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Curvature properties of (a, ,6')-metrics 

Sandor Bacs61 , Xinyue Cheng2 and Zhongmin Shen3 

Abstract. 

(a, ,6)-metrics form a rich class of computable Finsler metrics. 
Many (a, ,6)-metrics with special curvature properties have been found 
and discussed. They play an important role in Finsler geometry. In 
this article, we introduce the recent developments in the study of (a, ,6)­
metrics. 

§1. Introduction 

In the past several years, we witness a rapid development in Finsler 
geometry. Various curvatures have been studied and their geometric 
meanings are better understood. This is partially due to the study of a 
special class of Finsler metrics. The special Finsler metrics we are going 
to discuss are expressed in terms of a Riemannian metric a = J ai1yiy1 
and a 1-form (3 = biyi. They are called (a, (3)-metrics. The simplest 
(a, (3)-metrics are the Randers metrics F =a+ (3. Thus more intensive 
study has done on Randers metrics than other metrics. For example, 
a complete list of local structures of Randers metrics of constant flag 
curvature has been given in [13] recently. This motivates people to 
study more general (a, (3)-metrics. In this article, we will introduce the 
recent development of (a, (3)-metrics with special curvature properties. 
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§2. Preliminaries 

There are two important volume forms in Finsler geometry. One 
is the Busemann-Hausdorff volume form and the other is the Holmes­
Thompson volume form. 

For a Finsler metric F = F(x, y) on ann-dimensional manifold M, 
the Holmes-Thompson volume form dVHT = aHr(x)dx is given by 

aHr(x) = __!__ { det (9ij(x,y))dy, 
Wn }{F(x,y)<l} 

and the Busemann-Hausdorffvolume form dVB = aBH(x)dx is given by 

Wn 

aBH(x) = Vol{(y') E Rn!F(x,y) < 1} 

Here 

Vol(Bn(1)) = ~ Vol(sn-l) 
n 

- Vol(sn- 2 ) sinn- 2 (t)dt. 1 17r 
n o 

When F = V9ij(x)yiyj is a Riemannian metric, both volume forms 
reduce to the same Riemannian volume form 

dVBH = dVHT = Jdet(9ij)dx. 

For a Finsler metric, the geodesics are characterized by a system of 
2nd ODEs: 

where 

Qi =~gil{ [F2]xmylYm- [F2]xl }· 

Gi define a global vector field G := yi a~i - 2Gi a~i on T M. G is called 

the spray of F and the local functions Gi are called the spray coefficients 
of F. 

For a Finsler metric F and a volume form dV = a(x)dx on an 
n-dimensional manifold M, the S-curvature S is given by 

(1) 

The volume form can be the Busemann-Hausdorff volume form dVBH = 
aBHdx or the Holmes-Thompson volume form dVrH = arH(x)dx. Un­
less specified, the S-curvature usually is defined with respect to the 
Busemann-Hausdorff volume form. 
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Definition 2.1. Let F be a Finsler metric on an n-dimensional 
manifold M. 

(a) F is of weakly isotropic S-curvature if there exist a scalar func­
tion c = c(x) and a 1-form ry on M such that the S-curvature 
is in the following form, 

S = (n + 1)c(x)F + ry. 

(b) F is of almost isotropic S-curvature if c = c( x) is a scalar 
function and ry is a closed 1-form on M; 

(c) F is of isotropic S-curvature if c = c( x) is a scalar function and 
'f/ =0; 

(d) F is of constantS-curvature if cis a constant and ry = 0. 

A Finsler metric F is called a Berwald metric if its spray coefficients 

are quadratic in y = yi 8~, lx E TxM for any x E M. Thus Riemannian 
metrics are special Berwald metrics. The local structure of Berwald 
metrics has been completely determined [49]. 

It is known that for a Berwald metric, the S-curvature (with re­
spect to the Busemann-Hausdorff volume form) vanishes, S = 0. Thus 
Finsler metrics with vanishing S-curvature can be regarded as general­
ized Berwald metrics. 

There is another important quantity-the Landsberg tensor defined 
by 

(2) 

Finsler metrics with Ljkl = 0 are called Landsberg metrics. It is obvious 
that if Gi = ~fjk(x)yjyk are quadratic in y = yi 8~i lx E TxM for any 
x E M, then Ljkl = 0. Thus every Berwald metric is a Landsberg metric. 
Landsberg metrics can be regarded as generalized Berwald metrics. It 
is a long existing open problem whether or not any Landsberg metric is 
a Berwald metric. 

In projective geometry of Finsler manifolds, there is an important 
projectively invariant quantity-the Douglas tensor defined by 

. a3Ir 
D/kl = ayJaykayl, 
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where 
IIi ·- Gi 1 8Gm i 

·- - n + 1 {)ym y . 

In local coordinates, the following three conditions are equivalent 

D/kt = 0, 

Gi = ~rijk(x)yjyk + P(x, y)yi, 

DiJ := GiyJ- GJyi = A~m(x)ykylym. 

A Finsler metric is called a Douglas metric if D/kl = 0. The notion of 
Douglas metrics is first introduced in [6]. Douglas metrics are regarded 
as generalized Berwald metrics. 

Finally, we come to the most important quantity - the Riemann 
curvature defined by 

Rt ·= 2 8Gi - 82Gi m 2Gm 82Gi 8Gi acm 
k 0 oxk oxm{)yk y + {)ym{)yk - {)ym {)yk 0 

The flag curvature K = K(P, y) of a flag (P, y), where P = span{y, u} C 

TxM is defined by 
0 0 k 

K = YiJR\(x, y)u1 u 
F(x, y)29ij(X, y)uiuj- [YiJ(X, y)yiuj]2 · 

It is a natural problem to investigate Finsler metrics with special flag 
curvature properties. 

M. 
Definition 2.2. Let F = F(x, y) be a Finsler metric on a manifold 

(a) 

(b) 

(c) 

(d) 

(e) 

F is of scalar flag curvature if K = K(x, y) is independent of 
P containing y E TxM; 
F is of weakly isotropic flag curvature if K = 3ry IF + a, where 
"'is a 1-form and a= a(x) is a scalar function on M; 
F is of almost isotropic flag curvature if K = 3cx"' ym IF + a, 
where c = c(x) and a= a(x) are scalar functions on M; 
F is of isotropic flag curvature if K = a where a = a(x) is a 
scalar function on M; 
F is of constant flag curvature if K = a = constant. 

By Schur Lemma, in dimension n ~ 3, if F is of isotropic flag 
curvature, then it is of constant flag curvature. 

The 8-curvature is closely related to the flag curvature. 
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Theorem 2.3. ([16]) Let F be a Finsler metric of scalar flag curva­
ture on a manifold M. Suppose that the S-curvature is almost isotropic, 
S = (n + 1)cF + 1}, where c = c(x) is a scalar function and 17 = 1JiYi is a 
closed 1"form, then the flag curvature is almost isotropic in the following 
form 

K- 3Cx=Ym 
- F +a, 

where a= a(x) is a scalar function on M. 

