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compactifications and integration 

Karl-Heinz Indlekofer 

Abstract. 

For primes p let 

Ap:={n nEN,pln} 

be the set of all natural numbers divisible by p. In his book "Probabilistic meth­
ods in the Theory of Numbers" (1964) J. Kubilius applies finite probabilistic 
models to approximate independence of the events AP' His models are con­
structed to mimic the behaviour of (truncated) additive functions by suitably 
defined independent random variables. 

Embedding N, endowed with the discrete topology, in the compact space ,BN, 
the Stone-Cech compactification of N, and taking Ap := clos,ar;Ap leads to in­
dependent events Ap· This observation is a motivation for a general integration 
theory on N which can be used in various topics of Probabilistic Number Theory. 
In this paper we present a short compendium of Probabilistic Number Theory 
concerning the distribution of arithmetical functions. The new model is applied 
to the result of Erdos and Wintner about the limit distribution of additive func­
tions and to the famous result of Szemeredi in combinatorical number theory. 
Further applications are given with respect to spaces of limit periodic and almost 
periodic functions and recent results on q-multiplicative functions. 

§1. Introduction 

If we say that probabilistic number theory is devoted to solving problems 
of arithmetic by using (ideas or) the machinery of probability then the 
subject started cum grano salis 1917 [31] with the paper "The normal 
number of prime factors of a number n" by Hardy and Ramanujan. 

Received January 10, 2006. 
Revised December 6, 2006. 
2000 Mathematics Subject Classification. Primary 11K65; Secondary 

11N64. 



134 K.-H. Indlekofer 

They considered the arithmetical functions w and fl, where w(n) and 
fl(n) denote the number of different prime divisors and of all prime di­
visors - i.e. counted with multiplicity - of an integer n, respectively. 
Introducing the concept "normal order" Hardy and Ramanujan proved 
that w and fl have the normal order "log log n" . Here we say, roughly, 
that an arithmetical function f has the normal order F, if f ( n) is ap­
proximately F( n) for almost all values of n. 1 More precisely this means 
that 

(1- c)F(n) < f(n) < (1 + c)F(n) 

for every positive c and almost all values of n. 

P. Turim 

In 1934 Tunin [85] gave a new proof of Hardy and Ramanujan's result. 
It depended on the (readily obtained) estimate 

2._)w(n) -loglogx) 2 :S cxloglogx. 
n:Sx 

1A property E is said to hold for almost all n if lim x- 1#{n s x 
X-><Xl 

E does not hold for n} = 0. 
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This inequality - reminding us of Tschebycheff's inequality2 - had a 
special effect, namely giving Kac the idea of thinking about the role of 
independence in the application of probability to number theory. Making 
essential use of the notation of independent random variables, the central 
limit theorem and sieve methods Kac together with Erdos proved in 1939 
[14], 1940 [15]: For real-valued strongly additive functions f let 

(1) A(x) := L f(p) 
p~x p 

and 

(2) 

1 

B(x) := (L j2;p)) 2 

p~x 

Then, if lf(p)l ~ 1 and if B(x) --> oo as x--> oo, the frequencies 

1 f(n)- A(x) 
Fx(z) := ~#{n ~ x: B(x) ~ z} 

converge weakly to the limit law 

1 jz ...,2 
G(z) := ~<>= e-Tdw 

V 27T -oo 

as x--> oo (which will be denoted by writing Fx(z) =? G(z)). 

Thus for f(n) = w(n) Erdos and Kac obtained a much more general 
result than Hardy and Ramanujan. For in this case 

A(x) = loglogx + 0(1) 

and 
1 

B(x) = (1 + o(1))(1oglogx)2 

so that 

_ 1 { w(n)-loglogx } 1 jz _..., 2 d 
x # n < x : < z =? -- e 2 w. 

- y'log log x - ..f'ii -oo 

2At that time Thnin knew no probability (see chapter 12 of [10]). The first 
widely accepted axiom system for the theory of probability, due to Kolmogorov, 
had only appeared in 1933. 
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A second effect of the above mentioned paper of Thnin was that Erdos, 
adopting Thran's method of proof showed 1938 [12] that, whenever the 
three series 

2.::1 
p p' 

lf(p)f>1 
p 

lf(p)f:Sl 

f(p) 

p p 
lf(p)f:Sl 

p 

converge then the real-valued strongly additive function f possesses a 
limiting distribution F, i.e. 

x- 1#{n::::; x: f(n)::::; z} '* F(z) 

with some suitable distribution function F. It turned out (Erdos and 
Wintner [16]), that the convergence of these three series was in fact 
necessary. 

All these results can be described as effects of the fusion of (intrinsic) 
ideas of probability theory and asymptotic estimates. In this context, 
divisibility by a prime pis an event Ap, and all the {Ap} are statistically 
independent of one another, where the underlying "measure" is given by 
the asymptotic density 

(3) 

(If the limit 

= }!_.~ x- 1 L 1 ( = ~) 
n<x 
pfn 

M(f) := lim x- 1 "'f(n) 
X---+00 L.....t 

n-=:;x 

exists, then we say that the function f possesses an (arithmetical) mean­
value M (f).) 
Then, for strongly additive functions f, 

f = L f(p)Ep 
p 

where Ep denotes the characteristic function of Ap and M ( Ep) = i. 
The main difficulties concerning the immediate application of probabilis­
tic tools arise from the fact that the arithmetical mean-value (3) defines 
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P. Erdos 

only a finitely additive measure (or content or pseudo-measure) on the 
family of subsets of N having an asymptotic density. To overcome these 
difficulties one builds a sequence of finite, purely probabilistic models, 
which approximate the number theoretical phenomena, and then use 
arithmetical arguments for "taking the limit" . This theory, starting 
with the above mentioned results of Erdos, Kac and Wintner, was de­
veloped by Kubilius [62]. He constructed finite probability spaces on 
which independent random variables could be defined so as to mimic 
the behaviour of truncated additive functions 

This approach is effective if the ratio :~~: essentially tends to zero as x 
runs to infinity. For Kubilius was able to give necessary and sufficient 
conditions in order that the frequencies 

x- 1#{n :S: x: f(n)- A(x) :S: zB(x)} 

converge weakly as x --+ oo, assuming that f belongs to a certain class of 
additive functions. This result lead to the problem when a given additive 
function f may be renormalized by functions a(x) and {3(x), so that as 
x --+ oo the frequencies 

f(n)- a(x) 
x- 1#{n < x : < z} - {3(x) -
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possess a weak limit (see Kubilius [62], Elliott [10], Levin and Timofeev 
[65]). 

