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Abstract. 

The q-character is a strong tool to study finite-dimensional repre­
sentations of quantum affine algebras. However, the explicit formula 
of the q-character of a given representation has not been known so 
far. Frenkel and Mukhin proposed the iterative algorithm which gen­
erates the q-character of a given irreducible representation starting 
from its highest weight monomial. The algorithm is known to work 
for various classes of representations. In this note, however, we give 
an example in which the algorithm fails to generate the q-character. 

§ 1. Background 

1.1. Finite-dimensional representations of quantum affine 
algebras 

Let g be a simple Lie algebra over C, and let Uq(g) be the untwisted 
quantum affine algebra of g by Drinfeld and Jimbo (D1, D2, J]. 

The following are the most basic facts on the finite-dimensional rep­
resentations of Uq(g), due to Chari-Pressley (CP1, CP2]: 

(i) The isomorphism classes of the irreducible finite-dimensional rep­
resentations of Uq(g) are parametrized by an n-tuple of polynomials of 
constant term 1, P = (Pi(u))iEI, where I= {1, ... ,n} and n = rankg. 
The polynomials P are often called the Drinfeld polynomials because an 
analogous result for Yangian was obtained earlier by Drinfeld (D2]. 

(ii) For given Drinfeld polynomials P, let V(P) denote the corre­
sponding irreducible representation. For a pair of Drinfeld polynomials 
P = (Pi(u))iEI and Q = (Qi(u))iEJ, let PQ := (Pi(u)Qi(u))iEI· Then, 
V(PQ) is a subquotient of V(P) ® V(Q). 
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(iii) A representation V(P) is called the ith fundamental represen­
tation and denoted by Vw,(a) if Pi(u) = 1- au and Pj(u) = 1 for any 
j =f. i. Suppose that Drinfeld polynomials P are in the form 

n; 

(1.1) Pi(u) =IT (1- a~i)u). 
k=l 

Namely, a~i) are the inverses of the zeros of Pi(u). Then, as a conse­
quence of (ii), V(P) is a subquotient of the tensor product offundamen-

tal representations ®iEI ®~~1 Vw, (a~i)). 
For g of type A1, the structure ofV(P) for an arbitrary Pis known 

(CP1]. Also, when g is simply-laced, the relation between V(P) and the 
so-called standard representations is described by an analogue of the 
Kazhdan-Lusztig polynomials (N1]. So far, no more general results are 
known for the structure of V (P). 

1.2. q-Character 

To study the structure of V(P), the q-character Xq was introduced 
by Frenkel and Reshetikhin (FR]. It is an injective ring homomorphism 
from the Grothendieck ring of the finite-dimensional representations of 
Uq(g) to the Laurent polynomial ring of infinitely-many variables Yi,a, 
i E I, a E e,x, 

(1.2) 

The variables Yi,a are regarded as affinizations of the formal exponentials 
exp(wi) of the fundamental weights Wi of Uq(g). By replacing Yi,a with 
exp(wi), Xq(V(P)) reduces to the underlying Uq(g)-character of V(P) 
with respect to the standard embedding Uq(g) C Uq(g). 

There are several equivalent ways to define the q-character. 
(i) By universal R-matrix. This is the original definition of (FR]. 

The idea originates from the transfer matrix, which plays the central role 
in the quantum inverse scattering method, or the Bethe ansatz method 
for integrable spin chains such as the Heisenberg X X X model (TF]. The 
q-character Xq (V) of a representation V is defined as a partial trace of 
the universal R-matrix of Uq(g) on V. 

(ii) By weight decomposition. It is shown also in (FR] that Xq(V) 
is regarded as the formal character of the weight decomposition of V 
with respect to certain elements in the Cartan subalgebra in the 'second 
realization' of Uq(g) (D2]. Hernandez extended this definition of Xq to 
the affinizations of the full family of the quantum Kac-Moody algebras 
(H2, H4]. 
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(iii) By quiver varieties. When fJ is simply-laced, Nakajima [Nl, N2] 
geometrically defined at-analogue of q-character Xq,t (the q, t-character) 
as the generating function of the Poincare polynomials of graded quiver 
varieties. Then, Xq is obtained by Xq = Xq,l· The algorithm of cal­
culating Xq,t is given based on the analogue of the Kazhdan-Lusztig 
polynomials. 

(iv) By axiom. In [N2] the axiom which characterizes Xq,t in (iii) is 
given. The axiom is further extended for non simply-laced cases in [Hl]. 
Then, Xq is obtained by Xq = Xq,l· 

Before the introduction of the q-character, the spectrum of the trans­
fer matrix defined by the trace on a so-called Kirillov-Reshetikhin (KR) 
representation [KR] of Uq(g) was extensively studied by the Bethe ansatz 
method ([Rl, R2, R3, BR, KR, KNS, KNH, KOS, KS, TK], etc.). The 
fundamental representations VwJa), for example, are special cases of 
the KR representations. Because of Definition (i) above, these results, 
including many conjectures, are naturally translated and restudied in 
the context of the q-character [FR, FMl, CM, KOSY, N3, H3, H6]. As 
a result, the q-characters of the KR representations are, not fully, but 
rather well understood now. 

