftings do not exist, as follows from the various definitions above.

2.4.

In this subsection we introduce some notations related to the semi-
stable geometry of curves which will be used in the next Subsection 2.5,
where we investigate the geometry of the (minimal) semi-stable models
of fake liftings of cyclic Galois covers between smooth curves.

Let fi : Yy — Pl be a finite ramified Galois cover with group G 5
Z)p"Z, n > 1. Let G - H = Z/p"~'Z be the (unique) quotient of G
with cardinality p"~!. Let gr : Xx — Pi be the cyclic subcover of fj
with group H. Assume that there exists g : X — P}% a smooth Galois
lifting of gx over R. Let f : Y — PL be a fake lifting of the Galois
cover fy : Yy — P} (with respect to the smooth lifting g of gx), which
dominates the smooth lifting g of gi (cf. Definition 2.3.2). We assume
that both f and ¢ are defined over R for simplicity. We have a natural

factorisation f 1y i) x % IP’};z where h : Y — X is a finite Galois cover
of degree p with ) normal and non smooth over R.

It follows from the semi-stable reduction theorem for curves (cf. [De-
Mu], and [Abl]) that Y admits a semi-stable model after possibly a finite
extension of R. Next, we assume that ) admits a semi-stable model over
R. More precisely, we assume that there exists a birational morphism
o: Y — Y with )’ semi-stable, i.e. the special fibre )y, def Y xgk of
V' is reduced, and its only singularities are ordinary double points. We
also assume that the ramified points in the morphism fK : Vi — PL
specialise in smooth distinct points of V,. Moreover, we will assume
that the birational morphism ¢ is minimal with respect to the above

properties. In particular, the action of the group G = Z/p"Z on Y

extends to an action of G on )'. Let P def YV'/G be the quotient of

Y by G and f' : )’ — P the natural morphism which is Galois with
group G. Let § : X’ = P be the unique subcover of f which is Galois
with group H (X’ is the quotient of )’ by the unique subgroup of G
with cardinality p). Then P and X’ are semi-stable R-curves (cf. [Ra],
appendice), and we have the following commutative diagram:

h

g
y , X P},

N

v X — P
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where the vertical maps are birational morphisms and the horizontal

maps are finite morphisms. To the special fibre )}, def YV xgk of )
(which is a semi-stable k-curve) one associates a graph I' whose vertices

Ver(T) ef {Yi}, are the irreducible components of Y, and edges are

the double points Edg(T") def {¥i}jes of ;.. A double point y; € Y; NY,
defines and edge linking the vertices Y; and Y,. We assume that Yj is

the strict transform of Vj (which is irreducible) in )’. In a similar way

one associates to the special fibre A} €ef pr « rk of X' a graph TV whose

vertices Ver(I') o {Xi}2, are the irreducible components of X} and

edges are the double points Edg(T") def {x;}ier of X[. We assume that
Xy is the strict transform of Xy = Xj in X’. Then it follows easily
(from the fact that X is smooth) that the graph I" is a tree and all the
irreducible components of X; which are distinct from X are isomorphic
to P}. We choose an orientation of I' starting from X, towards the end
vertices of the tree IV. We have a natural morphism of graphs I — I".

Similarly one associates to the special fibre Py P r k of P a graph
I whose vertices Ver(T") et {Pi}, are the irreducible components

of Py, and edges are the double points Edg(I") & {%j}jeqr of Pr. We
assume that P, is the strict transform of P} (the special fibre of P})
in P. The graph I'” is a tree and all the irreducible components of Py
are isomorphic to P. We choose an orientation of I' starting from P
towards the end vertices of the tree I'"'. We have natural morphisms of
graphs »

r-r' —1".

The graph T" (resp. I'") is naturally endowed with an action of the group
G (resp. H). Moreover, the morphism I' — T (resp. T — T") is
G-equivariant (resp. H-equivariant).

Let Y; be a vertex of the graph I'. To Y; one associates two sub-
groups of the Galois group G = Z/p"Z of the cover f : Y — PL: the
decomposition subgroup D; € G and the inertia subgroup I; C D; at
the generic point of Y; in the Galois cover f. We call the (irreducible
component) vertex Y; of I' an end vertex (or end component) of T" if the
graph T' is a tree and if Y; is an end vertex of this tree. We call Y; a
separable vertex of I' if the inertia subgroup I; which is associated to
Y; is trivial. Finally, we call the irreducible component Y; a ramified
vertex if there exists a ramified point in the morphism fx : Yx — Pk
which specialises in the component Y;. Similarly let X; be a vertex of
the graph I'V. To X; one associates two subgroups of the Galois group
H = Z/p"~1Z of the cover g : X — PL: the decomposition subgroup
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D; C H and the inertia subgroup I, C D; at the generic point of X; in
the Galois cover g. We call the vertex X; of IV an end vertex of I'' if X
is an end vertex of the tree IV. We call X; an internal vertex of I'V if X;
is distinct from X and the end vertices of I''. We call X; a separable
vertex of I' if the inertia subgroup I; which is associated to X is trivial.
We call the irreducible component X; a ramified vertex if there exists a
ramified point in the morphism gx : Xx — PL which specialises in the
component X;. Finally, by a geodesic in a finite tree linking two vertices
we mean the path, or subtree, with smallest length which links the two
vertices.

2.5.

In this subsection we first establish in 2.5.1 some properties of the
(not necessarily minimal) semi-stable model X’ — X of the smooth
lifting g : X — P} of the Galois subcover gy : X — P} of fi, : Yy, — P}

2.5.1. Let gi : X; — P} be a finite ramified Galois cover with group
H 5 Z/p"'Z (n > 1), and X} a smooth k-curve. Let g : X — P% be
a smooth Galois lifting of gx over R (i.e. g is a Galois cover between
smooth R-curves which lifts gx). Assume that there exists a birational
morphism X’ — X such that X’ is semi-stable, the action of H on
X extends to an action on X', and the ramified points in the Galois
cover g @ Xg — ]P’}( specialise in smooth distinct points of X]. We

do not assume that X’ is minimal with respect to the above properties.
Let P & a7 /H be the quotient of X’ by H. We have a commutative
digram:

x 2P,

[

x —4, P
where P is a semi-stable R-curve and the vertical maps are birational
morphisms. .Let I (resp. T") be the graph associated to the semi-
stable k-curve X}, (resp. Px). Let Ver(I”) &of {X;}2, (resp. Ver(I") Lot
{Pi},) be the set of vertices of I (resp. of I''). We have a natural
morphism I — T'" of graphs.

Lemma 2.5.1 (i). The graphs IV and T are trees. Furthermore,
each vertex X; (resp. P;) of I (resp. of ') which is distinct from the
strict transform of Xy, is isomorphic to Pj.

Proof. Clear and follows immediately from the fact that X is smooth.
Q.E.D.
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Let Xy be the strict transform of X, = X in X’/. We choose an
orientation of the tree I” starting form X, towards the end vertices of
I’. For a vertex X; of IV we will denote by D; (resp. I C Di) the
decomposition (resp. inertia) subgroup of H at the generic point of X;.

Then:
Lemma 2.5.1 (ii). Do = H and I, = {1}.

Proof. This is also clear since X} is irreducible and the natural
morphism &) — P}, which is isomorphic to gx : X — Pi, is generically
Galois with Galois group H. Q.E.D.

Lemma 2.5.1 (iii). Let X; be an internal vertex of I, i.e. X; is
distinct from Xo and from the end vertices of IV, and X; an adjacent
vertez to X; in the direction moving towards the end vertices of I. Then
the following two cases occur:

(1) either D; = I;, in this case D; = D;,

(2) or I; € D;. In this case D = I; and we have an ezact sequence

1~ Dj — D; — Z/pZ — 0.

