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Limit theorems for the Mellin transform of
¢ +at)|2 1T

Antanas Laurinéikas !

Abstract.
A limit theorem in the sense of weak convergence of probability

measures in the space of meromorphic functions for the Mellin trans-
form of the square of the Riemann zeta-function is obtained.

§1. Introduction and main results.

Let s = o + it be a complex variable, and let, as usual, {(s) denote
the Riemann zeta-function. The modified Mellin transforms of |{(3 +it)|

2= [ 1o +ioPre s, > on(h),

for k = 2 was introduced and studied by Y.Motohashi in [12] and [13]
in connection with investigation of the moments of the Riemann zeta-
function. Later, the function Z;(s) was considered in [2]-[4] and [6],
while analytic behavior of Z(s) was treated in [4], [5] and [11]. We
note that the functions Z,(s) and Z;(s) have quite different analytic
properties.

In [8] we proved limit theorems in the sense of weak convergence of
probability measures for the function Z3(s), and in [9] a limit theorem
on the complex plane C for the function Z;(s) was obtained.

Let meas{A} denote the Lebesgue measure of a measurable subset
A of the set of real numbers R, and

vh(...) = %meas{t €10,7]:...},
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where in place of dots a condition satisfied by ¢ is to be written. Here
the sign ¢ in ¥4 only indicates that the measure is taken over ¢ € [0, T7.
Denote by B(S) the class of Borel sets of the space S. Then [8] contains
the following statements.

Theorem A. Let L < o < 1. Then on (C,B(C)) there ezists a
probability measure P , such that the probability measure

Vi (Z2(0 +1it) € A), AeB(C),

converges weakly to Pc , as T — oo.

Let G be a region on C. Denote by H(G) the space of analytic
on G functions equipped with the topology of uniform convergence on
compacta. Let D ={s € C: I <o < 1}.

Theorem B. On (H(ﬁ),B(H(ﬁ))) there exists a probability mea-
sure Py such that the probability measure

vi(Za(s +i1) € A), A e B(H(D)),

converges weakly to Py as T — oo.
The main result of [9] is the following theorem.

Theorem C. Let ¢ > 1. Then on (C,B(C)) there ezists a proba-
bility measure P, such that the probability measure

vi(Z1(o +it) € A), AeB(C),

converges weakly to P, as T — oo.

This paper is a continuation of [9]. The function Z;(s) is meromor-
phic, therefore its value distribution is better reflected by a limit theorem
on the space of meromorphic functions, and we prove a generalization
of Theorem C to a functional space.

Let Co = CU{oo} be the Riemann sphere with the spheric metric
d defined, for sq,s, € C, by

2|81 —SQI
d(s1,82) = )
( ! 2) \/1+|81|2\/1+|82|2
2
d(s1,00) = d(00,0) = 0.

V14 18112’

The metric d is compatible with the topology of Co,. Denote by M(G)
the space of meromorphic on G functions g: G — (Cq,d) equipped
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with the topology of uniform convergence on compacta. In this topology,
a sequence {g,(s)} € M(G) converges to g(s) € M(G) as n — oo if

d(gn(s),9(5)) , — 0,

uniformly on compact subsets of G. The set of analytic on G functions
H(G) forms a subspace of M(G). Let D={s€C:0 > £}.

Theorem 1. On (M(D),B(M(D))) there exists a probability mea-
sure P such that the probability measure

Pr(A) Youn(zi(s+ir)e A), AeBM(D)),

converges weakly to P as T — oo.

§2. A limit theorem for an integral over a finite interval

The function Z;(s) has a double pole at s = 1 and simple poles at
s = —(2k — 1), k € N. Therefore, the function

(1-27°)22,(s) & Zi(s)

is regular in the half-plane {s € C: ¢ > 0}.
Let a > 1, and

(1) Z1ay(s) = [ Cla)v(z, y)a~*dz,
/

where, for y > 1, 07 > &,

v(z,y) = exp{ — (—g)m}

o~

The function ¢(z) will be defined in the next section.

Theorem 2. Let G be a region on C. Then on (H(G),B(H(G)))
there exists a probability measure Py such that the probability measure

Proy(A) Y urn(Zi.,(s+ir)e ), AeB(H(G)),
converges weakly to P, , as T — 0.