However, beyond the KR representations, not much is known for the 
explicit formula of the q-character except for some partial results and 
conjectures (e.g., [H5, NNl, NN2, NN3]). 

1.3. Frenkel-Mukhin algorithm 

We say that a monomial in Z[Y;~~/ ]iEI;aECX is dominant if it is a 

monomial of variables Yi,a, i E I, a E ex, i.e., without Y;~1 . Suppose 
that Drinfeld polynomials P are in the form (1.1). Then, Xq(V(P)) 
contains a dominant monomial 

(1.3) m+ = IT IT Y. (i) 
~,ak 

iEJ k=l 

called the highest weight monomial of V(P) [FR]. Since P and m+ are 
in one-to-one correspondence, we parametrize the irreducible represen­
tations of Uq(g) by their highest weight monomials as V(m+), instead 
of V(P), from now on. 

Frenkel and Mukhin [FMl] introduced the iterative algorithm which 
generates a polynomial, say, x(m+) E Z[Y;~1 liEJ;aE<CX from a given dom­
inant monomial m+. We call it the FM algorithm here. A priori, it is not 
clear whether the algorithm does not fail (i.e., it is not halted halfway); 
also it is not clear whether it stops at finitely many steps. It was con­
jectured that 
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Conjecture 1·.1 ([FM1], Conjecture 5.8). For any dominant mono­
mial m+, the algorithm never fails and stops after finitely many steps. 
Moreover, the result x(m+) equals to Xq(V(m+)). 

The algorithm is fairly practical so that, assuming the conjecture, 
one can explicitly calculate the q-characters of representations, by hand, 
or by computer, when the dimensions are small. 

Conjecture 1.1 is partially proved by [FM1] as we shall explain now. 
We say a representation V ( m+) is special if its highest weight mono­
mial m+ is the unique dominant monomial occurring in Xq (V ( m+)). 
For example, the fundamental representations are special [FM1]. More 
generally, the KR representations are special [N3, H3, H6]. (See [H5] for 
further examples of special representations.) 

Theorem 1.2 ([FM1], Theorem 5.9). If V(m+) is special, then 
Conjecture 1.1 is true. 

In particular, the FM algorithm is applicable to the fundamental 
representations and the KR representations, and provides the aforemen­
tioned results for their q-characters. We note that there are also many 
nonspecial representations for which Conjecture 1.1 is true; e.g., g of 
type A2 with m+ = Y1~ 1Y1 ,q2, where V(m+) ~ V(Y1,1) ® V(Y1,1Y1,q2). 

The purpose of this note is to give a counterexample of Conjecture 
1.1. More precisely, it is an example where the algorithm fails in the 
sense of [FM1] (see Definition 2.7). 

In Section 2 the FM algorithm is recalled. In Section 3, as a warmup, 
we give two examples in which the algorithm works well. Then, a 
counterexample is given in Section 4. Taking this opportunity, we also 
demonstrate the synthesis of the FM algorithm and Young tableaux in 
[BR, KOS, KS, NT, NN1, NN2, NN3] by these examples. 

We thank D. Hernandez for his helpful comments. 

§2. FM algorithm 

Here we recall the FM algorithm. The presentation here is minimal 
to describe the counterexample in Section 4. We faithfully follow [FM1, 
Section 5.5], so that the reader is asked to consult it for more details. 

2.1. Preliminary: q-character of Uq(El2 ) 

The FM algorithm is based on the explicit formula of the q-characters 
of the irreducible representations of Uq(El2 ) [CP1, FR]. 



On Frenkel-Mukhin algorithm 331 

Example 2.1. Let Wr(a) be the irreducible representation Uq(s[2 ) 

with highest weight monomial 

(2.1) 
r 

m+ = II Yaqr-2k+l' 
k=l 

where we set Ya := Y 1,a· Then, its q-character is given by 

r 

(2.2) Xq(Wr(a)) = m+ L II A;;q1r-2H2l Aa := Yaq-lYaq· 
i=Oj=l 

Generally, the q-character of any irreducible representation of Uq(s[2 ) 

is given by a product of (2.2) as follows [CP1]: Let ~a,r be the set of 
the indices of the variables Yb in (2.1), i.e., ~a,r = {aqr- 2k+l h=l, ... ,r· 

We call it a q-string. We say that two q-strings ~a,r and ~a',r' are in 
general position if either (i) the union ~a,r U ~a',r' is not a q-string, or 
(ii) ~a r c ~a' r' or ~a' r' c ~a r· Then, 

' ' ' ' 
Example 2.2. Let m+ E Z[Ya±1]aE<CX be a given dominant mono­

mial. Then, one can uniquely (up to permutations) factorize m+ as 

(2.3) 

where ~a,,r, , ... , ~ak,rk are q-strings which are pairwise in general po­
sition. The q-character of V ( m+) is given by 

k 

(2.4) Xq(V(m+)) =II Xq(Wr; (ai)). 
i=l 

2.2. Algorithm 
Let us start from some key definitions. 

Definition 2.3. (i) We say that a monomial m E Z[J:i~1 ]iEI;aE<Cx 
is i-dominant if it does not contain variables J:i:1, a E ex. 

