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Non-homeomorphic conjugate complex varieties 

Ichiro Shimada 

Abstract. 

We present a method to produce examples of non-homeomorphic 
conjugate complex varieties based on the genus theory of lattices. As 
an application, we give examples of arithmetic Zariski pairs. 

§1. Introduction 

We denote by Emb(C) the set of embeddings (]" : C '-+ C of the 
complex number field C into itself. A complex variety is a reduced 
irreducible quasi-projective scheme over C with the classical topology. 
For a complex variety X and(]" E Emb(C), we define a complex variety 
X" by the following diagram of the fiber product: 

---* X 

! D ! 
SpecC 

u* 
---* SpecC. 

Two complex varieties X and X' are said to be conjugate if there exists 
(]" E Emb(C) such that X" is isomorphic to X' over C. It is easy to see 
that the relation of being conjugate is an equivalence relation. 

The purpose of this note is to give a simple method to produce 
many explicit examples of non-homeomorphic conjugate complex vari­
eties. This method is based on a topological idea in [27], and the arith­
metic theory of transcendental lattices of singular K3 surfaces in [28], 
which has been generalized by Schutt [24]. 
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We give a brief outline of the history of examples of non-homeo­
morphic conjugate complex varieties. In 1964, Serre [25] gave the first 
example. He constructed a pair of conjugate complex smooth projec­
tive varieties that have non-isomorphic fundamental groups. In 1974, 
Abelson [1] presented a pair of conjugate complex smooth projective 
varieties that have isomorphic (finite) fundamental groups but are not 
homeomorphic. On the other hand, Grothendieck's "Esquisse d'un Pro­
gramme" [19] appeared in 1984, in which the faithful action of the abso­
lute Galois group of <Q on the set of topological types of finite coverings 
of 1P'1 branching only at 0, 1 and oo is discussed. In [5] and [6]; Artal, 
Carmona and Cogolludo constructed an example of arithmetic Zariski 
pairs of plane curves in degree 12 by means of braid monodromies. Re­
cently, after the first version of the manuscript of this paper appeared on 
the e-print archive (arXiv:math/0701115) in January 2007, many ex­
amples of non-homeomorphic or non-deformation-equivalent conjugate 
complex varieties have been constructed by various methods ([10], [11], 
[14], [16]). 

I would like to thank the referee for comments and suggestions. 

§2. A topological invariant 

For a Z-module A, we denote by Ator the torsion part of A, and 
by Atf the torsion-free quotient A/Ator· Note that a symmetric bilinear 
form Ax A ~ Z naturally induces a symmetric bilinear form Atf x Atf ~ 
Z. A lattice is a free Z-module L of finite rank with a non-degenerate 
symmetric bilinear form L x L ~ z. For a topological space Z, let 
Hk(Z) denote the homology group Hk(Z, Z). 

Let U be an oriented topological manifold of dimension 4n. We 
denote by 

tu : H2n(U) X H2n(U) ~ Z 

the intersection pairing. We put 

where K runs through the set of compact subsets of U, and the homo­
morphism H2n(U \ K) ~ H2n(U) is induced by the inclusion. We then 
put 

- tf and Bu := (Bu) . 

Since any topological cycle is compact, the intersection pairing tu in­
duces symmetric bilinear forms 

f3u : Bu x Bu ~ Z and f3u : Bu x Bu ~ Z. 
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It is obvious that, if U and U' are homeomorphic, then there exists an 
isomorphism (Bu,f3u) ~ (Bu,,f3u,). 

Let X be a smooth complex projective variety of dimension 2n. 
Then H 2n(X)tf is a lattice by the intersection pairing tx. Let Y1 , ... , Ym 
be irreducible subvarieties of X with codimension n. We put 

Y := Y1 U · · · U Ym, U :=X\ Y, 

and investigate the topological invariant ( Bu, f3u) of the smooth complex 
variety U. 

Remark 2.1. In this case, the submodule Joo(U) C H2n(U) and 
hence the topological invariant ( Bu, f3u) can be calculated effectively by 
choosing a tubular neighborhood T C X of Y. Indeed, Joo(U) is equal 
to the image of the homomorphism iu : H2n(T n U)---+ H2n(U) induced 
by the inclusion. 