Furthermore, in the case (2) if X; denotes the image of X; in the quotient
X’/fi of X' by I; then the natural morphism X; — P;, where P; = P
s the image of X; in T, is a Galois cover of degree p ramified above
a unique point oo € P; (which is the edge of the geodesic linking P; to
Py, which is linked to P;) with Hasse conductor m =1 at co (i.e. given
by an Artin-Schreier equation 2P — z = t~! where t is a local parameter
at 0o). In particular, when we move in the graph I' starting from Xq
towards the end vertices of T' then the cardinality of the decomposition
group D; (resp. the cardinality of the inertia subgroup I;) of a verter X;
decreases. More precisely, if when moving from a vertex X; towards the
end vertices of I" we encounter a vertex X; then D C D; and I cI.

Proof. Let X; be an internal vertex of IV and X; an adjacent vertex
to X; in the direction moving towards the end vertices of I'. Let P; (resp.

P;) be the image of X; (resp. X;) in P. Assume first that D; = I;, we

will show that D; = D; in this case. Let X; def yr /D; be the quotient

of X' by D;. Then X; is a semi-stable R-curve and the configuration
of the special fibre (X)), of X; is tree-like (cf. Lemma 2.5.1 (i)). The
natural morphism X; — P is by assumption completely split above the
irreducible component P; of Py, hence is also a fortiori completely split

above P;. This shows that D C D;. Assume that D - D;. Let

def ’ def

= X, N X, which is a double point of X’ and x PN P; its image in
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P. Let A" & X'/D; be the quotient of X’ by D; and X! the image of
X, in X”. The natural morphism X — P is by assumption completely
split above P;, hence also completely split above the double point 2.
In particular, the natural morphism X! — P; is étale above 2’ and is
generically Galois with Galois group D; / Ej. This contradicts the fact
that D@ = fi. Hence lN)J' = ﬁi necessarily.

Assume now that I; C D; and write D} ef D;/I; # {1}. Let X; be
the image of X; in the quotient X’/INZ- of X’ by I;. We have a natural
morphism X; — P; which is generically Galois with group Di. The
vertex P; € Ver(I") is an internal vertex of the tree I' (since X is an
internal vertex of I''}, hence is linked to more than one double point
of T. More precisely, P; is linked to a unique double point z’ which
links P; to the geodesic joining P; and the vertex Py (Py is the image of
Xo in P), and (at least another) other double points linking P; to the
geodesics joining P; and some of the end vertices of the graph T'”. If the
natural morphism X; — P; is unramified above the double point 2’ then
this would introduce loops in the configuration of the tree I'V. Thus, the
morphism X; — P; must (totally) ramify above the double point z’. In
particular, this morphism is necessarily unramified above the remaining
double points linking P; to the end vertices of I'”. Indeed, for otherwise
the genus of X; (hence that of X;) would be > 0 since the degree of this
morphism is a power of p, as follows easily from the Riemann—-Hurwitz
genus formula, and this would contradict the second assertion in Lemma
2.5.1 (i). Also the degree of the morphism X; — P, is necessarily equal
to p, and this morphism is only ramified above the double point z’ with
Hasse conductor m = 1 at 2’ (i.e. is given by an Artin—Schreier equation
2P — 2 =t~ ! where t is a local parameter at ). For otherwise the genus
of X, (hence that of X;) would be > 0 for similar reasons as above. This
also shows that ﬁj C I; (indeed, the natural morphism X’/I; — P is
easily seen to be completely split above the component P; which is the
image of X; in P), and that we have a natural exact sequence

1= I, = Dy — Z/pZ — 0.

Now we show that Dj = I;. Assume that l~)j - I,. Let X' def X’/Dj
(resp. X" ef X'/I;) be the quotient of X’ by D; (resp. the quotient
of X' by I;) and X! (resp. X/) the image of X; in X’ (resp. X”'). By
assumption the natural morphism X! — X! (which is of degree > p)
must be on the one hand a homeomorphism, and on the other hand
completely split above the image of the double point x def X;NX;. This

is a contradiction. Hence we necessarily have the equality I = l~)j. This
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proves the assertions (1) and (2) in Lemma 2.5.1 (iii). The remaining
assertion follows easily from this. Q.E.D.

Lemma 2.5.1 (iv). Let X; be a separable vertex of I" (i.e. I; =
{1}) which is distinct from Xo. Then, either D; = 7./pZ, in this case
X, is a Galois cover of P ramified above a unique point co € P} with
Hasse conductor m = 1 at oo, or D; = 1. In both cases if Xj isa

verter adjacent to X; in the direction moving towards the ends of I"
then D; = 1.

Proof. Follows easily from Lemma 2.5.1 (iii) and the fact that if C is
a smooth and connected curve of genus 0, and f : C — P}, is a generically
Galois cover with group a cyclic p-group, then f has necessarily degree
p and is ramified above a unique point co € P} with Hasse conductor
m = 1, as follows easily from the Riemann—Hurwitz genus formula and
Artin—Schreier—Witt theory. Q.E.D.

Let 0 < 7 < n—1 be an integer. Let x € Xk be a ramified point
in the morphism g : Xx — P). We say that the ramified point z is
of type j if the inertia subgroup I, C H at z is isomorphic to Z/p L.
A vertex X; of I is called a ramified vertex of type j if there exists
a ramified point z of type j in the morphism gx : Xx — P} which
specialises in the component X;.

Lemma 2.5.1 (v). Let X; be a ramified verter of T'. Then X;
is of type j for a unique integer 0 < j < m — 1. In other words if
0 < j<j <n-—1 are integers then ramified points of type j (resp. type
§') in the morphism gx : Xk — Pk specialise in distinct irreducible
components of Xy. More precisely, if X; is a ramified vertex of type j
then the inertia subgroup I; which is associated to X; has cardinality p?,
ie. I 5 Z/pZ. Furthermore, let P; be the image of X; in P. Then
the natural morphism X; — P; has the structure of a pip;-torsor outside
the double points supported by P; and the specialisation of the branched
points in P; (in this case D, =1, ).

Proof. Let 0 < j <n—1 be an integer. Let € Xk be a ramified
point in the morphism gy : Xx — P} of type j which spemahses in the
irreducible component X; of X;. We Wlll show that I; = I, where I, =
7./pZ is the inertia subgroup at z. Let Xp = Lf x /I, be the quotient
of X' by I, and X; the image of X; in X,. The natural morphism
X; — X; is a radicial morphism as follows from [Sa], Corollary 4.1.2,
hence I, C I;. Assume that I, C I;. Let &) = Lf /I; and X! the
image of X; in XJ. The natural morphlsm X; — X ! (which has degree
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> 1) is by assumption on the one hand radicial, and on the other hand
unramified above the image of the specialisation of the ramified point x
in X{ , which is a contradiction. Hence we necessarily have I, = I;. The
last assertion in Lemma 2.5.1 (v) follows from Lemma 2.5.5 (see end of
§2) and the corresponding assertion in the case where G — Z/pZ in [Sa],
Corollary 4.1.2. Q.E.D.

Lemma 2.5.1 (vi). Let X; be a ramified vertez of I of type j. Then
when moving in the graph I from X; towards the end vertices of TV we
encounter at most a unigque ramified vertex X, # X,;. Moreover, in such
a component X specialises a unique ramified point in the morphism
fx : Xk — Pk and the component X, is necessarily of the same type
j as X;. In other words the graph T separates the directions of the
ramified vertices of IV which are of distinct types.

Proof. Follows directly from the next Lemma 2.5.2 by passing to
the quotient of X’ by the unique subgroup H' of H with cardinality
p. Q.E.D.

Lemma 2.5.1 (vii). Assume that X is minimal with respect to its
defining propertics above. Then the ramified vertices in the graph T” are
the end vertices of the tree I'.