Let F be a Finsler metric of scalar flag curvature on a manifold M. 
In [33], we find a sufficient and necessary condition on a non-Riemannian 
quantity for the flag curvature to be weakly isotropic. 

§3. (a:, {3)-metrics 

In Finsler geometry, it is in general very difficult to compute the 
curvatures of a Finsler metric. Some Finsler metrics are defined by some 
elementary functions, but their expressions of curvatures are extremely 
complicated so that one can not easily determine their values. 

There is a class of Finsler metrics defined by a Riemannian metric 
and a 1-form on a manifold, which is relatively simple with interesting 
curvature properties. More important, these metrics are "computable". 
Thus they first deserve our attention. 

Let a:= Jai1(x)yiy1 be a Riemannian metric and {3 = bi(x)yi be a 
1-form on ann-dimensional manifold M. Using a: and {3 one can define 
a function on T M as follows 

(3) F = o:¢(s), s- !!. 
Q; 

where¢= ¢(s) is a 0 00 positive function on an open interval ( -b0 , b0 ). 

The norm II.Bx II a of {3 with respect to a: is defined by 

II.Bxlla := sup ,B((x,y)) = Jai1(x)bi(x)bj(x). 
yET,M 0: X, Y 

In order to define F, {3 must satisfy the condition II.Bx II a < b0 for all 
xEM. 

To find a condition on the function¢ such that F in (3) is a Finsler 
metric, one computes the Hessian gij := ~ [F2 ]yiyi as follows, 

gij = paij + Pobibj + Pl(bio:j + bjo:i)- sp1o:io:j, 

where o:i := O:yi and 

p = ¢2- s¢¢', Po = ¢¢" + ¢' ¢', 
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P1 = -s(¢¢/' + ¢'¢') + ¢¢', 

where the functions are evaluated on s := f3 /a. By linear algebra, one 
gets 

Using the above formula, one can easily get the following 

Lemma 3.1. ([20]) The function F = a¢(!3/a) is a Finsler metric 
for any a= Jaijyiyi and any f3 = biyi with llf3xlla < bo if and only if 
¢ = ¢(s) is a positive c= function on ( -bo, bo) satisfying the following 
condition: 

(4) ¢(s)- s¢'(s) + (b2 - s2 )¢"(s) > 0, 

l,From ( 4), one can see that ¢ must satisfy 

¢(s)- s¢'(s) > 0, 

Some computations on the Hessian 9ij of (a, /3)-metrics are done in [37]. 

Definition 3.2. A Finsler metric F on a manifold Miscalled an 
(a,/3)-metric if it is expressed as F = a¢((3/a) with llf3xlla < b0 , where 
¢ = ¢(s) is a positive coo on (-b0 ,b0 ) satisfying (4). 

Let¢= 1 + s. The (a, /3)-metric defined by¢ is given by 

F =a+ (3. 

It is easy to verify that F is a Finsler metric if and only if llf3xlla < 
1 for all x E M. Such metric is called a Randers metric. General 
(a, /3)-metrics were first studied by M. Matsumoto [28] in 1972 as a 
direct generalization of Randers metrics. They have many applications 
in physics and biology(ecology) ([3][9][36]). The study of (a,/3)-metrics 
no doubt leads us to a better understanding on the geometric properties 
of Finsler metrics. 

In order to study the geometric properties of (a, /3)-metrics, one 
needs a formula for the spray coefficients of an (a, /3)-metric. Let 

S i . aih 8 j .= hj, 
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where "I" denotes the covariant derivative with respect to the Levi-Civita 
connection of a. We will denote r00 := riJYiYJ, s0 := s1yi, etc. Let Gi 
and (ji denote the spray coefficients of F and a, respectively, given by 

where (gii) := (~[F2]y'yJ) and (aii) := (ai1)- 1 . By a direct computa­
tion, one gets the following formula: 

i 
Gi (ji + aQsio + e{- 2Qaso +roo}~ 

(5) +W { - 2Qaso +roo }bi, 

where 

Q: 
¢' 

¢- s¢'' 

8: 
¢-s¢' ¢' 

·- -sw 
2((¢- s¢') + (b2 - s2)¢") ¢ ' 

\11: 
¢" 

2((¢- s¢') + (b2 - s2)¢")' 

where s := (3/a and b := llf3xlla· The formula (5) is given in [20] and 
[40]. A different version of (5) is given in [27]. 

The above formula (5) is very useful in computing curvatures of an 
(a, (3)-metric F = a¢((3/a). However, it is still difficult to simplify a 
curvature equation expressed in terms of a and (3, because the complex­
ity of ¢. A useful technique is to take a local coordinate system at x 
such that 

n 

(6) a= :l)yi)2, 
i=1 

Lets= (3ja. Then 
1 s -

Y - a 
- Jb2- s2 , 

where 
n 

a := 2::.: (y")2. 
a=2 
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One obtains a coordinate transformation (s, ua) -+ (yi) given by 

(7) 1 s -
Y - a 

- vb2- s2 , 

Then 
b 

a= a vb2- s2 , 
bs 

(3- a 
- vb2- s2 . 

If the curvature equation involves rij, Sij or their covariant derivatives, 
one needs the following expressions: 

81 = 0, 

where roo:= rabuaub, i'10 = r1aua and 810 = s1aua. Then the curvature 
equation can be reduced to the following form 

where <I>1 = <I>1(s,u) and <I>2 = <I>2(s,u) are polynomials in (ua). Thus 

This technique is first used in [42]. 

(8) 

Below are some important examples (cf. [43]). 

(i) ¢ = 1 + s. The metric defined by ¢ is a Randers metric given 
by 

F =a+ (3. 

We have 

Q = 1, 8 = -=-2 (.,...,1-~-s--,-) ' 
Thus the spray coefficients are given by 
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(ii) ¢ = ¢(s) satisfies 

(9) ¢(s)- s¢'(s) = (p + rs2)¢"(s). 

In this case, both 8 and 111 take the following simple forms 

e 

2(p + rs2 + (b2- s2)) · 

Note that the only unpleasant term in e is the·quotient ¢'I¢. 
For certain values of p and r, the solutions of (9) can be expressed 

in terms of elementary functions (cf. [43]). 

(a) If r = -1 and p = ±1, then 

{ 
v'f"=S2 + s arctan ( v'l~s 2 ) + cs, 

¢= 

if p=1 

V1 + s2 - s ln(s + v1 + s2) + cS, if p =-1. 

(b) If r = 1 and p = ± 1, then 

{
.J1 +. s2 + cs, 

¢= 

v'f"=S2 + cs, 

(c) If r = -1/2, p = ±1/2, then 

if p=1 

if p=-1. 