We denote by ~(X,Y) the submodule of H 2n(X) generated by the 

homology classes [Yi] E H2n(X), and put L;(X,Y) := (~(X,Y))tf. We then 
put 

A(x,Y) := { x E H2n(X) I tx(x, y) = 0 for any y E ~(X,Y) }, 

and A(x,Y) := (A(x,Y))tf. Finally, we denote by 

a(X,Y) : I;(X,Y) X I;(X,Y) ___, ::Z, 

.>:.(x,Y) : A(x,Y) x A(x,Y) ---+ Z, 

O"(X,Y) : I;(X,Y) X I;(X,Y) ___, ::Z, 

A(X,Y) : A(x,Y) x A(x,Y) ___, ::Z, 

the symmetric bilinear forms induced by tx. 

The proof of the following theorem is almost the same as the argu­
ment in the proof of [27, Theorem 2.4]. We present a proof for the sake 
of completeness. 

Theorem 2.2. Let X, Y and U be as above. Suppose that O"(X,Y) 

is non-degenerate. Then (Bu, f3u) is isomorphic to (A(x,Y), A(x,Y)). 

Proof. We choose a tubular neighborhood T C X of Y as in Re­
mark 2.1, and put yx := T \ Y = T n U. We then denote by 

ir H2n(TX)---+ H2n(T), iu 

Jr H2n(T)---+ H2n(X), Ju 
H2n(Tx)---+ H2n(U), 

H2n(U) ---+ H2n(X), 

the homomorphisms induced by the inclusions. We first show that 

(2.1) Im(ju) = A(X,Y)· 
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It is obvious that Im(ju) ~ A(x,Y). Let [W] E A(x,Y) be represented by 
a real 2n-dimensional topological cycle W. We can assume that W n Y 
consists of a finite number of points in Y \ Sing(Y), and that, locally 
around each intersection point P, the topological cycle W is a differ­
entiable manifold intersecting Y transversely at P. Let Pi,l, ... , Pi,k(i) 

(resp. Qi,l, ... , Qi,l(i)) be the intersection points of Wand Yi with lo­
cal intersection number 1 (resp. -1). Since ~x([W], [Yi]) = 0, we have 
k(i) = l(i). For each j = 1, ... , k(i), we choose a path 

~i,j : I ---+ Yi \ Sing(Y) 

from Pi,j to Qi,j, where I := [0, 1] C ffi. is the closed interval. Let B 
denote a real 2n-dimensional closed ball with the center 0. We can 
thicken the path ~i,j to a continuous map 

~i,j : B X I -t X 

in such a way that tf (Y) is equal to { 0} x I, that the restriction 

of ~i,j to { 0} x I is equal to ~i,j, and that the restriction of ~i,j to 
B x { 0} ( resp. to B x { 1}) induces a homeomorphism from B to a closed 
neighborhood b..tj of Pi,j (resp. b..i,j of Qi,j) in W. We then put 

W' := (W \ U.. (b..+. Ub..~-)) U u .. ~i 1·(8B xI). 
~,J 'l,J 'l,J 't,J ' 

We can give an orientation to each ~i,j (B x I) in such a way that W' 
becomes a topological cycle. Then we have [W] = [W'] in H2n(X) 
and W' n Y = 0. Therefore [W] = [W'] is contained in Im(ju ), and 
hence (2.1) is proved. 

Next we show that 

(2.2) Ker(ju) ~ Joo(U). 

Consider the Mayer-Vietoris sequence 

where i(x) = (ir(x), iu(x)) and j(y, z) = Jr(Y) - Ju(z). If Ju(z) = 0, 
then (0, z) E Ker(j) = Im(i), and hence z E Im(iu ). On the other hand, 
we have Im(iu) = J00 (U), because Tis a tubular neighborhood of Y. 
Hence (2.2) is proved. 

Since (H2n(X)tf, ~x) is a lattice and (1:(X,Y), O"(X,Y)) is a sublattice 
by the assumption, the orthogonal complement (A(x,Y), A(x,Y)) is also 
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a lattice. By (2.1) and (2.2), we have a commutative diagram 
(2.3) 

0 Ker(ju) ll2n(U) 
ju 

Acx,YJ 0 (exact) -----; -----; -----; -----; 

I II 1 v 

0 -----; J=(U) -----; H2n(U) -----; Bu -----; 0 (exact), 

where the surjectivity of the third vertical arrow v follows from the 
injectivity of the first vertical arrow (2.2). By the definition of the 
intersection pairing, we have Lu ( z, z') = L x (ju ( z), Ju (z')) for any z, z' E 
H2n(U). Therefore the homomorphism v in (2.3) satisfies 

.\cx,YJ((, (') = fiu(v((), v((')) 

for any(,(' E Acx,Y)· If v(() E (Bu)ton then ( E (Acx,Y))tor holds, 

because -\x,Y) is non-degenerate. Hence v-1((Bu)tor) = (Acx,YJ)tor 
holds. Therefore v induces an isomorphism (Acx,Y)> A(X,Y)) ~ (Bu,(3u ). 