(ii) For a polynomial X E Z[J:i~1]iEI;aE<Cx a~d a monomial m occur­
ring in x with coefficient s, a coloring of m is a set of integers { si}iEI 
such that 0 ::::; si ::::; s. We say that a polynomial x is colored if all 
monomials occurring in X have colorings. 

(iii) Let Z[J:i~1 ]iEI;aE<CX be a colored polynomial, and let m be a 
monomial occurring in x with coefficient s E Z;:::o and coloring { si}iEI. 
We say that m is admissible if, for any i E I such that si < s, m is 
i-dominant. 
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Let 

Ai a= Y -1Yi aq· II y-1 
' z,aqi ' -t J,a 

(2.5) 
j:CJ;=-1 

X y_-1 y_-1 II y_-1 y_-1y_-1 
J,aq-1 J,aq J,aq-2 J,a J,aq2' II 

j:Cj;=-2 j:Cj;=-3 

where Cij = 2(ai, aj)/(ai, ai) is the Cartan matrix of g. The monomials 
Ai,a are regarded as affinizations of the formal exponentials exp(ai) of 
the simple roots ai of Uq(g). 

The FM algorithm is an iterative algorithm, and its main routine 
utilizes the following procedure called the i-expansion: 

Definition 2.4. Let i E I, x be a colored polynomial, and m be 
an admissible monomial occurring in x with coefficient s and coloring 
{ Sj hE I. Then, a new colored polynomial im(X), called the i-expansion 
of X with respect to m, is defined as follows: 

(i) If Si = s, then im(X) =X· 
(ii) If si < s, we define im(X) in the following two steps. 
First, we obtain a colored polynomial f.l which depends on m and 

i (but not on x) as follows: Let m be the ith projection of m, i.e., 

Y~~ = ya±1 andY~~= 1 for any j-=/= i. Let Xq;(V(m)) = m(l+ I:P Mp) 

be the q-character of the irreducible representation V(m) of Uq; ($l2) with 

highest weight monomial m, where Mp is a product of A~~ (see (2.2), 
(2.4), and (2.5)). Then, 

(2.6) 

where Mp is obtained from Mp by replacing all A;~ by A;,! in (2.5). 
Next, we obtain im(X) by adding the monomi~ls occu~ring in f.l to 

x as follows: Suppose that a monomial n occurs in f.l with coefficient t. 
If n does not occur in x, we add n to x with coefficient t(s- si) and 
set its coloring {sj}jEJ as sj = 0 for any j-=/= i and s~ = t(s- si)· If n 
occurs in x with coefficient rand coloring {rjhEI, we set the coefficient 
s' and the coloring {sj}jEI of n in im(X) ass'= max{r, ri + t(s- si)}, 
sj = Tj for any j -=/= i, and s~ = ri + t(s- si)· The coefficients and the 
colorings of other monomials occurring in x are unchanged in im(x). 

Note that the i-expansion is defined only if m is admissible. 

Remark 2.5. In (2.6), the coefficient of min f.l is always 1. There­
fore, both the coefficient and the ith coloring of m in im (x) are s in 
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Definition 2.4. In other words, the i-expansion of X with respect to m 
is designed to saturate the ith coloring of m to its coefficient. 

Definition 2.6. (i) The Uq(g)-weight of a monomial 

( 
ki li ) 

II II J'i,air II ~J;~s 
iEJ r=l s=l 

is defined by "L-iE I ( ki - li )wi. 
(ii) We equip the Uq(g)-weight lattice P := EBiEJ 'llwi with a partial 

order such that A :2: A1 if A- A' = 'I:.i aiai, ai E 7!.;::::0 , and call it the 
natural partial order in P. 

Now let us define the FM algorithm. It is an algorithm generating 
a colored polynomial x(m+) E Z[~!1liEI;aECX from a given dominant 
monomial m+. 

Definition 2. 7 (The FM algorithm). Let m+ be a given dominant 
monomial in 7!.[~!1 JiEJ;aECX, and A+ be the Uq(g)-weight ofm+. Choose 
any total order in the set P 9+ := {p, E P I p, :::; A+} such that it is 
compatible with the natural partial order in P; then enumerate the 
elements in P5c>.+ as A1 =A+ > A2 > A3 > .... 

Step 1. We set the colored polynomial x by x = m+ with the ith 
coloring of m+ being 0 for any i E I. 