N. M. Timofeev P. D. T. A. Elliott 

All these methods have been developed for and adopted to the inves­
tigation of additive functions with its emphasis on sums of indepen­
dent random variables. The investigation of (real-valued) multiplicative 
functions goes back to Bakstys [2], Galambos [25], Levin, Timofeev and 
Tuliaganov [66] and uses Zolotarev's result [89] concerning the charac­
teristic transforms of products of random variables. 

We reformulate: A general problem of probabilistic number the­
ory is to find appropriate probability spaces where large classes of arith­
metic functions can be considered as random variables. In particular, is 
it possible to write the mean-value M(f) of a function f (if it exits) as 

an integral M(f) = L 1 dp(x), when the space X and the integrable 

function 1 is uniquely determined by N and f, respectively? 

§2. Approximation of independence 

In this chapter we have in mind the idea of Kac that, suitably inter­
preted, divisibility of an integer by differing primes represents indepen­
dent events. At the beginning we shall consider two examples of algebras 
of subsets of N. We denote by A1 the algebra generated by the zero 
residue classes whereas A2 is defined as the algebra generated by all 
residue classes. On both algebras the asymptotic density is finitely but 
not countably additive. In the case of the algebra A2 this difficulty will 
be overcome by the embedding of N into the polyadic numbers. Con­
cerning the algebra A1 a solution of the problem will be given by the 
construction of the model of Kubilius. In chapter 7 we shall formulate 
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a general solution of both of these problems. 

For a natural number Q let E(l, Q) denote the set of positive integers 
n which satisfy the relation n = l mod Q where l assumes any value in 
the range 1 :<::: l :<:; Q. Denote by A2 the algebra generated by all these 
arithmetic progressions E(l, Q) for Q = 1, 2, ... amd 1 :<:; l :<:; Q. Observe 
that each member A E A2 possesses an asymptotic density 6(A) and 15 
is fully determined by the values 

6(E(l, Q)) = ~ 

for each Q and all 1 :<:; l :<:; Q. Then 15 is finitely additive but not 
countably additive on the algebra A2 which will be shown by an example 
due to Yu. I. Manin (see Postnikov [75]. p. 135). 

Let Qi = 3i, i = 1, 2, ... , and put E1 = E(O, QI) and E 2 = E(l, Q2). 
For j ~ 3 choose lj to be the smallest positive integer not occuring in 

00 

E1 U E2 ... U Ej-1· Put Ej = E(lj, Qj)· It is clear that N = U Ei. 
i=l 

Further Ei n Ej = 0 if i f. j. For this suppose j > i and lj + mjQj = 
li + miQi. We see that lj = li + Qi(mi- 3j-imJ) and, since lj > li, 
lj E Ei which contradicts the choice of lj. Since 

00 00 . 1 00 

L6(Ei) = L3-· = 2 < 1 = 6(UEi) 
i=l i=l i=l 

the asymptotic density is not a measure on A 2 . 

Concerning the definition of A 1 we choose, for each prime p, the sets 
Apk = E(O,pk) of natural numbers which are divisible by pk (k = 
1, 2, ... ). Then A 1 will be the smallest algebra containing all the sets 
Apk. Obviously, A1 is a subalgebra of A2 and the asymptotic density 15 
is finitely additive. It is not difficult to show by an example that 15 is 
not countably additive on A 1 . 

In his book [62] Kubilius applies finite probabilistic models to approxi­
mate independence of the events Ap for primes p. The study of arith­
metic functions within the classical theory of probability, with its em­
phasis on sums and products of independent random variables, involves 
a careful balance between the convenience of a measure, with respect to 
which appropriate events are independent, and the loss of generality for 
the class of functions which may be considered. 
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The models ofKubilius are constructed to mimic the behaviour of (trun­
cated) additive functions by suitably defined independent random vari­
ables. The construction may run as follows (see [10], p. 119). 
Let 2 :::; r :::; x, let S := { n : n :::; x} and put D = TI p. For each prime 

p~r 

p dividing D let E(p) := S n E(O,p) and E(p) = S\E(p). If we define, 
for each positive integer k which divides D, the set 

Ek = n E(p) n E(p) 
Plk PI¥ 

then these sets are disjoint for differing values of k. Further, if A denotes 
the cr-algebra which is generated by the E(p), p:::; r, then each member 
of A is a union of finitely many of the Ek. On the algebra A one defines 
a measure v: If 

then 

m 

m 

v(A) := 2)xr1 1Ekj I· 
j=1 

Since v(S) = 1 the triple (S, A, v) forms a finite probability space. 
A second measure f.L will be defined by 

1 1 
f.L(Ek) := k II (1 - -) 

In p 
P-;;; 

where kiD. It is clear that f.L(S) = 1, and thus the triple (S, A, f.L) is also 
a finite probability space. By an application of the Selberg sieve method 
one can show that 

v(A) = f.L(A) + O(L) 

holds uniformly for all sets A in the algebra A with 

L ( 1logx 1 (logx)) _1; 15 =exp ---- og -- +x . 
8logr logr 

The Kubilius model can directly be applied to obtain, in particular, the 
celebrated theorem of Erdos and Kac. For this we confine our attention 
in the moment to (real-valued) strongly additive functions f and recall 
the definitions (1) and (2) of A(x) and B(x). Following Kubilius, we 
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shall say that f belongs to the class H if there exists a function r = r(x) 
so that as x -+ oo, 

logr -+ 0 
logx ' 

B(r) 
B(x) -+ 1, B(x)-+ oo. 

As an archetypal result we mention (see Elliott [10], Theorem 12.1) 

Proposition 1. (Kubilius [62]) Let f be a strongly additive function of 
class H. Then the frequencies 

(4) x- 1#{n::; x: f(n)- A(x)::; zB(x)} 

converge to a limit with variance 1 as x -+ oo, if and only if there is 
a nondecreasing function K of unit variation such that at all points at 
which K(u) is continuous 

1 

B 2 (x) 
p:Sx 

f(p):SuB(x) 

f2(p) -+ K( u) 
p 

as x -+ oo. When this condition is satisfied the characteristic function 
¢ of the limit law will be given by Kolmogorov's formula 

00 

log¢(t) = J (eitu -1- itu)u-2dK(u) 

-oo 

and the limit law will have mean zero, and variance 1. 
Whether the frequencies (4) converge or not, 

(5) 
1 

xB(x) 2)J(n)- A(x)) -+ 0, 
n:Sx 

1 
xB2(x) l::U(n)- A(x))2-+ 1, 

n:Sx 

holds as x -+ oo. 