Q.E.D. 

§3. Transcendental lattices 

A submodule L' of a free Z-module L is said to be primitive if 
(Lj L')tor = 0. 

Let X be a smooth complex projective variety of dimension 2n. 
Then we have a natural isomorphism H 2n(X,z)tf ~ H 2n(x,z)tf that 
transforms Lx to the cup-product (, )x. Let Sx c H 2n(X,z)tf be the 
submodule generated by the classes [Y] E H 2n(X, z)tf of irreducible 
subvarieties Y of X with codimension n, and let 

sx : Sx x Sx __, Z 

be the restriction of the cup-product to Sx. Note that sx is non­
degenerate by Lefschetz decomposition and Hodge-Riemann bilinear re­
lations. We consider the following condition: 

(P) Sx is primitive in H 2n(x, Z)tf. 

Remark 3.1. The condition (P) is satisfied if dim X = 2, because 
Sx = H 2 (X,z)tf n H 1 •1 (X) holds for a surface X. For the case where 
dimX > 2, see Atiyah-Hirzebruch [9] and Totaro [32]. 

Let a be an element of Emb(C), and consider the conjugate complex 
variety xa. 

Proposition 3.2. The map [Y] ~ [Ya] induces an isomorphism 
(Sx, sx) ~ (Sx.,, sx"' ). 
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Proof. Let Zx be the free 2'.-module generated by irreducible sub­
varieties Y of codimension n in X, and let 

(x : Zx x Zx ---7 Z 

be the intersection pairing. Then S x is the image of the cycle map 
Z f---+ [Z] from Zx to H 2n(X, z)tf. We put 

Bx := { Z E Zx I (x(Z, W) = 0 for any WE Zx }, 

and consider the numerical Neron-Severi lattice NSx := Zx/Bx with 
the symmetric bilinear form (x : NS x x NS x ---7 Z induced by (x. Since 
sx is non-degenerate, the kernel of the cycle map Zx ---7 H 2n(X, z)tf co­
incides with B x, and hence ( S x, s x) is isomorphic to (NS x, (x). In the 
same way, we see that (Sxa, sxa) is isomorphic to (NSxa, (xa ). On the 
other hand, since the intersection pairing (x is defined algebraically (see 
Fulton [18]), the map Y f---+ ycr induces an isomorphism (Zx,(x) ~ 
(Zxa,(xa ), and hence it induces (NSx,(x) ~ (NSxa,(xa ). Q.E.D. 

Definition 3.3. We define the transcendental lattice Tx of X by 

Tx := { x E H 2n(x,z)tf I (x,y)x = 0 for any y E Sx }. 

Theorem 3.4. Let Y1 , ... , Ym be irreducible subvarieties of X with 
codimension n whose classes [Y;] E H 2n(x, Q) span Sx ® Q. We put 
Y := U~1 Y; and U :=X\ Y. If Txa is not isomorphic to Tx, then ucr 
is not homeomorphic to U. 

Proof. Note that the classes [Y;cr] E H 2n(xcr,Q) span Sxa ® Q. 
Theorem 2.2 implies that (Bu,/3u) is isomorphic to Tx, and (Bua,/3ua) 
is isomorphic to Txa. Since (Bu,/3u) is a topological invariant of U, we 
obtain the result. Q.E.D. 

We fix some terminologies about lattices. A lattice L is called even if 
( v, v) E 2Z holds for any v E L. For a prime integer p, let Zp denote the 
ring of p-adic integers. We put Zoo := JR. We say that two lattices L and 
L' are in the same genus if L ® Zp and L' ® Zp are isomorphic (as Zp­
modules with Zp-valued symmetric bilinear forms) for all p (including 
oo). 

