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Calculating the image of the second Johnson-Morita 
representation 
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Abstract. 

Johnson has defined a surjective homomorphism from the Torelli 
subgroup of the mapping class group of the surface of genus g with 
one boundary component to /\ 3 H, the third exterior product of the 
homology of the surface. Morita then extended Johnson'~ homomor­
phism to a homomorphism from the entire mapping class group to 
~ /\ 3 H A Sp(H). This Johnson-Morita homomorphism is not surjec­
tive, but its image is finite index in ~ /\ 3 H A Sp(H) [11]. Here we give 
a description of the exact image of Morita's homomorphism. Further, 
we compute the image of the handlebody subgroup of the mapping class 
group under the same map. 

§1. Introduction 

Let S9 be a closed surface of genus g. We fix a closed disk D in 
S9 , and by deleting its interior, obtain S9 ,1 , a genus g surface with one 
boundary component, as illustrated in Figure 1. Let M 9 (resp. M 9 ,I) 
denote the mapping class group of the surface S9 (resp. S9 ,I). In the 
case of M 9 ,1 we assume the boundary component is fixed pointwise. 

We choose a base point on asg,l, and let 0:1, ... 'O:g, f3I, ... '(3g de­
note the based loops illustrated in Figure l(b). Let a 1 , ... , a9 , b1 , ... , b9 

denote the corresponding homology classes, as in Figure l(a). It will 
sometimes be convenient to denote these same homology classes by 
x 1 , ... , x 29 with the understanding that Xi = ai and Xi+g = bi for 
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Fig. 1. (a) A basis for H 1 (S9 ,1) (b) Generators for 1r1(S9 ,1) 

1 :::::; i :::::; g. Likewise, we will sometimes refer to the based loops 
0:1, ... , a 9 , {31, ... , {39 by 6, ... , 6 9 with the understanding that ~i = a; 

and ~i+g = {3; for 1 :::::; i :::::; g. 
Now, let H = H 1 (89 ,1) be the free abelian group with generating 

set { a 1, ... , a9 , b1 , ... , b9 } and 1r = n1 (89 ,1) which is a free group on the 
generating set {o:1 , ... ,o:9 ,{31 , ... ,{39 }. The action of M 9 ,1 on 1r gives 
an injection M 9 ,1 <.......+ Aut(n). More generally, we can compose with the 
homomorphism Aut(n) ---+ Aut(n/x) for any characteristic subgroup 
x c n. The lower central series of the free group 1r is a sequence of 
characteristic subgroups defined inductively by setting 7f(o) = 1r and 
n(k+l) = [n, n(kl]. We define the kth Johnson- Morita representation to 
be the map 

We note that these maps were first studied by Johnson in [7, 6] and 
subsequently developed by Morita in a series of papers [11, 12, 13, 14]. 

Observe that the first Johnson-Morita map is just the classical sym­
plectic representation p1 : M 9 ,1 ---+ Sp(H) which is surjective ([4], in 
particular pp. 209-212). In [11, Theorem 4.8] Morita shows that the im­
age of p2 is isomorphic to a subgroup of finite index in ~ /\3 H ><1 Sp(H). 
Our first main result in this paper, given in Theorem 2.4, is to identify 
the precise image p2(M 9 ,1) using a formulation due to Perron [16]. 

Let us now consider S9 as 8X9 , where X 9 is a genus g handlebody. 
Let 1{9 denote the handlebody subgroup of M 9 , that is, the subgroup 
consisting of maps of S9 which extend to the handlebody X 9 • There is 
a natural surjection M 9 ,1 ---+ M 9 obtained by extending via the identity 
map along D. The kernel of this surjection is generated by two kinds of 
elements: the Dehn twist along the boundary curve, and "push" maps 
along elements of n1 (S9 ,1) [1]. Note that any map in this kernel extends 
to X 9 . Hence, we are justified in defining the handlebody subgroup 'H9 ,1 

of M 9 ,1 as the pullback of 1{9 . 
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The handlebody group arises naturally in a number of applications 
in 3-manifold topology, particularly through Heegaard splittings of 3-
manifolds. Our second result in this paper is to compute p2 (7-i9 ,!), given 
in Theorem 3.5. 

