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Abstract. 

This is a survey on a universal bivariant theory Mg(X ...... Y), 
which is a prototype of a bivariant analogue of Levine-Morel's alge­
braic cobordism, and its application to constructing a bivariant theory 
FO(X ...... Y) of cobordism groups. Before giving such a survey, were­
call the genus such as signature, which is the main important invariant 
defined on the cobordism group, i.e, a ring homomorphism from the 
cobordism group to a commutative ring with a unit. We capture the 
Euler-Poincare characteristic and genera as a drastic generalization of 
the very natural counting of finite sets. 

§1. Introduction 

The (oriented) cobordism group 0* was introduced by Rene Thorn 
[Th] in 1950's and it was extended by Michael Atiyah [At] to the (ori­
ented) cobordism theory MSO*(X) of a topological space X, which 
is a generalized cohomology theory. It is defined by Thorn spectra 
{MSO(n)}. As a covariant or homology-like version of MSO*(X), 
Atiyah [At] introduced the bordism theory MSO*(X) geometrically in 
a quite simple manner, compared with the "spectral" definition of the 
cobordism theory. If we replace SO(n) by the other groups O(n), U(n), 
Spin(n), we get the corresponding cobordism and bordism theories. 
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The cobordism theory MSO*(X) is not "geometrically defined" un­
like singular cohomology, de Rham cohomology, K-theory, although the 
bordism theory MSO*(X) is very much geometrically simply defined. 
This kind of "drawback" pops up crucially when one deals with the so­
called elliptic cohomology theory. Note that algebraic topologists have 
been looking for a more geometrically described definition of the elliptic 
cohomology. For a very recent survey on the elliptic cohomology, see 
Jacob Lurie's survey paper [Lu], and also see other papers and/or books 
[Hat, La2, Mi-Ra, Se, Ti]. 

Daniel Quillen introduced the notion of (complex) oriented coho­
mology theory on the category of differential manifolds [Qui] and this 
notion can be formally extended to the category of smooth schemes 
in algebraic geometry. Vladimir Voevodsky has introduced algebraic 
cobordism (now called higher algebraic cobordism), which was used in 
his proof of Milnor's conjecture [Voe]. Marc Levine and Fabien Morel 
constructed the universal one of oriented cohomology theories, which 
they also call algebraic cobordism, and have investigated furthermore 
(see [Lel, Le2, LMl, LM2, LM3] and also see [Mer] for a condensed 
review). Levine-Morel's algebraic cobordism is the universal oriented 
Borel-Moore functor satisfying some geometric axioms. 

William Fulton and Robert MacPherson have introduced the notion 
of bivariant theory as a categorical framework for the study of singular 
spaces, which is the title of their AMS Memoir book [FM] (see also Ful­
ton's book [Fu]). A bivariant theory is a unification of covariant functor 
such as a homology theory and a contravariant functor such as a coho­
mology theory. A typical example is Fulton-MacPherson's bivariant ho­
mology theory lHI, whose associated contravariant functor JHI* is the usual 
singular cohomology theory and whose associated covariant functor lHI* is 
the Borel-Moore homology theory, not the usual singular homology the­
ory. The main objective of [FM] is bivariant-theoretic Riemann-Roch's 
or bivariant analogues of various theorems of Grothendieck-Riemann­
Roch type. 

We have recently constructed (prototypes of) bivariant-theoretic 
analogues of the above two cobordism groups ([Yol, Yo3]). There are 
two nai:ve motivations for this work: 

(1) Levine-Morel's algebraic cobordism is a covariant theory, thus 
we want to know its contravariant version so that it is unified 
into its bivariant one. 
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(2) The definition of the cobordism theory M SO* (X) is not simple 
as that of the bordism theory M SO* (X), thus we want another 
contravariant version of MSO*(X) so that it is also unified 
into a bivariant-theoretic analogue of MSO*(X). (It would be 
hopefully related to the problem of a geometric description of 
the elliptic cohomology.) 

A key ingredient is what we call a universal bivariant theory, which is 
the universal one among the bivariant theories with a nice canonical 
orientation, or what could be called a "motivic" bivariant theory. 

In this paper we make a quick survey on these bivariant analogues 
after reviewing the Euler number and the genus, which is in a sense a 
drastic generalization of the Euler number. 

§2. Euler-Poincare characteristic and genera 

The genus is a homomorphism from the cobordism ring to another 
ring; thus these two notions are two aspects of one thing in a sense. So, 
before going into the main parts of the paper in the next sections, in 
this section we recall or review how natural the notion of Euler num­
ber or Euler-Poincare characteristic is and we see that the notion of 
genus is a "drastic" generalization of the Euler-Poincare characteris­
tic, although the Euler-Poincare characteristic is not a genus. Also we 
see that the ordinary (co)homology or more correctly the Borel-Moore 
homology theory constructed from the ordinary (co )homology theory is 
in a sense for the Euler-Poincare characteristic and extraordinary or 
generalized (co)homology theories are for genera, in particular the most 
interesting one is the elliptic genus and the elliptic cohomology. 

The cardinality c(S), a nonnegative integer, of a finite setS satisfies 
the following properties: 

(1) A~ B (set-isomorphism) implies c(A) = c(B), 
(2) c(A u B) = c(A) + c(B), 
(3) c(A x B) = c(A) · c(B), 
(4) c(pt) = 1. (Here pt denotes one point space.) 

Or one could say that the isomorphism classes [S] of finite sets satisfies 
the above properties except the property (4). Setting [¢] := 0 and 
[pt] := 1 gives us the nonnegative integers. 
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Now, let us consider the following similar problem for topological 
spaces: 

Problem 2.1. Can one define a cardinality Xtop(W) of a topological 
space W such that the above property ( 1) is replaced by the following 
"topological" one and the rest of the properties are unchanged ? Namely, 
does there exist Xtop with the following properties on topological spaces 
?: 

(1) A~ B (homeomorphism) implies Xtop(A) = Xtop(B), 
(2) Xtop(A U B)= Xtop(A) + Xtop(B), 
(3) Xtop(A x B)= Xtop(A) · Xtop(B), 
( 4) Xtop(pt) = 1. 