Proof. Assume that X is minimal with respect to its defining prop-
erties. Let X; be a ramified vertex of the tree I''. We will show that
X; is necessarily an end vertex of IV. Assume that X; (which is distinct
from Xj) is an internal vertex of I'". Let X; be an end vertex of I which
we encounter when moving in I from X; towards the end vertices of I
and v the geodesic linking X; and X;. All vertices of v are projective
lines (cf. Lemma 2.5.1 (i)). In ~ there exists at most a unique vertex
X, # X; which is a ramified vertex (cf. Lemma 2.5.1 (vi)). All vertices
of v which are not ramified vertices can be contracted in X without de-
stroying the defining properties of TV. Thus, we deduce that v contains
a unique vertex which is distinct from X;, namely X;, and the later
X; = X; is an end vertex of I'. By Lemma 2.5.1 (vi) the vertex X is of
the same type as the vertex X; and there exists a unique ramified point
in the morphism Xx — P}, which specialises in (a smooth point of) X;.
The vertex X, can also be contracted in a smooth point of X’ which is
supported by X; and in this point will specialise (after contracting X;)
a unique ramified point, which doesn’t destroy the defining properties
of X’. But this would contradict the minimality of A’. Thus, X; is
necessarily a terminal vertex to start with. Q.E.D.

The following lemma is used in the proof of Lemma 2.5.1 (vi).
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Lemma 2.5.2. Let f : X — Y be a finite Galois cover between
smooth R-curves with group H' =5 Z/pZ, such that the morphism fx -
Xk — Vi between generic fibres is ramified. Assume that there erists
a birational morphism X' — X such that X' is a semi-stable R-curve,
the action of the group H' on X extends to an action of H' on X', and
the ramified points in the morphism fx : Xk — Vi specialise in smooth
distinct points of X[. Then the graph I associated to the special fibre
X, of X' is a tree. Let Xy be the strict transform of Xy in X’. Choose
an orientation of TV starting from Xo towards the end vertices of I".
Let X; be a vertex of TV. Assume that X; is a ramified vertex of T,
i.e. there exists a ramified point in the morphism fx : Xk — Vi which
specialises in X;. Then when moving in the graph T from X; towards
the end vertices we encounter at most a unique ramified verter X; # X;.
Moreover, in such a component X; specialises a unique mmzﬁed point
in the morphism fr : Xg — Vk.

Proof. We can assume that the birational morphism X’ — X is not
an isomorphism. The fact that the graph I is a tree follows immediately
from the fact that X is smooth over R. Let X be the strict transform
of Xy in I". Let X; be a ramified component of X;. Then X; # X, as
follows from [Sa], Corollary 4.1.2. Thus, X; is either an internal or an
end component of I'. Assume that X; is an internal component. Let X
be an irreducible component of IV which is a ramified vertex and that we
encounter when moving from X; towards the end vertices of TV, We will
show that only a unique ramified point in the morphism fx : Xx — Vi
specialises in such a component X;, and that such a component is unique.
After possibly contracting all the irreducible components which form the
vertices of the geodesics of IV which link X; to the end vertices of IV we
can assume that X; is an end vertex of I". The component X; then
contracts to a smooth point z of X;, which is the specialisation of some
ramified points in the morphism fx : Xx — Vi. Let P; be the image
of X; in the quotient )’ = def X'/H' of X' by H’', and y the image of z in
V', which is a smooth point. The natural morphlsm X; —> P isa e
torsor (cf. loc. cit). Furthermore, the natural morphism OX = Oy v
between the formal completions at the smooth points z and y has a
degeneration on the boundary of the formal completion @yw of type
(pp, 0, h) (cf. [Sa], Corollary 4.1.2) and there is a unique ramified point
which specialises in z (cf. loc. cit). Q.E.D.

2.5.3.  The various results in 2.5.1 have the following‘ local analogs,
which describe the geometry of a’ (minimal) semi-stable model of an
order p™ automorphism of a p-adic open disc (over K) without inertia
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at m (cf. [Gr-Ma], 1), and which was proven in [Gr-Mal] in the case of
an order p-automorphism.

Let f: X < def SpfA — y def SpfB be a Galois cover between con-
nected formal germs of smooth R-curves (i.e. A = B = RJ[[T]]) which
is Galois with group G = Z/p"Z, n > 1, and such that the natural mor-
phism f : X def SpecA/wA — Vi def SpecB/7B between special fibres
is generically separable. Assume that there exists a birational morphism
X' — X with X ! sem1 stable such that the ramified points in the mor-
phism fx : XK = Spec(A @r K) — Yk 2 Spec(B ®Rr K) specialise in
smooth distinct points of X,é, and the action of G on X extends to an
action of G on X’. (We do not assume that X" is minimal with respect

to the above properties). Let )’ def X’/G be the quotient of X' by G.
Then Y’ is semi-stable (cf. [Ra], Appendice). We have a commutative

digram:

.y

1]
PR

&

where the vertical maps are birational morphisms. Let I' (resp. I')
be the graph associated to the special fibre of X’ (resp. of J'). Let
Ver(I) def {X;}m, (resp. Ver(I') ef {Yi},) be the set of vertices of
IV (resp. of T”). We have a natural morphism IV — T of graphs.

Lemma 2.5.3 (i). The graphs I' and ' are trees. Furthermore,
each vertex X; (resp. Y;) of T (resp. of ) which is distinct from the
strict transform of the generic point of Xk in X' (resp. distinct from the
strict transform of the generic point of Yy in y’) is isomorphic to Pj.

Let Xy be the strict transform of the generic point of Xk in X'. We
choose an orientation of the tree IV starting from X, towards the end
vertices of IV. For a vertex X; of I we will denote by D; (resp. I C lNDZ)
the decomposition (resp. inertia) subgroup of H at the generic point of
X;. Then:

Lemma 2.5.3 (ii). Dy = H and I = {1}.

Lemma 2.5.3 (iii). Let X; be an internal vertez of IV, i.e. X; is
distinct from Xo and from the end vertices of IV, and X; an adjacent
vertez to X; in the direction moving towards the end vertices of T'. Then
the following two cases occur:

(1) either D, = I;, in this case Dj =D,
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(2) or I; C D;, in this case ﬁj = I, and we have a natural exact
sequence B 3
1= Dj = D; = Z/pZ — 0.

Furthermore, in the case (2) if X; denotes the image of X, in the quotient
X'/I; of X' by I; then the natural morphism X; — Pi, where P; = P}
is the 1mage of X; in T, is a Galois cover of degree p ramified above
a unique point oo € P; (which is the edge of the geodesic linking P; to
Py, which is linked to P;) with Hasse conductor m =1 at oo (i.e. given
by an Artin-Schreier equation 2P — z =t~ where t is a local parameter
at 00). In particular, when we move in the graph T starting from Xo
towards the end vertices of TV then the cardinality of the decomposition
group D; (resp. the cardinality of the inertia subgroup I; i) of a vertex X;
decreases. More precisely, if when moving from a vertex X; towards the
end vertices of I'" we encounter a vertex X; then D C D; and I CI.

Lemma 2.5.3 (iv). Let X; be a separable vertex of T (i.e. I; =
{1}) which is distinct from Xo. Then, either D; = Z/pZ, in this case
X; is a Galois cover of Py ramified above a unique point co € Py with
Hasse conductor m = 1 at oo, or D; = 1. In both cases if X; is a
vertex adjacent to X; in the direction moving towards the ends of T’
then f?j =1.

Let 0 < j < n be an integer. Let x € Xk be a ramified point in the
morphism fx : Xx — ,')}K We say that the ramified point z is of type
. 7 if the inertia subgroup I, C G at z is isomorphic to Z /P 7. A vertex
X; of I' is called a ramified vertex of type j if there exists a ramified
point z of type j in the morphism fx : Xx — Vi which specialises in
the component X;.

Lemma 2.5.3 (v). Let X; be a ramified component of I”. Then
X, is of‘type 7 for a unique integer 0 < j < n. In other words if
0<j<j <n are integers then mmzﬁed points of type j (resp. type
j') in the morphism fx : X — Vi specialise in distinct irreducible
components of Xi. More precisely, if X; is a ramified vertex of type j
then the inertia subgroup I; which is associated to X; has cardinality p’,
i.e. I; = Z/p'Z. Furthermore, let Y; be the image of X; in I”. Then
the natural morphism X; — Y; has the structure of a p,;-torsor outside
the specialisation of the branched points in Y; and the double points of
)7,2 which are supported by Y;.