The authors would like to thank the referee for helpful comments 
and suggestions. 

§2. The second Johnson-Morita map 

In this section we will describe Perron's formulation [16] of the sec­
ond Johnson-Morita representation. We will give a precise characteriza­
tion of the image of the mapping class group under this map. First, it 
will be useful to review the image of the first Johnson-Morita represen­
tation, i.e., the symplectic group. 

2.1. The symplectic group 

The group H = H 1 (89 ,!) is free abelian with free basis a1 , •.. ,a9 , 

b1 , ... , b9 , as in Figure 1(a), and has a symplectic intersection form given 
by signed intersection of curves which is preserved by every mapping 
class f E M 9 ,1 • In the basis above, the intersection form is given by the 
the matrix J with g x g block form 

(1) 

The intersection form got by acting by the linear transformation M on 
an intersection form with matrix L is given by M LM where M denotes 
the transpose of M. Hence for every M in the image of the mapping 
class group 

(2) M J M = J, or equivalently M J M = J 

In fact (2) is a sufficient condition for M to be in the image of the map­
ping class group under p1 . It is sometimes useful to write a symplectic 
matrix M in g x g block form as 

M=(~ ~) 
A convenient consequence of (2) is that M-1 = J M J-1 . In block 

form this becomes 

Q 
-P 
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The group of such matrices form the symplectic group. Writing M 
and M in g x g block form 

we derive the symplectic constraints, which follow directly from the con­
dition in (2): 

(3) (i) QS- PT = I, (ii) ST symmetric, (iii) PQ symmetric. 

2.2. Perron's formulation of P2 

The Torelli group I 9 ,1 is the kernel of the symplectic representation 
Pl : M 9 ,1 --+ Sp(H). Johnson proved, in [5], that the image of the 
Torelli group under p2 is 1\3 H. In the next section we will go a step 
further, and describe1 in Theorem 2.4, the image of the full mapping 
class group M 9 ,1 under P2 noting that Morita [11, Theorem 4.8] has 
already identified this image as being finite index in ~ 1\3 H ~ Sp(H). 
We begin by summarizing Morita's explicit description of p2 as given in 
[11, Section 4]. Consider the 2-step nilpotent group 

with multiplication in <1>2 given by (ry, y)(v, z) = (ry + v + h 1\ z, y + z). 
It contains a subgroup of finite index which can be identified (see [8, 
Sec. 5.5]) with the second nilpotent quotient njnC2l = n/[n, [n,n]] of 
our surface group via the homomorphism ¢2 : 1r --+ <1>2 

¢2(~i) = (0, xi) 

where {6, · · · , 69} generate 1r = n1(S9,1) and {xi.··· , x29} is our basis 
for H = H 1 (S9 ,I) (see Figure l(a-b)). The group <1>2 can be viewed 
as a subgroup of the Mal'cev completion of the nilpotent group 1r jnC2l. 
Any automorphism of njnC2l extends to the Mal'cev completion and 
preserves <1>2 so we may think of M 9 ,1 as acting on <1>2 [11, Proposition 
2.5]. 

In [11, Section 3] Morita describes a function M 9 ,1 --+ Hom(H, ~ 1\2 

H). An automorphism f of <1>2 coming from an automorphism of the 
Mal'cev completion of njnC2l can be specified by the images 

f(O,xi) = (wi,hi) 
1 2 

w· E- 1\ H h· E H ' 2 ' z 
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for each Xi· The homomorphism p1(!): H---+ H given by Pl(f)(xi) =hi 
is just the image off under the symplectic representation. Johnson looks 
at the homomorphism 7'2 (!) : H ---+ ~ A 2 H given by 

i2(f)(xi) = Wi 

The function 7'2 : M 9 ,1 ---+ Hom(H, ~ A2 H) is a homomorphism when 
restricted to the kernel I 9 ,1 of the symplectic representation. Johnson 
[5, Theorem 1] identifies its image as A 3 H C Hom( H, ~ A 2 H), where 
Xi A x1 A Xk E A3 His understood to be the homomorphism 

where (, ) gives the symplectic pairing for vectors in H. The map 
I 9 ,1 ---+ A3 H c Hom(H, ~ A2 H) is usually referred to as the Johnson 
homomorphism. 