Since considering the cardinality c(S) of a finite set S is the same as 
considering the cardinality Xtop(S) of the finite set S with the discrete 
topology, we just use the symbol Xtop even for finite sets. 

Remark 2.2. In the case of finite sets (with discrete topology), 
the property (2) can be without any caution replaced by the usual 
one: "inclusion-exclusion formula" 

Xtop(A U B) = Xtop(A) + Xtop(B) - Xtop(A n B). 

However, in the general case of topological spaces one has to be a bit 
careful. In the property (2) AU B does not necessarily mean a direct 
sum of two topological spaces A and B, or the disjoint union of two 
topological spaces. One ·should note that if it were so, the property 
(2) in general could not be replaced by the above "inclusion-exclusion 
formula." It really means that if a topological space (X, T) is decom­
posed into X= AU B, then for the topological subspaces (A, TIA) and 
(B, TIE), where Ts is the relative topology of a subsetS C X, we have 
the equality: 

Xtop((A U B, T)) = Xtop((A, TIA)) + Xtop((B, TIE)). 

This of course already takes care of even the case when A U B is the 
disjoint union of two topological spaces. Thus, the above "inclusion­
exclusion formula" means that if A U B is a topological space with a 
topology T, then 

Xtop((A U B, T)) = Xtop((A, TIA)) + Xtop((B, TIE)) 

- Xtop((A n B, TIAnE)). 

In this sense, even in the case of topological spaces the property (2) 
can be replaced by the above "inclusion-exclusion formula." However, 
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we stick to the above simple "disjoint union" formula (2) for the sake of 
what follows later, i.e., genera. 

Now, we consider the looked-for cardinality Xtop for the 1-dimensional 
Euclidean space ffi. 1 and apply the property (2) to the decomposition of 
ffi.l: 

ffi. 1 = ( -oo, 0) U {0} U (0, oo). 

Which implies that 

Xtop(ffi.1) = X top( ( -oo, 0)) +X top( {0}) +X top( (0, 00) ). 

Hence we have 

-Xtop({O}) = Xtop((-oo,O)) + Xtop((O,oo))- Xtop(ffi.1 ). 

Since ffi. ~ (-oo,O) ~ (O,oo), it follows from (1) and (4) that 

Xtop(ffi.1 ) = -Xtop({O}) = -1. 

Hence, it follows from (3) that 

So, in particular, if X is a finite CW-complex, i.e., a compact Hausdorff 
space X with a cellular structure, by applying the property (2) to the 
decomposition of X into all open cells, we get 

n 

where ~n(X) denotes the number of n-dimensional open cells, since 
each n-dimensional open cell is homeomorphic to ffi.n. Namely, Xtop(X) 
is nothing but the so-called Euler-Poincare characteristic of the OW­
complex X. Of course we need to show that such a cardinality exists, in 
particular it is independent of the decomposition of a given topological 
space, and we know that the existence of such a cardinality is guaranteed 
at least by the (co )homology theory, to be more precisely, the ordinary 
(co)homology theory. Here we just recall an ordinary cohomology theory, 
since the homology version is a covariant one. 

An ordinary cohomology theory is a sequence { H n} nEZ of contravari­
ant functors Hn from the category of pairs (X, A) of topological spaces 
to the category of abelian groups, together with a natural transforma­
tion 8: Hn(A) _, Hn+ 1(X, A) for each n. These are required to satisfy 
the following axioms: 
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Homotopy Axiom : If J, g : (X, A) ----7 (Y, B) are homotopic, then for 
each n f* = g* : Hn(Y, B) ----7 Hn(X, A). 

Excision Axiom : If (X, A) is a pair and U C X such that U is 
contained in the interior A o of A, then the inclusion map j : (X-U, A­
U) ----7 (X, A) induces an isomorphism; 

Exactness Axiom: For any pair (X, A) with inclusion maps i: A C X 
and j: X c (X, A) there is a long exact sequence: 

Dimension Axiom: Let pt be the one-point space; then Hn(pt) = 0 
for all n =f 0. 

H 0 (pt) is called the coefficient group of the given ordinary cohomol­
ogy theory H*. 

For a given ordinary cohomology theory H*, the H*- Euler-Poincare 
characteristic XH• (X) of a topological space X is defined to be 

n 

provided that it is well-defined. This H*- Euler-Poincare characteris­
tic XH• satisfies the following properties for the category of topological 
spaces: 

(1) A~ B (homeomorphism) implies XH• (A)= XH• (B), 
(2) If (Au B; A, B) is proper, i.e., H*(A) ~ H*(A u B, B) and 

H*(B) ~ H*(AUB, A), then XH• (AUB) = XH·(A)+XH• (B), 
(3) XH• (A X B) = XH• (A) · XH• (B), 
(4) XH•(pt)=l. 

The "inclusion-exclusion formula" version of (2) is the following: If (AU 
B;A,B) is proper, i.e., H*(A,AnB) ~ H*(AUB,B) and H*(B,An 
B) ~ H*(A U B, A), then XH• (AU B) = XH• (A)+ XH• (B) - XH• (An 
B). Which follows from the Mayer-Vitoris exact sequence. Thus, the 
property (2) is quite delicate and does depend on how subspaces A 
and B are located in the ambient space A U B. With this definition 
there could be as many Euler-Poincare characteristics XH• as different 
ordinary cohomology theories XH• exist. 
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In most cases objects treated in geometry and topology are finite 
OW-complexes or CW-complexes. For these objects, the ordinary co­
homology theory turns out to be unique, that is to say, if it is restricted 
to the category of pairs of finite CW complexes any other ordinary 
(co )homology theory is in fact isomorphic to the singular cohomology 
theory, namely we have Eilenberg-Steenrod Theorem [ESl, ES2]: 

Theorem 2.3. On the category of pairs of finite CW complexes 
there exists a unique (up to isomorphism} ordinary (co}homology theory. 

The uniqueness in fact follows from the Dimension Axiom. Hence, 
if the Dimension Axiom is dropped, then there are many cohomology 
theories. A cohomology theory without Dimension Axiom being required 
is called a generalized cohomology theory or an extraordinary cohomology 
theory. Typical ones are K-theory and the cobordism theory and the 
latter is the main topic of this note. 