Lemma 2.5.3 (vi). Let X; be a ramified vertex of z’f’,g of type j.
Then when moving in the graph I from X; towards the end vertices of
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I we encounter at most a unique ramified vertex X; # X;. Moreover,
in such a component X, specialises a unique ramified point in the mor-
phism fx : Xk — Vi, and the component Xy is necessarily of the same
type j as X;.

Lemma 2.5.3 (vii). Assume that X' is minimal with respect to its
defining properties above. Then the ramified vertices in the graph T” are
the end vertices of the tree IV,

Proof. Similar to the proofs of Lemma 2.5.1 (i), Lemma 2.5.1 (ii),
Lemma 2.5.1 (iii), Lemma 2.5.1 (iv), Lemma 2.5.1 (v}, Lemma 2.5.1 (vi),
and Lemma 2.5.1 (vii). Q.E.D.

2.5.4. Our main results in this section describe the semi-stable re-
duction of fake liftings of cyclic Galois covers between smooth curves,
and show that fake liftings (if they exist) have semi-stable models with
some very specific properties which in some sense are reminiscent of the
properties of semi-stable models of smooth liftings of cyclic Galois covers
between curves (cf. 2.5.1).

Let fi : Yy, — ]P’,l€ be a finite ramified Galois cover with Galois group
G = Z/p™Z (n > 1) with Y} a smooth k-curve. Let gi, : X — Pi be the
(unique) subcover of fi with group H = Z/p™~1Z. Assume that there
exists a smooth Galois lifting g : X — PL of gy defined over R, and
that fy satisfies the assumption (A) (with respect to the smooth lifting
g of gg) (cf. 2.3.1). Let f: Y — P} be a fake lifting (relative to the
smooth lifting g of gi) of the Galois cover fi : Y — P} which dominates
the smooth lifting g of g, and which we suppose is defined over R

(cf. Definition 2.3.2). Assume that there exists a minimal birational

morphism )’ — ) with Y}, def V' x g k semi-stable, and such that the

ramified points in the morphism fx : Vx — Pk specialise in smooth
distinct points of };,. Let T' be the graph associated to the semi-stable
k-curve Yy, Write Y, for the vertex of I" which is the strict transform of
Yk (Vi is irreducible) in );. For a vertex Y; of I we denote by D; (resp.
I; C D;) the decomposition (resp. inertia) subgroup of G at the generic
point of Y;. We will follow the notations in 2.4.

Theorem 2.5.4 (i). The graph T is a tree.

Proof. In the course of proving Theorem 2.5.4 (i) we will also prove
the second assertion in Lemma 2.5.4 (v) below.

Let’s move in the graph T starting from the origin vertex X, towards
a given end vertex X; of IV along the geoedesic v of I which links Xj
and X;. Let X; be a vertex of v which is distinct from both X, and Xj.
Then X is an internal vertex of I and the pre-image of X; in I'" via the
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natural morphism I" — I" consists of a unique vertex Y; (cf. Lemma 2.5.4
(iii) below, more precisely the exact sequence 0 — H' — D; — D; — 0,
where H' is the unique subgroup of G with cardinality p). Moreover,
the natural morphism Y; — X, is either radicial (this occurs only if
H' C I;), or is a separable morphism in which case I; = I; = {1} and
X, is adjacent to an end vertex of I as follows from Lemma 2.5.4 (iii).
In fact we will show below that the latter case can not occur. Note
that there is no vicious circle here since the proof of Lemma 2.5.4 (iii)
doesn’t use Theorem 2.5.4 (i). Let now Y; be the unique vertex of I'
which is in the pre-image of the end vertex X; of I'. The following two
cases occur. Either the inertia subgroup I; # {1} which is associated
to the vertex Y; is non trivial, in which case we have an exact sequence
0> H — I — I~ — 0, or the inertia subgroups I; = I~ = {1} are
trivial. In the first case the natural morphism Y; — X; is radlclal hence
a homeomorphism. In summary two cases occur: either for every vertex
X; of the geodesic v which is distinct from Xy (in particular X; may
be equal to X;) and its unique pre-image Y; in I' we have I; # {1}
(in particular, H C I; in this case), or there exists a vertex X; of v
which is distinct from X and its unique pre-image Y; in I' such that
IL=1,={1}.

In the first case the natural morphism Y; — X, is radicial and the
natural morphism h~1(y) — v, where h~1(7) is the pre-image of v in T,
is a homeomorphism. In particular, h=1(v) is a tree in this case. More
precisely, in this case iz_l(y) is a geodesic which links Yy to the unique
vertex Y; in the pre-image of X; which is an end vertex of I'. Moreover,
all vertices of ?L_l(y) which are distinct from X are projective lines in
this case and the vertex Y; is necessarily a ramified vertex. For otherwise
the component Y; would be a (non ramified) projective line hence can be
contracted in the semi-stable model )}’ without destroying the defining
properties of ', and this would contradict the minimal character of ).
Now we shall investigate the second case. Assume that the second case
above occurs. In order to show that the graph T is a tree it suffices to
show that the pre-image h='(y) of the geodesic v is also a tree in this
case (for every possible choice of «v). More precisely, we will show that
the natural map ﬁ‘l('y) — v is a homeomorphism of trees. Let X; be
the first vertex of v that we encounter when moving from X, towards
X;, and Y; the unique pre-image of X; in I', such that the inertia groups
L =1 = {1} are trivial. We will show that X; = X; is necessarily
the end vertex of v and that the natural morphism Y; — X;, which
is generically Galois with group H’, is only (totally) ramified above
the unique double point z; of X} which is supported by X;. This will
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complete the proof of the assertion that I' is a tree, and will also prove
the second assertion in Lemma 2.5.4 (v) below.

Assume the contrary that X; # X; is not the end vertex of . Then
X, is an internal vertex of I', which is linked to a unique double point z;
which is an edge of the geodesic which links X; to Xy, and is linked to (at
least) another double point x;; which is an edge of the geodesic which
links X; to X; (there may be more double points linked to X; which
are edges of the possible geodesics linking X; to other end vertices of
). Moreover, D; = Z/pZ in this case (cf. Lemma 2.5.1 (iv)) which
necessarily implies that D; = Z/p?Z and the natural morphism X; — P;
(where P; is the image of X; in P) is a Galois cover of degree p ramified
above a unique point co € P; (which is the image of the double point
x; in P) with Hasse conductor m = 1 at oo (cf. Lemma 2.5.1 (iii)). In
particular, X; = PP} is a projective line. The natural morphism ¥; — X
is a generically Galois morphism with group Z/pZ, and is ramified above
the double point z; with Hasse conductor m; at this point (if X; is the
vertex of v such that x; = X; N X; and Y} its unique pre-image in I' then
I; # {1} by assumption). Above the double point z; this morphism is
either ramified with Hasse conductor m,; or is unramified. In both cases
the double point z;s produces a non trivial contribution to the arithmetic

genus of Y. More precisely, in the first case the contribution of z; to
(m;+1)(p—1)
5 .

the arithmetic genus is p — 1 and in the second case it is

We will construct, in order to contradict the above assumption, a
new Garuti lifting f, : b — ]P’}% of the Galois cover fi : Yy — Pi
which dominates the smooth lifting g : X — P} of the Galois subcover
gk : X — PL, of degree p™~ !, and such that the degree of ramification

01 def 0,  in the morphism fi x : V1 x — IE"}K between generic fibres
def

satisfies the inequality §; < § = ¢ Fre- This would contradict the min-

imality of §, i.e. contradicts the fact that f is a fake lifting of fix. To
simplify the arguments below we will assume that G = D; = Z/p*Z.
The construction of f; in the general case is done in a similar fashion
by using induced covers from D; to G (cf. the construction of Garuti
in [Gal, 3, for similar arguments). Let X; j be the semi-stable k-curve
which is obtained from &} by removing the geodesic of the graph I"
which links X; to the terminal vertex X, with the vertex X; removed.
Thus, Xk is a semi-stable k-curve with the same arithmetic genus as
X/ (which is the same as that of X}). Moreover, the graph associated
to the semi-stable k-curve X j is a tree with origin vertex Xy, and the
irreducible component X; is an end vertex of this tree. Let P;  be the
image of X ; in P (here we view X as a closed sub-scheme of X}),
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and Y j the pre-image of X  in ;. We have natural finite morphisms
Yi,r — X1,k — P11 between semi-stable k-curves.