Morita [11, Section 3] begins by considering this map 7'2 : M 9 ,1 ---+ 

Hom(H, ~ A2 fl) (in Morita's notation this is the map k). While not 
a homomorphism it is a crossed homomorphism with respect to the 
symplectic action of the mapping class group on Hom(H, ~ A2 H). In 
other words, the map 7'2 satisfies: 

j,g E M 9 ,1 

ChooseR E Sp(H), y E H, and m E Hom(H, ~ A2 H). We note that 
the action of Sp(H) on Hom(H, ~ A2 H) in the equation above (and in 
the remainder of this paper) is the natural "change-of-basis" action: 

(5) (Rm)(y) = Rm(R- 1y) 

The crossed homomorphism property is exactly what is needed for the 
map ii2 : M 9 ,1 ---+ Hom(H, ~ A2 H) )q Sp(H) given by 

to be a homomorphism. The homomorphism P2 gives the action of M 9 ,1 

on ¢2 (7r) c <1>2 , via the action of (r, R) E Hom(H, ~ A2 H) )q Sp(H) on 
<1>2: 

(6) (r,R) * (ry,y) = (r(Ry) +Rry,Ry) 

Morita shows that by modifying the crossed homomorphism 1'2 
M 9 ,1 ---+ Hom(H, ~ A2 H), one obtains a crossed homomorphism 7'~ 

(Morita denotes this map by k' in [11, Section 4] and k in [11, Section 
5]) from M 9 ,1 to the submodule ~ A3 H of Hom(H, ~ A2 H) which 
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extends the Johnson homomorphism. We will modify 7'2 to get a different 
crossed homomorphism T2 : M 9 ,1 ---> ~ /\3 H extending the Johnson 
homomorphism. Our map T2 is a trivial modification of Morita's map 
7'~ which will lend itself to later calculations. 

For any m E Hom(H, ~ /\2 H), the map O"m : M 9,1 ---> Hom(H, ~ /\2 

H) given by 

O"m(f) = m- Pl(f)m 

is a crossed homomorphism. Such a crossed· homomorphism is called 
principal; two crossed homomorphisms are cohomologous if they differ 
by a principal crossed homomorphism [3, Chapter IV.2]. 

Let r. E Hom(H, ~ /\2 H) be the homomorphism 

or equivalently 

(7) 

where C is the 2g x 2g matrix with g x g block form ( ~ ~ ) . Define 

(8) 

This is the crossed homomorphism that Perron [16, Remark 5.5] de­
notes -iAl. We note that by comparing the above with [11, Proposition 
4. 7], it is straightforward to see that Morita's crossed homomorphism 7'~ 
can be expressed as 

i'~(f) = T2(f) + m- p1(f)m 

where m = -HL:::f=1 ai+bi)A(l::f=1 ail\bi)· In other words, the map T2 
and Morita's original map 7'~ are cohomologous, that is, they represent 
the same element of H 1(M 9 ,1 , ~ /\3 H). 

We can now define a homomorphism p2 : M 9 ,1 ---> ~ /\3 H XI Sp(H) 
as follows: 

P2(f) = (T2(f), P1 (!)) 
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Using (8), (6), (5), and (4), we obtain the correct action of p2 (M 9 ,1) on 
<I>z: 

(2::::: TijkXi 1\ Xj 1\ Xk, R) * (7], y) 

(9) (R77- K:(Ry) + R(K:(y)) + r(y), Ry) 

(10) ( ( 
(Ry,xk)x;l\xj 

RrJ-K(Ry)+R(~<(y))+ L rijk +(Ry,x;)xj 1\xk 

+(Ry,x1 )xkl\x, 

where (,) is the symplectic pairing on H and the sums are taken over 
1 ::; i < j < k ::; 2g. 