Proposition 3.5. Suppose that H 2n(X, z)tf and H 2n(xa, z)tf are 
even. Suppose also that (P) holds for both of X and xa. Then Txa is 
contained in the same genus as Tx. 

Proof. By the GAGA principle, the Hodge numbers hp,q(X) = 
dim Hq(X, QP) of a smooth projective variety X are invariant under the 
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conjugation. Since the signature of the cup-product on H 2n(x, JR) is 
given by these hp,q(X) (see, for example, [33, Theorem 6.33]), the cup­
products on H 2n(X, JR) and on H 2n(X17 , JR) have the same signature. 

By the condition (P) for X, we see that Sx is a primitive sublattice 
of H 2n(X, z)tf. Since H 2n(X, z)tf is unimodular, the discriminant form 
ofTx is isomorphic to the discriminant form of Sx multiplied by -1 by 
Nikulin's result [21, Corollary 1.6.2]. In the same way, we see that the 
discriminant form of Txu is isomorphic to -1 times the discriminant 
form of Sxu. Since Sx and Sxu are isomorphic by Proposition 3.2, 
the discriminant forms of Tx and Txu are isomorphic. Moreover, the 
signatures of Tx and Txu are the same by the argument in the previous 
paragraph. Hence Tx and Txu are contained in the same genus by [21, 
Corollary 1.9.4]. Q.E.D. 

§4. Arithmetic of singular abelian and K3 surfaces 

Let X be a complex abelian surface (resp. a complex algebraic K3 
surface). We say that X is singular if rank( S x) attains the possible 
maximum 4 (resp. 20). Suppose that X is singular in this sense. Then 
we have 

and Tx is an even positive-definite lattice of rank 2. Moreover, Tx has a 
canonical orientation given as follows; an ordered basis (e1 , e2 ) of Tx is 
positive ifthe imaginary part of (e1 ,w)x/(e2 ,w)x E Cis positive, where 
w is a basis of H 2,0 (X). We write Tx for the oriented transcendental 
lattice of X. 

Theorem 4.1 (Shioda-Mitani [31]). The map A f---7 TA induces a 
bijection from the set of isomorphism classes of complex singular abelian 
surfaces A to the set of isomorphism classes of even positive-definite 
oriented-lattices of rank 2. 

For complex singular abelian surfaces, we have a converse of Propo­
sition 3.5. 

Proposition 4.2. Let A be a complex singular abelian surface, and 
let T' be an even positive-definite oriented-lattice of rank 2 such that the 
underlying lattice T' is contained in the same genus as TA. Then there 
exists a E Emb(C) such that TA" ~ T'. 

In [28], we proved Proposition 4.2 under additional conditions. Then 
Schutt [24] proved Proposition 4.2 in this full generality. We present a 
proof that does not make use of the idele groups. 
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For the proof, we fix notation and prepare theorems in the theory 
of complex multiplications ([12], [20], [29]). For a, b, c E Z, we put 

[ 2a b ] Q[a,b,c] := b 2c . 

For a negative integer d, we denote by Qd the set of matrices Q[a, b, c] 
such that a, b, c E Z, a> 0, c > 0 and d = b2 - 4ac. The group GL2(Z) 
acts on Qd by Q ~-+ tgQg, where Q E Qd and g E GL2(Z). Then the 
set of orbits Qd/GL2(Z) (resp. QdjSL2(Z)) is identified with the set 
of isomorphism classes of even positive-definite lattices (resp. oriented­
lattices) of rank 2 with discriminant -d. For an SL2 (Z)-orbit A E 

Qd/ SL2 (Z) and a positive integer m, we put 

(m)A := { Q[ma, mb, me] I Q[a, b, c] E A} E Qdm2/ SL2(Z). 

We denote by Qd the subset of Qd consisting of matrices Q[a, b, c] E Qd 
with gcd(a, b, c) = 1. Then Qd is stable under the action of GL2(Z). 

Let K C <C be an imaginary quadratic field. We denote by ZK the 
ring of integers of K, and by DK the discriminant of ZK. For a positive 
integer f, let Ot ~ ZK denote the order of conductor f. By a grid, we 
mean a Z-submodule of K with rank 2. For grids L and L', we write 
[L] =[£']if L = )..L' holds for some).. E Kx. We put 

O(L) :={A E K I )..L ~ L}, f(L) := [ZK: O(L)], d(L) := DKf(L) 2 . 