Bearing in mind that in the Kolmogorov representation of the charac­
teristic function of the normal low with variance 1 we have 

K(u) = { 1 ~f u ~ 0 
0 lf u < 0 

we arrive at (see Elliott) [10], Theorem 12.3) 
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Proposition 2. (Erdos-Kac [14]) Let f be a real valued strongly additive 
function which satisfies lf(p)l :::; 1 for every prime p. Let B(x) ----> oo as 
x----> oo. Then 

z 

x- 1#{n:::; x: f(n)- A(x) :::; zB(x)} ===} vh J e-w2 12dw. 

-oo 

Remark 1. The value distribution of positive-valued arithmetic func­
tion h may be studied in terms of 

x- 1#{n:::; x: logh(n)- o:(x):::; z,B(x)} 

with renormalising constants o:(x), ,B(x) > 0. For those functions which 
grow rapidly there is another perspective. We say that the values of 
positive valued function h are uniformly distributed in (0, oo) if h(n) 
tends to infinity as n ----> oo and if there exists a positive constant c such 
that as y----> oo 

N(h, y) := L 1 = (c + o(1))y. 
n 

h(n)::Oy 

General results for multiplicative functions h in connection with the 
existence of the limiting distribution of h/id, where id(n) = n for all 
n E IN, can be found in Indlekofer [36]. A detailed account concerning 
multiplicative functions is given by Diamond and Erdos [9]. 

§3. Uniform Summability 

There are three results concerning the asymptotic behaviour of multi­
plicative functions g : N ----> C with lg( n) I :::; 1 for all n E N which have 
become classical: 

(6) 

1. Delange [7] proved that the mean value M(g) exists and is 
different from zero if and only if the series 

L: 1- g(p) 

p p 

converges, and for some positive r, g(2r) =J -1. 
2. Assuming that g is real-valued and the series (6) diverges, Wirs­

ing [88] proved that g has mean-value M(g) = 0. In particular 
this means that the mean value M(g) always exists for real­
valued multiplicative functions of modulus :::; 1. 
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3. Halasz [30] proved that the divergence of the series 

L 1- Re g(p)p-it 

p p 

for each t E JR. implies that a complex-valued multiplicative g 
has mean value lvi(g) = 0. Furthermore, he gave a complete 
description of the means M(g, x) := x- 1 2: g(n) as x-) oo. 

n<Sx 

Remark 2. If we set g(n) = ~J(n), the Mobius function, then we are 
precisely concerned with the case where the series 2:p- 1(1- g(p)) di-

P 

verges. Moreover, the validity of the assertion l'vf (M) = 0 was shown by 
Landau [63] to be equivalent to the prime number theorem. The (first) 
elementary proof of the prime number theorem by Selberg appeared in 
1949. In 1943 Wintner [87], in his book on Erathostenian Averages, as­
serted that if a multiplicative function g assumes only values ±1, then 
the mean value .M(g) always existed. But the sketch of his proof could 
not be substantiated, and the problem remained open as the Erdos­
Wintner conjecture. We shall not repeat the story concerning the prize 
which Erdos offered for a solution of this problem ( cf. Elliott [10], p. 
254) but in 1967 Wirsing, by his mentioned result, solved this problem. 
His proof was done by elementary methods (and thus he gave another 
elementary proof of the prime number theorem) but he could not han­
dle the complex-valued case in its full generality. Only by an analytic 
method, found by Halasz in 1968, and exposed by him in his paper [30], 
the asymptotic behaviour of 2: g( n) could be fully determined for all 

n<Sx 
complex-valued multiplicative functions g of modulus smaller or equal to 
one. As in the case of Wirsing's proof of the Erdos-Wintner conjecture 
it took again twenty-four years until Daboussi and Indlekofer [6] pro­
duced an elementary proof of Halasz's theorem. In a subsequent paper 
Indlekofer [49] following the same lines of the proof gave a more elegant 
version which served as a model in the book of Schwarz and Spilker [79]. 
This ends the remark. 

The wish to abandon the restriction on the size of g led to the investi­
gation of multiplicative functions which belong to the class £/\ a > 1. 
Here, for 1 :::; a :::; oo, 

,ea := {f: N-) C, llflla < oo} 
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denotes the linear space of arithmetic functions with bounded seminorm 

{ }
l/01. 

llflla := limsupx-l L lf(n)l 01 • 

n~x 

Obviously the functions considered by Delange, Wirsing and Halasz be­
long to every class £ 01 • 

A characterisation of multiplicative functions g E £ 01 (a > 1) which 
possess a non-zero mean-value M(g) was independently given by Elliott 
[11] and using a different method, by Daboussi [5]. These results were the 
starting point for me to introduce the notation of uniformly summable 
functions. 
The underlying motivations for this were the facts 

(i) that, if the mean-value M(f) of an arithmetic function f corre­
sponds to an integral over an (finite) integrable function, then 
it can be approximated by its truncation f K at height K, i.e. 

f (n) _ { f(n) if lg(n)l:::; K 
K - 0 if lg(n)l > K, 

(ii) and that, on the other hand, the partial sums 

{ N- 1 L: g(n)} converge to M(g). 
n~N NEN 

This suggested to involve the concept of uniform integrability. In 1980 
[33] I introduced the following 

Definition 1. A function f E £ 1 is said to be uniformly summable if 

lim sup N- 1 L lf(n)l = 0 
K--+OON?_l n<N 

1/(n)I>K 

and the space of all uniformly summable functions is denoted by £*. 

It is easy to show that, if a > 1, 

Further, we note that £* is nothing else but the II · ll1-closure of zoo, the 
space of all bounded functions on N. In the same way we can define the 
spaces 

£*01 := ll·lla -closure of zoo. 
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The idea of uniform summability turned out to provide the appropriate 
tools for describing the mean behaviour of multiplicative functions and 
gave insight into exactly which additive functions belong to £ 1 . As typi­
cal results we mention generalisations of the results of Delange, Wirsing 
and Halasz. 