Step 2. Repeat the following steps (i)-(iii) for A= A1, A2, A3, .... 

(i) Let x be the colored polynomial obtained in the previous step. 
Let m 1, ... , mt be all the monomials occurring in X whose 
Uq(g)-weights are A. If there is at least one non-admissible 
monomial among them, then the algorithm halted halfway. 
We say that the algorithm fails at mi if mi is one of such 
non-admissible monomials. 

(ii) Repeat the following for all i E I and all k E 1, ... , t: Replace 
x with the i-expansion imk (x) of x with respect to mk. 

(iii) If there is no monomial occurring in x whose Uq(g)-weight is 
less than A in the total order of P 5c>-+, then set x( m+) = x and 
the algorithm stops (i.e., completes). 

It follows from Remark 2.5 that, if the algorithm successfully stops, 
the ith coloring of any monomial m occurring in x( m+) equals to the 
coefficient of m for any i E I. Thus, once x(m+) is obtained, one can 
safely forget the coloring. 
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§3. Examples 

Let us see how the FM algorithm works in good situations. This is 
a warmup to understand the 'bad situation' in the next section. 

3.1. Example 1 

Let us consider the case where g is of type A2 and the representation 
V ( m+) has the highest weight monomial 

(3.1) 

The Uq(g)-weight of m+ is A+ =WI+ w2. It is well known that V(m+) 
is an evaluation representation of the adjoint representation Vw 1 +w2 of 
Uq(g). As a Uq(g)-representation, it is isomorphic to Vw 1 +w2 • It is also 
known that V ( m+) is special [H5] so that the FM algorithm is applicable. 

We use the following data: qi = q2 = q, o:I = 2wi - w2, 0:2 = 
-WI + 2w2, and 

(3 2) A-I y-I y-I y; A-I y-I y;-I y; . I,a = I,aq-1 I,aq 2,a, 2,a = 2,aq-l 2,aq I,a· 

Now let us execute the FM algorithm step by step. We choose a 
total order in P 5o>-+ as 

(3.3) As = A+ - o:I - o:2, 

Ag = A+ - o:I - 2o:2, 

A6 = A+ - 2o:2, A7 =A+ - 2o:I - 0:2, 

Ag = A+ - 2o:I - 2o:2, ... , 

where the rest of the order is irrelevant. 
Step 1. Set x = m+ = YI,q2 Y2,q-l with the coloring of m+ being 

(0, 0). 
Step 2. (1) A= AI =WI+ w2. 
The 1-expansion of X with respect to m+ = YI,q2 Y2,q-l is done as 

follows: Since YI,q2 Y2,q-l = Yq2, we have 

--I 
Xq(V) = Yq2(1 + AI,qs), 

f.l = YI,q2Y2,q-1(1 + A~!s) = YI,q2Y2,q-l + YI~~Y2,q-1Y2,qs, 

1m+ (X) = YI,q2 Y2,q-l + YI~:4 Y2,q-l Y2,qs, 

(1,0) (1,0) 

where (1, 0) represents the coloring. Then, x is replaced with 1m+ (x). 
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Similarly, the 2-expansion of x with respect to m+ is calculated as 

J.L = Y1,q2 Y2,q-1 (1 + A2j) = Y1,q2 Y2,q-1 + Y1,1Y1,q2 Y2~q\ 
X = Y1 q2 Y2 q-1 + Y:1-~ Y2 q-1 Y2 q" + Yi 1 Y1 q2 y;2-q1· 

' ' ,q ' ' ' ' ' 

(1,1) (1,0) (0,1) 

(2) >. = >.2 = -w1 + 2w2. From now on, we only write down the 
nontrivial i-expansions, i.e., the cases where Si < s. 

The 2-expansion w.r.t. Y:1-~Y2 q-1Y2 qa: 
,q ' ' 

J.L = Y1~q~Y2,q-1Y2,qa(l + A2,i)(l + A2,!4) 

= y:1-14Y2 q-1 y2 q3 + y11y:1-~y;2-q1 Y2 q3 + y2 q-1 y;2-1s + y11y;2-q1 y;2-~' 
,q ' ' ' ,q ' , ' ,q ' , ,q 

X= Y1 q2Y2 q-1 + Y:1-~Y2 q-1Y2 q" + Y11Y1 q2y;2-q1 + Y11Y:1- 14y;2-q1Y2 q" 
, ' ,q ' ' ' , ' ' ,q ' ' 

(1, 1) ' (1, 1) (0, 1) (0, 1) 
y; y;-1 y; y;-1y;-1 + 2,q-1 2,q5 + 1,1 2,q 2,q5. 