Therefore, the Euler-Poincare characteristic of a finite CW-complex 
is uniquely defined by any ordinary cohomology theory, e.g., the singular 
cohomology theory: 

x(X) := ~) -l)i dimJR Hi(X; Z) ®JR. 
i20 

However, for non-finite OW-complexes this Euler-Poincare charac­
teristic is not necessarily uniquely defined and furthermore for any ordi­
nary cohomology theory the H*-Euler-Poincare characteristic XH• (X) 
of the n-dimensional Euclidean space JR.n is always 

XH• (JR.n) = 1 for any n 

since JR.n is homotopic to one point space. Namely, this characteristic 
does not give rise to the above looked-for cardinality Xtop for open cells. 
To remedy this, we use the cohomology with compact support or the 
so-called Borel-Moore homology group for locally compact spaces, which 
can be made into compact spaces by adding just one point, i.e., one-point 
compactification. The Borel-Moore homology group H~M (X; R) of a 
locally compact Hasudorff space X is the relative singular homology of 
the one-point compactification x+ with* being the one point attached: 

With this we have that Hf!M (JR.n; Z) = Z and H:M (JR.n; Z) = 0 for 
k =f n. Thus theBorel-Moore homological Euler-Poincare characteristic 
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XBM(X) of a locally compact Hasudorff space X can be defined by 

XBM(X) := :L)-1)ndimlRH~M(X) ®R 
n 

Then for a finite OW -complex X we have 

Xtap(X) = x(X) = XBM(X) and Xtap(.IR.n) = XBM(.IR.n) = ( -1t. 
It is known (e.g., see [Ha, Corollary 2.24]) that in the category of 

finite OW-complexes, for any two subcomplexes A and B of a OW­
complex AU B, the triple (AU B; A, B) is proper, we get the following: 

Theorem 2.4. On the category of finite OW -complexes X tap 
XBM satisfies the following properties: 

(1) A~ B (homeomorphism) implies Xtap(A) = Xtap(B), 
(2) Xtap(A U B)= Xtap(A) + Xtap(B), 
(3) Xtap(A x B)= Xtap(A) · Xtap(B), 
(4) Xtap(pt) = 1. 

Remark 2.5. Since A and B are subcomplexes of a OW-complex 
AU B, it is automatically that A and B are two connected components. 

Summing up roughly: 

(1) If we stick to the fundamental/basic/essential properties which 
the way we count finite sets satisfies even when we "count" or 
"measure" topological spaces "topologically", we naturally ends 
up with the so-called Euler number for finite OW -spaces. 

(2) Such a cardinality Xtap, which becomes the Euler-Poincare char­
acteristic on the category of finite CW-complexes, is just one 
aspect of the unique ordinary cohomology theory. 

The Euler-Poincare characteristic is the simplest but most important 
invariant in modern geometry and topology. There are many important 
results concerning it, such as the Chern's Gauss-Bonnet Theorem and 
the Poincare-Hop£ Theorem relating vector fields on a manifold and 
The Euler-Poincare characteristic of the manifold. Before going fur­
ther on, we recall MacPherson's Theorem [Mac], which is a theorem of 
Grothendieck-Riemann-Roch type: 

Theorem 2.6. Let :F be the covariant functor of constructible func­
tions on the category of complex algebraic varieties with proper mor­
phisms. There exists a unique natural transformation from the covariant 
functor F to the Borel-Moore homology theory 
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such that if X is a smooth variety then the value c* (1x) of the char­
acteristic function 1x on X is the Poincare dual of the total Chern 
cohomology class c(T X) of the tangent bundle: 

c*(1x) = c(TX) n [X]. 

A bivariant-theoretic analogue of the above transformation was con­
jectured in [FM] and it was solved affirmatively by J.-P. Brasselet un­
der a certain condition [Br], and it was investigated furthermore in 
[BSY3, BSY4]. 

In the above we saw that one automatically obtains the notion of 
Euler-Poincare characteristic just by changing the requirement of set 
isomorphism to that of the topological isomorphism in the property ( 1). 
Now the notion of genus is a "drastic" one along the same line of think­
ing. In the following part of this section, all manifolds are assumed to 
be smooth, compact and oriented. 

Rene Thorn [Th] made an epoc: he introduced the notion of cobor­
dism or cobordant, i.e., he suggested two n-dimensional manifolds A, B 
to be "identified" if there exists . an ( n + 1 )-dimensional manifold W 
whose boundary oW is isomorphic to the disjoint union of A and -B, 
i.e., B with its orientation reversed: 

oW=AU-B. 

Then A and B are called "bordant" and denoted by 

A~B. 

And we consider the following problem of "cardinality" based on the 
bordism "isomorphism" : 

Problem 2. 7. On closed manifolds find a "cardinality" 'Y satsifying 
the following conditions: 

(1) A~ B (bordant) implies 'Y(A) = 'Y(B), 
(2) 'Y(A u B) = 'Y(A) + 'Y(B), 
(3) 'Y(A X B)= 'Y(A). 'Y(B), 
(4) 'Y(pt) = 1. 

In other words, if we let R be a commutative ring with unit, then 'Y is 
simply a ring homomorphism from the bordism ring !1 to R: 

'Y: n-+ R. 

This "cardinality" is called a genus. Here we recall that !1 = !180 is the 
set of (co}bordism classes of smooth, compact and oriented manifolds, 
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which becomes a ring with addition by the disjoint union of manifolds 
and multiplication by Cartesian product of manifolds. 

Remark 2.8. (1) Any closed manifold cannot be decomposed into 
closed submanifolds, unless it is already the disjoint union of closed 
manifolds. Hence in the property (2) AU B is automatically the disjoint 
union of closed manifolds. ( 2) In the case of the topological isomorphism, 
by decomposing the !-dimensional Euclidean space JR1 into ( -oo, 0) U 
{0} U (0, oo), we get the Euler-Poincare characteristic. However, in the 
above problem we cannot do such a magic or trick. 