Proposition 3. (see Indlekofer [33]) (A generalisation of Delange's re­
sult) Let g : N--+ C be multiplicative and o: ~ 1. Then the following two 
assertions hold. 

(8) 

(i) If g E £*nO and if the mean-value M(g) := lim x- 1 2::: g(n) 
X--->00 

of g exists and is non-zero, then the series 

converge for all A with 1 ::; A ::; o: and, for each prime p, 

1 + f= g(~k) =1- 0. 
k=1 p 

(ii) If the series (7) converge for all A with 1 ::; A ::; o: then g E 

£*n£ 01 and the mean-values M(g), M(lgl") exist for all A with 
1 ::; A::; o:. If in addition (8) holds, then M(g) =1- 0. 

Note that the membership of £ 01 n £* and the existence of a non-zero 
mean value are t'?gether equivalent to a set of explicit conditions on the 
prime powers. Further observe that these conditions imply the existence 
of the mean values M(lgl") for all1 ::; A::; o:. 

Proposition 4. (see Indlekofer [36]) (A generalisation of Wirsing's 
result) Let g E £* be a real-valued multiplicative function. Then the 
existence of the mean value M(lgl) implies the existence of M(g). 

Note that Proposition 4 is an appropriate generalisation of Wirsing's 
result for, if g is multiplicative and lgl ::; 1, the mean value of M(lgl) 
always exists. 

A complete characterisation of the means M(g, x) for complex-valued 
multiplicative functions g E £* was given in 1980 by Indlekofer (see 
[38]). As a special result we have 

Proposition 5. (A generalisation of Halasz's result) If the complex­
valued multiplicative function g belongs to £*, and for each t E IR, the 
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senes 

p 
p 

llg(p)l-li:S:! 

diverges, then g has mean value zero. 

Thus the idea of uniformly summable functions proved to be a successful 
concept in the investigation of multiplicative functions (and in partic­
ular, of additive functions, too). To come back to the methodological 
aspect and as an a posteriori justification of the underlying motivation 
we turn to the connections between mean values and integrals for mul­
tiplicative and additive functions (see Indlekofer [36] and [40]). 

Proposition 6. (Indlekofer [36]) Let the real-valued multiplicative func­
tion g be uniformly summable. Then 

(i) g possesses a limiting distribution G if and only if the mean 
value M(lgl) exists, and 

(ii) this limiting distribution is degenerate if and only if M ( lg I). 
Moreover, in both cases 

M(g) = J y dG(y) 

1ft 

M(lgl) = J IYI dG(y). 

1ft 

Proposition 7. (Indlekofer [40]) Let a 2 1. For any (real-valued) 
additive function f the following three propositions are equivalent. 

(i) The limiting distribution F off exists and 

J IYI"' dF(y) < 00. 

1ft 

(ii) f E £"' and the mean value M(J) off exists. 
(iii) The series 

'L f(p), 
p p 

converge. 

p 
lf(p)ISl 

j2(p) 
p 
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Moreover, if one of these conditions is satisfied 

M(J) = J y dF(y) 
IR 

M(lfla) = J IYIQ dF(y). 
IR 

Remark 3. The "reason" for the difference between the additive and 
multiplicative functions may be found in the fact that there is no additive 
function in £ 1 \C* but there are "many" multiplicative functions in £ 1 

which are not uniformly summable. 

§4. First attempts of a general theory: Polyadic numbers and 
almost even functions 

The ring of polyadic numbers was first introduced by Priifer [76]. We 
briefly recall its construction. 
Let Z denote the ring of integers. Then the system L consisting of the 
ideals (m) := mZ can be taken as a complete system of neighborhoods of 
zero in the additive group of integers and it generates a topology which 
we denote by T. Obviously, the addition is continuous in this topology 
and the arithmetic progressions a + ( m) (a E Z) build up a complete 
system of neighborhoods in Z. The multiplication is continuous in the 
topology, too. For, if a, b E Z and if W is any neighborhood of ab, for 
example W = ab+(m), then one can choose U = a+(m) and V = b+(m) 
as neighborhoods of a and b, respectively, such that UV c W. Therefore, 
Z endowed with the topology T forms a topological ring (Z, T). The 
topological ring (Z, T) is metrizable. It is not difficult to show 

Proposition 8. The function e : Z x Z __, [0, 1], 

~ 1 (x-y) 
e(x, y) =~2m ---;:;;:-- ' 

where ( t) denotes the distance from t to the nearest integer, defines a 
metric on Z which metrizes (Z, T). 

Next we give a short review how the the polyadic numbers can be de­
fined. Let S be the set of sequences { ai} of integers such that, given 
E > 0, there exists anN such that e(ai,aj) < E if both i,j > N. We 
call two such Cauchy sequences {ai} and {bi} equivalent if e(ai, bi)--> 0 



148 K.-H. Indlekofer 

as i ---+ oo. We define the set S of polyadic numbers to be the set of 
equivalence classes of Cauchy sequences. 
One can define the sum (and the product) of two equivalence classes of 
Cauchy sequences by choosing a Cauchy sequence in each class, defin­
ing addition (and multiplication) term-by-term, and showing that the 
equivalence class of the sum (and the product) only depends on the 
equivalence class of the two summands (and of the two factors). This 
enables us to turn the set S of polyadic numbers into a ring. Z can be 
identified with a subring of S consisting of equivalence classes containing 
a constant Cauchy sequence. Finally, it is easy to prove that S is com­
plete with respect to the (unique) metric which extends the metric f2 on 
Z. S is a compact space since Z is totally bounded. Thus on the additive 
group of the ring S, as a compact group there exists a normalized Haar 
measure P defined on a o--algebra A which contains the Borel sets in S 
such that (S, A, P) is a probability space. The measure of an arithmetic 
progression a+ (3D where a, (3 E Sand Dis a natural number, is 1/ D. 
Therefore, embedding Z in S eliminates the difficulty associated with 
the fact that asymptotic density is not countably additive. This enabled 
Novoselov [70] to develop an "integration theory" for arithmetic func­
tions f which can be approximated by periodic functions with integer 
period. 

Remark 4. The arithmetic in the ring S and certain aspects of polyadic 
analysis were investigated by Novoselov in a series of papers ([70], ... 
,[74]). 