{
1 + s2 + cs, 

¢= 
ifp =1/2 

1- s2 + cs, ifp =-1/2. 

(d) If r = 1/2 and p = ±1/2, then 

{ 
1 + s arctan(s) + cs, 

¢= 

1 + s ln lfji + cs, 

if p =1/2 

if p =-1/2. 

(e) If r = -1/3 and p = ±1/3, then 

{ 
( 1 + !s2) v'f"=S2 + ~s arctan ( v'l~s2 ) + cs, 

¢-
( 1- !s2) V1 + s2 - ~S ln ( S + v'1 + s2) + cS, 

if p =1/3 

if p=-1/3. 
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(f) If r = 1/3 and p = ±1/3, then 

{
v'1 + 82 + .,;!:82 + c8, if p =1/3 

¢= 
~ 82 f I V .L - ::r - v'l- 82 + c8, i p =-1 3. 

(g) If r = -1/4 and p = ±1/4, then 

{
1 + 282 - !84 + c8, if p =1/4 

¢= 
1- 282 - !84 + cs, if p =-1/4. 

(h) If r = 1/4 and p = ±1/4, then 

{ 

2+3s2 3 t ( ) 2(1+82 ) + 28 arc an 8 + c8, 

¢= 
2-382 + 3 l fb+ 

2(1-82) 28 n V 1+8 cs, 

if p=1/4 

if p =-1/4. 

One can easily write down a formula for the (a, ,B)-metric defined by any 
of the above functions ¢. For example, 

,82 
F a±-+c,B, 

Q 

,82 1 ,84 
F n ± 2-;- - 3 a3 + c,B, 

F n + ,B arctan(~) + c,B, 

F Ja2 + ,B2- ,Bln [vr-n-;:-2-+n-,8=2 + .B] + c,B, 

F n+,Bln~ +c,B, 

F ( 1 + -2
1 .a:) J n 2 - ;32 + ~.B arctan ( .B ) + c,B, 

n 2 Jn2 _ ;32 

F (1- ~ ,82) Ja2 + ,82- ~,Bln [Jn2 + ,B2 + .B] + c,B 
2~ 2 Q , 

F 
2n2 + 3,82 3 ,B 
2(02 + ,82) n + 2 ,a arctan(;) + c,B, 

F 
2n2 -3,B2 3 ~ 
2(n2- ,B2) n + 2,Bln Y ~ + c,B. 
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For any of the above functions ¢, one can find a and j3 such that 
F = a¢((3/a) is of scalar flag curvature. 

§4. Volume forms of (a, (3)-metrics 

To compute the S-curvature, one should first find a formula for the 
Busemann-Hausdorff volume forms dVBH and the Holmes-Thompson 
dVHT· 

Proposition 4.1. ([19]) Let F = a¢(s), s = (3/a, be an (a, (3)­
metric on an n-dimensional manifold M. 

Let 

if dV = dVBH, 

if dV = dVHT· 

Then the volume form dV is given by 

dV = f(b)dVa, 

where dVa = Jdet(ai1 )dx denotes the Riemannian volume form of a. 

Proof. In a coordinate system, the determinant of 9ij := ~ [F2]y'yi, 

is given by 

First we take an orthonormal basis at a point x with respect to a so 
that 

j3 =by\ 

where b = llf3xlla· Then the volume form dVa = cradx at xis given by 

In order to evaluate the integrals 

Vol{ (yi) E Rn!F(x, y) < 1} = { dy = { dy, 
J{F(x,y)<l} J{a¢({3/a)<l} 

and 

{ det(gij )dy = { det(9ij )dy, 
J{F(x,y)<l} J{a¢({3/a)<l} 
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we take the coordinate transformation, 'ljJ: (s, ua) ___. (yi) given by (7): 

1 s -
Y - 0: 

- Jb2- s2 , 

F = o:¢((3/o:) = b¢(s) a. 
Jb2- s2 

and the Jacobian of the transformation 'ljJ is given by b2 (b2 - s 2)-312a. 
Then 

Therefore 

J0"' sin n- 2 ( t )dt 
IJBH = f"' sin"-2(t) IJa. 

Jo ¢(bcos(t))" dt 

Let 

(10) T(s) := ¢(¢- s¢')n- 2[(¢- s¢') + (b2 - s2)¢"] 

Then 
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By a similar argument, we get 

aHT _..!:._ { <jJ(stT(s)dy1 · · · dyn 
Wn J{F(x,y)<l} 

85 

1 Jb b2 (v'b2- s2)n 
nwn Vol(sn-2). -b (b2- s2)3/2 b T(s)ds 

J0" sinn-2(t)T(bcost)dt 

J0" sinn-2(t)dt 

Thus 
J0" sinn-2(t)T(bcost)dt 

aHT = fo" sinn-2(t)dt aa. 

This proves the proposition. Q.E.D. 

It is surprised to see that for certain ¢, dVTH = dVa. 

Corollary 4.2. Let F = a¢(s), s = (3/a, be an (a, (3)-metric on an 
n-dimensional manifold M. LetT= T(s) be defined in (10). Suppose 
that T - 1 is an odd function of s. Then dVT H = dVa. 

Proof Let cp(s) = T(s)- 1. By assumption, cp( -s) = -cp(s). It is 
easy to see that 1" sinn-2(t)cp(bcos(t))dt = 0. 

Thus 1" sinn-2(t)T(bcos(t))dt = 1" sinn-l(t)dt. 

This implies that aHT = 1 in the above special coordinate system at x. 
Then in a general coordinate system aHT =a a. Q.E.D. 

§5. Randers metrics of scalar flag curvature 

Randers metrics are the simplest (a, (3)-metrics. The spray coeffi­
cients of a Randers metric are given by (8). Then one can use (8) to 
compute the Ricci curvature and the Riemann curvature. On the other 
hand, it is one of important problems in Finsler geometry to study and 
characterize Finsler metrics of constant (or scalar) flag curvature. Thus 
it is natural to investigate Randers metrics first. 

Bao-Robles [11] [12] first observe that for a Randers metric F = a+(3 
on an n-dimensional manifold M, if the Ricci curvature is in the following 
form 

(11) Ric= (n- 1)aF2 , 
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where a = a(x) is a scalar function, then the 1-form {3 = bi(x)yi satisfies 
the following PDE: 

(12) roo+ 2sof3 = 2c(o? - {32 ), 

where cis a constant. The equation (12) is equivalent to a condition on 
the S-curvature, 

(13) S = (n + 1)cF, 

where c is a constant ( cf. [17]). 
In [11], Baa-Robles obtain another PDE on {3 which together with 

(12) characterizes Randers metrics of constant flag curvature (see also 
[12]). Independently, Matsumoto-Shimada obtain the same result ([31]). 
However, it is very difficult to solve these PDEs for a: and {3 to classify 
such metrics. 