2.3. Calculating the image of the mapping class group 

In this section we compute p2 (M 9 ,1). See Theorem 2.4 below. 
Recall the map ¢2 : 1r ---+ <I> 2 given in the previous section. It 

will be helpful for us to identify ¢2 ( 1r) c <I> 2 precisely. The gist of 
the following lemma is that for pairs in the image of ¢2 , the second 
coordinate determines the first coordinate modulo 1. 

Lemma 2.1. The image of 1r under the map ¢ 2 is given as follows. 

Proof. Let G C <I> 2 denote the set on the right-hand side of the 
equation in the lemma. We claim that the set G is a subgroup of <I> 2 . 

First, G is closed under inversion since (77, y)- 1 = ( -7], -y). For closure 
under products consider 

( ( ll ) 
29 

) "'"""' n· + .3:__1_ x· 1\ x · "'"""'l x· ~ 'J 2 ' J' ~' ' 
l<i<j<2g i=l 

( ( l'l') Zg ) · 2:: n~1 + T xi /\x1 , L::::z;xi 
l<,<J<2g t=l 

( ( 
f !i.!..i ) 2g ) nij+nij+ 2 1 

"'"""' t'L' l L' l L' Xi 1\ Xj, ""(zi + li)Xi ~ +:..!:..:..1_+.}:;_)_-::..J..::..l.. ~ 
l<i<j<2g 2 2 2 i=l 

This product isinG because lil1+Z;Zj+lilj-Z1z; = (li+l;)(lj+lj) mod 2. 
Clearly, G contains each generator ¢2 (~i) = (0, Xi) of ¢2(1r). For the 

reverse inclusion, note that any element of the form 



126 J. S. Birman, T. E. Brendle and N. Broaddus 

lies in ¢2 (-rr). In fact such an element is in the center of G. Now, any 
element of G can be written as a product of (0, xi) 's to get the correct 
second coordinate, followed by a product of (xi 1\ x1,0)'s to get the 
correct first coordinate. Hence G C ¢2 (n). Q.E.D. 

We are almost ready to characterize the subgroup p2 (M 9 ,1) C ~ /\3 

H ><1 Sp(H). We begin with a simple yet fundamental observation. 

Remark 2.2. Suppose R is a symplectic matrix and (r1, R), 
(rz,R) E pz(M9 ,1). Then (r1,R)-1 = (-R-1r 1,R-1) E p2 (M 9 ,1) so 

(rz, R)( -R-1r1, R-1) = (rz- r1, I) E pz(M9,1)· 

In other words, we have that (r2 - r 1, I) E p2 (I9 ,1). Using Johnson's 
characterization of T 2 (I9 ,1) [5, Theorem 1] we conclude that if two ele­
ments of p2 (M 9 ,1) have identical symplectic matrices, then their ~ /\3 H 
coordinate must differ by an integral element of 1\3 H. 

As a consequence of this observation, we expect that the symplectic 
matrix R will determine the coefficients of r 1 and r2 modulo 1. Theo­
rem 2.4 makes this precise and gives the characterization of p2 (M 9 ,1). 
First we give a short definition. 

Definition 2.3. Given three n-dimensional vectors w = ( w1, ... , 
Wn), y = (y1, ... , Yn), z = (z1, ... , Zn) in basis B, their B-triple dot 
product is the scalar 

n 

•s(w, y, z) = 2:..:: wiyizi· 
i=l 

When the basis B is clear, we will write • ( w, y, z). 

Recall that J is the matrix given in (1). 