An arithmetic function f is called 

r-periodic, if f(n + r) = f(n) for every n EN, 

r-even, if f(n) = f(gcd(n, r)) for every n EN. 

It can be shown that the vector space Br of r-even functions can be 
generated by the Ramanujan-functions cd defined by 

cd(n) := 2: tjL CD 
tl gcd(d,n) 

where dlr. i.e. 
Br = Linc[cd : dlr] 

whereas each element of the vector space Dr of r-periodoc functions can 
be written as a linear combination of exponential functions, i.e. 

Dr := Linc[ea/r : a = 1, 2, ... , r] 
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where ea/r is defined by 

We put 
00 

and 
00 

for the vector space of all even and all periodic functions, respectively. 
Finally, we define the vector space 

A:= Linc[e,e : (3 E [0, 1)]. 

Obviously 
B cDc A. 

The ll·lla-closure of B, D and A leads to 

- the space of a-almost even functions, 
- the space of a-limit-periodic functions 

and 

- the space of a-almost periodic functions, respectively. 

J. Spilker W. Schwarz 

We note that Schwarz and Spilker [78] introduced a compactification N* 
ofN by 

lN* = II Np 
p prime 
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where Np denotes the one-point-compactification of the discrete topo­
logical spaces Np = { 1, p, p2 , ••• } • By this compactification they could 
describe an "integration theory" of almost even functions. 
The above mentioned construction of the polyadic numbers was used for 
the investigation of limit-periodic functions whereas Mauclaire [69] used 
the Bohr compactification of Z for the corresponding investigation of al­
most periodic functions. In [79] Schwarz and Spilker presented another 
construction of the compact space IN* and the compact ring of polyadic 
numbers (or Priifer ring) via Gelfand's theory of commutative Banach 
algebras. 

Some comments are called for in connection with these examples. First 
of all, the special role played by the asymptotic (or logarithmic) density 
should be emphasized. Further, it is important to note that despite 
of the ad hoc construction of the compactifications the "size" of these 
spaces is very restricted; the Mobius J.L function, for example, is not an 
element of any of these spaces. 

To abandon all these restrictions we shall make use of the Stone-Cech 
compactification of N which enables us to deal with arbitrary algebras of 
subsets ofN together with arbitrary additive functions on these algebras. 

§5. Pseudomeasures on N and measures on the Stone-Cech 
compactification 

Suppose that A is an algebm of subsets ofN, i.e. 

(i) N E A, 
(ii) A, B E A => AU B E A, 

(iii) A,B E A=> A\B EA. 

Then, if£ denotes the family of simple functions on N, the set 

m 

t:(A) := {s E £, s = :~:::>l:jlAj; Oj E <C, Aj E A, j = l, ... ,m} 
j=l 

of simple functions on A is a vector space. In [48], I investigated the 
ll·llq-closure of £(A), the space of C*q (A)-uniformly summable functions 
for the algebms A whose elements possess an asymptotic density. 

These results performed the initial steps towards the idea which can 
be described as follows: N, endowed with the discrete topology, will 
be embedded in a compact space j3N, the Stone-Cech compactification 
of N, and then any algebra A in N with an arbitrary finitely additive 
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set function, a content or pseudomeasure on N, can be extended to an 
algebra A in ,BN together with an extension of this pseudomeasure, which 
turns out to be a premeasure on A. The basic necessary concepts are 
summarized in the following three propositions, where the ring of all 
real-valued continuous functions defined on a topological space X will 
be denoted by C(X) and the subring of all bounded members of C(X) 
will be denoted by Cb(X). 

Proposition 9. There exists a compactification ,BN of N with the fol­
lowing equivalent properties. 

(i) Every mapping f from N into any compact Hausdorff spaceY 
has a continuous extension f from ,BN into Y. 

(ii) Every bounded real-valued function on N has an extension to 
a function in C (,BN). 

(iii) For any two subsets A and B ofN, 

where A= cl;mA and B = clf3NB are the closures of A and B 
in ,BN, respectively. 

(iv) Any two disjoint subsets ofN have disjoint closures in ,BN. 

Stone and Cech (see for example Gillman and Jerison [29]) have inves­
tigated the compactification ,BX for completely regular spaces X. The 
above proposition contains their results for X = N. An immediate con­
sequence of (iii) is 

Proposition 10. The compactification ,BN ofN has the following prop­
erty: 

( v) For any algebra A in N the family 

A:= {A: A E A} 

is an algebra in ,BN. This property is equivalent to properties 
(i), ... ,(iv) of Proposition 9. 

It should be observed that ,BN is unique in the following sense: if a 
compactification N of N satisfies any one of the listed conditions, then 
there exists a homeomorphism of ,BN onto N that leaves N pointwise 
fixed. 
As a consequense of property (i) we obtain: 
The identity mapping z : N ----+ ,BN is a continuous monomorphism, which 
sends N onto a dense subset of ,BN, such that the adjoint homomorphism 
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z*(7) = f o z 

maps C(,BN) isomorphically and isometrically {relative to the uniform 
metric} onto Cb(N). 
We are now in position to formulate the following fundamental 

Proposition 11. Let A be an algebra in N and 8 : A ---> [0, oo) be a 
content on A, (i.e. a finitely addi,tive measure). Then the map 

8: A---> [0, oo) 

8(A) = 8(A) 

is a-additive on A and can uniquely be extended to a measure on the 
minimal a-algebra a(A) over A. 

Proof. Obviously 8 is a content on A. Therefore we only have to 
show that 8 is continuous from above at the empty set 0. Suppose 
{An}, An E .A, is a monotone decreasing sequence converging to 0. Then, 
by the compactness of ,BN, there exists no E N such that An = 0 for all 
n ~ n0 and thus Proposition 11 holds. 

The extension of 8 is also denoted by 8. We remark, as an immediate 
implication of the above construction 

Proposition 12. 
(i) Every finitely additive function on an algebra A inN can be 

extended to a finitely additive function on the algebra of all 
subsets ofN. 

(ii) Every linear functional on the vector space £(A) can be ex­
tended to a linear functional on l00 • 

In the following we shall concentrate on the following topics 

- candidates for measures 
- spaces of arithmetic functions 
- integration theory for uniformly A.5-summable functions 
- applications to spaces of almost-even, limit-periodic, almost 

periodic and almost multiplicative functions, and measure pre­
serving systems. 