Using Zermelo's navigation idea ([39][40]), one can obtain Randers 
metrics of constant flag curvature. The crucial idea is to express a Ran­
ders metric F = a:+ {3 in terms of a Riemannian metric h = Jhij ( x )yiyi 
and a vector field W = Wi 8~, by 

(14) F = .j>.h2 + W6 Wo w; i 
0 :=W;y' >. -T, . 

where Wi := hii Wi and 

>. := 1 - wi wi = 1 - h(x, W) 2 • 

Theorem 5.1. ( [13]) For a Randers metric F expressed in the form 
(14), it has constant flag curvature, K = k if and only if h has constant 
sectional curvature K = k + c2 and W satisfies 

(15) 

where c is a constant, Wo;o := Wi;jyiyi and the covariant derivatives 
DW = Wi;jdxi 0 dxi are taken with respect to h. 

When h has constant sectional curvature K = J.L, it is easy to solve 
(15) for W to obtain a complete list of local structure of Randers metrics 
of constant flag curvature. 

Theorem 5.2. ([13]) Let F = a:+ {3 be a Randers metric on a 
manifold M which is expressed in terms of a Riemannian metric h and 
a vector field W by (14). F has constant flag curvature if and only if at 
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any point, there is a local coordinate system in which h and W are given 
by 

(16) h = VIYI2 + JL(Ixi 2IYI 2 - (x, Y) 2) 
1 + JLixl2 ' 

(17) W = -2cJ1 + JLixl2 x + xQ + b + JL(b, x)x, 

where c and JL are constants with CJL = 0, Q = (q/) is an anti-symmetric 
matrix and a, b E Rn are constant vectors. In this case, the flag curvature 
is given by K = JL- c2 . 

In fact, without the condition on the flag curvature, (15) is equiv­
alent to (12) for any scalar function c = c(x) ([50]). Therefore (15) is 
equivalent to (13) for any scalar function c = c(x) by [17]. 

The expression (14) is a key to classify Randers metrics of constant 
flag curvature. It is a natural idea to use (14) to study Randers metrics 
of scalar flag curvature. 

Let F =a+ (3 be defined by (14). Let 

R 1 := WiRi1, R := WiR1, S1 := WiSii· 

Let Gi and C;i denote the spray coefficients ofF and h, respectively. We 
have the following 
(18) 

Gi = C;i- ~F2 (Si +Ri)- FSi0 + ~(yi/F- Wi)(2RoF- Roo- RF2 ), 

where Si := hiiS1 , Ri := hiiR1 , R 0 := Riyi and R 00 := Ri1yiyi. 
Formula (18) is due to C. Robles [35]. 

By a direct computation, one can obtain from (18) that 

(19) 
acm acm n + 1 { 2 -- = -- + -- 2FRo -Roo - F R}. 
8ym 8ym 2F 

Let dVF = CJFdx 1 · · · dxn and dVh = CJhdx1 · · · dxn denote the volume 
form ofF and h respectively. An important fact is that dVF = dVh, i.e., 
CJF = CJh· Since h is a Riemannian metric, we have 

(20) 
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Then it follows from (19) and (20) that 

(21) s = acm a ( ) aym - ym axm lnap 

(22) n2; 
1 { 2FRo- Roo- F 2R }. 

Let 

(23) 

Since IIWxllh < 1, the vector ~ := ~i 8~, lx E TxM can be arbitrary. 
Moreover, it is easy to verify that 

Then it follows from (22) that 

S _ n + 1 Rij~i~J 
F 2 hiJ~i~J . 

(24) 

By (24), one gets the following 

Lemma 5.3. ([50] [20]) Let F be a Randers metric F defined by 
{14) and c = c(x) be a scalar function on an n-dimensional manifold. 
S = (n + 1)cF if and only if 

(25) 

Note that (25) is equivalent to (15). 

In the following, we are going to discuss Randers metrics of scalar 
flag curvature and isotropic S-curvature. 

First we assume that a Randers metric F expressed in (14) has 
isotropic S-curvature, S = (n + 1)cF. By Lemma 5.3, W satisfies (25). 
Then the spray coefficients Gi in (18) are reduced to the following ex­
pression: 

(26) 

By the simplified expression (26), one can express the Riemann curvature 
in terms of h and W. Rewrite (26) as follows 



where 
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Qi := -FSio- ~F2Si + cFyi. 
2 

89 

The Riemann curvature R\ = R/k1(x,y)yiy1 ofF and the Riemann 
curvature R\ = R/k1(x)yiy1 of hare related by 

where "; " denotes the horizontal covariant differentiation with respect 
to h (cf.[41]). By a direct and lengthy argument, one can get 

(28) 

Let 

Rpi kq(yP- FWP)(yq - FWq) 

-FykRPi mq(YP- FWP)(yq- FWq)Wm 

+Ccx;Ym- c2 - 2cx"'Wm) { F2c5~- FFykYi}· 

R-i ·- R- i t:Pt:Q k .- p kq<., ., . 

It follows from (28) that for any scalar function J-L = J-L(x) on M, 

(29) 

where ~i := hij~i. 
From (29), one can easily prove the following 

Theorem 5.4. ([18]) Let F be a Randers metric on n-dimensional 
manifold M defined by {14). Suppose that S = (n+ l)cF where c = c(x) 
is a scalar function. Then F is of scalar flag curvature if and only if 
h is of sectional curvature K = J-L, where J-L = J-L(x) is a scalar function 
(=constant if n ~ 3 ). In this case, the flag curvature ofF is given by 

(30) 

where a:= J-L- c2 - 2cx"'Wm. 

Proof. Assume that F is of scalar curvature, then by Theorem 2.3 
above, the flag curvature of F is given by 
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where u = u(x) is a scalar function on M. This is equivalent to the 
following equation: 

(31) 

Plugging (31) into (29) yields 

R\- Jl(h2c5t- ~k~i) - h +\Vo ~k{ RiP- /-l(Ji2c5~- ~P~i)} WP = 0, 

where /-l := u + c2 + 2Cxm wm. Immediately, one obtains 

(32) 

Thus h has sectional curvature K = Jl(x). By the Schur lemma, Jl = 
constant in dimension n 2': 3. 

Conversely, if h has sectional curvature K = Jl(x), then (32) holds. 
By (29) again, we get (31) with u = Jl- c2 - 2cxm Wm. Thus F is of 
scalar curvature and its flag curvature is given by (30). Q.E.D. 

If a Riemannian metric h has constant curvature K = Jl, then one 
can easily solve (25) for W and obtain the list of local structures of 
Randers metrics of scalar flag curvature and isotropic S-curvature. 