By definition, we have O(L) = Of(L)· Moreover, if [L] = [£'], then 
f(L) = f(L'). We equip L with a symmetric bilinear form defined by 

n2 

(x, Y)L := [O . L] TrKjiQI(xy), 
f(L). n 

where n is a positive integer such that nL C Of(L)· It turns out that 
( , )L takes values in Z. An ordered basis [a, ,8] of Lis defined to be pos­
itive if the imaginary part of a/ ,8 E <C is positive. With ( , )L and this 
orientation, L becomes an even positive-definite oriented-lattice of dis­
criminant -d(L). We denote by 5.(£) E Qd(L)/ S~(Z) the isomorphism 
class of the oriented-lattice L, and by >..(L) E Qd(L)/GL2 (Z) the isomor­
phism class of the underlying lattice. It is obvious that, if [L] = [L'], 
then 5.(£) = 5-.(L') holds. 

Let Land M be grids. We denote by LM the grid generated by xy, 
where x E L andy E M. Then [L][M] := [LM] is well-defined. It is 
easy to prove that 

f(LM) = gcd(f(L), f(M)). 
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Let f be a positive integer. We put d := DKP, and consider the set 

Cld := { [L] I f(L) = f }, 

which is a finite abelian group by the product [L][M] = [LM] with 
the unit element [Otl and the inversion [L]- 1 = [L- 1], where L- 1 := 
{A E K I >.L <;:;; Ot }. 

Proposition 4.3 (§3 and §7 in [12]). (1) The map L f----7 J..(L) induces 
a bijection Cld ~ Q'd/ SL2 (7l) with the inverse map being induced from 
Q f----7 [LQ], where 

(4.1) (-b+Vd) * LQ := 7l + 7l 2a for Q := Q[a, b, c] E Qd. 

(2) For grids Land M with f(L) = f(M) = f, the lattices >.(L) and 
>.(M) are contained in the same genus if and only if [L][M]-1 E ( Cld)2 
holds. 

Let I<;:;; Ot be an Ot-ideal. Then f(I) divides f. We say that I is 
a proper Ot-ideal iff = f(I) holds. For a non-zero integer f-L, we say 
that I is prime to f-L if I + f-LO f = 0 f holds. 

Proposition 4.4 (Chapter 8 of [20]). (1) Any Ot-ideal prime to 
f is proper. The map J f----7 I = J n 0 f is a bijection from the set of 
'IlK -ideals J prime to f to the set of 0 f -ideals I prime to f. The inverse 
map is given by I f----7 J = I'llK. 

(2) Let f-L be a non-zero integer. For any [M] E Cld, there exists a 
proper Ot-ideal I prime to f-L such that [I] = [M]. 

For a grid L, we denote by j(L) E <C the j-invariant of the complex 
elliptic curve <C/ L. It is obvious that j(L) = j(L') holds if and only if 
[L] = [L']. We then put 

Hd := K(j(Ot)), where d := DKf2 • 

The set {j(L) I f(L) =!}is contained in Hd, and coincides with the set 
of conjugates of j( 0 1) over K. Hence Hd/ K is a finite Galois extension, 
which is called the ring class field of 0 f. 

Theorem 4.5 (Chapter 10 of [20]). (1) We define 'Pd : Cld ---> 

Gal(Hd/ K) by 

j(Ot)"'d([M]) :=j(M-1) for [M] E Cld. 

Then we have j(L)'Pd([M]) = j(M-1 L) for any [M], [L] E Cld, and 'Pd 
induces an isomorphism Cld ~ Gal(Hd/ K). 
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(2) If a prime p C ZK of K ramifies in Hd, then p divides fZK. 
For a ZK-ideal J prime to f, the Artin automorphism (J, Hd/ K) E 

Gal(Hd/ K) is equal to 'Pd([J n OtD· 

Shioda and Mitani [31] proved the following. Let T be an even 
positive-definite oriented-lattice of rank 2 given by Q[a, b, c] E Qd. We 
put 