We should have in mind that these results can be generalized in many 
directions. 
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Candidates for measures 

Let r = ('"ink) be a Toeplitz matrix, i.e. an infinite matrix r = ('"ink )n,kEl\l 

with non-negative real elements '"ink satisfying the following conditions: 

00 

(i) sup L '"fnk < oo, 
n k=1 

(ii) '"fnk--+0 (n-+oo,kfixed), 
00 

(iii) L '"fnk--+ 1 (n--+ oo). 
k=1 

For a given Toeplitz matrix r we define c5r(A) for A c N by 

00 

J(A) := Jr(A) := lim "'"fnklA(k) 
n---+oo~ 

k=1 

if the limit exists. Then, if As is an algebra in N such that J(A) exists 
for all A E Ac5 the above construction leads to the probability space 
(!JN, cr(As), b). We observe that 

00 

11!11 := llfllr :=lim sup L 'Ynklf(k)l 
n-+oo k=1 

defines a seminorm on the space of functions f for which 11!11 < oo. 
Remark 5. Toeplitz showed that (i),(ii) and (iii) characterize all those 
infinite matrices which map the linear space of convergent sequences into 
itself, leaving the limits of each convergent sequence invariant. 

Examples. 

(i) Choosing 

if k ::::; n, 

if k > n 

defines Cesaro's summability method and leads to asymptotic 
density and to the seminorm 

(ii) If we put 

11!11 := limsupn- 1 L lf(k)l. 
n-+oo 

{ 
1 1 

"~ ,_ logn · k 1nk .-
0 

if k ::::; n, 

if k > n, 



154 K.-H. Indlekofer 

we obtain logarithmic density with the seminorm 

1 lf(k)l II! II= lim sup -1 - L -k-. 
n-+oo og n k~n 

(iii) Let {In} be a sequence of non-empty intervals in N, In 
[an, bn] such that bn -an ---> oo if n---> oo. We define 

{
_b_l_ if k E In, 

"'nk == n-an 

0 otherwise. 

If A C N is given and, for some sequences {In} of such intervals, 
the limit 

b(A) := lim I(A n In) I 
n-+oo bn- an 

exists, we say that A possesses a Banach-density. 
(iv) Let g: N---+ JR+ be a nonnegative function with g(1) > 0. We 

put 

_ { ( I: g(m)) -l · g(k) 
"ink- m~n 

0 

if k::::: n, 

if k > n 

and assume that "ink ---+ 0 as n ---+ oo ( k fixed). If the limit 

M,(f) '~ n~ (,~ g(m)) -' ~ f(k )g(k) 

exists we say that f possesses a mean-value with weight g and 
denote this mean by M 9 (f). 

§6. Spaces of arithmetic functions and integration theory 

Let b be a set function defined by some Toeplitz matrix r and let A = A8 
be an algebra in N such that b(A) is defined for all A E A, i.e. if 
r = bnk), 

00 

b(A) := lim """fnklA(k) 
n---+CX) ~ 

k=l 

exists for every A E A. Further, let II · II = II · llr be the corresponding 
seminorm. Then we introduce the following spaces. 



New approach to probabilistic number theory 155 

Definition 2. Denote by .C*1 (A) the II · 11-closure of &(A). A function 
f E .C*1(A) is called uniformly (A)-summable. By L*1(A) we denote 
the quotient space .C*1(A) modulo null-functions (i.e. functions f with 
11!11 = 0). 

Definition 3. 
(i) A nonnegative arithmetic function f is called A-measurable in 

case each truncation !K = min(K, f) lies in .Cd(A) and f is 
tight, i.e. for every E > 0 the estimate 

00 

n--->oo 
L "Ynk < c lim sup 
k=l 

if(k)I>K 

holds for some K. 
(ii) A real-valued arithmetic function is called A-measurable in case 

its positive and negative parts J+ and f- are A-measurable. 
(iii) A complex-valued arithmetic function f is called A-measurable 

in case Ref, lmf are A-measurable. The space of all A­
measurable functions is denoted by .C*(A). Further we define 
L*(A) as .C*(A) modulo null-functions, i.e. functions f for 
which <5({m: f(m) =1- 0}) = 0. 

A first consequence of Proposition 11 is that, for all s E t'(A), 

lim ~ "fnks(k) = J 8 dJ, n-+oo~ 
k=l ,BN 

where 8: ,BN---> C denotes the extension of s. 
Starting from this we consider measurable and integrable functions on 
the probability space (,BN, a( A), J) and relate these to the functions from 
.C*(A). 

The probability space (,BN, a( A), J) leads to the wellknown space 

L(J) := L(,BN, a( A), J) 

= {7: ,BN---> C, a(A) -measurable} modulo null-functions 

and 
L 1(J) := L1(,8N, a(A), J) 

= {7 : ,BN ---> C, IIlii < oo} modulo null-functions 
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with norm 

11711 := j 171 d8. 
,6N 

A connection between the spaces £*(A) and £d(A) and the spaces L 
and L 1 , respectively, is given by 

Proposition 13. 

(i) There exists a vector-space isomorphism 

-= L*(A) ---7 L(8) 

such that 

- *-1 ( ) s = z s for every s E £(A). 

(ii) There exists a norm-preserving vector-space isomorphism 

such that 

s = z*- 1 (s) for every s E £(A). 

Proof.(i) By Definition 3 we may restrict to nonnegative functions. As­
sume that f E £*(A) is nonnegative, and let { sn} be a sequence of 
nonnegative simple functions from £(A) which define f (see Definition 
3). Then Sn converge on ;3N to a 8-measurable function 7, which is finite 
8-almost everywhere. 
Therefore, by reducing modulo null-functions one obtains a well-defined 
1 - 1 linear map -: L*(A) ---7 L(8) whose restriction to £(A) is given 
by z*- 1 . The map - preserves the distribution function, which means 
that the (limit) distribution off E L*(A) coincides with the distribution 
of 7 E L(8). Lastly, in order to show that - is onto, we choose for a 
given nonnegative 7 E L(8) a sequence {sn} of simple functions from 
£(A) such that sn converges to 7 8-everywhere. (This choice is possible 
because o-(A) is generated by A). The restrictions Sn to N converge to 
some f E £*(A) and (i) is proved for nonnegative functions. The gen­
eral case follows then immediately. The proof of (ii) runs on the same 
lines as above. The map - is constructed in the following way: Given 
f E L*(A), choose a sequence {sn} of simple functions from £(A) such 
that II!- snll ---7 0 as n ---7 oo. Then the functions Sn = L*- 1 (sn) form 
a Cauchy sequence in Ll and the limit 7 is the desired image off in L 1 . 