In contrast to the Euler-Poincare characteristic Xtop (which is cer­
tainly not a genus for oriented manifolds, but a genus only for stable 
complex manifolds), it is not uniquely determined. Indeed, the Hirze­
bruch's famous signature CY and A are the most typical and well-studied 
genera. 

Here is a very simple problem on genera: 

Problem 2.9. Determine all genera. 

This problem is in a sense solved by the following fundamental the­
orem due to R. Thorn: 

Theorem 2.10. On the category of closed oriented manifolds we 
have 

n ® Q ~ Q[lP'2' lP'4' lP'6' ... 'lP'2n, ... ]. 

So, if we consider a commutative ring R without torsion for a genus 
'Y : n -+ R, then the genus 'Y is completely determined by the value 
'Y(lP'2n) of the cobordism class of each even dimensional complex projec­
tive sapce lP'2n. Then using this value one could consider its generating 
"function" or formal power series such as I:n 'Y(lP'2n )xn, or I:n 'Y(lP'2n )x2n, 
and etc. In fact, a more interesting problem than determining "all gen­
era" is to determine all rigid genera such as the above mentioned signa­
ture CY and A; namely a genera satisfying the following multiplicativity 
stronger than the property (3) 'Y(A x B) = "f(A) · 'Y(B): 

(3)rigid : "f(M) = 'Y(F)'Y(B) for a fiber bundle M-+ B with its fiber F 
being a spin-manifold and compact connected structural group. 

For this rigidity problem on genera, one needs to consider its so­
called "logarithmic" formal power series in R[[x]]: 

1 
log (x) := """""'--"((Jlll2n)x2n+l. 

"~ ~ 2n+ 1 
n 
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Now here is Ochanine-Bott-Taubes' epoc-making theorem: 

Theorem 2.11. The genus"( is rigid if and only if it is an elliptic 
genus, i.e., its logarithm log7 is an elliptic integral, i.e., 

log (X) = r 1 dt 
7 lo \II - 2Jt2 + Et4 

for some 6, E E R. 

Remark 2.12. We note that if one allows its fiber F to be any 
manifold instead of a spin-manifold, then only the signature is rigid. 

S. Ochanine [Oc] proved the "only if' part and later the "if part" 
was first "physically" proved by E. Witten [Wi] using the Dirac operator 
on the loop spaces and rigorously proved by C. Taubes [Ta] and also by 
R. Bott and C. Taubes [BT]. Also see B. Totaro's papers [To-1, To-2]. 

Given a ring homomorphism <p: MSO*(pt)---+ R, R is a MSO*(pt)­
module and 

MSO*(X) ®MsO•(pt) R 

becomes "almost" a generalized cohomology theory in the sense that 
it does not necessarily satisfy the Exactness Axiom. P. S. Landweber 
[La1] gave an algebraic criterion (called the Exact Functor Theorem) for 
it to become a generalized cohomology theory, i.e., satisfy the Exact­
ness Axiom too. Applying Landweber's Exact Functor Theorem, P. E. 
Landweber, D. C. Ravenel and R. E. Stong [LRS] showed the following 
theorem: 

Theorem 2.13. For the elliptic genus 

the following functors are generalized cohomology theories: 

MSO*(X) ®MSO*(pt) Z[~][J, E][E- 1], 

MSO*(X) ®MSO*(pt) Z[~][J, E][(62 - E)-1], 

MSO*(X) ®MSO*(pt) Z[~][J, E][Ll - 1], 

where L\ = E(62 - E)2. 
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More generally J. Franke [Fr] showed the following theorem: 

Theorem 2.14. For the elliptic genus 

the following functor is a generalized cohomology theory: 

MSO*(X) ®Mso•(pt) Z[~][8, Ej[P(8, E)-1], 

where P( 8, E) is a homogeneous polynomial of positive degree with deg 8 = 
4,deg E = 8. 

The generalized cohomology theory 

MSO*(X) ®Mso•(pt) Z[~][8, Ej[P(8, E)- 1] 

is called an elliptic cohomology theory. It is defined in an algebraic man­
ner, but not in a more topological or geometric manner as inK-theory, 
the bordism theory MSO*(X). So, people have been searching for a 
reasonable geometric or topological construction of the elliptic cohomol­
ogy (e.g., see [KS] by M. Kreck and S. Stolz). In fact, the present work 
is motivated partly by this interesting geometric problem of the elliptic 
cohomology theory. 

Remark 2.15. Before finishing this section, as to the notion of 
"cardinality" we would like to remark about a recent work of J. Baez 
and W. Dolan [BD] on what they call "homotopy cardinality" from the 
aspect of "categorification". The above Euler-Poincare characteristic 
of a topological space X is the alternating sum of the dimension of 
(co)homology groups H*(X;~) or H*(X;~). Baez-Dolan's homotopy 
cardinality of a topological space X, denoted by X fop (X) provisionally 
here, is a sort of "alternating product" of homotopy groups of X; to be 
more precise, 

1r Ilk>O l1f2k (X) I 
Xtop(X) := IJ I (X)I. 

k~O 1f2k+1 

Where lni(X)I denotes the cardinality of the group ni(X) considered 
as a category, i.e., a groupoid. This homotopy cardinality makes sense 
of course when it is well-defined, just as it is the case for the Euler­
Poincare characteristic. Baez and Dolan showed that this homotopy 
cardinality satisfies the same property as the Euler-Poincare character­
istic. So far it is a reasonable cardinality only when all the homotopy 
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groups are finite groups and no other case has not been computed and 
their conjecture is that there would be no other case than finite ho­
motopy groups. It would be an interesting problem whether there is a 
reasonable relation between the Euler-Poincare characteristic and the 
Baez-Dolan homotopy cardinality. We hope to come back to this prob­
lem. For more details see their paper [BD] and also Baez's homepage 
(http:/ /math.ucr.edu/home/baezj). In particular, one is recommended 
to read Baez's articles [Bal, Ba2] and also T. Leinster's paper [Lein]. 

§3. Fulton-MacPherson's bivariant theory 

We make a quick review of Fulton-MacPherson's bivariant theory 
[FM], where the reader also will find a lot of examples like algebraic K­
theory and operational Chow groups in algebraic geometry, or bivariant 
versions of generalized cohomology theories in algebraic topology. 