Theorem 5.5. ([18]) Let F = a + {3 be a Randers metric on a 
manifold M of dimension n 2': 3, which is expressed in terms of a Rie­
mannian metric h and a vector field W by (14). Suppose that F is of 
isotropic S-curvature S = ( n + 1 )cF. Then it is of scalar flag curva­
ture, K = K(x, y), if and only if at any point, there is a local coordinate 
system in which h, c and W are given by 

(33) 

(34) 

(35) 

h = VIYI2 + Jl(lxi2IYI2- (x, Y)2) 
1 + f-llxl2 ' 

c= 
c5 + (a, x) 

J1 + f-llxl2 

W = -2{(c5J1 + f-llxl 2+(a,x))x- lxl2a }+xQ+b+f.l(b,x)x, 
J1 + f-llxl2 + 1 

where c5, Jl are constants, Q = (q/) is an anti-symmetric matrix and 
a, b E Rn are constant vectors. In this case, the flag curvature is given 
by (30}. 
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Since locally projectively flat Randers metrics are always of scalar 
flag curvature, Theorem 5.5 generalizes the main result in [16]. Since 
every Randers metric of constant flag curvature must have constant S­
curvature, the class of Randers metrics with isotropic S-curvature and 
scalar flag curvature contains all Randers metrics of constant flag cur­
vature. 

Let us take a look at a special example. In (33)-(35), let J.L = 0, J = 
0, Q = 0 and b = 0. We get 

h = IYI, c = (a,x), W = -2(a,x)x + lxl 2a. 

The Randers metric F = o: + f3 is given by 

F 
j(1-lal 2 lxi 4 )IYI 2 + (lxl 2 (a,y)- 2(a,x)(x,y)) 2 

1- lal 2 lxl 4 

lxl 2 (a, Yl- 2(a, xl(x, Yl 
1- lal 2 lxl4 

The S-curvature and the flag curvature are given by 

S = (n + 1)(a,x) F, 

Clearly F is not locally projectively flat because f3 is not closed. This 
example is constructed in [40]. 

According to Theorem 2.3, for a Finsler metric F of scalar flag cur­
vature on an n-dimensional manifold M, if the S-curvature is isotropic, 
S = (n + 1)cF, where c = c(x) is a scalar function on M, then the flag 
curvature must take the form 

3c ym 
(36) K- _m_ +a - F . 

A natural question arises: does (36) imply that the S-curvature is iso­
tropic? The answer is affirmative for Randers metrics. 

Let F = o: + f3 and let 

where bi := ai1b1. By a direct and lengthy computation, we get the 
following formula for the Ricci curvature: 

Ric 

(37) 
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where Ric denotes the Ricci curvature of a. The formula (37) is due to 
Bao-Robles ([12], p 220). 

Lemma 5.6. ([46]) Let F = a+f3 be a Randers metric on a manifold 
M. Then the Ricci curvature is in the form 

(38) { 3Cx"'Ym } 2 Ric= (n- 1) F + (j F , 

where c = c(x) and (j = (j(x) are scalar functions, if and only if 

Ric (n- 1){ ((j- 3c2 )a2 + ((j + c2 )j32 + (3co- co)/3- SolO- s6} 
(39) +2too + a 2tmm 

(40) s01 m = n; 1 { 3co +co+ 2((j + c2 )!3 + 4cso + 2to} 

where c = c( X) is a scalar function on M. 

Note that (41) is equivalent to that S = (n + 1)cF. Then one can 
easily prove the following 

Theorem 5.7. ([46]) Let F = a+ j3 be a Randers metric on a 
manifold M and (h, W) be its navigation representation (14). Then the 
flag curvature K ofF is in the form {36) if and only if the sectional 
curvature K of h and the vector field W satisfy 

(42) 

( 43) 

where J-l = JL(x) and c = c(x) are scalar functions on M. In either case, 
the scalar functions are related by 

c- c =constant, (j = JL- c2 - 2cxm wm. 

Q.E.D. 
By Theorem 5. 7 and Theorem 5.5, we can classify n-dimensional 

Randers metrics (n ~ 3) with flag curvature in the form (36). 

For the Ricci curvature, we have the following 
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Theorem 5.8. ([46]) Let F = a+ {3 be a Randers metric on a 
manifold M and ( h, W) be its navigation representation. Then the Ricci 
curvature ofF is in the form 

(44) { 
3Cymym } 2 

Ric = ( n - 1) F + a F , 

where c = c(x) and a = a(x) are scalar functions, if and only if the 

Ricci curvature Ric of h and the vector field W satisfy 

( 45) 

( 46) 

where J-1, = J.l(x) and c = c(x) are scalar functions on M. In this case, 
the scalar functions are related by 

c- c =constant, a= J.i- c2 - 2cx"'Wm. 

§6. (a, {3)-metrics of Landsberg type 

It is a long existing open problem in Finsler geometry whether or 
not every Landsberg metric is of Berwald type. Since (a, {3)-metrics 
are "computable" metrics, it is natural to investigate this problem on 
(a, {3)-metrics. 

Let F = a¢({3/a) be an (a, {3)-metric. If {3 is parallel with respect 
to a (rij = 0 and Sij = 0), then by (5), Gi = {;i are quadratic in y. Thus 
F is a Berwald metric. The converse is true too ([23][29]). In fact, one 
can show that every Landsberg (a, {3)-metric must satisfies that Bij = 0 
and rij = 0. Thus it is a Berwald metric. 

By a simple computation, one gets 

( 47) 

By (2), (5) and (47), one gets the following formula for Ljkl· 
( 48) 

Ljkl =- 6~5 {hjhkCz + hjhzCk + hkhzCj + 3Ejhkz + 3Ekhjl + 3Ezhkz }, 
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where 

hi : o:bj - syj 

hjk : o:2aik - YiYk, 

Cj : (A1roo + A2o:so)hj + 3AJi 

Ej : (B1roo + B2o:so)hj + 3J1-Ji 

Ji: o:2(sjo + rrjo + Ilo:si)- (rroo + Ilo:so)Yi 

A1 : 2~2 {- 2D.Q111 + 3(Q- sQ')Q" + 3(b2 - s2)(Q") 2 }, 

A2: ~2 { 2D.QQ111 + 3D.Q'Q"- 3QQ"( Q- sQ' + (b2 - s2)Q") }, 

B1 : 2~2 { (Q- sQ') 2 + ( 2(s + b2Q)- (b2 - s 2)(Q- sQ') )Q" }, 

B2: ~2 {- (sD.+(s+b2Q))QQ" 

+(Q- sQ') ( D.Q'- (Q- sQ')Q) }, 

A: -Q", 

JJ.: -~(Q- sQ'), 

r: 
1 
D. 

II: 
Q 

-D.' 

Q: 
¢/ 

¢- s¢' 

p: ¢(¢- s¢') 

D.: 1 + sQ + (b2 - s2)Q'. 

Let 

J: biJj = o:{ o:(so + rro)- (rroo + Ilo:so)s }· 

C: . 2 2 
lYCj = (A1roo + A2o:so)o:(b - s ) + 3AJ, 

E: . 2 2 
b1 Ej = (B1roo + B2o:so)o:(b - s ) + 3JJ.J. 