These remarks end the proof of Proposition 13. 
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§7. Applications 

Almost even functions 
The algebra A1 introduced in §2 can be defined as the algebra in N 
which is generated by the sets 

Apk := {n: Pklln} 

(p prime, k = 0, 1, ... ). The construction of §6 together with the asymp­
totic density J leads to the space 

L((3N, a(Al), b) 

which corresponds to the space L * (Al) of almost-even functions. 

Distribution of additive functions 
If a real-valued additive function f is given, we can put 

where fp is defined by 

f= LfP 
p 

if Pklln, 
otherwise. 

Obviously, every fP is uniformly A 1-summable, and we denote by f P 

its unique extension to an integrable function on (3N. Then {Jp}p prime 

is a set of independent random variables and L:P f P converges a.s. if 
and only if f possesses a limit distribution. This result can be seen as 
another a posteriori justification of the mentioned idea of Kac connected 
with the role of independence in probabilistic number theory. 
Concerning the renormalization of additive functions (see Proposition 1) 
we consider the increasing sequence a(Aln)) of a-algebras where .Ain) is 
generated by 

Obviously 
U a(Aln)) = a(Al). 

nEN 

Centering the independent random variables {fp} at expectations leads 

to the martingale {Sn}n=l,2, ... , where 

n 

Sn = L_(JPi - JE(fpJ). 
i=l 
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Using the Lindeberg-Levy theorem for martingales (see [23]) one can 
prove Proposition 1. 

Remark 6. In the case of multiplicative functions we proceed in a 
similar manner. If a real-valued multiplicative function g is given we 
put 

where 
if pklln, 
otherwise. 

The unique extension f]p of gp build a set {gp} of independent random 
variables, and an application of Zolotarev's result [89] concerning the 
characteristic function of products of random variables gives necessary 
and sufficient conditions for the convergence of the product TI f]p which 

p 

turns out to be equivalent to the existence of the limit distribution of g. 

Erdos-Wintner Theorem 
Let A~ be the algebra generated by the sets 

A~:= {n: pin} 

and let Ep, Ep denote the characteristic function of A~ and A~, respec­
tively. Then the real-valued function 

satiesfies, since the random variables Ep are independent (with respect 
to 5) the following assertions 

(i) f = L f(p)Ep possesses a limit distribution 
p 

(ii) f = L f(p)Ep converges 5-almost everywhere 
p 



(iii) 

(iv) 
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p 
lf(p)l>l 

p 
lf(p)I:::I 

p 
lf(p)l9 

converge (Three series theorem) 

1 I:, 
p p 

lf(p)l>l 
p 

lf(Pli:S:l 

f(p) 

p p 
lf(Pli:::I 

f2(p) 
converge. 

p 
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For the implication (i) =?(ii) we apply Delange's theorem and the equiv­
alence theorem for the sum of independent random variables and the 
product of the corresponding characteristic functions ( c.f. [67], p.263). 
The equivalence of (ii), (iii) and (iv), respectively, is the Three Series 
Theorem, whereas the relation (iv) =? (i) follows again from Delange's 
theorem. 

Euclid's Theorem 
Euclid proved in 300 B.C. "There are infinitely many primes". Riben­
boim's The New Book of Prime Number Records contains eleven proofs 
of the Euclidean result. His "favorite" is a topological proofwhich is due 
to Furstenberg ( 1955). Here we add a probabilistic proof. 

For this let A~ be again the algebra generated by (A;) and let /j be the 
asymptotic density on A~. 
We haveN= uA;, U {1}, where Pi runs through the set of primes and, 
for every finite set J C {1, 2, ... }, 

;3N \ U A~, = n (;3N \ A~J . 
iEJ iEJ 

Since the A~, are independent events, 

(5 (n (;3N\A~J) = rr (1- ~) > o. 
iEJ iEJ Pt 

The assumption that there are only a finite number of prime numbers 
leads to a contradiction. 
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Limit periodic functions 
The algebra A 2 already introduced in §2, is generated by the sets 

At,pk := {l +n: n E Apk} 

(p prime,k=1,2, ... ) with l = 1, 2, ... ,pk. We choose again the asymptotic 
density 8 as a suitable pseudomeasure and arrive, by the construction of 
§6, at the space 

which is isomorphic to the space L * ( A2 ) of limit periodic functions. 

Remark 
Let V be the set of the step functions on A 2 . Denote by Vu the comple­
tion of V concerning the sup-norm. Let further S be the set of the multi­
plicative linear not identically vanishing functions on Vu. The system of 

-8 
the sets A , A E A2 is an algebra. InS we take the weak topology T(Vu) 
with UE,h, ... ,J)'Po) ={<pES: F<a"tr 1/i('P) -/j(<po)l < c:} as neighbor-

_J_ 

hood basis. With this topology is S compact. Let 6s(A8 ) = 8(A), 8 

the asymptotic density. J s is on Ai = { Ai : A E A2} is a premeasure 
(compactness argument). Js can be uniquely extended (to a measure) 

-s 
on O"(A2 ). 

Since A2 is countable we have O"(Ai) = B(S), where B(S) is the O"­
algebra of the Borel-sets. 
Let r A2 be the canonical mapping from ,BN onto S (remark r A2 1 N = idN) 
with r A2 ( <p) = 'PIT(A2 ) whereby <p is a multiplicative linear function on 
e=(N) and T(A2) denotes the set of the step functions concerning A2 
and S the space of the multiplicative functions on T(A2)u· Then Js is 
the image measure of J constructed above (See [3]). 

Almost multiplicative functions 
Let f be a multiplicative function which assumes only the values -1, -0 
and 1, and define the sets 

and 

At:= {n: f(n) = 1} 

A~ := {n: f(n) = 0} 

A.f := {n: f(n) = -1} 

with characterisic functions J+, f 0 and f-, respectively. Obviously 
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j+ = ~(1!1 +f) 

! 0 = 1- J+- f-

f- = ~(lfl -f). 
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We define the algebra A3 to be the algebra generated by the sets Aj, A~, 
A.f for all multiplicative f with f(N) C { -1, 0, 1 }. An arbitary element 
A of A3 has a characteristic function which is a linear combination of 
such multiplicative functions, and thus the asymptotic density J(A) ex­
ists. Then §6 yields the space 

which is isomorphic to the space L *(A3 ) of almost multiplicative func­
tions. 