Let V be a category with a final object pt, a class of "indepedent 
squares" and a class C of "confined maps", which is closed under com­
position and base change in indepedent squares and contains all identity 
maps. Here we assume that all indepedent squares are fiber products 
(i.e. the corresponding fiber products exist in V), which satisfy the fol­
lowing properties: 

(i) if the two inside squares in 

X''~ X' g' X ~ 

lf" lf' lt 
Y" ---+ Y' ---+ y 

h 
g 

or 

X' ---+ X 
h" 

t'l lt 
Y' ---+ y 

h' 

g' 1 lg 

Z' ---+ z 
h 
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are independent, then the outside square is also independent, 

(ii) any square of the following forms are independent: 

x~x 
f t t f 
X---+ y 

idy 

xLY 
idx t tidy 

X---+Y 
f 

where f : X ---. Y is any morphism. 

Example 3.1. Examples for "confined maps" are proper or projec­
tive maps in algebraic topology or geometry. In the category of smooth 
manifolds and maps, independent squares are by definition the squares 
with f and g transversal in the usual sense, i.e. f x g is transversal to the 
diagonal submanifold of Y x Y so that the fiber product X' = Y' Xy X 
exists as a smooth manifold. Note that in this category not all fiber 
products exist. 

A bivariant theory lB on a category V with values in the category of 
graded abelian groups is an assignment to each morphism 

xLY 
in the category V a graded abelian group (in most cases we ignore the 
grading) 

JB(X L Y) 

which is equipped with the following three basic operations. The i-th 

component of JB(X L Y), i E Z, is denoted by JBi(X L Y). 

Remark 3.2. One can also consider ::£2-grading and {0}-grading, 
i.e., no grading. 

Product operations: For morphisms f: X---. Y and g: Y---. Z, 
the product operation 

is defined. 
Pushforward operations: For morphisms f : X ---. Y and g 

Y ---. Z with f confined, the pushforward operation 
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is defined. 
Pullback operations: For an independent square 

!' 1 lt 
Y' ------+ Y, 

g 

the pullback operation 

g* : lllli(X L Y) --+ lllli(X' L Y') 

is defined. 
And these three operations are required to satisfy the seven com-

patibility axioms (see [FM, Part I, §2.2] for details): 
(B-1) product is associative, 
(B-2) pushforward is functorial, 
(B-3) pullback is functorial, 
(B-4) product and pushforward commute, 
(B-5) product and pullback commute, 
(B-6) pushforward and pullback commute, and 
(B-7) projection formula. 

We also assume that lBI has units: 
Units: lBI has units, i.e., there is an element lx E JB1°(X ~ X) 

such that a • lx = a for all morphisms W --+ X, all a E llli(W --+ X); 
such that lx • (3 = (3 for all morphisms X--+ Y, all (3 E llli(X--+ Y); and 
such that g*lx = lx' for all g: X'--+ X. 

Let llll, llll' be two bivariant theories on a category V. Then a Grothendieck 
transformation from lBI to llll' 

"( : lBI --+ JBI' 

is a collection of homomorphisms 

llli(X--+ Y)--+ llli'(X--+ Y) 

for a morphism X --+ Y in the category V, which preserves the above 
three basic operations: 

(i) "f(a •B (3) ="((a) •~m' "f(f3), 
(ii) "((/*a) = f*'Y(a), and 
(iii) "f(g*a) = g*"((a). 
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A bivariant theory unifies both a covariant theory and a contravari­
ant theory in the following sense: 

• lffi*(X) := lffi(X---+ pt) becomes a covariant functor for confined 
morphisms and 

• lffi*(X) := lffi(X ~ X) becomes a contravariant functor for 
any morphisms. 

And a Grothendieck transformation 'Y : lffi ---+ lffi' induces natural trans­
formations "~* : lffi* ---+ lffi~ and 7* : lffi* ---+ lffi'*. 

· idx · As to the grading, we set lffii(X) := Iffi-•(x------+ X) and lffi1 (X) := 

Jffii(X~X). 

A bivariant theory is called commutative (see [FM, §2.2]) if whenever 
both 

wLx 
f'! ! f 

Y---*Z 
g 

and 
wLY 

g'! ! g 
X---*Z 

f 

are independent squares, then for a E lffi(X £ Z) and {3 E lffi(Y!!..... Z) 

g*(a) • {3 = f*({J) • a. 

If g*(a)•{J = ( -l)deg(a) deg(,6) f*(fJ)•a, then it is called skew-commutative. 

§4. Borel-Moore functor in the sense of Levine-Morel 

For some special classes of morphisms an additive bivariant theory 
(see below) carries the so-called Borel-Moore functor with products, 
which is the basic ingredient for Levine-Morel's construction of algebraic 
cobordism [LM3]. 

Definition 4.1. ([FM, 2.6.2 Definition, Part I]) LetS be a class of 
maps in V, which is closed under composition and containing all identity 
maps. Suppose that to each f : X ---+ Y in S there is assigned an element 

0(!) E lffi(X £ Y) satisfying that 

(i) O(g of)= 0(!) • O(g) for all f: X---+ Y, g: Y---+ Z E Sand 

(ii) O(idx) = lx for all X with lx E lffi*(X) := B(X ~X) the 
unit element. 

Then 0(!) is called a canonical orientation of f. 
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For a morphism f : X -+ Y E S the Gysin homomorphism 

/: lffi*(Y)-+ lffi*(X) defined by /(a):= ()(j) • a 

is contravariantly functorial. And for the following independent square 

X~Y 

X---+ Y, 
f 

where f E C n S, the Gysin homomorphism 

j,: lffi*(X)-+ lffi*(Y) defined by j,(a) := f*(a • ()(!)) 

is covariantly functorial. The notation should carry the information of 
S and the canonical orientation(), but it will be usually omitted if it is 
not necessary to be mentioned. 

