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(4k + 2)-dimensions 

Kiyonori Gomi 

Abstract. 

Based on projective representations of smooth Deligne cohomology 
groups, we introduce an analogue of the space of conformal blocks 
to compact oriented (4k + 2)-dimensional Riemannian manifolds with 
boundary. For the standard ( 4k + 2)-dimensional disk, we compute the 
space concretely to prove that its dimension is finite. 

§1. Introduction 

As a fundamental ingredient, the space of conformal blocks (or the 
space of vacua) in the Wess-Zumino-Witten model has been investigated 
by many physicists and mathematicians. While its construction usually 
appeals to representations of affine Lie algebras [12, 13], the formulation 
by means ofrepresentations of loop groups ([2, 11, 14]) provides schemes 
for generalizations. 

The theme of the present paper is an analogue of the space of con­
formal blocks in ( 4k + 2)-dimensions. The idea of introducing such an 
analogue is to utilize smooth Deligne cohomology groups ([1, 4, 5]), or the 
groups of differential characters ([3]), instead of loop groups. In [7, 8], 
some properties of smooth Deligne cohomology groups, such as projec­
tive representations, are studied. In a recent work of Freed, Moore and 
Segal [6], similar representations are also studied in a context of chiral 
(or self-dual) 2k-forms ([15]) on (4k + 2)-dimensional spacetimes. 

Our analogue of the space of conformal blocks is a vector space 
'V(W, .X) associated to a compact oriented (4k+2)-dimensional Riemann­
ian manifold with boundary and an element .X in a finite set A(8W). 
The finite set A( 8W) is the set of equivalence classes of irreducible ad­
missible representations ([8]) of the smooth Deligne cohomology group 
9(8W) = H 2k+ 1 (8W, Z(2k + 1)1)). As will be detailed in the body of 
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this paper (Section 2), V(W,A) consists roughly of (dual) vectors in an 
irreducible representation realizing A which are invariant under actions 
of chiral 2k-forms on W. 

In the case of k = 0, we can interpret V(W, A) as the space of 
conformal blocks (or modular functor [11]) based on representations of 
abelian loop groups. For example, we take W to be the 2-dimensional 
disk W = D 2 . In this case, 9(81 ) = H 1 (S1 ,Z(1)'0) is isomorphic to 
the loop group LU(1). Irreducible admissible representations give rise to 
irreducible positive energy representations ([10]) of the loop group LU(1) 
of level 2, which are classified by A(S1 ) S:! £::2 . Then the definition of 
V(D2 , A) can be read as: 

V(D2 ,A) = {111: 1i>.----+ q invariant under Hol(D2 ,C/Z)}, 

where 1i>. is an irreducible representation corresponding to A on which 
the group Hol(D2 , C/Z) of holomorphic maps f : D 2 ----+ CjZ acts 
densely and linearly through the "Segal-Witten reciprocity law" [2, 11, 
14]. 

A property generally required for V(W, A) is its finite-dimensionality. 
In the case of k = 0, there is a result of Segal regarding the property [11]. 
The purpose of this paper is to prove that V(W, A) is finite-dimensional 
at least in the case where W is the ( 4k + 2)-dimensional disk D 4k+2 = 
{x E JR?.4k+2 llxl::; 1}. Fork> 0 we have A(S4k+l) = {0}. 

Theorem 1.1. If k > 0, then V(D4k+2 , 0) S:! C. 

The essential part of the proof is a fact about chiral 2k-forms on 
D 4k+2 , which we derive from [9]. (See Section 3 for detail.) The proof 
of Theorem 1.1 is applicable to the case of k = 0, and we have: 

(A= 0) 
(A= 1) 

This result is consistent with the known fact about the dimension of the 
space of conformal blocks in the U(1) Wess-Zumino-Witten model at 
level 2 ([11, 13]). 

The finite-dimensionality of V(W, A) for general W remains open at 
present. A possible approach toward the issue is to generalize Segal's 
idea (p.431, [11]), which should be examined in future studies. 

Acknowledgments. I would like to thank M. Furuta, T. Kohno and 
Y. Terashima for valuable discussions and helpful suggestions. 
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§2. Analogue of the space of conformal blocks 

In this section, we introduce the vector space V(W, >.). For this aim, 
we summarize some results in [7, 8]. In particular, we review central 
extensions of smooth Deligne cohomology groups, a generalization of 
the Segal-Witten reciprocity law, and admissible representations. 