(0,1) (0, 1) 

(3) >. = >.3 = 2w1 - w2. 
The !-expansion w.r.t. Y1,1Y1,q2Y2~i: 

(1, 1) (1, 1) (1,1) (1, 1) 
y; y;-1 y; y;-1y;-1 y:-1 y-1 y; + 2,q-1 2,q5 + 1,1 2,q 2,q5 + 1,q2 1,q4 2,q3 • 

(0, 1) (0, 1) (1, 0) 

(4) >. = A4 = -3w1 + 3w2. No nontrivial i-expansions. 
(5) >. = >.5 = 0. 
The !-expansion w.r.t. Y2 q-1 Y2- 15: , ,q 

J.l = Y2,q-1 y2~q1s' 

X= Y1,q2Y2,q-1 + Y1~q~Y2,q-1Y2,qs + Y1,1Y1,q2Y2~q1 + Y1,1Y1~q~Y2~q1 Y2,q" 
(1, 1) (1, 1) (1, 1) (1, 1) 
y; y;-1 y; y;-1y;-1 "()"-1 y-1 y; + 2,q-1 2,q5 + 1,1 2,q 2,q5 + L l,q2 l;q4 2,q3 • 

(1, 1) (0, 1) (1, 0) 
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(6) >. = >.6 = 3wi - 3w2. No nontrivial i-expansions. 
(7) >. = A7 = -2wi + w2. 
The 2-expansion w.r.t. Y1-\Y1- 1.Y2 q3: 

)q ,q ' 

Y-1 y-1 y; (1 A-1 ) y-1 y-1 y; + y-1 y-1 f-l = I,q2 1,q4 2,q3 + 2,q4 = 1,q2 1,q4 2,q3 1,q2 2,q5' 

X= Y1,q2Y2,q-1 + Y1~q~Y2,q-1Y2,q3 + Y1,1Y1,q2Y2~q1 + Y1,1YI~q1.Y2~q1 Y2,q3 
(1, 1) (1, 1) (1, 1) (1, 1) 

y; Y-1 y; y;-1y-1 + y-1 y-I y; + y-1 y-1 + 2,q-1 2,qs + 1,I 2,q 2,qs 1,q2 1,q• 2,q3 1,q2 2,qs· 

(1, 1) (0, 1) (1, 1) (0, 1) 

(8) ).. = As =WI - 2w2. 
The 1-expansion w.r.t. Y11Y2-q1Y2-~: ' ' ,q 

(3.4) 
y; y;-1y-1 (1 A-1) y y;-1y-1 + y-1 y-1 

f-l = 1,1 2,q 2,qs + I,q = 1,I 2,q 2,qs I,q2 2,qs' 

X= YI q2Y2 q- 1 + yi-~y2 q-1Y2 q3 + YIIY1 q2y;2-qi + YIIyi-~y;2-qiy2 q3 
' ' ,q ' ' ' ' ' ' ,q ' ' 

(1, 1) (1, 1) (1, 1) (1, 1) 
y; y-I y; y;-Iy-I + y-I y-I y; + y-I y-I + 2,q-1 2,qs + I,I 2,q 2,qs I,q2 I,q4 2,q3 I,q2 2,qs · 

(1, 1) (1, 1) (1, 1) (1, 1) 

(9) ).. = )..9 = -WI -w2 . There is no nontrivial i-expansions; further­
more, there is no monomial occurring in X in (3.4) whose Uq(g)-weight 
is less than )..9 in the total order. Therefore, we set x(m+) to be x in 
(3.4), and the algorithm stops. 

Thus, we obtain the q-character of V ( m+) as x in (3.4) by forgetting 
coloring. 

Next, let us introduce a diagrammatic notation of monomials by 
Young tableaux, following [BR, KOS, KS, NT, FR, FM2, NN1]. 

To each letter a = 1, 2, 3 within a box of a Young diagram Y, we 
assign a monomial as ( cf. [FR, Section 5 .4.1]) 

(3.5) 

where the subscription 'ij' indicates that the box is located in the ith 
row and jth column of Y. To each tableau T on Y, we assign a monomial 
m(T) by multiplying the monomials assigned to all the boxes in T. For 
example, the first and the second monomials in X in (3.4) are represented 
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~twJ 
1,q~\2,q4 

[fill 2, 1 [1l3l 

~ ~ 
2,q~ ~,q 

twJ 
Fig. 1. The flow of the FM algorithm by Young tableaux 

for Example 1. The symbol i, qk at an arrow repre­
sents the action of A :- 1k • The suffix i at a tableau 

~,q -

by tableaux as 

indicates that Si < s when x is to be i-expanded 
with respect to the corresponding monomial. 

(3.6) m ( ffiTI ) = Y1,1Yl,q2(Y1~/Y2,q-1) = Y1,q2Y2,q-1, 

(3.7) m ( t[fTI ) = Y1,1(Y1)Y2,q3)(Y1~lY2,q-1) 
= y:l-!4 y2 q-1 y2 q3. 