Definition 4.2. (i) Let S be another class of maps in V , called 
"specialized maps" (e.g., smooth maps in algebraic geometry), which is 
closed under composition and under base change in independent squares 
and containing all identity maps. Let lffi be a bivariant theory. If S has 
canonical orientations in lffi, then we say that S is canonicallffi-orientable 
and an element of S is called a canonical lffi-orientable morphism. If 
we fix the orientation, then we say that S is canonical lffi-oriented. (Of 
course S is also a class of confined maps, but since we consider the above 
extra condition of lffi-orientability on S, we give a different name to S.) 

(ii) Assume that S is canonical lffi-oriented. Furthermore, if the 
orientation () on S satisfies that for an independent square with f E S 

f'l lf 

the following condition holds 

Y'---+ y. 
g 

()(!') = g*()(j), 

(which means that the orientation () preserves the pullback operation), 
then we call () a nice canonical orientation and say that S is nicely 
canonicallffi-oriented and an element of S is called a nicely canonical 
lffi-oriented morphism. 
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Example 4.3. The following are typical examples of nice canonical 
orientations: 

(1) Smooth morphisms in algebraic geometry for bivariant alge­
braic K-theory and operational Chow groups [FM, p.28-29]. 

(2) Smooth oriented submersions in the category of smooth mani­
folds for the bivariant versions of generalized cohomology the­
ories, which have "canonical Thorn-classes" for oriented vec­
tor bundles [FM, p. 46, p.49]. Examples of the generalized 
cohomology theories are usual cohomology H*, real K-theory 
KO[~] with 2 inverted, or oriented cobordism MSO*. 

In the following proposition we assume that for all morphism f : 
X ---+ X' and g : Y ---+ Y' in V any of the four small squares in the big 
diagrams below are independent (hence any square is independent): 

XxY 
fxldy 

X'xY 
pxldy y --------+ --------+ 

Idxxg1 1ldxtXg 19 
X xY' 

fxldyt 
X'xY' 

pX!dyt 
Y' 

Idxxq1 1ldxtXq 1q 

X ---+ X' ---+ pt. 
f p 

Proposition 4.4. Let Jill be a bivariant theory and let S be a class 
of specialized maps which is nicely canonical Jill-oriented. 

(1-i} For an independent square 

X I ___i____. X 

!' 1 
Y'---+ y 

·g 

with g E C and f E S, the following diagram commutes: 

Jill* (Y') 
!'' 

Jill* (X') ---+ 

9·1 19: 
llll*(Y) ---+ Iffi*(X), 

f' 

{1-ii} The covariant functor Iffi* for confined morphisms and the con­
travariant functor Iffi* for morphisms in S are both compatible with the 
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exterior product 

X : lBl(X ---+ pt) ®lBl(Y ~ pt) ---+ lBl(X X y ---+ pt) 

defined by 
a x (3 := 1rya • (3. 

(2-i} For an independent square 

X' 
g' 

---7 X 

!'l lf 
Y' ---7 y 

g 

with g E C n S, the following diagram commutes: 

JBl* (Y') !'* 
---7 lBl* (X') 

9!1 lg', 
JBl* (Y) ---7 lBl*(X), 

!' 

(2-ii} The contravariant functor lBl* for any morphisms and the co­
variant functor lBl* for morphisms in C n S are both compatible with the 
exterior product 

X : lBl(X ~ X) ®lBl(Y ~ Y) ---+ lBl(X X y ~ X X X) 

defined by 
a x (3 := Pl *a • P2 * f3 

where Pl : X x Y ---+ X and P2 : X x Y ---+ Y be the projections. 

Remark 4.5. The covariant and contravariant functors lBl* and lBl* 
are almost what Levine and Morel call Borel-Moore functor with prod­
ucts in [LM3, Mer]; namely they do not necessarily have the additivity 
property, which is, for example, the following one in the case of homology 
theory of topological spaces: for the disjoint union X U Y of spaces 

If we want a bivariant theory to have such an additivity property, we 
need a bit more requirements on the category, but here we do not go 
into details (see [Yol] for more details), since the additivity is not an 
essential ingredient. 
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§5. A universal bivariant theory 

We have constructed a universal or "motivic" bivariant one among 
certain bivariant theories [Yol). 

Theorem 5.1. LetV be a category with independent squares, a class 
C of confined maps and a class S of specialized maps as before. Assume 
that any Cartesian diagram 

X'~X 

f'l lf 
Y' ----+ y 

g 

with f confined is independent. We define 

M~(X L Y) 

to be the free abelian group generated by the set of isomorphism classes 
of confined morphisms h : W -t X such that the composite of h and f 
is a specialized map: 

h E C and f o h : W -t Y E S. 

( 1) The association M~ is a bivariant theory with the nice canonical 
orientation O(f) := [idx) for f E S, if the three operations are defined 
as follows: 

Product operations: For morphisms f: X -t Y and g: Y -t Z, the 
product operation 

• : M~(X L Y) ®M~(Y ~ Z) -t M~(X ~ Z) 

is defined by 

(~mv[V~x]) • (~nw[W ~ Y]) 

:= "L:mvnw[V' 
v,w 

where we consider the following fiber squares 

kw"l kw'l 

hvokw" 

V ----+ X ----+ Y ----+ Z. 
hv f 9 

X), 
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Pushforward operations: For morphisms f : X ----> Y and g : Y ----> Z 
with f confined, the pushforward operation 

is defined by 

Pullback operations: For an independent square 

the pullback operation 

t'l lt 
Y' _______, Y, 

g 

g*: M~(X L Y)----> M~(X' L Y') 

is defined by 

"" [ 1 hv' X'] := ~ nv V -----> , 

v 

where we consider the following fiber squares: 

II 
g V' _______, v 

hv'l lhv 
I 

g X' _______, X 

!' 1 lt 
Y' _______, Y. 

g 

(2} Let JE be a bivariant theory on V such that S is nicely canonical 
JE-oriented. Then there exists a unique Grothendieck transformation 
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such that for a specialized morphism f : X ---+ Y E S the homomorphism 

")'B : M~(X .£. Y) ---+ lffi(X .£. Y) satisfies the normalization condition 
that 

")'B([X ~X]) = ~(!). 

Corollary 5.2. (1} The abelian group M~*(X) := M~(X---+ pt) is 
the free abelian group generated by the set of isomorphism classes 

[V~X] 

such that hv : V---+ X E C and V---+ pt is a specialized map inS. 