It follows from the definitions of Ci and Ei that 

(49) 

(50) 

o:(b2 - s2)Ci - Chi 

o:(b2 - s2)Ej - Ehi 

3A{ o:(b2 - s2)Ji- Jhj }, 

3J1.{ o:(b2 - s2)Jj- Jhj }· 
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One can easily prove the following 

Lemma 6.1. ([42]) Assume that the dimension n 2: 3. Then the 
following two conditions are equivalent. 

(i) Ljkl = 0, 
(ii) Cj = 0 and Ej = 0. 

By the above lemma, one can show the following 

Theorem 6.2. ([42]) Let¢= cjJ(s) be a C00 positive function on an 
interval I= ( -b0 , b0 ). Suppose that¢ satisfies {4), but¢=/=- k2v'1 + k1s2 

on I for any constants k1 and k2 > 0. For an (a, (3)-metric F = a¢((3/a) 
with 0 < b(x) := ll/3xlla < b0 on a manifold of dimension n 2: 3, F is a 
Landsberg metric if and only if (3 is parallel with respect to a (i.e. F is 
a Berwald metric). 

One can use (ii) in Lemma 6.1 to prove Theorem 6.2. The problem is 
how to deal with the terms involving ¢((3/a) in simplifying the equation 
Ej = 0. To overcome this difficulty, we change the y-coordinates (yi) 
at a point to "polar" coordinates (s, ya), where i = 1, · · · , n and a = 
2, · · · , n. Fix an arbitrary point x E M. Take an orthonormal basis { ei} 
at x such that 

n 

a= L(yi)2, 
i=l 

Here b = ll/3xlla· Take a coordinate transformation (s, ua) ----> (yi) given 
by (7). By a direct computation E1 = 0 is equivalent to the following 
two equations: 

(b2 - s2){ ( 2sB1 + 3J.Lr)r10 + (b2B2 + 3J.L )s10} 

(52) -3sJ.L{ srr10 + (b2II- s)s10} = 0. 

Ea = 0 is equivalent to the following two equations: 

s{ ((b2 - s2)B1- 3sJ.Lr)roo + s(sBt + 3J.Lr)rua2}ua 
(53) -3b2J.L{r(roaa2 -fooua) -soaa2 } =0. 
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s{ (b2 - s 2) [ ( 2sB1 + 3J,tf )r10 + (b2 B2 + 3J,t )s10] 

-3J,ts [rsr10 + (b2II- s )s10 J }ua 

(54) = 3J,tb2{ [rsr1a + (b2II- s)sla]a2 - [rsr10 + (b2II- s)s10]ua }· 

Equation (53) implies (51) and (54) implies (52). But we need (51) 
and (52) to simplify (53) and (54). Similarly, we get four equations for 
Cj = 0 by replacing Bi and J-t by Ai and A respectively. 

By the above equations, one can show the following 

Proposition 6.3. (n 2': 3) Assume that ¢> i= k1 v1 + k2s 2 for any 
constants k1 and k2 . Assume that (3 is parallel with respect to a. Then 
F = a¢>((3/a) is a Landsberg metric if and only if (3 satisfies 

(55) Sij = b12 (biSj- bjsi), 

where k = k ( x), c = c( x) and d = d( x) are scalar functions, and 1> 
satisfies 

(57) { (b2 - s 2)A1 - 3sAr }k + { s 2 A1 + 3Afs }c = 0, 
(58) { (b2 - s2)B1 - 3J,tsf }k + { s2 B 1 + 3J,tfs }c = 0. 

If so i= 0, then 1> = ¢(s) satisfies three additional ODEs: 

(59) 

(60) 

(61) 

One can actually solve the above ODE's for ¢. The key idea is as 
follows. Since (3 is not parallel, (57) and (58) hold for (k, c) i= (0, 0). 
Then 

(62) 
( Q - sQ')Q"' + 3s( Q") 2 

MAl - ABl = 3(1 + sQ + (b2 - s2)Q') = 0. 
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The numerator of the equation (62) is independent of the norm of ,13! 
More surprisingly, it is solvable. If we impose the regularity on Q at 
s = 0, we obtain the following general solution 

Q = C1 \/1 + C2s2 + C3S, 

where c 1 , c2 and c3 are constants with c 1 -1- 0. Then plugging it into the 
equations in Proposition 6.3, one can completely determine the coeffi­
cients ci, that is, c2 = -1 /b2. Thus b = constant. Since ¢ = ¢( s) is coo 
on ( -b0 , b0 ), we conclude that b = b0 • Then 

(63) 

However, the function F = a¢(,13/a) is always singular in the directions 
y E TxM with l,13(x, y)l = b0 a(x, y). Therefore a regular (a, ,13)-metric 
F = a¢(,13/a) is a Landsberg metric if and only if ,13 is parallel with 
respect to a. In this case, it is a Berwald metric. This proves Theorem 
6.2. 

The above argument also gives us singular Landsberg (a, ,13)-metrics. 
Let ¢ = ¢(s) be a positive C 00 on ( -b0 , b0 ) satisfying (4). For any 
Riemannian metric a = J ai1yiy1 and any 1-form ,13 = biyi on an n­
dimensional manifold M, the function F := a¢(,13/a) has the following 
properties: (i) F(x,y) > 0 and (ii) gij = ~[F2]yiy1(x,y) > 0 for any 
y E TxM with l,13(x, y)l < b0 a(x, y). But F might be singular or even 
not defined for y E TxM with l,13(x, y)l ;::: b0 a(x, y). Such function is 
called an almost regular (a, ,13)-metric. 

Theorem 6.4. ([42]) (n;::: 3) Let F = a¢(,13/a) be an almost regular 
(a, ,13)-metric where ¢ = ¢(s) is a function on ( -b0 , b0 ) such that¢ -l­
k2V/1 + k1s 2 for any constants k1 and k2 > 0. Then F is a Landsberg 
metric if and only if ,13 is parallel with respect to a (hence F is a Berwald 
metric) or 

(64) b(x) = bo. 

(65) 

(66) 

(67) 



98 S. Bacs6, X. Cheng and Z. Shen 

where cb c 3 , c4 are constants with c 1 =F 0 and c4 > 0 such that 

and k = k(x) is a scalar function. Moreover, F is not a Berwald metric 
if and only if k =F 0. 

It follows from Theorem 6.4 that a regular (a, ,B)-metric is a Lands­
berg metric if and only if it is a Berwald metric. The third author 
claimed this in the first version of [42] in May 2004. But there is a 
computational mistake in an expression for Ej. After two years, G.S. 
Asanov discovered that his metrics arising from Physics actually are 
Landsberg metric but not Berwaldian [1][2]. Then the third author 
corrected the expression for E1 and proved the claim for regular (a, ,8)­
metrics. Meanwhile he characterizes almost regular Landsberg (a, ,8)­
metrics and obtains a two-parameter family of Landsberg (a, ,8)-metrics 
including Asanov's examples. 