,q ' ' 

337 

The definition (3.5) is designed so that the following equalities hold [FR, 
Section 5.4.1]: 

(3.8) A~!-2H2Hl OJ .. = 0. ) 
ZJ ZJ 

A~!-2i+2H2 0 .. = [}].: 
ZJ ZJ 
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Namely, the multiplication of Ail is regarded as the 'action' of changing 
the letter i to i + 1 in a tableau; if a is appropriately chosen. 

With this notation, one can concisely keep track and express the 
whole process of the algorithm presented above by the semistandard 
tableaux of shape (2, 1) as in Figure 1. Moreover, as a corollary of Figure 
1, we obtain the tableaux expression of the q-character 

(3.9) 2:: m(T), 
TESST(2,1) 

where SST(2, 1) is the set of all the semistandard tableaux of shape 
(2, 1). 

Remark 3.1. For g of classical type, similar tableaux expressions 
to (3.9) have been conjectured and partially proved for a large class 
of irreducible representations V(Aj J.L) parametrized by skew Young di­
agrams A/ J.L [BR, KOS, KS, FR, FM2, NN1, NN2, NN3, H5]. More 
precisely, there is a tableaux expression for the 'Jacobi-Trudi-type de­
terminant' x(Af J.L), which lies in the image of the homomorphism Xq· 
For types An and Bn, it is known that x( Aj J.L) = Xq (V ( Aj J.L)) for any 
skew Young diagram [H5, H7]. For type An, this was also shown in the 
context of the character of Yangian Y(g[n) [NT]. For types Cn and Dn 
[NN1, NN2, NN3], for a (non-skew) Young diagram A, it was conjec­
tured that X( A) = Xq(V(A)). In general, x(Af J.L) is conjectured to be 
the q-character of, not V ( Aj J.L) itself, but some representation which has 
V(A/J.L) as a subquotient. Using this opportunity, let us withdraw our 
false claim for types Cn and Dn in [NN1, NN2, NN3] that we expect that 
X(A/J.L) = Xq(V(A/J.L)), if A/J.L is connected. A counterexample is given 
by g of type C2 with A= (2, 2, 1), J.L = (1). 

Remark 3.2. The underlying Uq(g)-character of V(m+) is sym­
metric under the Dynkin diagram automorphism 1 B 2. However, we 
see in Figure 1 that the Uq(g)-structure of V(m+) is not so. Of course, 
this is not a contradiction, because the highest weight monomial m+ in 
(3.1) are not symmetric under the automorphism. 

3.2. Example 2 

To convince the reader further that the FM algorithm is well de­
signed, let us give another, a little more complicated example, where 
the coefficients of some monomials in the q-character are greater than 
one. We consider the case where g is of type C2 and the representation 
V ( m+) has the highest weight monomial 

(3.10) 
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2 2 2 

a~ a1 
1 2 5---+- 2 1 

2 2 2 

1 

Fig. 2. The Uq(g)-weight diagram of V(m+) in Example 2. 
The numbers represent the weight multiplicities. 

The Uq(g)-weight of m+ is).+ = 2w2. We faithfully follow the convention 
in [FR, FM1]; in particular, a 2 is the long root. 

Since any monomial occurring in Xq(V(m+)) for (3.10) should occur 
in the product Xq(V(Y2,q-t))Xq(V(Y2,q)), and 

(3.11) 

Y -1 y-1 y; "t.r-1 
+ 1,q2 1,q4 2,q + J. 2,q5, 

(3.12) Xq(V(Y2 q)) = Y2 q + Y1 q2Y1 q4Y:2-~ + Y1 q2Y1-~ ' ' ' , ,q ' ,q 
y-1 y-1 y; v-1 + 1,q4 1,q6 2,q3+J.2,q7' 

one can immediately see that m+ is the only possible dominant mono­
mial in Xq(V(m+)). Thus, V(m+) is special, and the FM algorithm 
is applicable. It also implies that V(Y2,q-1) Q9 V(Y2,q) is irreducible 
and isomorphic to V(m+)· In particular, as a Uq(g)-representation, 
V ( m+) is decomposed as Vw 2 ® Vw2 ~ V2w2 E!1 V2w1 E!1 Vo with dimension 
5 x 5 = 14 + 10 + 1, and its Uq(g)-weight diagram is given in Figure 2. 

Keep in mind that (Definition 2.4 (ii)) the i-expansion should be 
done, not with Uq(sr2), but with Uq; (sr2). Then, the algorithm can be 
straightforwardly executed with the data: q1 = q, q2 = q2, and 

(3 13) A-1 y-1 y;-1 y; A-1 y:-1 y:-1 y; y; · 1,a = 1,aq-1 1,aq 2,a, 2,a = 2,aq-2 2,aq2 1,aq-1 1,aq· 

Again, the flow of the algorithm can be expressed with tableaux of 
shape (2, 2). We assign a monomial to each letter a = 1, 2, 2, I within 
the box at position (i,j) as (cf. [FR, Section 5.4.3]). 