2.1. Central extension 

To begin with, we recall the definition of smooth Deligne cohomol­
ogy [1, 4, 5]. For a non-negative integer p and a smooth manifold X, 
the (complexified) smooth Deligne cohomology group H*(X, Z(p)J!j c) is 
defined to be the hypercohomology of the following complex of sh~aves 
on X: 

'71( )oo '71 Ao d Al d d Ap-1 0 ILl p D, IC : ILl -----7 £!IC -----7 £!IC -----7 • • • -----7 ~ -----7 -----7 • • • ' 

where Z is the constant sheaf, and At the sheaf of germs of <C-valued q­
forms. We put Q(X)c = H 2k+1(X, Z(2k + l)J!j c) for a smooth manifold 
X, where k is a non-negative integer fixed. ' 

Proposition 2.1 ([7]). Let M be a compact oriented (4k + !)­
dimensional smooth manifold without boundary. Then there is a non­
trivial central extension Q(M)c of Q(M)c: 

The central extension Q(M)c is induced from the group 2-cocycle 
SM,C: Q(M)c x Q(M)c--> <C/Z defined by SM,c(f,g) = JM jUg, where 
f M and U are the cup product and the integration in smooth Deligne 
cohomology. 

For a smooth manifold X, the smooth Deligne cohomology group 
H 1(X, Z(l)J!j c) is naturally isomorphic to c=(x, <C/Z). Thus, if k = 0 
and M = 8 1 ,'then we can identify Q(S1 )c with the loop group L<C*. In 
this case, Q(S1 )c is isomorphic to W /Z2 , where W is the universal 
central extension of L<C*, ([10]). 

2.2. A generalization of the Segal-Witten reciprocity law 

Let W be a compact oriented (4k + 2)-dimensional Riemannian 
manifold W possibly with boundary. We denote by A 2k+l (W, <C) the 
space of <C-valued (2k + 1)-forms on W. The Hodge star operator 
* : A2k+l(W, <C) --> A2k+1 (W, <C) satisfies**= -1. Notice that, in gen­
eral, the smooth Deligne cohomology Q(Xc) = H 2k+1 (X, Z(2k + l)J!i,d 
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fits into the following exact sequence: 

where A2k+l (W, C)z c A2k+l (W, q is the subgroup consisting of closed 
integral forms. Using* and 8, we define the subgroups Q(W)f in Q(W)c 
by 

Q(W)f = {! E Q(W)cj 8(!) =t= vY * 8(!) = 0}. 

We call Q(W)l the chiral subgroup, since 2k-forms BE A 2k(W, q such 
that dB= A*dB are called chiral (or self-dual) 2k-forms. (See [6, 15] 
for example.) 

Proposition 2.2 ([7]). Let W be a compact oriented (4k + 2)­
dimensional Riemannian manifold with boundary. Then the following 
map is a homomorphism: 

r+: Q(W)l ~ Q(8W)c, f ~(flaw, 1). 

In the case of k = 0, W is a Riemann surface. Since Q(W)l is identi­
fied with the group of holomorphic functions f: W---+ Cj'll, Proposition 
2.2 recovers the "Segal-Witten reciprocity law" ([2, 11, 14]) for fi5 /7l2 • 

2.3. Admissible representations 

We can think of the group Q(X)c = H 2k+1 (X, 7l(2k + 1)1) c) as 
a complexification of the (real) smooth Deligne cohomology Q(X) = 
H 2k+1(X, 7l(2k + 1)1)) defined as the hypercohomology of the following 
complex of sheaves: 

( ) oo Ao d Al d d A2k 7l2k+1D: z~_ ~- ~···~- ~o~···, 

where Aq is the sheaf of germs of ~-valued q-forms. 