The proof of Theorem 2 relies on the following statement. Let

Qy = H Yus

u€[l,a]
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where 7, = {s € C : |s] = 1} Y for all u € [1,a]. With the
product topology and pointwise multiplication the torus Q, is a compact
topological group. Define the probability measure Q1. by

QT,a(A) = V‘Ir‘((ui‘r)ue[l,a] € A)a Ac B(Qa)

Lemma 3. On (Q,,B(Q)) there exists a probability measure Qq
such that the probability measure Qr,q converges weakly to Qq as T —
0.

Proof of the lemma is given in [9)].
Proof of Theorem 2. For y, € v, x € [1, a], define

) yg if y; is integrable over [1,a],
an arbitrary integrable function over [1, a], otherwise.

Let a function h : Q, — H(G) be given by the formula
h({y: : = € [L,a]}) /C v(z, y)z 0y, e, ye €.

Then in view of (1)

(2) Ziay(s+i1) = ({2 1z € [1,0a]}),

and by the Lebesgue theorem of bounded convergence, the function h
is continuous. By (2), Pra,y = Qr.oh~!. Therefore, the theorem is a
consequence of Lemma 3, continuity of & and Theorem 5.1 of [1].

§3. Approximation of 21(5) in the mean

In this section we approximate the function ZAl(s) by the absolutely
convergent integral in the mean. Let o > 1. Then we have that

(3) Zl(s = [ ((z)z™°d
[
where
(KK i foe2),
C(x) = S [C(E +iz)2 = [¢(5 + &) if v €[2,4),
C(5 +iz)? = K5+ FIP+IC(5 + )P ifz € [4,00).
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Let, as usual, I'(s) denote the gamma-function, and o, > % be the
same as above. For y > 1, define

Ly(s) = —T(=)y",

o1 ‘o1
and let, for o > %,
o14ioc0
Z\l,y(s) = ZLT("L / Zi(s+ z)ly(z)%.
o1—ic0

By the choice of o; we have that o; + ¢ > 1, therefore, in view of (3),
for Rz = oy,

Zi(s+2) = / Clz)z— e+ da,
1

Now define

271
01 —100

Using the well-known estimates for the gamma-function, hence we find
that

o0

@) by@) < (@) / ly(o1 + i)t < C(@) |z~

— 00
Since

T
1
/l((§ +it)|2dt <« Tlog T,
1
the definition of C{ (z) shows that
T
/|E(;c)|dx < TlogT.
1
Therefore, (4) implies the absolute convergence of the integral

/by(x)a:“sd:r
1
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for o > % Hence

g1+1i00

dz =~
porres )dz = 21 4(s).

L (2) °°Ax
(”Z 1/<(>

An application of the Mellin formula

(5)/ by(z)z™°dx = 5%
1

o1 —100

1 b+i00

— I'(s)c”*ds =e7¢% b,e>0,

27ri/ (s)c™?ds =e c
b-—-1ico

and the definition of by(x) and v(z,y) yield

—~

by(z) = ((z)v(z,y).

Consequently, by (5)
21,@,(8) = /E(I)U(I,y)x_sdx,
1

the integral being absolutely convergent for o > %

Theorem 4. Let K be a compact subset of the half-plane D. Then

T
lim limsup 1 / sup }ZAl(s +iT) — 21,1,(5 +47)|dr = 0.
Y= T 00 I 2 SEK
Proof. First we change the contour of integration in the definition
of él,y(s). The integrand has a simple pole at z = 0. Let ¢ belong to
[%—I—e,A], €e>0,A> %—I»e, when s € K. We take o5 = —;—4——;— Then in
view of the estimate [4]

Zy(o +it) < timoTe,

which is valid for 0 < ¢ <1, ¢ >ty > 0 (the paper [5] contains a more
precise bound for Z;(s)), using the residue theorem we find that

o2 —0+i00

~ 1 ~ dz =
©  Eu0-gm [ B+ A,
02 —0—100
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We take a simple closed contour L lying in D and enclosing the set K,
and let |L| be the length of L and § denote the distance of L from the
set K. Then the Cauchy integral formula yields

~ . 1 ~ . ~ .
sup [Zl(s—!—zr) Zl‘y(s+z7')| < 53 lZl(z+zT) —Zl,y(z+27)||dz|.
seK ) J

Hence, for sufficiently large T,

/sup |Zl s+iT) — 21‘3,(3 +ir)|dr <
s€EK

ﬁ/|dz|/|21(§Rz+iT)—ZAl,y(%z-}—iT)}d'r«

(7 —sup/lZl (o0 +1471) — Zly (o +1i7)|dr.
seLy

Now we choose the contour L so that, for s € L, the inequalities

1 e
— —_ >
(8) 2 + 1 and 6 >

should be satisfied. By (6) we have that

|

o0
Zi(o+it) — Z14(0 +it) < / |Z1 (09 + it +i7)||ly(02 — o + iT)|d7.