(3.14) 
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For example, the highest weight monomial m+ is represented as 

(3.15) m ( BIB ) = Y1,1Yl,q2(Y1~lY2,q-1)(Y1)Y2,q) = Y2,q-1Y2,q· 

The 'action' of A~; on a box is given by 

(3.16) 
A-1 

~ 1 q-2i+2J+l 
L.:.J ' ----+ 

ij 

A-1 m 1 q-2i+2J+5 
~ ' ----+ 

ij 

Then, the flow and the result of the algorithm is expressed by tableaux 
in Figure 3. 

We note that two monomials occur in Xq(V(m+)) with coefficient 
two, and, in Figure 3, each monomial is represented by two different 
tableaux such as 

Purely from the point of view of the FM algorithm, this is redundant, 
because the FM algorithm does not distinguish tableaux if they repre­
sents the same monomial. However, by doing this, we have the following 
tableaux expression of the q-character 

(3.18) Xq(V(m+)) = L m(T), 
TETab 

where Tab is the set of the tableaux occurring in Figure 3. Remark­
ably, the formula (3.18) exactly coincides with the tableaux expression 
in [NN1, NN3] based on the Jacobi-Trudi-type determinant, thereby 
showing nice compatibility between two approaches. 

Remark 3.3. The implementation of the FM algorithm with tab­
leaux (or, equivalently, with paths) of [NN1, NN3] demonstrated here, 
can be generalized to the skew diagram representations of type Cn [NN4]. 
See also Remark 4.4. 

§4. Counterexample 

Now we are ready to present an example where the FM algorithm 
fails in the sense of Step 2 (i) of Definition 2. 7. 

We consider the case where g is of type C3 and the representation 
V ( m+) has the highest weight monomial 

(4.1) 



l,q 
/ 
2~ 
- l,q3 

On Frenkel-Mukhin algorithm 

[iliJ 
mil 
[ill] 
[ill] 

Fig. 3. The flow of the FM algorithm by Young tableaux 
for Example 2. The equality between two tableaux 
means that they represent the same monomial. 

341 
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According to [NN1, Conjecture 2.2, Theorem A.1], it is expected to be 
decomposed into Vw 1 +w2+w3 E9 V2w1 +w2 E9 V2w2 E9 Vw 1 +w3 E9 V2w1 E9 Vw2 as a 
Uq(g)-representation, with dimension 512+189+90+70+21+14 = 896. 
The algorithm is executed with the data: q1 = q2 = q, q3 = q2, and 

A -1 y:-1 Y,-1 y; A -1 y-1 y;-1 y; y; 1,a = 1,aq-l 1,aq 2,a, 2,a = 2,aq-l 2,aq 1,a .3,a, 
A -1 y-1 y-1 y; y; 3,a = 3,aq-2 3,aq2 2,aq-l 2,aq· 

(4.2) 

Again, the process of the algorithm can be expressed by Young 
tableaux of shape (3, 2, 1). We assign a monomial to each letter a = 
1, 2, 3, 3, 2, I within the box at position ( i, j) as 

= Y1,1Y1,q2 Y1,q4 (Y1~lY2,q-l )(Y1~q; Y2,q)(Y2~q1_ 1 Y3,q-2) 

= Y1,q4 Y2,qY3,q-2. 

The 'action' of Ai~ on a box is given by , 

(4.5) 

Theorem 4.1. 

Let us prove the theorem. We set 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

m1 := A3,im+ = Y1,q4 (Y2,q-l Yi,q)Y3~;, 

m2 := A~!2A3,im+ = (Y1,q2Y1,q4)(Y2,q-lY2,qY2~q\), 
m3 := A~~2A3,im+ = (Y1~q2Yi.,q4)(Y2,q-1Y2~q;)Y3,q2, 
m4 := At,!3A~~2A3,im+ = Y1,q2(Y2,q-1Y2~q\)Y3,q2,, 

A -1 A-1 A-1 y; y; m5 := 1,q3 2,q2 3,1 m+ = 2,q-l 2,q, 

m6 := A~!2m+ = (Y1,q2Y1,q4)(Y3,q-2Y3,q2). 
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3, y 

~11 ffil = ffi6 = 2 3 
3 1,3 

2 - 2 1,q3 - 3 

2,rf/ ~,q ~,1 ~,q 

Fig. 4. The diagram explaining how the FM algorithm fails 
form+ in (4.1). 
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We show below that the algorithm fails at m 4 . See Figure 4 for the 
outline of the proof in terms of tableaux. 

Lemma 4.2. The monomial m 4 occurs in x at some step in the 
algorithm. 