For a compact oriented ( 4k + 1 )-dimensional Riemannian manifold 
M without boundary, admissible representations of Q(M) are introduced 
in [8]. An admissible representation p : Q(M) x H ---+ H of Q(M) is a 
certain projective representation on a Hilbert space H, and gives a linear 
representation p : g ( M) x H ---+ H of the central extension g ( M) induced 
from the natural inclusion Q(M) c Q(M)c: 

1 -----+ u (1) -----+ Q(M) Q(M) -----+ 1 

1 1 1 
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The set A(M) of equivalence classes of irreducible admissible represen­
tations of 9(M) is a finite set [8]. For example, if H 2k+1 (M, Z) is torsion 
free, then we can identify A(M) with H 2k+1 (M,Z2 ). We write (ih,,, 1i>.) 
for the linear representation of g ( M) realizing A E A. 

Proposition 2.3 ([8]). Let M be a compact oriented (4k + I)­
dimensional Riemannian manifold without boundary. For A E A(M), 
there exists an invariant dense subspace E>. C 1i>., and the represen­
tation P>. : Q(M) x E>. ---+ E>. extends to a linear representation ih : 
Q(M)c x E>. ---+ E>. of Q(M)c. 

We notice that P>.(f) : E>.---+ E>. is generally unbounded, so that the 
action of Q(M)c onE>. does not extends to the whole of 1i>.. 

In the case of k = 0 and M = 81 , we can identify 9(81 ) with 
the loop group LU(l), which has 9(81 )c ~ LC* as a complexifica­
tion. Admissible representations of 9(8 1 ) give rise to positive energy 
representations of level 2. As is known [10], the equivalence classes of 
irreducible positive energy representations of LU(l) oflevel 2 are in one 
to one correspondence with the elements in A(81 ) ~ £:2 . A positive 
energy representation of LU(l) extends to a representation of DC* on 
an invariant dense subspace. 

2.4. Analogue of the space of conformal blocks 
We use Proposition 2.2 and Proposition 2.3 to formulate our ana­

logue of the space of conformal blocks: 

Definition 2.4. Let W be a compact oriented (4k+2)-dimensional 
Riemannian manifold with boundary. For A E A(8W), we define V(W, A) 
to be the vector space consisting of continuous linear maps '1/J : E>. ---+ C 
invariant under the action of 9(W)t through r+: 

V(W, A)= Hom(E>., qrmr:+ 

= {'1/J: E>.---+ C I '1/J(P>.(r+(f))v) = '1/J(v)'Vv E E>., 'If E 9(W)t}. 

Since the subgroup C* in g ( M)c = 9 ( M)c x C* acts on E >. by the 
scalar multiplication, we can formulate V(W, A) in terms of the projective 
representation (p>., E>.) corresponding to (fJ>., E>.): 

V(W, A) = Hom(E>., qrmr+ 

= { '1/J : E>. ---+ C I '1/J(P>.(r+ (f))v) = '1/J( v), 'Vv E E>., 'V f E 9(W)t}, 

where r+: 9(W)t---+ 9(8W)c is the restriction: r+(J) =flaw. 
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Remark 1. One may wonder why we use representations of Q(M)rc 
on pre-Hilbert spaces to formulate V(W, A), instead of unitary repre­
sentations of Q(M) on Hilbert spaces. The reason is that we cannot 
introduce a counterpart of the chiral subgroup Q(W)t to Q(W). Notice, 
however, that we can formulate V(W, A) as 

because£>. is dense in H>.. 

§3. Calculation of V(D4k+2 , A) 

In this section, we prove Theorem 1.1. As preparations for the proof, 
we review in some detail the construction of irreducible representations 
of Heisenberg groups in [10]. We also study chiral 2k-forms on JR4k+2 by 
the help of results in [9]. 

3.1. Representation of Heisenberg group 

For a compact oriented ( 4k + 1 )-dimensional Riemannian manifold 
M without boundary, the group Q(M)rc admits the decomposition: 

Q(M)rc ~ (A2k(M, CC)jA2k(M, CC)z) x H 2k+l(M, Z) 

~ (JH[2k(M, CC)/JH[2k(M, CC)z) x d*(A2k+l(M, CC)) x H2k+l(M, Z), 

where JH[2k(M, C) is the group of C-valued harmonic 2k-forms on M, 
JH[2k(M,CC)z = JH[2k(M,CC) n A2k(M,CC)z the subgroup of integral har­
monic 2k-forms, and d*: A2k+l(M,CC)---+ A2k(M,CC) the formal ad­
joint of the exterior differential. Thus, in particular, if M is such that 
H 2k+l(M,Z) = 0, then Q(M)rc ~ d*(A2k+1 (M,Z)). The representa­
tions (?5>., £>.) of Q(M)rc in Proposition 2.3 are built on a projective rep­
resentation (p, E) of d*(A2k+ 1(M, CC)). We review here the construction 
of (p, E) following [10], and give a simple consequence. 