—00

Therefore, for o defined by (8),

1 =~ . = .
T / |Z1(0 +i1) — 21 y(0 +i7)|dT <

|T|+2T

(9) 7|ly(02—a+i7')|(% / ]21(Ug+it)|dt)d7'.

il

By the estimate in [4]

/ |21(0 +it)|*dt < T? 2
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with £ < o <1 we obtain that
T
/ |Z1(0s +it)|dt < T
0

This together with (9) shows that
27

1 ~ ~
—fsup/ IZI(J +i7) — Z14(0 + z'r)|d7' <
sgL 0

sup / y(o2 — o +im)|(1 + |7))dr «
sgL_oo

sup / lly(o +1t)|(1 + |t|)dt = o(1)

06[—A,-—f;]_oo

as y — oo. This and (7) prove the theorem.

§4. A limit theorem for the function ZAl,y(s)

In this section we will prove a limit theorem in the space H(D) for
the function Zy ,(s).

Theorem 5. On (H(D),B(H(D))) there ezists a probability mea-
sure Py, such that the probability measure

VR(214(s +i1) € A), A€ B(H(D)),

converges weakly to Py as T — oo.

Proof. By Theorem 2 with G = D the probability measure Pr, ,
converges weakly to a measure P, , as T' — oo. The first step of the
proof consists of the observation that the family of probability measures
{F, 4} is tight, for the definitions, see [1], for fixed y.

On a certain probability space (2, B(€2), P) define a random variable
01 by the formula

T
]P(@T € A) = l Ipdt, A€ B(R)
T
0

Here I, denotes the indicator function of the set A. Define

XTay(s) = él,a,y(s +167).
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Then Theorem 2 implies the relation

D

(10) XTa,y(s )T_“* Xa,y(8),

where X, ,(s) is an H(D)-valued random element having the distribu-
tion P, 4, and TL means the convergence in distribution.
—00
Let {K}} be a sequence of compact subsets of D such that

o=,
l=1

K, C Ki41,1 €N, and if K C D is a compact, then K C K for some .
Define, for f,g € H(D),

- S _l_p_z(f,_g)___
p(f,g)“;z 1+pl(fag),

where p(f,g9) = sup |f(s) — g(s)]. Then p is a metric on H(D) which
sEK,

induces its topology of uniform convergence on compacta.
Let M; > 0, | € N. Then by the Chebyshev inequality

Pray({g € H(D): sup |g(s)| > Mi}) =
R sEK;
vp( sup |Z1a,y(s +i7)| > M) <
sEK,
T

1
11 —_— Z dr.
)

The integral defining 2/,7\1‘?,(3) converges absolutely on D, hence the con-
vergence is uniform on compact subsets of D. Consequently,

(12)  suplimsup — / sup |Zl ay(s +17) |dT <R < o0
a>1l T—oo

Now we put M; = R;2'e~!. Then (11) and (12) yield

(13)  limsup P,y ({g € H(D): sup |g(s)| > M;}) < leN.

€
T—o0 s€EK; 2

The function h : H(D) — R given by the formula h(g) 4o/ sup |g(s)l,
SEK)

g € H(D), is clearly continuous, therefore, Theorem 2 shows that the
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probability measure

vi( sup |Z1ay(s +i7)| € A), A€ B(R),
sEK,

converges weakly to P, ;,A™! as T — oo. This, the properties of the
weak convergence and (13) show that

Puy({g€ H(D): sup lg(8)] > Mi}) <
s 1
(14)  liminf Pra,({g € H(D): sup [g(s) > Mi}) < 5, leN.
T—o0 ’ sEK 2

By the compactness principle, the set H. = {g € H(D) : sup |g(s)] <
SEK,

M,, 1 € N} is compact, and in virtue of (14)
P,y(H)>1—-¢

for all @ > 1, i.e. the family of probability measures {F, y} is tight.
Hence, by the Prokhorov theorem [1], {P, 4} is relatively compact.
The absolute convergence on D of the integral for Z; ,(s) implies

lim élya,y(s) = él,y(s)

a—00

uniformly on compact subsets of D. Hence

lim limsup vy (p(é\l,a’y(s +47), él,y(s +i7)) > €) <

a—o0 T—00

T
1 ~ ~
(15) lim limsup — /p(Zlya‘y(s +17), Z1,4(s + i7))d7 = 0.

a—00 T 5o eT

Define
XT,y(s) = Zl’y(s + iGT).