One can construct a new finite morphism Y/ k — X1,k = P1 which
above P; i \ P; coincides with the finite cover which is induced by the
above cover Y1 — X1 — Pij, above P; is a generically separable
Galois cover with group D; = G which is ramified only above the unique
double point co of P i linking P; to the geodesic of T which links P;
and Py (the point oo is the image of z; in P), and which above the formal
completion of P  at the double point oo coincides with the cover that
is induced by the morphisms Y7  — X1y —> P1 . In other words in this
new cover we eliminate all the irreducible components of the geodesic
v that we encounter when moving from X; in the direction of Xj;, and
we also eliminate the ramification in the morphism Y; — X; which may
arise above points of X; which are distinct from the double point z; (cf.
above discussion). The finite morphisms Yy, — Xi — Pix can be
lifted (uniquely) to finite morphisms Y, — X; — P, where Yy — P; is
a Galois cover with group G which lifts the finite morphism Yy , — Py x,
and &X; — P; is the unique subcover with group H which lifts the finite
morphism X, 5 — Pk, as follows.

First, we have a natural Galois lifting of the finite morphism

Y \Y] = Pip\ P

which is the restriction of the finite Galois morphism )’ — P to the
formal fibre of P; ; \ P; in P. The restriction of the finite morphism
Y’ — P to the formal fibre at the double point 0o (above) provides a
natural lifting of the cover above the formal completion of P j at the
double point oo which is induced by Y1 — X1 — P . Second, the
restriction of the finite morphism Yl”k — X1,5 — P to the irreducible
component P; \ {oo} (which is an étale torsor) can be lifted to an étale
torsor of the formal fibre of P;\ {oo} in P; with group G by the theorems
of liftings of étale covers (cf. [Gr]). Theses liftings can be patched
using formal patching techniques to construct the required Galois cover
Y = X — Py (cf. Proposition 1.2.2). Let’s now contract (in a Galois
equivariant fashion) in ); (resp. in A;) all the irreducible components
of the special fibre )71’k (resp. AXyx) which are distinct from Yy (resp.
distinct from Xy). We then obtain a normal R-curve }; (resp. obtain
the smooth R-curve X). We have natural finite Galois morphisms f; :
Y = X EN IP’}% and the Galois cover f; : )4 — IP’}% is by construction
a Garuti lifting of the Galois cover fy : Yy — P. (the fact that fi
dominates the smooth lifting g : X — PL of gi is easily verified, and

follows from the above construction). Let d; ) #1.x be the degree of
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the different in the cover f1 x : Y1,k — ]P’}( between generic fibres. Then
{(by construction) we have ; < 4, since the only point of the irreducible
component X; of X; , which contributes to the arithmetic genus of Y
is the double point z; (and this contribution is the same contribution as
in the original cover ), — Py by construction, cf. the above discussion).
But this contradicts the minimality of é and the fact that f:y - PL
is a fake lifting of the Galois cover f.

This shows that the irreducible component X; = X; is necessarily
an end vertex of the geodesic v, hence also an end vertex of the graph I".
A similar argument shows that the natural morphism ¥; — X; (which is
generically separable) is only ramified above the unique double point z;
of X;. This, in particular, shows that 71‘1(')/) is a tree, and the natural
morphism h~1(v) — v is a homeomorphism of trees. Thus, the graph T’
is a tree as claimed. Furthermore, Y; can not be a ramified component
by [Sa], Corollary 4.1.2, which proves the last assertion in Lemma 2.5.4
(v). Q.E.D.

Lemma 2.5.4 (ii). The vertex Yy € Ver(I') is a separable vertez,
i.e. Ip={1}, and Dy = G.

Proof.  Clear since the natural morphism Yy — P} is generically
Galois with group G. Q.E.D.

~

Let H — Z/pZ be the (unique) subgroup of G with cardinality

p. Let X' def Y'/H' and P def Y'/G. Then X' and P are semi-stable

R-curves, and we have a commutative diagram where the vertical maps
are birational morphisms:

Y X —2- Ph

y/ E XI g \ P
Let I (resp. I'") be the graph associated to the semi-stable k-curve X}
(resp. Px). Then the graphs IV and I are trees (cf. Lemma 2.5.1 (i)),

and we have natural morphisms of graphs (actually these are morphisms
of trees by Lemma 2.5.1 (i), and Theorem 2.5.4 (i) above)

r—-I' =1

Let Y; be a vertex of I' which is distinct from Y. Let X; (resp. F;)
be the image of ¥, in A’ (resp. P). Let D; (resp. I; C D;) be the
decomposition subgroup (resp. inertia subgroup) of the Galois group
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H¥a /H’ which is associated to the generic point of the irreducible

component X;.

Lemma 2.5.4 (iii). We have a natural exact sequence
0—~ H — D; - D; = 0.
Furthermore, either we have an exact sequence
0 H =1, > I, =0,

orI; = I, = {1}, and the inertia subgroups I; and I, are trivial. See
Lemma 2.5.4 (v) below for a more precise statement related to this case.

Proof. Let Y; be a vertex of T" which is distinct from Yy. Let X;
(resp. P;) be the image of Y; in X’ (resp. in P). Let D; (resp. I;) be the
decomposition (resp. inertia) subgroup of the Galois group H f g /H'
which is associated to the generic point of the irreducible component
X;. The image of the decomposition group D; in G/H via the natural
morphism G — G/H coincides with D;. Hence we necessarily either
have an exact sequence 0 — H' — D; — D; — 0, since the group G is
cyclic, or we have D; = D; = {1} (if D; N H' = {1} then D; = {1} is
trivial) in which case the vertex X; (resp. Y;) is an end vertex of I (resp.
of T') (cf. Lemma 2.5.1 (iv) and use the minimality of ). The latter
case can not occur for otherwise the irreducible component Y; would
be a projective line which is an end vertex of ', and is not a ramified
vertex of T' as is easily seen since I; = I; = {1} (cf. [Sa], Proposition
4.1.1), hence can be contracted in the semi-stable model )’ without
destroying the defining properties of ) and this would contradict the
minimal character of ). Also the image of the subgroup I; in G/H via
the natural morphism G — G/H coincides with I;. Hence we either
have an exact sequence 0 — H' — [, — I, —» 0, or the inertia groups
L=1I= {1} are trivial, since the group G is cyclic. Q.E.D.

Let 0 < j <n be an integer. Let y € Vi be a ramified point in the
morphism fx : Yk — PL. We say that the ramified point y is of type j
if the inertia subgroup I, C G at y is isomorphic to Z/p’Z. A vertex Y;
of T is called a ramified vertex of type j if there exists a ramified point
y of type j in the morphism fx : Yk — P1, which specialises in the
component Y;.

Lemma 2.5.4 (iv). LetY; be a ramified vertex of I'. Then Y; is of
type j for a unique integer 0 < j < n. In other words if 0 < j < j <n
are integers then ramified points of type j (resp. type j') in the mor-
phism fx : Vg — P, specialise in distinct irreducible components of V.
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Furthermore, D; = I; = Z/p’7Z in this case, and the natural morphism
Y; — P; has the structure of a p,; -torsor outside the specialisation of the
branched points in P; and the double points of Py which are supported

Proof. Similar to the proof of Lemma 2.5.1 (v). Q.E.D.

Lemma 2.5.4 (v). The set of separable vertices of I which are
distinct from Yy is non empty. Furthermore, let Y; be a separable vertex
of T, i.e. I; = {1} is trivial, which is distinct from Yy. Then Y; is an
end vertex of T and either D; > Z/pZ or D; = Z/p*Z. In the second
case the natural morphism Y; — P; is Galois with group D; = 7./p*Z,
X, — P; is its unique Galois subcover of degree p, and X; is ramified
above a unique point oo of P; with Hasse conductor 1 at oo. In particular,
X, has genus 0 in this case. Moreover, the genus of Y; is > 0. Also no
separable vertex of I' is a ramified vertex.