As in [8], we define the Hermitian inner product ( , )v on the vector 
space d*(A2k+ 1 (M,CC)) by that induced from the Sobolev norm II· lis 
with s = 1/2. (Our convention is that ( , )v is C-linear in the first 
variable, which differs from that in [10].) On the completion Vc of 
d*(A2k+1(M,CC)), we define the linear map J: Vrc---+ Vrc by J = JjiJi, 
where J: d*(A2k+1 (M,CC))---+ d*(A2k+ 1 (M,CC)) is the differential oper­
ator J = *d. Then J is a complex structure compatible with ( , )v, and 
satisfies: 

(o:, f/J)v = JM o: 1\ dj3 
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for a,/3 E d*(A2k+1 (M,C)). By means of J, we decompose Vc into 
Vc = WEBW, where J acts on Wand W by J=I and -J=I, respectively. 

Then we let E = q E~ I ~ E W) be the vector space generated by 
the symbols E~ corresponding to ~ E W, and ( , ) : E x E -+ C the 
Hermitian inner product (c:~, Ery) = e2(~,ry)v. For v+ E W and v_ E W, 
we define p(v+ + v_): E-+ E by 

We can verify p( v)p(v')E~ = evCI(v,Jv')v p( v +v')E~ for v, v' E Vc, so that 
we have a projective representation p: Vc x E-+ E. Because the group 
2-cocycle SM,IC on d*(A2k+1(M,C)) has the expression: 

SM,c(a, /3) = JM a 1\ d/3 mod Z, 

we get the projective representation p: d*(A2k+l(M, C)) x E-+ E. 

In general, p(a) : E -+ E is unbounded. However, if a belongs 
to the real vector space d*(A2k+ 1 (M)) underlying d*(A2k(M,C)), then 
p(a) : E-+ E is isometric. Thus, p(a) extends to a unitary map on the 
completion H = E of E, and we have an irreducible projective unitary 
representation p : d*(A2k+1 (M)) x H -+ H. As is shown in [10], we 
can identify E with a completion of the symmetric algebra S(W) by the 
mapping E~ r-t e~ = .2::~0 ~j / j!. 

Lemma 3.1. Let (p, E) be as above. 
(a) The vector space Hom(E, C) w is generated by the continuous 

linear map x: E-+ C defined by x(v) = (v,c:o): 

Hom(E,qw = C(x). 

(b) We have Hom(E,qw = Hom(E,qu for a dense subspace U 
in W. 

Proof. To prove (a), we begin with proving the W-invariance of X· 
Notice that x(c:~) = 1 for all~ E W. For f E Wand v = .2:1 CjE~j E E, 
we have: 

j j 

j j j 
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Hence xis invariant under the action of W, and C(x) c Hom(E,qw. 
To see C(x) :::> Hom(E, C) w, we show that any 'lj; E Hom(E, C) w is of 
the form 't/J =ex for some c E c. For v = Lj CjEt;j E E, the invariance 
of 'lj; leads to: 

j j 

= 'lj;(Eo) L Cj = 'lj;(Eo)x(v). 
j 

j 

If we put c = 't/J(Eo), then 'lj; = ex. For (b), it suffices to prove the in­
clusion Hom(E,qu c Hom(E,qw. So we will show 'lj; E Hom(E,qu 
is also invariant under W. For f E W, there is a sequence Un} in U 
converging to f. Notice that p(·)v : W --+ E is continuous for v E E. 
Now, we have: 

'lj;(p(f)v) = 't/J(p( lim fn)v) = lim 'lj;(p(fn)v) = lim 't/J(v) = 't/J(v), 
n~oo n~oo n--+oo 

so that 'lj; E Hom(E, C) w. Q.E.D. 

Remark 2. The key to Lemma 3.1 (b) is that the map p(·)v: W--+ E 
is continuous for each v E W. The representations P>..: Q(M)c x£>.--+ £>. 
in Proposition 2.3 have the same property [8]. 