In view of (15)

(16) lim limsup P(p(X71,4,4(s), X1y(s)) =€) = 0.

a—00 T 50

Since the family {P, ,} is relatively compact, there exists a sequence
{Pa,y} C {Psy} such that P,, , converges weakly to some probability
measure P, on (H(D),B(H(D))) as a; — oo. Therefore,

D

X — P,.
al’ya1—>oo Yy
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This and relations (10) and (16) show that all hypotheses of Theorem 4.2
of [1] are satisfied. Therefore,

D
Xry T o0 Py,

and the proof is completed.

§5. A limit theorem for the function Z,(s)

Theorem 5 implies the following statement.

Theorem 6. On (H(D),B(H(D))) there exists a probability mea-
sure P such that the probability measure

~

Pr(A) = vk (2:i(s +ir) € A), A€ B(H(D)),

converges weakly to PasT — .

Proof. By Theorem 5 we have that
D
(17) Xr,y(s) o Xy(s),

where X (s) is an H(D)-valued random element having the distribution
P,. Let M; >0, € N. Then by the Chebyshev inequality

Pry,({ge HD): sup lg(s)] > Mi}) <

T

1 ~
18 —— [ sup [Z1.4(s +i7)|dT.
(18) M,T J sell(), l 1 )l

T
/ |c(% +it)| dt < Tlog!T,
0

the integral

/ l((% + ix) |4x_2°dw,
1

converges for ¢ > % Therefore, the integral

/ |E(z)|2x_2"d:v
1
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also converges for ¢ > % Hence by the Cauchy integral formula, for

some ¢ > %,

T
1 = .
suplimsup—/ sup |Zlyy(s+zr)|dr <
y>1l T—oo TO SEK,
T
1 ~
sup limsup — / ’Zl,y(a + it)'dt <
y>1 T—oo TO
T 1
1 = 22
sup lim sup —/‘Zl‘y(a—i-zt)l dt )| <
y>1 T—oo T 5
oo 1
o~ 2
sup (/ ’C(:r)|zv(ac,y):v'2°dm> < R < 0.
y21
1

This and (18) with the same M; and H, as above show that
P,(H)>1—-¢

for all y > 1. This means that the family {P,} is tight, and therefore,
it is relatively compact.
By Theorem 4 we find that

lim limsup v (p(flyy(s +ir), Z1(s + it)) >€) <
Y= T 50
T

1 ~ ~
(19) lim limsup — [ p(Z21,4(s +i7), Z1(s + it))dr = 0.
Y00 T_,00 €1

0

Let R
Xr(s) = Z1(s + 107).
Then by (19)
(20) lim limsup P(p(X7(s), X7,4(s)) > €) =0.

Y= T 500

Since the family {P,} is relatively compact, we can find a sequence
{P,,} C {Py} such that Py, converges weakly to some probability mea-

sure P on (H(D), B(H(D))) as y1 — oo. Hence,

X, = P.

Yy1—00

This, (17) and (20) and Theorem 4.2 of [1] prove the theorem.
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§6. Proof of Theorem 1

The function
de —s\2
91(s) def (1-2'9)

is a Dirichlet polynomial, therefore the probability measure
vi(g1(s + i) € A), A€ B(H(D)),

converges weakly to some probability measure Py, on (H(D), B(H(D)))
as T — oo, for the proof, see, for example [7], Chapter 5. Using this
and Theorem 6 we obtain by a modified Cramér-Wald criterion, see, for
example, [10], that the probability measure

Py 2.4 Z vi((a(s +ir), Zi(s +im)) € 4), Ae B(H(D)),

also converges weakly to some probability measure P, 5 on (H (D),
B(H?*(D))) as T — oo.
Now define a function h: H%(D) — M(D) by the formula

hg.f) = g g.f € H(D).

Since the metric d satisfies the equality

d(% %}) = d(f,9).

the function h is continuous. Moreover, by the definition of Z (s), we

have that Pr = P, 3,h™". Therefore, Theorem 5.1 of [1] shows that

Pr converges weakly to Pg1 élh“l as T — oo. The theorem is proved.
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