K:=Q(Vd), m:=gcd(a,b,c), do:=d/m2, and 

Q 0 := Q[ajm, bjm, cjm] E Q;t0 • 

There exists a positive integer f such that d = DK(mf)2. We consider 
the grid La := LQ0 of K associated with Qo E Q;to by (4.1). Then we 

have f(Lo) = f and d(Lo) = do. Note that (m):\(Lo) E Qd/ SL2(Z) 

is the isomorphism class containing f. Note also that we have Omf = 
Z + Z (b + Vd)/2. For grids Land M of K, we denote by A(L, M) the 
complex abelian surface CjL x CjM. It is well-known that the elliptic 
curve C/ Lis defined over the subfield Q(j(L)) of C. Hence A(L, M) is 
defined over Q(j(L),j(M)) 

Theorem 4.6 ([31]). (1) The oriented transcendental lattice of 

A(Lo, Omf) is isomorphic toT. In other words, TA(LoPmt) is contained 

in (m):\(Lo). 
(2) Let L1 and L2 be grids of K. Then A(L1, L2) is isomorphic to 

A(Lo, Omf) if and only if [L1L2] = [La] and f(Ll)f(L2) = mP hold. 

We are now ready to prove Proposition 4.2. 

Proof of Proposition 4.2. Since TA and T' are in the same genus, 
they have the same discriminant, which we denote by -d. Let TA and 
T' be represented by 

QA = Q[a,b,c] E Qd and Q' = Q[a',b',c'] E Qd, 

respectively. Since TA and T' are in the same genus, we have 

m := gcd(a, b, c)= gcd(a', b', c'). 

As above, we put K := Q( Vd), do := djm2, and let f be the positive 
integer such that d = DK(mf)2. Let us consider the grids 

La := LQ[afm, bfm, c/ml and L~ := LQ[a'fm, b'fm, c'/mJ 

associated with (1/m)QA E Q;t0 and (1/m)Q' E Q;t0 by (4.1). We have 

f(Lo) = f(L~) = f. The oriented-lattices TA and T' are contained 
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in the isomorphism classes (m)J..(Lo) E Qd/ SL2(Z) and (m)J..(L~) E 

Qd/ SL2(Z), respectively. 
By Theorems 4.1 and 4.6, we have an isomorphism A~ A(£0 , Omt) 

over C. Note that A(L0 , Omt) is defined over Hd C C, because we have 
j(Lo) E Hda <:;;; Hd by [20, Theorem 6 in Chapter 10]. 

Since TA and T' are in the same genus, the lattices )..(£0 ), )..(£~) E 

Q'd0 / GL2 (Z) are also in the same genus. By Propositions 4.3 and 4.4, 
there exists a proper Orideal It prime to mf such that [£~] = [ItJ2[Lo] 
holds in Clda· We put J := It'ZK and Imt := J n Omt· Then J is 
a ZK-ideal prime to mf satisfying J nOt = It, and Imt is a proper 
Omrideal prime to mf. The Artin automorphism 

is equal to ipd([Imt]), and its restriction to Hda is equal to ipd0 ([It]) E 
Gal(Hda/ K). We extend T-l E Gal(Hd/ K) to a E Emb(C). Then we 
have j(Lo)u = j(ItLo) and j(Omt)u = j(Imt)· Hence A(Lo,Omt)u is 
isomorphic to A(ItLo, Imt ), which is then isomorphic to A(ImtitLo, Omt) 
by Theorem 4.6. We have 

(4.2) 

To prove this, it is enough to show that ImtOt = It· The inclusion 
ImtOt <:;;;It is obvious. Since Imt is prime to mf, we have 

Since mit <:;;;mOt<:;;; Omt, we have mit <:;;;It n Omt = Imt· Therefore 
It <:;;; ImtOt holds, and (4.2) is proved. Consequently, the oriented 
transcendental lattice of 

is contained in (m)5..(L~) by Theorem 4.6, and hence is isomorphic to 
T'. Q.E.D. 

For complex singular K3 surfaces, we have the following result: 

Theorem 4. 7 (Shioda-Inose [30]). The map Y ~--+ Ty induces a 
bijection from the set of isomorphism classes of complex singular K3 
surfaces Y to the set of isomorphism classes of even positive-definite 
oriented-lattices of rank 2. 

Let Y be a complex singular K3 surface, and let A be the complex 
singular abelian surface such that Ty ~ TA. Then Y is obtained from A 
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by Shioda-Inose-Kummer construction (see [28, §6]). By [28, Proposi­
tion 6.4], we have Tyu ~ TA" for any cr E Emb(C). Combining this fact 
with Proposition 4.2, we obtain the following: 

Proposition 4.8. Let Y be a complex singular K3 surface, and let 
T' be an even positive-definite oriented-lattice of rank 2 such that the 
underlying lattice T' is contained in the same genus as Ty. Then there 
exists cr E Emb(C) such that Tyu ~ T'. 