(2} The abelian group M~ *(X) := M~(X idx X) is the free abelian 
group generated by the set of isomorphism classes 

[V~X] 

such that hv: V---+ X E C n S. 
(3} Both functor M~* and M~ * are Borel-Moore functors with prod­

ucts, except for the additivity property. 

Remark 5.3. The assumptions of Theorem 5.1 are satisfied in the 
context of Example 4.3 with S the class of smooth morphisms or oriented 
submersions. So in Example 4.3 M~*(X) (resp. Mr(x)) is the free 
abelian group generated by isomorphism classes of proper maps V ---+ X 
with V smooth or an oriented manifold (resp. of proper maps h: V---+ X 
with h smooth or an oriented submersion). 

Remark 5.4. A more subtle ring similar to the abelian group 

M~(X .£. Y) in algebraic geometry is the so-called relative Grothendieck 
ring or "motivic ring", which was introduced by E. Looijenga [Lo] and 
furthermore studied by F. Bittner [Bit]. This plays an important role in 
the motivic measure and integration (e.g. see [DLl, DL2, DL3, Ve]) and 
also for the motivic characteristic classes for singular varieties [BSYl, 
BSY2, SY] (also see (CMS, CLMS, CMSS, Schl, Sch2, Yo4, Yo5]). 

For more details and an abstract oriented bivariant theory see [Yol] 
and in [Yo2] we will deal with a more geometrical oriented bivariant the­
ory, i.e., a bivariant-theoretic version of Levine-Morel's algebraic cobor­
dism. 
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§6. Bivariant bordism theory for smooth manifolds 

Now in this section we want to apply our universal bivariant theory 
to cobordism theory. More precisely we want to get a bivariant bordism 
group in such a way that its associated covariant functor is supposed to 
be the bordism group MSO*(X). For that purpose we first introduce 
or recall the following definition of a parameterized family of smooth 
manifolds: 

Definition 6.1. (i) In the topological context V is the cate-
gory of locally compact Hausdorff spaces, which can be embed­
ded as a closed subset into some JRn [FM, p. 32]. Confined 
maps and independent squares are defined to be proper maps 
and fiber products, respectively. A family h : M ---+ X of com­
pact manifolds (with boundary) is a proper continous map h, 
which locally on M is isomorphic to the projection onto the 
first factor 

u c:::: h(U) X v f---+ h(U) ' 

with Van open subset of {(x1, ... ,xn) E JRnlx1 ~ 0} (see [FM, 
p.65]). 

(ii) In the smooth context V is the category of finite dimensional 
smooth manifolds and smooth maps between them. Confined 
maps and independent squares are defined to be proper maps 
and transversal fiber products (as before). A family h: M---+ 
X of smooth compact manifolds (with boundary) is a proper 
smooth map h, which locally on M is isomorphic to the pro­
jection onto the first factor 

u c:::: h(U) X v f---+ h(U) ' 

with Van open subset of {(x1, ... ,xn) E JRnlx1 ~ 0}. In other 
words h is a submersion. 

(iii) Moreover we assume that a consistent orientation of the fiber 
manifolds has been chosen, e.g. one has a coordinate cover­
ing U c:::: h(U) x V f---+ h(U) of M such that the correspond­
ing change of coordinates is given by orientation preserving 
homeomorphisms (or diffeomorphisms) between open subsets 
of { (x1, ... , Xn) E lRnl X1 ~ 0}. 

(iv) Note that the fiberwise boundary of M, denoted by &h(M) (cor­
responding to the points with x1 = 0 in the above coordinates), 
with the induced map &h(M) ---+X is again a "family of com­
pact (smooth) oriented manifolds (without boundary)". 
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For a "family h : M ----+X of compact (smooth) oriented manifolds 
(with boundary)" its reverse oriented family is denoted by -h: -M----+ 
X. 

Remark 6.2. The above "family h: M----+ X of compact (smooth) 
oriented manifolds (with boundary)" is stable under base change (in 
independent squares) and composition (if at most one fiber of the two 
families may have a boundary). The usual notion of a fiber bundle over 
X, with fiber a compact (smooth) oriented manifold F (with boundary) 
and structure group the homeomorphisms (or diffeomorphisms) of the 
fiber F, is certainly stable under base change, but it is not clear whether 
or not it is also stable under composition. Originally we tried to for­
mulate our bivariant bordism theory for smooth manifolds using fiber 
bundles and we came across to this stability problem. So to overcome 
or to avoid this unstability problem of fiber bundles we use such families 
above. 

Definition 6.3. Let h : M ----+ X, h' : M' ----+ X' be two families 
of compact (smooth) oriented manifolds without boundary. If there 
exists a family H : W ----+ X of compact (smooth) oriented manifolds 
with boundary such that the induced family HaH(W) : aH(W) ----+ X is 
isomorphic to 

h+(-h): MU(-M')----+X, 

then the two families h : M ----+ X, h' : M' ----+ X are called fiberwise 
bordant. The fiberwise bordism class of such a family h : M ----+ X is 

denoted by [M.!!..., X]fib. 

Lemma 6.4. The fiberwise bordism is an equivalence relation for 
families over the same base space. 

Definition 6.5. Let a morphism f : X ----+ Y and two morphisms 
h: M----+ X, h': M'----+ X' in the category Vas above (i.e. either in the 
topological or smooth context) be .given such that the composite f o h 
and f o h' are both a family of compact (smooth) oriented manifolds 
without boundary. Then these are called fiberwise bordant with respect 
to f, or simply f -fiberwise bordant, if there exists a morphism H : W ----+ 
X such that f o h is a family of compact (smooth) oriented manifolds 
with boundary with the induced family f o HafoH(W) : 8JoH(W) ----+ X 
isomorphic to 

f o h + (- (f o h')) : M u (-M') ----+ X . 

Lemma 6.6. The fiberwise bordism with respect to a morphism f 
is an equivalence relation. 