Theorem 2.4. Let R E Sp(2g, Z) be an arbitrary symplectic matrix. 
Let r be any element of~ /\3 H with r = Ll:Si<j<k:SZg rijkXi 1\ x.i 1\ Xk. 
Then (r, R) E pz(M9,1) if and only if 

where 

Eijk 
rijk = --mod 1 

2 

Eijk •(rowi(RJ), rowj(R), rowk(R)) 

- • (rowi(R), row1(RJ), rowk(R)) 

+ • (rowi(R), rowj(R), rowk(RJ)) 

for all 1 ::::; i < j < k ::::; 2g. 
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Proof. Let (r, R) E P2(M 9 ,I), and let 

r= 
1-:5_i<j<k-:5_2g 

For 1 $ i, j, k $ 2g we set rijk = 0 unless i < j < k. The group p2(M9 ,1) 

preserves (/>2(1r), described in Lemma 2.1. Let Xn be an arbitrary basis 
element of H, and consider the action of (r, R) on (0, Xn)· We will use the 
standard notation Mij to denote the entry in the ith row and lh column 
of a matrix M throughout. By (10), we get that the second coordinate 
of (r, R) * (0, Xn) is simply Rxn, which we can write as 2:::;!1 RinXi, with 
an eye on eventually applying Lemma 2.1. Using (10) and (7), we obtain 
the following for the first coordinate of (r, R) * (0, Xn): 

Notice that under the symplectic pairing (Rxn,Xk) = (JR)kn so the 
above can be rewritten: 
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Now, applying Lemma 2.1 to the coefficient of Xp 1\ Xq, where p < q, 
gives 

i5q,p+9 ((CR)pn- Rpn) + Rpn(RC)qn- Rqn(RC)pn 
2 

2g 

" ( ( ( ) ) _ RpnRqn + ~ (ripq JR)in- Tpiq JR)in + Tpqi JR in = 2 mod 1 
i=l 

Note that for fixed i,p, q, at most one of the r-coefficients in the above 
summation is nonzero. For bookkeeping purposes, when 1 :-=:::; j < r :-=:::; 2g 
we define rJk be the 2g-dimensional column vector whose ith entry is 
Tijk if i < j, -rjik if j < i < k, Tjki if k < i, and 0 otherwise. If coln(M) 
denotes the nth column vector of M, we may rewrite this to obtain that 
coln ( J R) · Tpq is congruent (mod 1) to 

i5q,p+g(Rpn- (CR)pn) + RpnRqn- Rpn(RC)qn + Rqn(RC)pn 
2 

In order to write this a bit more compactly, for 1 :-=:::; j < k :-=:::; 2g, we 
define ijk to be the 2g-dimensional column vector whose ith entry is 
i5k,i+9 (Rji- (CR)ji) +RjiRki- Rji(RC)ki +Rki(RC)ji· Combining the 
equations above for all 1 :-=:::; n :-=:::; 2g we get: 

J Rf'pq = i'pq mod 1 
2 

'v'1 :-=:::; p < q :-=:::; 2g 

Solving for Tpq, we obtain: 

- 1-
- - (JR)- tpq d 1 rpq = 2 mo 

Since R is assumed to be symplectic, we can rewrite this as: 

- - RJi'pq d 1 rpq = - 2-mo 

Observe that the ith entry of the vector on the right-hand side is 

1 
2i5q,p+9 rowi(RJ) · (rowp(R)- rowp(CR)) 

1 +2 • (rowi(RJ), rowp(R), rowq(R)) 
1 . 

-2 • (rowi(RJ), rowp(R), rowq(RC)) 

(11) 
1 +2 • (rowi(RJ), rowp(RC), rowq(R)) 
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We are interested in calculating the coefficients ripq for 1 s; i < p < q s; 
2g. Thus we are interested in the ith entry of r;,q when 1 s; i < p < 
q S:: 2g. If q =J- p + g then Dq,p+g = 0. Assume that q = p +g. Then 

1 s; i < p s; g, and if we writeR= ( ~. ~ ) , we have 

rowi(RJ) · (rowp(R)- rowp(CR)) 

rowi(T) · rowp(S)- rowi(S) · rowp(T) 

-rowi(T) · rowp(P) + rowi(S) · rowp(Q) 

(TS)iv- (ST)iv- (TP)iv + (SQ)iv 

0-0 

The last equality results from using the symplectic conditions (3 i,ii) and 
by our assumption that i =J- p. Thus we may drop the first term of (11). 
In other words, for 1 s; i < p < q s; 2g the ith entry of r;,q (mod 1) is 
given by 