3.2. Chiral 2k-forms on JR4k+2 

The Laplacian .6. = dd* + d*d preserves d*(A2k+1(S4k+l, C)). For 
an eigenvalue e of .6., we define V£ to be the following eigenspace: 

The complex structure J, introduced in the previous subsection, pre­
serves 1;£. (In particular, J = *d/Vf on 1;£.) So we have the decompo­
sition V£ = Wt EB Wt, where J acts on Wt and Wt by yCl and -yCI, 
respectively. 

Proposition 3.2. There is the following relation of inclusion: 

ffiwt c Im{t*: A2k(JR4k+2,q+--+ A2k(s4k+l,c)} c w, 
I! 

where E9 means the algebraic direct sum, f! runs through all the distinct 
eigenvalues, t : S 4k+1 --+ JR4k+2 is the inclusion, and A2k(JR4k+2, c)± 
are the following vector spaces: 
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For the proof, we use some results shown by Ikeda and Taniguchi 
in [9]. To explain the relevant results, we introduce some notations. 
Let Si(ll~4k+ 1 ) and AP(~4k+ 1 ) be the spaces of the symmetric tensors 
of degree i and anti-symmetric tensors of degree p. We put P[ = 
Si(~4k+ 1 )®AP(~4k+1 )®<C, and regard P[ as a subspace in AP(~4k+l, <C). 
We then define the vector spaces: 

Hf = Ker~ n Kerd* n P[, 

'Hf = Kerdn Hf, 

"HP-K ·(d) P i - en r dr n Hi , 

where i (r gr) is the contraction with the vector field r ir = 2:~!i2 Xj d~j. 
Notice that the standard action of S0(4k + 2) on ~4k+2 makes 'Hf 

and "Hf into S0(4k + 2)-modules. Similarly, Vc is also an S0(4k + 2)­
module. From [9] (Theorem 6.8, p. 537), we can derive: 

Proposition 3.3 ([9]). Let £1 < £2 < £3 < · · · be the sequence of 
distinct eigenvalues of~ on d*(A2k+ 1 (S4k+ 1 , <C)). Fori E N, we have: 

(a) The pull-back by the inclusion 

L*: A2k(~4k+2,q----+ A2k(S4k+l,q 

and the exterior differential 

induce the following isomorphisms of S0(4k + 2)-modules: 

TT ~ II'H2k d !'H2k+1 
vci , ----* i-1 · 

(b) The S0(4k + 2)-module Vci decomposes into two distinct irre­
ducible modules having the same dimensions. 

Remark 3. More precisely, the sequence { Ci}iEN is given by ci = 

(2k + i) 2 , and the dimension of the two irreducible modules in Vci is 
(4k+i) (2k+i-1) 

2k 2k . 

We also note the next lemma for later use: 

Lemma 3.4. Let (, )£2 be the L 2 -norm on A2k+ 1 (D4k+2 ,<C). 
(a) For B,B' E A2k(~4k+2 ,<C), we have: 

(L* B, JL* B')v =-(dB, *dB')p. 
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(b) If BE A 2k+l(JR.4k+2, q obeys (J- Ff)~* B = 0, then: 

IIH+IJi2 -IIH-IIi2 2:0, 

where H± = (1 ± Ff*)dB/2. Similarly, if (J + Ff)~* B = 0, then: 

IIH-IIi2 -IIH+IIi2 2: 0. 

Proof. We can readily show (a) combining properties of (, )v and 
J with Stokes' theorem. Notice that the eigenspaces Ker(l ± yCI*) in 
A2k+1 (D4k+2, q are orthogonal to each other with respect to the £ 2-
norm. Then the inequalities in (b) follow from (~* B, ~* B)v 2: 0 and 
(a). Q.E.D. 