§5. Applications 

In this section, we consider only lattices without orientation. For a 
lattice T, let g(T) denote the number of isomorphism classes of lattices 
in the genus ofT. By Theorem 3.4 and Propositions 4.2, 4.8, we obtain 
the following: 

Corollary 5.1. Let X be a complex singular abelian surface or a 
complex singular K3 surface, and let D c X be a reduced effective divisor 
such that the classes of irreducible components of D span Sx 0 Q. Then 
the set of the homeomorphism types of (X\ D)u (cr E Emb(C)) contains 
at least g(Tx) distinct elements. 

Another application is as follows. By a plane curve, we mean a 
complex reduced (possibly reducible) projective plane curve. 

Definition 5.2. ([3], [5], [6]) A pair (C, C') of plane curves is said 
to be an arithmetic Zariski pair if the following hold: 

(i) Let F be a homogeneous polynomial defining C. Then there 
exists cr E Emb(C) such that C' is isomorphic (as a plane curve) to 
cu := {Fu = 0}. 

(ii) There exist tubular neighborhoods T c IP'2 of C and T' c IP'2 of 
C' such that (T, C) and (T', C') are diffeomorphic. 

(iii) (IP'2 , C) and (IP'2 , C') are not homeomorphic. 

Remark 5.3. In general, the diffeomorphism type of a singular 
point of a plane curve changes under the conjugation. Consider the 
singularity of the curve 

at the origin. The diffeomorphism type depends on the cross-ratio of 
( a1, a2, a3, a4), which varies under the action of cr E Emb( C). 

Remark 5.4. The first example of an arithmetic Zariski pair was 
discovered by Artal-Carmona-Cogolludo ([5], [6]) in degree 12. 
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Definition 5.5. ((23]) A plane curve C of degree 6 is called a max­
imizing sextic if C has only simple singularities and the total Milnor 
number of C attains the possible maximum 19. 

Let C be a maximizing sextic. Then, for any a E Emb(C), the con­
jugate plane curve cu is also a maximizing sextic, and (C, cu) satisfies 
the condition (ii) in Definition 5.2, because the Dynkin type of a simple 
singularity of a plane curve is defined algebraically [7, 8]. We denote by 
We·-:-+ 1P'2 the double covering branched along C, and by Ye-:-+ We the 
minimal resolution. Then Ye is a complex singular K3 surface. We de­
note by T[ C] the transcendental lattice of Ye. Let De C Ye be the total 
inverse image of C by the composite morphism Ye -:-+ We -:-+ IP'2 , and we 
put Ue := Ye \De. Since the classes of irreducible components of De 
span Sy0 ® Q, the topological invariant (Bu0 , flue) of Ue is isomorphic 
to T(C]. In particular, if (IP'2 , C) and (IP'2 , cu) are homeomorphic, then 
Ue and Ue" are also homeomorphic, and hence T(C] and T(Cu] are 
isomorphic. On the other hand, the set of isomorphism classes of the 
lattices T(Cu], where a E Emb(C), coincides with the genus of T(C]. 
Hence, if g(T[G]) > 1, then there exists a E Emb(C) such that (C, cu) 
is an arithmetic Zariski pair. Using Yang's algorithm (34], we obtain the 
following theorem by computer-aided calculation: 

Theorem 5.6. There exist arithmetic Zariski pairs ( C, C') of max­
imizing sextics with simple singularities of Dynkin type R for each R in 
Table 5.1. 

The lattices T(C] and T(C'] are also presented in Table 5.1. We 
denote by L[2a, b, 2c] the lattice of rank 2 represented by the matrix 
Q[a,b,c]. 

Remark 5.7. In the previous paper (27], we have obtained a part 
of Theorem 5.6 by heavily using results of Artal-Carmona-Cogolludo (4] 
and Degtyarev (13]. Table 5.1 has been obtained during the calculation 
for the results in (26]. 

Remark 5.8. Table 5.1 is complete in a sense that, if (C, C') is an 
arithmetic Zariski pair of maximizing sextics such that T(C] '¥- T(C'], 
then the data of (C, C') appear in Table 5.1. A detailed account of the 
algorithm for the calculation of Table 5.1 is given in (27]. 