1 2 • (rowi(RJ), rowp(R), rowq(R)) 

1 -2 • (rowi(RJ), rowp(R), rowq(RC)) 

1 +2 • (rowi(RJ), rowp(RC), rowq(R)) mod 1 

For aesthetic reasons we rewrite the expression above more symmetri­
cally to show that ith entry of r;,q (mod 1) is: 

1 2 • (rowi(RJ),rowp(R),rowq(R)) 

1 -2 • (rowi(R), rowp(RJ), rowq(R)) 

1 +2 • (rowi(R), rowp(R), rowq(RJ)) mod 1 

We have just shown that the et) equations in the statement of the 
lemma are necessary for (r, R) to be an element of p2 (M 9 ,1). Since the 
symplectic representation p1 is surjective, P2(M9 ,1) contains an element 
of the form (r,R) for any given R. Johnson [5, Theorem 1] showed that 
any element of the form (w, I) with w E /\3 H is in p2 (M9 ,1). Then if 
(r,R) E P2(M 9 ,1), so is (w,I)(r,R) = (w+r,R) foranyw E A3 H. Hence 
we can hit any other possible choice of the coefficients rijk satisfying the 
"mod 1" conditions imposed by R by composing our map with different 
choices of Torelli elements. This shows sufficiency. Q.E.D. 
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§3. The handlebody group 

Our primary goal in this section is to compute P2(1i9 ,1) explicitly. 
We will begin with some known algebraic characterizations of 1-ig,l and 
of p1 (H9 ,1) which will be helpful to us, and use them to derive an anal­
ogous characterization at the second level. Thus equipped, we derive an 
explicit formulation of P2(1i9 ,1) in Section 3.2. 

3.1. Algebraic characterizations of the handlebody sub­
group 

Let b denote the normal closure in rr of {,81, ... , ,89 }. Note that b is 
also the kernel of the homomorphism rr----> rr1(X9 ) induced by inclusion. 

The following proposition was first proved by McMillan [9]. The 
proof given here was suggested to the authors by Saul Schleimer. 

Proposition 3.1. The handlebody subgroup H 9 ,1 of the mapping 
class group M 9 ,1 C Aut(rr1(S9 ,1)) is precisely the subgroup which pre­
serves b. 

Proof. One direction is immediate; in order for a mapping class 
in M 9 ,1 to extend to the X 9 it must preserve b. Now suppose f is a 
mapping class which preserves b. Then f sends each ,Bi to a loop that 
can be represented by a simple closed curve which is trivial in rr1 (X 9 ). 

Dehn's Lemma [15] shows that these curves bound disks in X 9 that can 
be made disjoint. By matching these disks to the ones bounded by each 
f3i we may construct a homeomorphism from X 9 to itself restricting to 
f on its boundary. Q.E.D. 

Moving on to level one of the Johnson-Morita representations, Bir­
man has shown that the image of the handlebody group in Sp(2g, Z) is 
particularly nice [2, Lemma 2.2]. All subblocks are g x g matrices. 

Proposition 3.2 (Birman). The image of the handlebody group 
under the symplectic representation is characterized by a g x g block of 
zeroes in the upper-right corner. That is, 

Pl (H9 ,1) = { M E Sp(2g; Z) IM has block form ( : ~ ) } 

Sufficiency is shown in [2] by exhibiting generators for p1 (H9 ,1) 
which are in the image of the handlebody group. The necessity of this 
condition for membership in Pl (H9 ,1) follows from the observation that 
in the handlebody X 9 , the homology classes of the generators of type 
bi are all 0. Any homeomorphism of 89 which extends to X 9 must take 
trivial elements in the homology of the handlebody to trivial elements 
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in the homology of the handle body. In other words, p1 (H9 ,1) is charac­
terized by the property that its elements must preserve the subgroup of 
H generated by the bi 's. 

We will now give a second-level analogue of these characterizations 
by describing a subgroup of 1r j1r( 2 ) which must be preserved by p2 (H9 ,1), 
thus giving a restriction on the image of the handlebody group. 