Proposition 3.3 and the above lemma yield: 

Lemma 3.5. The map ~* induces the following isomorphisms for 
i EN: 

"H~k n A2k(JR.4k+2 c)+ ~ w: 
t , - ei, 

Proof. Notice that the action of S0(4k + 2) on Vt, is compatible 
with J. So Wt, and Wt, are S0(4k+2)-modules. The dimensions ofWt, 
and Wt, are the same, since they are complex-conjugate to each other. 
Similarly, since the SO( 4k + 2)-action on 'H'f!'.t1 is compatible with the 

Hodge star operator *, the vector spaces ('H'f!'.t 1 )± = 'H'f!'.t1 n Ker(l =f 
yCI*) are also S0(4k+2)-modules with the same dimensions. Thus, by 
Proposition 3.3, Wt, is isomorphic to one of ('H'f!'.t1 )±through do(~*)- 1 , 
and Wt, is isomorphic to the other. To settle the case, we appeal to 
Lemma 3.4 (b). Then the case of Wt, ~ ('H'f!'.t 1) + and W £; ~ ('H'f!'.t 1 )­

is consistent. Now the isomorphisms d : "Hfk n A2k(JR.4k+2, q± --+ 
('H'f!'.t1 )± complete the proof. Q.E.D. 

The proof of Proposition 3.2. By Lemma 3.5 we have: 

Wt, c Im{~*: A2k(JR.4k+2,q+--+ A2k(S4k+l,C)}, 

which leads to the first inclusion in Proposition 3.2. For the second in­
clusion, we recall that the subspaces W and W in Vc are orthogonal with 
respect to (, )v. So, it suffices to verify the image ~*(A2k(JR.4k+2,q+) 
is orthogonal toW. By Lemma 3.5; we also have: 

Wt, c Im{~*: A2k(IR.4k+2,q---+ A2k(S4k+l,c)}. 

Thus, by the help of Lemma 3.4 (a), we see that ~*(A2k(JR.4k+2 ,q+) is 
orthogonal to each W £,. Because Ef)i Wt, forms a dense subspace in W, 
the image ~*(A2k(JR.4k+2 ,C)+) is orthogonal toW. Q.E.D. 
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3.3. Proof of the main result 
We now compute V(D4k+2 , .A). 
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First, we consider the case of k > 0. In this case, we have: 

The projective unitary representation (p, H) reviewed in Subsection 3.1 
realizes the unique element in A(S4k+l) = {0}, and E gives the invariant 
dense subspace in Proposition 2.3. 

Theorem 3.6. If k > 0, then V(D4k+2 , 0) ~ C. 

Proof. Note that Q(D4k+2)~ = A2k(D4k+2,q+jA2k(D4k+l,C)z. 
Proposition 3.2 leads to: U C Imr+ C W, where the dense subspace U 
in W is given by U = EBiEN Wt;. This relation of inclusion implies: 

Hom(E, qu :J Hom(E, qimr+ :J Hom(E, q w. 

Therefore Lemma 3.1 establishes the theorem. Q.E.D. 

In the case of k = 0, we have the familiar decomposition: 

Q(S1)c = LC* ~ CjZ X{¢: 8 1 -JRI J ¢(0)d() = 0} X z. 

As is mentioned, admissible representations of 9(81 ) are equivalent to 
positive energy representations of LU(1) of level 2. For >. E A(S1) = 
Z2 = {0, 1}, the invariant dense subspace£>. in Proposition 2.3 is given 
by £>. = EBeEz E>.+2e, where E>.+2e = E is the pre-Hilbert space in 
Subsection 3.1 and the subgroup of constant loops C/Z C 9(81 )c acts 
on E>.+2e by weight >. + 2,;. 

Proposition 3. 7. For>. E A(S1) = Z2, we have: 

V(D2 >.) c>< { C, (>. = 0) 
' - 0. (>. = 1) 

Proof. Clearly, constant loops 8 1 - C/Z extend to holomorphic 
maps D2 - CjZ. So we use Proposition 3.2 to obtain: 

c;z x u c Imr+ c C/Z x w, 

where U = EBiEN Wt;· Since C/Z acts on E>.+2e by weight>.+ 2,;, we 
have: 

Hom( C' "")C/Z C IT Hom(E C)C/Z c>< { Hom( Eo' q' 
v).., IL- >.+2e, - {0}. 

eEZ 

(.A= 0) 
(.A= 1) 
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Thus, if>.= 1, then V(D2 , >.) = {0}. In the case of>.= 0, we have: 

Hom(Eo, qu ::J Hom(Eo, qimr+ ::J Hom(E0 , q w. 

Now, Lemma 3.1 completes the proof. Q.E.D. 
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