Proof. We prove the first assertion in Lemma 2.5.4 (v). Assume
that the set of separable vertices of I which are distinct from Y{ is empty.
Let Y; be a vertex of I' which is distinct from Yy and X; its image in
I, The inertia subgroup I; # {1} is non trivial by assumption and we
have a natural exact sequence 0 — H' — I; = I; — 0 (cf. Lemma 2.5.4
(iii)). In particular, the natural morphism Y; — X is radicial hence a
homeomorphism. Thus, Y; is a projective line. Moreover, the natural
morphism of graphs I' — I' is a homeomorphism in this case and the
graph I is a tree. In particular, the arithmetic genus of the special fibre
Y. is equal to the genus of Y;,. Hence the genera of Yx and Y} are equal.
This implies that Y has good reduction, which contradicts the fact that
Y is a fake lifting of f; (more precisely this contradicts the fact that Y
is not smooth over R (cf. Definition 2.3.2)).

The proof of the second assertion follows from the proof of Theorem

2.5.4 (i).
The last assertion is proven in the course of proving Theorem 2.5.4
(i) (cf. loc. cit.) Q.E.D.

Lemma 2.5.4 (vi). When we move in the tree I’ from a given vertex
towards the end vertices of T' we encounter either ramified vertices or
separable vertices of > 0 genus (the later are necessarily end components
by (v) above). In particular, an end vertezx of the graph T (which is a tree
by Theorem 2.5.4 (1)) is either a ramified vertex or a separable vertex of
I.

Proof. Let Y; be an internal vertex of I and Y; and end vertex of T
which we encounter when moving from Y; towards the end vertices. Let
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7 be the geodesic of I' which links Y; and Y;. We argue by contradiction.
Assume that Y; is neither a ramified component nor a separable compo-
nent. Then all vertices of v are projective lines (as is easily seen), and
can be contracted in )’ without destroying the defining properties of
V', which would contradict the minimal character of ). But this would
imply that Y; is an end vertex and is not internal. Q.E.D.

The following Lemma, 2.5.5 is used in the proof of Lemma 2.5.1 (v),
and Lemma 2.5.4 (iv).

Lemma 2.5.5. Let X % SpfA be a connected smooth R-formal
affine scheme. Let f:Y — X be a finite Galois cover between smooth
R-formal schemes with Y connected, with group G = Z/p"Z (n > 1),
such that the natural morphism fx : Yk — Xk between generic fibres is
étale. Here the generic fibres Vi and Xk denote the rigid analytic spaces
associated to Y and X respectively (cf. [Ab]). Let n be the generic point
of the special fibre of X and § the degree of the different in the morphism
[ above n. Assume that § = vk (p)(L +p+p*> + ... +p" ). Then the

natural morphism fr : Vi — Xk & SpecA/mA between special fibres has
the structure of a pipn-torsor.

Proof. The Galois cover f has a natural factorisation

FrYy=219y, = Iy
where f; : Vi11 — Vs is a Galois cover of degree p. Let §; be the degree of
the different in the morphism f; above the generic point 7; of );. Then
0; < vi(p) (cf. [Sal], Proposition 2.3). The assumption on § implies
that 6; = vk (p), Vi€ {l,...,n —1}. Hence f; : YV;x1 — Y; is a torsor
under the group scheme p, g (cf. loc. cit.). In fact this later property
is equivalent to 0; = vk (p). This implies in particular that the Galois
cover f is given by an equation ZP" = u where u € A is a unit whose
image % in A/7A is not a p-th power and hence has the structure of a
ppn-torsor (over R). Q.E.D.

83. The smoothening process

In this section we introduce the process of smoothening of fake
liftings of cyclic Galois covers between smooth curves. The idea of
smoothening of fake liftings already germs in the proof of Theorem 2.5.4
(i). The smoothening process ultimately aims to show that fake liftings
as introduced in §2 do not exist. This in turn would imply the validity
of the (revisited) Oort conjecture (cf. Remark 2.3.3). We use the same
notations as in §1, and §2, especially the notations in 1.1.
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3.1.

Let fy : Y, — Pi be a finite ramified Galois cover with group G =
Z/p"Z (n > 1) and Yj smooth over k. Let g : X, — P} be the (unique)
subcover of fr with group H = Z/p"~'Z. Assume that there exists a
smooth lifting g : X — PL of g defined over R. Assume that fj satisfies
the assumption (A) in 2.3.1 with respect to the smooth lifting g of gx.
Let f:Y — PL be a fake lifting of the Galois cover f : Yy — P} (with
respect to the smooth lifting g of gx) which dominates the smooth lifting
g of gi, and which we suppose defined over R (cf. Definition 2.3.2). We

assume that there exists a minimal birational morphism )’ — ) with

R def V' Xg k semi-stable, and such that the ramified points in the

morphism fK : Yk — P specialise in smooth distinct points of V. Let
I" be the graph associated to the semi-stable curve );, which is a tree by

~

Theorem 2.5.4 (i). Let H' — Z/pZ be the unique subgroup of G with

cardinality p. Let X’ def Y'/H’ and P et YV’ /G be the quotient of J' by

H', and the quotient of )’ by G, respectively. Then X’ and P are semi-
stable R-curves and we have a natural Galois morphism f' : )/ — P
with group G. We have a commutative diagram where the vertical maps
are birational morphisms:

y L x 2 pL
o1
N

Let I (resp. I'”") be the graph associated to the semi-stable k-curve X}
(resp. Pk). Then the graphs IV and I are trees (¢f. Lemma 2.5.1 (i))
and we have natural morphisms of trees

r—-1r —=1".

Let Yy be the origin vertex of I' (which is the strict transform of )i in
V'), and let Py be its image in T which is the origin vertex of I'”'.

3.1.1. The semi-stable curve P; associated to an internal
vertex P;. Let P; be an internal vertex of I'. Let P, j be the semi-
stable k-curve of arithmetic genus 0 which is obtained from the semi-

stable k-curve Py, Lp r k by removing all the geodesics of I'” which
link the vertex P; to the end vertices of I'”, excluding the vertex P;. The
graph associated to the semi-stable curve P, is a tree I'} in which the
vertex P; is a terminal vertex. Denote by oo the unique double point
of P;, which is supported by P; and which links P; to the geodesic
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of T/ joining P; and Py. Let P; be the semi-stable R-model of ]P’}12
which is obtained from the semi-stable R-model P by contracting all
the irreducible components of Py \ P; ; (here we view P, ; as a closed

sub-scheme of P). Then the special fibre P; dzef"Pi X g k of P; equals
F; i, and we have natural birational morphisms P — P; — ]P’}%. Let P}
be the formal fibre of P; \ {00} in P;. Then P/ = SpfR < S > is a
formal closed disc. Let P}’ be the formal fibre of P, \ {F;} in P; and
Pi.co the formal fibre of P; at oo which is a formal open annulus, i.e.

Pi.0o = Spf g@s_’”fr]}) for some integer e > 1. Note that the semi-stable
R-curve P; is obtained by patching P} and P} along the open annulus
Pi 0. Next, we define the important concept of a removable vertex in

Definition 3.1.2, and the smoothening process in Definition 3.1.3.

Definition 3.1.2. (Removable vertex of I'") We use the same
notations and assumptions as above. We say that P; is a removable
vertex of the tree I' if there exists a finite Galois cover fi : Vi — P;
where P; is as in 3.1.1, with group G, satisfying the following three
conditions.

(1) The restriction of the Galois cover f] to P/ (resp. to Pico) is
isomorphic to the restriction of the Galois cover f' : )’ — P (which
is the semi-stable minimal model of the fake lifting f : J — PL of f)
above P/’ (resp. above P; ).

(ii) Let ¢} : X{ — P; be the unique Galois subcover of f{ of degree
p"~t. Then g} is generically isomorphic to the Galois cover g : X — ]P’}%
which is the given smooth lifting of gg.

(iii) The arithmetic genera g (resp. g1) of the special fibres ), (resp.
def

Vi, = Vi Xr k) satisfy the inequality g1 < g.