Below is a simple example. 

Example 6.5. At a point x = (x, y, z) E R3 and in the direction 
y = (u,v,w) E TxR3 , define a= a(x,y) and ,8 = ,B(x,y) by 

a: Ju2 + e2kx(v2 + w2) 

,8: u 

where k =F 0 is an arbitrary constant. Then a and ,8 satisfy {66) and 
{67) with b = II.Bxllo = 1. Let 

Then F is a Landsberg metric but not a Berwald metric. This metric is 
singular in two directions y = (±1, 0, 0) E TxR3 at any point x. 

The reader is referred to [22] for the early discussion on Landsberg 
(a, ,8)-metrics in dimension two. Recently, Li and the third author have 
given a complete characterization of almost regular Landsberg (a, ,8)­
metrics and shown that they are all Berwaldian. Further, they have 
characterized weakly Landsberg (a, ,8)-metrics and shown that there are 
almost regular (a, ,8)-metrics which are weakly Landsbergian but not 
Berwaldian ( [25]). 
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§7. (a, ,6)-metrics of Douglas type 

Douglas metrics can be viewed as generalized Berwald metrics. What 
makes them special is that being a Douglas metric is a projective prop­
erty, that is, if a Finsler metric F has the same geodesics as a Douglas 
metric, then F is a Douglas metric. 

In 1997, the first author and M. Matsumoto proved the following 

Theorem 7.1. ([6]) A Randers metric F = a+ ,6 is a Douglas 
metric if and only if ,6 is closed. 

Proof From (8), we have 

(Giyi _ Giyi) + (Qiyi _ Qiyi) 

(Giyi- Giyi) + a(si0 yi- sjoYi), 

where (}i denote the spray coefficients of a and Qi = asi0 . Thus Giyi­
Giyi are homogeneous polynomials in (yi) of degree three. 

Assume that F is a Douglas metric. Then the terms on the left side 
are homogeneous polynomials in (yi) of degree three. Note that a is 
irrational in (yi), one concludes that the coefficients of a must be zero, 
namely, 

(si 0yi- si0 yi) = 0. 

Then it follows that si 0 = 0. That is, ,6 is closed. 
Conversely, if ,6 is closed, then Qi = 0 in (8). Therefore, from (8), 

are homogeneous polynomials in (yi) of degree three. Hence, F is a 
Douglas metric. Q.E.D. 

For a general (a, ,B)-metric F = a¢(,6/a), it follows from (5) that 

Giyi- Giyi = (}iyi- (}iyi + aQ(sioYj- sjoYi) 

(68) +\II {- 2Qso +roo }(biyi- biyi). 

In 1989, M. Matsumoto introduced an (a, ,B)-metric F = a2 /(a- ,6) 
as a realization of P. Finsler's idea " a slope measure of a mountain with 
respect to a time measure". This metric is called Matsumoto metric. 
By (68), one can show the following 

Proposition 7.2. ([7][27]) A Matsumoto metric F = a 2 /(a- ,6) 
is Douglas metric if and only if ,6 is parallel with respect to a. In this 
case, F is a Berwald metric. 
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Proposition 7.3. ([51]) The exponential metric F = aexp(f3/a) + 
c/3 is a Douglas metric if and only if f3 is parallel with respect to a. In 
this case, F is a Berwald metric. 

The above two propositions show that the Matsumoto metric and 
the exponential metric are very "projectively hard". These metrics 
might have no good flag curvature properties. 

It is natural to consider more general (a, (3)-metrics F = a¢(s), 
where¢= ¢(s) satisfies (9), i.e., 

(69) ¢- s¢' = (p + rs2)¢", 

It is easy to verify that if f3 satisfies 

(70) 

where T = T(x) is a scalar function, then F is a Douglas metric. Several 
people have shown that the converse is true too for some specific (a, (3)-

metrics. For example, F = a ± ~ + c/3 is a Douglas metric if and only 
if 

(71) 

where T = T(x) is a scalar function. This generalizes a theorem in 
([7][27]). The Finsler metric F = a+ (32 fa was first proposed in [27]. 
Another example is that F =a± 2~- i ~: + c/3 is a Douglas metric if 
and only if 

(72) b.l.- !_{(±1+4b2)a·· -5b·b·} 
'J - 2 >J ' J ' 

where T = T(x) is a scalar function. The above two examples show 

that F =a±~ + c/3 and F =a± 2~ - -!~ + c/3 are "projectively 
soft". Most recently, B. Li and the third author have just completely 
characterized all (a, (3)-metrics of Douglas type using a result from [44]. 
See Theorem 8.4 below. 

Theorem 7.4. ([26]) Let F = a¢(s), s = (3ja, be an (a, (3)­
metric on an open subset U in the n-dimensional Euclidean space Rn 
(n ~ 3}, where a = Jaij(x)yiyi and f3 = bi(x)yi =f. 0. Suppose that 
the following conditions: (a) f3 is not parallel with respect to a, (b) 
¢=f. k1 .JI + k2s2 + k3s for any constants k1, k2 and k3, and (c) db =f. 0 
everywhere or b = constant on U. Then F is a Douglas metric on U if 
and only if the function ¢ = ¢( s) satisfies 

(73) { 1 + (k1 + k2s2)s2 + k3s2}¢"(s) = (k1 + k2s2){ ¢(s)- s¢'(s) }, 
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and /3 satisfies 

(74) 

where T = r(x) is a scalar function on U and k1, k2 and k3 are constants 
with (k2, k3) =1- (0, 0). 

§8. Projectively fiat (a, /3)-metrics 

It is Hilbert's Fourth Problem in the regular case to study and char­
acterize Finsler metrics on an open domain U c Rn whose geodesics are 
straight lines. Finsler metrics with this property are called projectively 
fiat metrics. 

It is easy to see that a Finsler metric F = F(x, y) on an open subset 
U c Rn is projectively flat if and only if the spray coefficients are in the 
following form 

Gi = Pyi, 

where P = P(x, y) is a positively homogeneous function of degree one 
in y. In 1903, G. Hamel found a system of partial differential equations 
that characterize projectively flat metrics F = F(x, y) on an open subset 
U C Rn. That is, 

(75) 

A natural problem is to find projectively flat metrics by solving (75). Ac­
cording to the Beltrami Theorem, a Riemannian metric F = V9ij(x)yiyi 
is projectively flat if and only if it is of constant sectional curvature. 
Thus this problem has been solved in Riemannian geometry. However 
for Finsler metrics, this problem is far from being solved. In this section, 
we shall discuss some projectively flat ( o:, /3)-metrics. 

The Funk metric on the unit ball Bn C is given by 

(76) 

where y E TxBn ~ Rn. Here 1·1 and ( , ) denote the standard Euclidean 
norm and inner product. By a direct computation, one can verify that 
the Funk metric is projectively flat on Bn. The Funk metric has a very 
important curvature property: the flag curvature K = -1/4. 