The second Johnson-Morita homomorphism is given by the action 
of M 9 ,1 on the nilpotent quotient 1r /1r(2). Let b C 1r be as above, and 
recall from Section 2.2 the map ¢2 : 1r -7 1>2 be as above. The following 
lemma computes ¢2(b). 

Lemma 3.3. 

Proof. In light of Lemma 2.1, the right-hand side above is clearly 
the kernel of the quotient homomorphism 1r/1r(2) -7 1r1 (X9 )/1r1 (X9 )(2). 

Q.E.D. 

Now that we have identified ¢ 2 (b) we will describe P2(H9 ,1). 

3.2. Image of the handlebody subgroup under p2 

Theorem 2.4 above gives p2 (M9 ,1 ). The missing ingredient for a 
characterization of p2 (H9 ,1) is p2 (I9 ,1 n H9 ,1) which was computed by 
Morita. 

Proposition 3.4 ([10, Lemma 2.5]). p2 (I9 ,1 n H 9 ,1) is the free 
abelian group with free basis: 

Now we have the tools to assemble a description of p2 (H9 ,1). The 
following theorem gives a complete characterization of pz(H9 ,1); it says 
that an element is in this image if and only if its first factor has no 
"triple-a" terms and its second factor has the form of Proposition 3.2. 

Theorem 3.5. Let R E Sp(2g, Z) be an arbitrary symplectic matrix. 
Let r be any element of~ /1. 3 H with r = ~l:S:i<J<k:S:Zg rijkXi /1. Xj /1. Xk. 
Then (r, R) E p2 (H9 ,1 ) if and only if all of the following three conditions 
hold: 

(1) R has g x g block form ( : ~ ) 

(2) rijk = ~Eijk mod 1 for all1 :S: i < j < k :S: 2g. 



132 J. S. Birman, T. E. Brendle and N. Broaddus 

(3) rijk = 0 for all i, j, k with 0 ::::; i < j < k ::::; g. (i.e. r contains 
no terms of the form ai 1\ ai 1\ ak.) 

We refer the reader to Theorem 2.4 for the definition of Eijk, which 
depends on the matrix R. 

Proof. The necessity of condition 1 has already been established in 
[2, Lemma 2.2]. We claim that only elements of ~ 1\3 H )q Sp(H) satisfying 
condition 3 above preserve ¢2 (b) under the action of (10). Suppose R 
is symplectic with the required block form and r contains a term of the 
form cai 1\ a1 1\ ak. Since R- 1 must satisfy condition 1 above and using 
Lemma 3.3, there is an element (v, R-1bi) E ¢2 (b) where v has only 
terms of the form ~bn 1\ bm. Applying (9) we get 

(r, R) * (v, R- 1bi) = 
(R(v) + K,(RR- 1bi) + RK,(R- 1bi) + r(RR- 1bi), RR-1bi) 

(R(v) + K,(bi) + RK,(R- 1bi) + r(bi), bi) 

Consider each of the terms in the first coordinate of the ordered pair 
above. Since v only has terms of the form ~bn 1\ bm and the matrix R 
has the block form given in condition 1, we must have that R(v) contains 
no terms of the form a1 1\ ak. The image of the homomorphism K, has no 
a1 1\ ak terms so neither K,(bi) nor K,(R- 1bi) contains any a1 1\ ak terms. 
Application of the matrix R preserves this quality; hence RK,(R- 1bi) 
contains no a1 1\ak terms. We can see using (4) that r(bi) will contain a 
term of the form -ca1 1\ak by construction. Then Lemma 3.3 implies that 
c = 0. It follows that the two conditions of the corollary are necessary. 

For each R satisfying 1 there is some mapping class f E 1i9 ,1 with 
PI(!)= R as shown in [2, Lemma 2.2]. We have shown that p2 (!) satis­
fies conditions 1 and 2. Applying Proposition 3.4 we can get every other 
element of the form (w, R) satisfying 1 and 2 as a product (z, I)p2(!) 
where (z, I) E P2(I9 ,1 n 1i9 ,1). This establishes sufficiency. Q.E.D. 
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