Definition 3.1.3. (Smoothening of a fake lifting) We use the
same notations and assumptions as above. Assume that P; is a remov-
able vertex in the sense of Definition 3.1.2. Let f{ : J; — P; be the
corresponding Galois cover with group G (which is given in Definition
3.1.2). Let Y; be the normal R-curve which is obtained from Y} by con-
tracting all the irreducible components of y{’ » Which are distinct from
Ys. The Galois cover f{ induces naturally a Galois cover f1 : Y1 — ]P’}%
with group G since the above contraction procedure is Galois equivari-
ant. The inequality g1 < g implies (in fact is equivalent to the fact)

that the degree of the generic different §; s f1.5 in the natural mor-

phism f1 x : Y1k def V1 Qr K — P}{ between generic fibres satisfies

the inequality d; < 9 s 7o~ We call the Galois cover f1 : V1 — PL a

smoothening of the fake lifting f Y = ]P’}%.
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Note that by property (ii) in Definition 3.1.2 the Galois cover f; :
Y1 — P} is a Garuti lifting of the Galois cover f : Yy — P, which
dominates the smooth lifting g : X — P}, of the Galois sub-cover gy, :
Xy — PL. This last property may be used to define the notion of a
smoothening of a fake lifting independently from Definition 3.1.2

3.2.

The existence of a removable vertex in the tree I'”/, which implies
(by definition) the existence of a smoothening fi : Y1 — Pk of the
fake lifting f : I — PL (more precisely, the above inequality §; < &)
(cf. Definition 3.1.3), contradicts the fact that f is a fake lifting (i.e.
contradicts the minimality of the generic different § of f), hence will
prove the (revisited) Oort conjecture for the Galois cover fj : Yy — Pi
and the smooth lifting g of g5 (c¢f. Remark 2.3.3). More precisely, we
have the following.

Proposition 3.2.1. Let fi : Yy — PL be a finite ramified Galois
cover with group G = Z/p"Z, with Yy a smooth k-curve. Let g : X —
P} be the Galois subcover of fi with group H = Z/p"~'Z. Assume that
there exists a smooth Galois lifting g : X — Pk of gi, defined over R.
Assume that fi satisfies the assumption (A) in 2.3.1 with respect to the
smooth lifting g of gi. Let f:Y — PL be a fake lifting of the Galois cover
Ik : Yy — P}, which dominates the smooth lifting g of gi, and which we
suppose defined over R (cf. Definition 2.3.2). We assume that there

exists a minimal birational morphism V' — Y with Y, def Y xrk semi-
stable, and such that the ramified points in the morphism fx : Vi — P

specialise in smooth distinct points of ;.. Let P = Y'/G be the quotient

of V' by G and I the tree which is associated to the special fibre Py of
P.

Then, under these assumptions, no internal vertexr P; of the tree I
is a removable vertex of T in the sense of Definition 3.1.2. Equivalently,
suppose that there exists an internal vertex P; of the tree I which is a
removable vertez of I in the sense of Definition 3.1.2 (which implies the
existence of a smoothening f1 : Y1 — PL of the fake lifting f:y- PL
in the sense of Definition 3.1.8). Then the Galois cover fi : Yp —
P} doesn’t satisfy assumption (A) and the (revisited) Oort conjecture
[Conj-O2-Rev] is true for the Galois cover fi : Yy, — P} and the
smooth lifting g of the Galois sub-cover gy.

One can show that fake liftings of cyclic Galois covers between
smooth curves (assuming they exist) always admit a smoothening in
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the case of cyclic Galois covers of degree p. This provides an alterna-
tive proof of the Oort conjecture in the case of a cyclic Galois group
G = Z/pZ of order p. This proof doesn’t use the equation describing
the degeneration of the Kummer equation of degree p to the Artin—
Schreier equation (as in [Se-Oo-Su], and [Gr-Mal), but rather uses the
degeneration of the Kummer equation to a radicial equation (see proof
of Proposition 3.2.2). More precisely, we have the following.

Proposition 3.2.2. Assume that R contains a primitive p-th root
of unity. Let fi : Yy, — P} be a finite ramified Galois cover with group
G = Z/pZ, and Yy a smooth k-curve. Assume that fr satisfies the
assumption (A) in 2.3.1. The assumption (A) in this case means that
fr admits no smooth lifting, and a fake lifting is a Garuti lifting with
minimal generic different. Let f Y — P} be a fake lifting of the Galois
cover fi + Yy — PL, which we suppose defined over R (cf. Definition
2.8.2). We assume that there exists a minimal birational morphism

YV = Y with Y, def V' x g k semi-stable and such that the ramified

points in the morphism frx : Yk — PL specialise in smooth distinct

points of Vj,. Let P = V'/G be the quotient of Y by G (P is a semi-

stable R-model of P},), and I the tree which is associated to the special
fibre Py of P. Then there exists an internal vertex P; of the tree T’
which is a removable vertex of I in the sense of Definition 3.1.2. In
particular, assumption (A) is not satisfied by fi : Y — P} and the
(revisited) Oort conjecture is true for the Galois cover fy : Y, — P} (cf.
Proposition 3.2.1).

Proof. We can assume, without loss of generality, that the mor-
phism fj is ramified above a unique point oo of P}, i.e. work within
the framework of [Conj-O3]. Let Py be the origin vertex of the tree
I’, and P; the (unique) vertex of IV which is adjacent to Py. We will
show that P; is a removable vertex of IV. The semi-stable R-curve P;
(cf. 3.1.1) in this case has a special fibre Py, which consists of the two
irreducible (smooth) components Py and P; which meet at the unique
double point co. Let P = SpfR < & > be the formal fibre of P; \ {oo}
in P1, P 00 the formal completion of P; at co, and Py’ the formal fibre
of P1x \ P1 in P;. The natural Galois morphism )’ — P restricts to
Galois morphisms Yy — Py, and Y, — Pi o, where V), is the formal
completion of )’ at the unique double point y above co.

The degeneration type of the Galois cover J, — P1 o0 on the bound-
ary which is linked to P is necessarily radicial of type (a,, —m, 0) where
m > 0 is an integer prime to p (since P; is an internal vertex of I'), or
of type (pp, —m,0) where m is as above. We only treat the first case,
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the second case is treated in a similar way (use [Sa], Proposition 3.3.1,
(a2)). In the first case the Galois cover )}; — Pl,00 induces a Ga-
lois cover on the boundary which is linked to P given by an equation
XP = 1+ xT™, for a suitable choice of T as above, and ¢ < vg(N)
(cf. Proposition 1.2.2). Here A = (1 — 1, and (; is a primitive p-th root
of 1. Consider the Galois cover ); — P; which is generically given by
the equation XP = T~%(T~™ + 7P') where « is an integer such that
a—+m =0 modp. Then Y] is smooth over R, and the natural mor-
phism Y] , — P1,x between special fibres is radicial (ct. [Sa], Proposition
3.3.1, (b)). The above coverings can be patched using formal patching
techniques to construct a Galois cover 371 — P71 with group G between
semi-stable R-curves (cf. Proposition 1.2.2), and by construction the
arithmetic genus g; of the special fibre 571,/6 (which is in fact equal to
that of Y}) satisfies the inequality g; < g as required. Q.E.D.

3.3.

Next, we will give some sufficient conditions for the existence of
removable vertices in the case where the Galois group G = Z/p°Z has
order p2.

Proposition 3.3.1. Assume that R contains a primitive p>-th root
of unity. Let fi : Yy — P} be a finite ramified Galois cover with group
G 5 7/p*Z, and Yy a smooth k-curve. Let g : X, — Pi be the Galois
subcover of fi, with group H = Z/pZ. Assume that there exists a smooth
Galois lifting g : X — P} of gi, defined over R. Assume that f), satisfies
the assumption (A) in 2.3.1 with respect to the smooth lifting g of the
Galois sub-cover gi. Let f 2 Y — PL be a fake lifting of the Galois
cover fi : Yy — P} which dominates the smooth lifting g of gi, which
we suppose defined over R (cf. Definition 2.5.2). We assume that there

exists a minimal birational morphism V' — Y with Y, def V' xrk semi-
stable, and such that the ramified points in the morphism fr : Y — Pk

specialise in smooth distinct points of ¥},. Let P def V' /G be the quotient

of Y' by G (which is a semi-stable R-model of P},) and T the tree which
is associated to the special fibre Py of P. Assume that there exists an
internal vertex P; of T which satisfies the following properties.