Proof. By (4.1), the 3-expansion of x with respect to m+ gives 
p, = m+(1 + A3i), where p, is the polynomial in (2.6). Therefore, m1 
occurs in x afte~ the expansion. Next, by ( 4.6), m 1 is admissible, and 
the 2-expansion of x with respect to m1 gives p, = m1 ( 1 + A2-

1 2 + ,q 

A2-iA2-\)(1+A2-\). Thus, m3 occurs in x after the expansion. Finally, 
' ,q ,q 

by (4.8), m 3 is admissible, and the 1-expansion of X with respect to m3 
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gives p, = m1 (1+A~\ +A~\A~\)(l+A~\). In particular, m4 occurs ,q ,q ,q ,q 
in x after the expansion. Q.E.D. 

Let>.(= w1 + w3 ) denote the Uq(g)-weight of m4. Let us show that 
the monomial m4 is not admissible when x is going to be expanded 
at >.; hence, the algorithm fails at m4. To see it, suppose that m4 is 
admissible when X is going to be expanded x at >.. Since m4 is not 
2-dominant, it should occur in the 2-expansion with respect to some 2-
dominant monomial, say, n whose Uq(g)-weight is greater than>.. Since 
{Ai,ahEI;aEICx are algebraically independent, n should be either m5 = 
A2,q2m4 or m~ = A~,q2 m4. Then, one can easily check that the 2-
expansion with respect to m5 generates m4, while the 2-expansion with 
respect to m~ does not so. Therefore, n = m5. However, 

Lemma 4.3. The monomial m 5 does not occur in x at any step in 
the algorithm. 

Proof. By (4.10), there are six possible routes to obtain m5 from 
0 k 

m+ by i-expansions: (The symbol ~ represents the action of A:-\.) t,q 

(.) l,q3 2,q2 3,1 Th 1 . f . h 
I m+ --'-"-? * --'-"-? * ---'--t m5. e -expansiOn o x wit respect to 

m+ gives p, = m+(l + A1- 15 ). So, it does not happen. ,q 

( .. ) l,q3 3,1 2,q2 B h b "t d n m+ --'-"-? * ---'--t * --'-"-? m5. y t e same reason as a ove, I oes 
not happen. 

( ... ) 2,q2 l,q3 3,1 Th 2 . f . h m m+ --'-"-? m6 --'-"-? * ---'--t m5. e -expansiOn o x wit respect 
to m+ gives p, = m+(l + A~!2 ). So, m6 occurs in X· Then, the !­

expansion of X with respect to m6 gives p, = m6(1 +A1-\ +A1-q\A1-\). 
,q ' ,q 

So, it does not happen. 

(. ) 2,q2 3,1 l,q3 Th 3 . f . h t 
IV m+ --'-"-? m6 ---'--t m2 --'-"-? m5. e -expansiOn o x wit respec 

to m 6 gives p, = m6(1 + A3,!4 + A3,~A3,!4 ). So, it does not happen. 

( ) 3,1 l,q3 2,q2 Th 1 . f . h v m+ ---'--t m1 --'-"-? * --'-"-? m5. e -expansiOn o x wit respect 
to m1 gives p, = m1(l + A1-\). So, it does not happen. ,q 

( ") 3,1 2,q2 l,q3 Th 1 . f . h t 
VI m+ ---'--t m1 --'-"-? m2 --'-"-? m5. e -expansiOn o X wit respec 

to m2 gives p, = m2(l + A1-\ + A1-\A1-\). So, it does not happen. ,q ,q ,q 
Therefore, m5 does not occur in x at any step. Q.E.D. 

This completes the proof of Theorem 4.1. 
Shortly speaking, the algorithm fails because it fails to generate m5 

which is an extra dominant monomial in Xq(V(m+)). 
It is not difficult to find some other examples where similar phenom­

ena happen. For example, it is a good exercise to check that, if g is of 
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type D 4 and the representation has the highest weight monomial 

(4.12) 

the FM algorithm fails at the monomial 

(4.13) 

where we use the diagrammatic notation in [FR, NN1, NN2]. 
We conclude with a remark on a modification of the FM algorithm. 

Remark 4.4. Actually, in the counterexample above, the FM al­
gorithm almost works except for missing one monomial m5 • It suggests 
the following modification of the algorithm: when we encounter the non­
admissible monomial m4 in the algorithm, one simply adds m 5 (the '2-
ancestor' of m4) to x with coloring (0, 0, 0), then restart the expansions 
from .A = 2w2 . Then, we have checked by computer that the modified 
algorithm stops and certainly generates monomials represented by 896 
tableaux as expected in [NN1, NN3]. For general representations, this 
trace-back procedure is, a priori, not well-defined, because one cannot 
uniquely determine the 'i-ancestor' of a given monomial. However, for 
the family of the skew diagram representations of type Cn in [NN1, NN3], 
one can do so with help of tableaux representation (or, more conveniently, 
paths representation) of monomials. Observe Figure 4 as a simple ex­
ample. By modifying the FM algorithm with the trace-back procedure, 
we expect that Conjecture 1.1 is true for these representations, and it 
is supported by our .computer experiment. The detail will be published 
elsewhere [NN4]. 
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