A universal bivariant theory and cobordism groups 387 

This equivalence relation is called f -fiberwise bordism and the f­
fiberwise bordism class of h : M --+ X with respect to a morphism f 
is denoted by [M !!._, xwb. For the identity map idx : X --+ X, the 

idx-fiberwise bordism class [M !!._, X]{d! is the fiberwise bordism class 

[M !!._, X]fib. For a constant map 1rx : X --+ pt, the 1rx-fiberwise 

bordism class [M !!._, XJt-:: is simply denoted by [M !!._,X]. 

Definition 6.7. (Relative Fiberwise Bordism Group) For a mor­
phism f : X --+ Y in V, 

Fn-n(x L Y) 

denotes the set of f-fiberwise bordism classes [M !!._, xwb such that f o 
h: M--+ Y is a family of compact oriented (smooth) manifolds without 
boundary, whose fibers are pure n-dimensional. Of course we assume 
that the fibers of a corresponding cobordism are pure n + 1-dimensional 

compact oriented (smooth) manifolds with boundary. Fn-n(x L Y) 
is an abelian group with the addition coming from disjoint union: 

[M1 !::!._, X]~ib + [Mz ~ X]~ib := [M1 U M 2 ~ X]~ib . 

The unit is [0--+ X]~ib and [-M ~ X]~ib = -[M !!._, X]~ib_ 

For a map 1rx : X --+ pt to a point, the relative fiberwise bordism 
group is the classical bordism group of oriented topological (or smooth) 
n-dimensional manifolds proper over X: 

Fn-n(X ~ pt) = MSO~op)(X). 

For the identity map idx : X --+ X, we set 

It is obvious by definition that MSO*(X) is a covariant functor and that 
FMSO*(X) is a contravariant functor. FMSO*(X) shall be called the 
fiberwise cobordism group of X. The notation F M SO* is adopted to 
avoid some possible confusion with the usual cobordism group MSO*(X). 

Theorem 6.8. We consider either the topological or smooth context 
with the underlying category V as before. Then the relative fiberwise 
bordism groups 
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define a (graded) bivariant theory if the three operations are defined as 
follows: 

Product operations: For morphisms f : M ----t N and g : N ----t Z, 
the product operation 

• : Fn-n(M L N) Q9 Fn-m(N !!_, Z) ____, Fn-n-m(M !!.L Z) 

is defined by 

:= L:mvnw[V' 
v,w 

hvokw" 

where we consider the following fiber squares 

V' ~M' !' 
----+ w 

k~ 1 k~ 1 kw 1 
v ____., M ____., N ----+ z. 

hv f g 

M]fib 
gf' 

Pushforward operations: For morphisms f: M ----t Nand g: N ----t Z 
with f being proper, the pushforward operation 

is defined by 

f* (~nv[V ~ MJ;~b) := ~nv[V ~ N]~ib. 
Pullback operations: For an independent square 

the pullback operation 

M' _i___. M 

!'1 1! 
N' ----+ N, 

g 
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is defined by 

where we consider the following fiber squares: 

V' g" v ~ 

h~ 1 1 hv 

M' 
g' 

M ~ 

t1 1! 
N' ~ N. 

g 

Remark6.9. In other words the operations above are induced from 
the corresponding operations in Theorem 5.1 by dividing out the fiber­
wise bordism relation. The main point is then to show that these oper­
ations are welldefined, i.e. are independent of the choices for the repre­
senting morphisms. For example for the bivariant product 

[V ~ M]~ib • [W ~ NJ£ib = [V' hvok~ M]~ib 

one shows first that for fixed kw : W --+ N the righthand side only 
depends on the f-fiberwise bordism class of hv : V--+ M. For this one 
looks at the correponding fiber squares with a corresponding bordism 
substituted for hv. Then one shows in the same way that the righthand 
side only depends on the g-fiberwise bordism class of kw : W--+ N. Of 
course here we need the stability properties mentioned at the beginning 
of this section for our notion of a family of compact oriented (smooth) 
manifolds (with boundary). 

Proposition 6.10. Let :F M be the class of families of compact ori­
ented {smooth} manifolds {without boundary) in the underlying category 
V. Then :F M is nicely canonical Ff!-oriented by 

0(!) := [M ~ M]jib E Ff!(M .£.X) 

for f : M --+ X a morphism in :F M. 
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Let llll be a bivariant theory on V (i.e. in the topological or smooth 
context) such that :F M is canonical llll-oriented. Then llll together with 
this orientation () is called a fiberwise bordism invariant oriented bivari­
ant theory, if 

h*(e(f o h))= h:(e(f o h')) 

for any morphism f : X ----+ Y and any two proper morphisms h : M ----+ 

X, h' : M' ----+ X' in the category V such that the composite f o h and 
f o h' in :F M are f-fiberwise bordant. In other words, the f-fiberwise 
bordism class 

[M ~ x]~ib E Fn(x L Y) 

uniquely determines the element 

h*(e(f o h)) E llll(X L Y). 

Now we can state a universality theorem for the bivariant relative 
fiberwise bordism theory Fn. 

Theorem 6.11. Let llll be a bivariant theory on V such that :FM 
is nicely canonicalllll-oriented. Assume that llll together with this orien­
tation () is fiberwise bordism invariant oriented. Then there is a unique 
Grothendieck transformation 

1'Iffi:Ff2----tllll 

such that for any f : M ----+ · N in :F M the homomorphism 1'Iffi satisfies 
the normalization 

Remark 6.12. Examples of fiberwise bordism invariant oriented 
bivariant theories and ·more work on the fiberwise cobordism group 
FMSO*(X), in particular related to Kreck-Stolz's work [KS], will be 
worked out somewhere else. On the corresponding covariant theories one 
has some natural transformations commuting with exterior products, 
coming from the fundamental class of an oriented (smooth) manifold: 

(i) Fn(X ----+ pt) = Msotop(X) ----+ H*(X; Z) in the topological 
context. 

(ii) Fn(X ----+ pt) = MSO(X) -t Msotop(X) ----+ H*(X; Z) in the 
smooth context. 

(iii) Fn(X ----+ pt) = MSO(X) ----+ KO(X)[~] in the smooth con­
text. 
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And these can be extended at least to a suitable Grothendieck transfor­
mation on a bivariant subtheory of Frl by the results of [BSY4]. 
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