(i) The pre-image of P; in T' contains no ramified vertex.

(#i) When moving in the tree T from the vertex P; towards the end
vertices of ' we encounter a vertex (necessarily terminal by Lemma
2.5.4 (v)) whose pre-image in T’ contains a separable vertex.

(#3) When moving in the tree T from the vertex P; towards the
end vertices of T" we encounter a unique vertex whose pre-image in I’
contains (in fact consists of ) a ramified vertex of type 2.
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(iv) When moving in the tree T from the vertex P; towards the end
vertices of T we encounter no vertex whose pre-image in I' contains a
ramified vertex of type 1.

Then P; is a removable vertez of I in the sense of Definition 3.1.2,
and the revisited Oort conjecture [Conj-O2-Rev] is true for the Galois
cover fr : Y — PL and the smooth lifting g of the Galois sub-cover gx.

Proof. Let Y; be a vertex of the graph I" which is in the pre-image
of the vertex P;, and D; (resp. I;) the decomposition (resp. inertia)
subgroup of the Galois group G at the generic point of Y;. Then I; # {1}
since the vertex Y; is not terminal (cf. Lemma 2.5.4 (v)). Moreover,
I, = D; = G, for otherwise we will contradict the assumption (iii)
satisfied by P; above. (Indeed, the cardinality of the decomposition and
inertia subgroups of the various vertices of I decrease when we move
towards the end vertices of I', compare with Lemma 2.5.3 (iii)). Let P;,
P., P! and P; o be asin 3.1.1. Let H' C G be the unique subgroup of G

with cardinality p and X’ Loty /H'’ the quotient of }' by H'. We have
natural morphisms f’ : ) — X’ — P. The Galois cover X’ — P induces
above the irreducible component P; of Py, outside the specialisation of
the branched points and the double points of P supported by P;, an
Hopt,r-torsor (cf. 1.2.1), where pt < vg (¢ —1) and (3 is a primitive p-th
root of 1. This torsor is generically given by an equation

7P =1 + 7% g(T),

where 1+ 77" g(T) € Fr(R < % >) has m + 1 distinct geometric zeros
in Pj, which we may assume without loss of generality specialise in the
point % = 0 at infinity (the later follows from the uniqueness of the
ramified vertex of type 2 in the assumption (iii)). We will assume for
simplicity that g(T) = T™. The general case is treated in a similar
fashion.

The above Galois cover f/ : )’ — P induces a cyclic Galois cover
V' — Pico of degree p? above the formal open annulus P; o, with
V! connected (since D; = I; = G), which induces a cyclic Galois cover
fron @ Vhen = Xlot = Pico =+ SPIRT|{T} of degree p* above
the formal boundary P; oo,1 — SPR[[T™*]]{T} of P; o which is linked
to P; = SpfR < % >. We will give an explicit description of the Galois
cover f., ; using the assumptions satisfied by the vertex F;. The Galois
cover XéoJ — Pi 00,1 18 a torsor under the group scheme #Hp g (where t
is as above) which has a degeneration type (ap, —m,0) where m > 1 is
as above (this results from the assumption (iii) satisfied by P;), and is
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given by an equation

(ﬂthl-i-].)p—l m
(*) APt =T,

where pt < vg(¢; — 1) and (; is a primitive p-th root of 1 as above (in
the general case replace T™ by g(T') above). The aj-torsor X[, ;; —
Pi 00,1,k at the level of special fibres is given by the equation zf = ¢,
where 1 = X3 mod 7 and t =T mod 7. From the above equation (x)
we deduce that in X7, |, we have

1 p1 1
T=(X)P[1+ Z <Z> 7Tpt(lc—p)X{C—P];_
k=1

In particular, &7, , ~ SpfR[[T;]|{T; '} and Xﬁ is a parameter of

Xéo,l, x- Moreover, the Galois cover Y, ; — X, ; is given by an equation

X§ = (1+a"X0)(1+ 7" f(T))

where f(T) € Fr(R < 7 >) is such that (1 + 7P*f(T)) is a unit in P},
for otherwise we will contradict the assumption (iv) satisfied by P;,. We
can assume without loss of generality that 1+ #P*f(T) € R < % >. We
will give an explicit description (by equations) of the degeneration of the
Galois cover Vi, 1 — XL, ;. Assume for simplicity that f(T) = T~™1,
with m; > 0. The general case is treated in a similar way. Thus, the
above equation is

XD =1+ a7 X,) (1 + aPoT—™).

Assume first that ¢ < s. Then on the level of special fibres the «,-torsor
Vior ks — Xoo 1 is given (in the case where s = t one has to eliminate
p-powers) by the equation

where z; = X; mod 7 (t~! becomes a p-power in Xl 1 1) Here, Xo =
(1+7*X3) and 5 = X5 mod 7. In this case the above cover V., ; —
Xc’xjyl is a torsor under the group scheme ; g, and has a degeneration

1
of type (a,, —m,0). Note that z{" is a parameter of Xéo’l’k. Assume
now that s < t. Then

XE =14+ aPsT™™ 4 Pt X, P+ X, 7™
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which is not an integral equation for y{ml since T~ ™1 is a p-power mod
min Xéo,l,k‘ To obtain an integral equation we need first to replace
T~™ by its expression in terms of X, which is deduced from the above
expression of T,

p—1
1 —m
T — (le)—mlp[l + E (Z)ﬂ-pt(k—l))xfp] e )
k=1

Thus,

1

XP=14+7P(X)"™P + o+ 7P X+,
where the remaining terms have coefficients with a valuation which is
1
greater than ps. After replacing 1+ #P5(X;™ )~ ™P by

1
(1+ 78X )™ — ..

1
and multiplying the above equation by (1 + w°(X;™ )™ )"P, we reduce
to an equation

1
(X5)P = 1+ 7P (X )™ + oo

where the remaining terms have coefficients with a valuation which is
greater than pt. In particular, the Galois cover V[, ; — X[, ; is a torsor
under the group scheme H; g and has a degeneration of type (a,, —m, 0).
More precisely, the og-torsor y;o’l,k — Xéo,l,x on the level of special

fibres is given by an equation 75 = z; = (3:1% )m.

The Galois cover f’ : )’ — P restricts to Galois covers Yy — P!/,
and Y] o, = P o, above P;’, and P; «, respectively. Consider the cyclic
Galois cover V; — &X; — P! of degree p? which is generically given by
the equations

(PP Xy 4 1)P—1

PPt

™,
(in the general case replace T™ by g(T') above), and
X3 = L+ a7 X,) (1 + 7P f(T)),

where t, s, and f(T) are as above. This Galois cover on the generic fibre
is ramified only at ramified points of type 2 ((1 + 7P f(T)) is a unit in
P!). Furthermore, both &} and ), are smooth, and the arithmetic genus
of the special fibre }; ; is 0. Indeed, AX; is smooth, and the a)p-torsor

Vi — X1 is given by an equation 75 = z; by arguments similar
1

to the one above (z{* is a parameter on X; ). The above coverings
can be patched using formal patching techniques to construct a Galois
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cover Y — P; with Galois group G between semi-stable R-curves (cf.
Proposition 1.2.2), and by construction the arithmetic genera g; and g
of the special fibres 5)1,14: and Y satisfy the inequality g1 < g. Indeed,
we have eliminated the contribution to the arithmetic genus of Y}, which
arise from the separable end components of I', that lie above the end
components of T that we encounter when moving form the vertex P;
towards the ends of I, and which exist by the assumption (ii) satisfied
by P;. This proves that P; is a removable vertex as claimed. Q.E.D.

[De-Mu]

[Ga
[Gr-Ma]

[Gr-Mal]
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