Remark 5.9. Table 5.1 is not complete in a sense that there may 
be an arithmetic Zariski pair ( C, C') of maximizing sextics such that 
T(C] ~ T(C']. A candidate of such an arithmetic Zariski pair is the pair 
( C, cu) of conjugate maximizing sextics of Dynkin type 2E6 + A5 + A2 
defined over Q( J3), which was discovered by Oka and Pho (22, nt99], 
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No. R T[C] and T[C'] 

1 Es +Aw +A1 £[6,2,8], £[2,0,22] 
2 Es + A6 + A4 + A1 L[8,2, 18], £[2,0, 70] 
3 E6 + D5 + A6 + A2 L[12, 0, 42], £[6,0,84] 
4 E6 +Aw +A3 L[12, 0, 22], £[4,0,66] 
5 E6 + Aw + A2 + A1 L[18, 6, 24], L[6,0,66] 
6 E6 + A1 + A4 + A2 £[24, 0, 30], L[6,0, 120] 
7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], £[18,6, 72] 
8 Ds +Aw +A1 £[6,2,8], £[2,0,22] 
9 Ds + A6 + A4 + A1 £[8,2, 18], £[2,0, 70] 
10 D1 +A12 £[6,2, 18], £[2,0,52] 
11 D1 +As +A4 L[18, 0, 20], L[2,0, 180] 
12 D5 +Aw +A4 L[20, 0, 22], £[12,4,38] 
13 Dr, + A6 + A5 + A2 + A1 £[12, 0, 42], £[6,0,84] 
14 D5 +A6 +2A4 L[20, 0, 70], L[10, 0, 140] 
15 A1s + A1 L[8,2, 10], £[2,0,38] 
16 A16 +A3 £[4,0,34], £[2,0,68] 
17 A16 +A2 +A1 L[10, 4, 22], £[6,0,34] 
18 A13 +A4 +2Al £[8,2, 18], £[2,0, 70] 
19 A12 +A6 +A1 £[8,2,46], L[2,0, 182] 
20 A12 +A5 + 2Al L[12, 6, 16], £[4,2,40] 
21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6,0, 130] 
22 Aw +Ag L[10, 0, 22], L[2,0, 110] 
23 Aw +Ag £[8,3,8], L[2, 1,28] 
24 Aw +As+ A1 L[18, 0, 22], £[10,2,40] 
25 Aw +A1 +A2 £[22, 0, 24], £[6,0,88] 
26 Aw + A1 + 2Al £[10,2,18], £[2,0,88] 
27 Aw + A6 + A2 + A1 £[22, 0, 42], £[16,2,58] 
28 Aw + A5 + A3 + A1 L[12, 0, 22], £[4,0,66] 
29 Aw +2A4 +A1 L[30, 10, 40], L(10, 0, 110] 
30 Aw + A4 + 2A2 + A1 L[30, 0, 66], £[6,0,330] 
31 As + A6 + A4 + A1 L[22, 4, 58], £[18,0, 70] 
32 A1 + A6 + A4 + A2 L[24, 0, 70], £[6,0,280] 
33 A1 + A6 + A4 + 2Al L[18, 4, 32], £[2,0,280] 
34 A1 + A5 + A4 + A2 + A1 L[24, 0, 30], L[6,0, 120] 

Table 5.1. Examples of arithmetic Zariski pairs of maximizing 
sextics 

where a is the non-trivial element of Gal(Q( v'3)/Q). The fundamental 
groups n1 (!1l>2 \C) and n1(lP'2 \ ca) are calculated by Eyral and Oka 
in {17]. They conjectured that these two groups are not isomorphic 
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(even though their pro-finite completions are isomorphic as a matter of 
course). In (15], Degtyarev suggested a method to distinguish 1r1 (IP'2 \C) 
and 1r1 (IP'2 \ cu), but the conjecture is still open. On the other hand, 
the transcendental lattice does not distinguish (IP'2 , C) from (IP'2 , cu). 
Indeed we have 

T[C] 9:! T[Cu] 9:! L(6, 0, 6]. 

Remark 5.10. A method to calculate the lattice T[C] from a defin­
ing equation of the maximizing sextic C c IP'2 is presented in [2]. 
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