Measure preserving system 
Let 

S(n)=n+1 

be the shift operator on N, and let S be its unique extension to f'N. 
Let B be a subset of N with positive upper Banach density, i.e. 

IBn II 
limsup - 1-1- > 0 
III->oo I 

where I ranges over intervals of N. Let the algebra A4 be generated by 
the translates 

{Sn B: n = 0, 1, 2, ... }. 

The algebra A4 is countable, and thus there exists a sequence of intervals 
{In}, In = [an, bnJ, bn -an -+ 00 such that 

o(A) := lim lA n In I 
n->oo bn- an 

exists for all A E A4. Then the extension according to Proposition 13 
leads to the measure preserving system 

(9) 
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For this we obtain by a result of Furstenberg. 

Proposition 14. (Furstenberg [21]) Let J(B) > 0. Then, for any k > 1, 
there exists n i= 0 with 

This implies the result of Szemeredi [82] 

Let B C N possess a positive Banach density. Then B contains arbi­
trarily long arithmetic progressions. 

§8. Further applications: q-multiplicative functions 

The starting point of the definition of (classical) multiplicative functions 

is the unique representation of the natural numbers n = II po:,(n), ap(n) 
pElF' 

= max{o:: po:ln} as a product of prime numbers. Then f: N---+ Cis 
called multiplicative in case 

J(n) =II f(po:p(nl). 
pElF' 

Now, let q 2 2 be an integer and A= {0, 1, ... , q -1}. The q-ary expan­
sion of some n E No is defined as the unique sequence c:0 (n), c:I(n), ... 
for which 

(10) 
00 

n = L Ej(n)q1, c:1(n) E A 
j=O 

holds. Eo ( n), c: 1 ( n), ... are called the digits in the q-ary expansion of n. 
In fact, Er(n) = 0 if r > lognjlogq. A function f: No---+ Cis called 
q-multiplicative if f(O) = 1, and for every n E No, 

00 

(11) f(n) =II f(c:j(n)q1). 
j=O 

In a recent paper Indlekofer, Lee and Wagner [54] could give a complete 
characterisation of q-multiplicative uniformly summable functions. They 
proved 

Proposition 15. (see [54]), Theorem 1) Let f be a q-multiplicative 
function. Then the following assertions are equivalent. 



(12) 
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(i) f E £* and llflh > 0. 
(ii) Let a > 0. The series 

CXJ q-1 

L ~ L(lf(aqrW- 1)2 

r=O q a=O 
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is convergent, and for some constants c1 (a),c2 (a) E JR., for all 
R and for some sequence {Ri}, Ri ____, oo, the inequalities 

(13) 

and 

(14) 

hold. 
(iii) f E La and I liiia > 0 for all a> 0. 

The mean behaviour of such functions is given by 

Proposition 16. (see [54], Theorem 2) Let f E L* be a q-multiplicative 
function and llfll1 > 0. Further, let qR- 1 :::; N < qR,R EN. Then, as 
N ____, oo, 

1 ( 1 q-
1 

) 
N L f(n) = II 1 +- L(f(aqr)- 1) + o(1) 

n<N r<R q a=1 

and, for every a> 0, 

1 ( 1 q-
1 

) 
N L lf(nW = II 1 +- L(lf(aqrW- 1) + o(1). 

n<N r<R q a=1 

Remark 7. The case lfl:::; 1 has been treated by Delange [8]. 

An immediate consequence of Proposition 16 is the following 

Proposition 17. (see [54], Corollary 1) Let f be q-multiplicative. Then 
the following assertions hold. 
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(15) 

(16) 
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(i) Let f E £*. If the mean-value M(f) off exists and is different 
from zero then the series 

00 q-1 

L L(f(aqr) -1) 
r=Oa=O 

and 

00 q-1 

L L IJ(aqr) -11 2 

r=O a=O 

converge and 

q-1 

L f(aqr) -=/:- 0 for each r E N0 . 

a=O 

(ii) If the series {15) and {16} converge then f E £*, the mean­
value M(f) off exists, 

and II!- fRill~ 0 as R ~ oo, where 

fR(n) = IJ f(cr(n)qr). 
r~R 

(iii) Let f E C*. If the mean-value M(f) off exists and is different 
from zero then the mean-value M(lfl"') of lfl"' exists for each 
a> 0 (and is different from zero). 

The case of mean-value zero is contained in 

Proposition 18. (see [54], Corollary 2) Let f E C* be q-multiplicative. 
Then the mean-value M(f) off is zero if and only if llR = o(1) as 
R~oo. 

For (3 E JR. the function ef3 : No ~ C defined by ef3(n) := exp(2?Ti(3n) 
(n E No) is q-multiplicative, and the mean value M(ef3) of ef3 exists. 

q-ary almost even functions 
Let the algebra A5 be generated by the sets 

Aj,a := {n: E:j(n) =a} 
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(j = 0, 1, 2, ... ; a= 0, ... , q -1). Every A E A5 possesses an asymptotic 

density b"(A), and following the assertions of §6 gives the space 

£ (,BN,a (A5) ,J) 

and thus the space £* ( A 5 ) of q-ary almost even functions. 

Almost periodic functions 
We recall that the functions ef3(,6 E JR) are q-multiplicative and possess 
a mean-value. 
Now let C be the family of all half-open intervals in lR/Z and denote 
with A6 the algebra generated by the sets 

A(,B, E):= {n: ef3(n) E E} 

(,6 E lR/Z, E E C). 
Every A E A6 has an asymptotic density and thus the space 

£ (,BN, a (A6), b') 

corresponds to the space £*(A6 ) of almost periodic functions. 

Remark 8. In his paper [35] Indlekofer could give a complete char­
acterisation of almost periodic multiplicative functions. Lee [64] used 
Proposition 17 and 18 to obtain similar results for q-multiplicative func­
tions generalizing results by Spilker [80]. Essentially she could determine 
the possible values of the Fourier-Bohr spectrum of uniformly summable 
q-multiplicative functions. 
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