Note that the Funk metric 8 on Bn is a special Randers metric 
expressed in the form 

(77) 
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where 

(78) /3- (x, y) 
- 1-lxl2. 

Thus it is natural to investigate projectively flat Randers metrics with 
constant flag curvature. 

First we have the following 

Theorem 8.1. A Randers metric F = a+ (3 on an open subset 
U C Rn is projectively flat if and only if a is projectively flat and (3 is 
closed. 

The proof is straight forward using Theorem 7.1. 

In [38], it is proved that a Randers metric on a manifold is locally 
projectively flat with constant flag curvature if and only if it is locally 
Minkowskian or up to a scaling and reversing, it is locally isometric to 

where a is defined above and !3a is given by 

/3 ·- (x, y) + (a, y) 
a .- 1 - lxl2 1 + (a, x)' 

where a E Rn is a constant vector with lal < 1. The metric 8a is 
projectively flat with K = -1/4. 

L. Berwald ([4]) constructed a projectively flat metric with zero flag 
curvature on the unit ball Bn, which is given by 

B _ h/(1 -lxi2)IYI 2 + (x, Y)2 + (x, y) )2 

- (1-lxi2)2J(1-Ixi2)IYI2 + (x,y)2 ' 

where y E TxBn = Rn. Berwald's metric can be expressed in the form 

(79) B = (.M + A/3)2 =A (a +/3)2 
Act a ' 

where a and /3 are defined in (78) and A := 1/(1 - lxl2). 
In [32], it is shown that the following metric Ba on Bn C Rn is 

projectively flat with K = 0. 

(80) 
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where Aa := (1 +(a, x) )2 /(1- lxl 2 ) and a ERn with Ia! < 1. 

The above discussion leads us to study the following metric on a 
manifold M, 

(81) 

where a = Jai1(x)yiy1 is a Riemannian metric and {3 = bi(x)yi is a 
1-form on M. It is known that F = (a+ {3) 2 ja is a Finsler metric if 
and only if b(x) := llfJxlla < 1 at any point x EM. A natural question 
arises: is there any other projectively flat metric in the form (81) with 
constant flag curvature? 

Theorem 8.2. ([47]) Let F = (a+ {3) 2 ja be a Finster metric on a 
manifold M. F is projectively fiat if and only if 

(i) bilj = 2T{(~ + b2 )aij- ~bibj}, 
(ii) the spray coefficients (Ji of a are in the form: (Ji = 8yi -Ta2 bi, 

where b := llfJxlla, bill denote the covariant derivatives of {3 with respect 
to a, T = T(x) is a scalar function and e = ai(x)yi is a 1-form on M. 

In [32], it has been shown that if a and {3 satisfy the conditions (i) 
and (ii), then F = (a+ {3) 2 ja is locally projectively flat. Theorem 8.2 
asserts that the converse is true too. 

By Theorem 8.2, we can completely determine the local structure of 
a projectively flat Finsler metric Fin the form (81) which is of constant 
flag curvature. 

Theorem 8.3. ([47]) Let F = (a+ {3) 2 ja be an (a, {3)-metric on 
a manifold M. Then F is locally projectively fiat with constant flag 
curvature if and only if one of the following conditions holds 

(a) a is fiat and {3 is parallel with respect to a. In this case, F is 
locally Minkowskian; 

(b) Up to a scaling on x and a scaling on F, F is locally isometric 
to Ba in (80}. 

In either case (a) or (b), the flag curvature ofF must be zero, K = 0. 

Below is an outline of the proof of Theorem 8.3. By imposing the 
curvature condition that the flag curvature be constant, one first shows 
that the flag curvature must be zero, K = 0. If T = 0, then F is locally 
Minkowskian. In the case when T f= 0, one gets that 

(82) 
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Then we show that T/3 is closed. Thus there is a local scalar function p = 
p(x) such that T/3 = !dp and T = ce-P for some constant c. Immediately, 
one can see that a := e-Pa is projectively flat, hence a is of constant 
curvature K = J-L by the Beltrami theorem. The constant J-L must be 
nonpositive. By choosing the projective form of a, one can solve (82) 
for p. Then one can determine a and {3. The detailed argument is given 
in [47]. 

The reader is referred to [14], [48],[52] and [51] for results on other 
special (a, /3)-metrics. 

Recently the third author has characterized all projectively flat 
(a, {3)-metrics. 

Theorem 8.4. ([44]) Let¢:= ¢(s), -b0 < s < b0 , be a positive c= 
function satisfying (4). Let F = a¢(s), s = f3/a, be an (a, !3)-metric 
on an open subset U in then-dimensional Euclidean space Rn (n 2:: 3}, 
where a= Jaij(x)yiyi and f3 = bi(x)yi =f. 0. Suppose that the following 
conditions: 

(a) f3 is not parallel with respect to a, 
(b) ¢=f. k2JI + k1s2 + k3s for some constants k1 , k2 and k3 with 

k2 > 0, and 
(c) the norm b(x) := llf3xlla satisfies either db =f. 0 everywhere or 

b = constant on U. 

Then F is projectively fiat on U if and only if 

(83) { 1 + (c1 + c2s2)s2 + c3s2 }¢"(s) = (c1 + c2s2){ ¢(s)- s¢'(s) }. 

where T = T(x) is a scalar function on U and c1, c2 and c3 are constants 
with (c2, c3) =f. (0, 0). 

Let c1 = 1/p, c2 = 0 and c3 = (r-1)/p, where p and rare constants 
with p =f. 0. Then (83) becomes 

(86) ¢(s) -s¢'(s) = (p+rs2)¢"(s). 

Projectively flat (a, /3)-metrics F = a¢({3/a) with ¢ = ¢(s) satisfying 
(86) were first studied by the third author in [43]. He finds a sufficient 
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condition on f3 under which F = a¢(f31a) is projectively flat. That is, 
if¢ satisfies (86) and a and f3 satisfy 

(87) 

(88) 

2T{ (p + b2 )aij + (r- 1)bibj} 

~yi- Ta2bi, 

where~ = ~i(x)yi is a 1-form, then F = a¢(f31a) is projectively flat. 
Later on, the second author and Li prove that (87) and (88) are also 
necessary conditions for F = a¢(f31a) to be projectively flat provided 
that ¢ = ¢( s) is analytic in s. 

Explicit examples can be constructed. 

Example 8.5. ([43]) Let¢= ¢(s) be a function satisfying (4) and 
(86) with pi= 0. Let 

1 { ry)xl 2 } (89) h := cl + (a, x) + , 
y'1 + Mlxl2 1 + y'1 + Mlxl2 

and let p = p( t) be given by 

if r = 0 

(90) 

if r i= 0 

where 17 and Ci are constants (C2 > 0) and a E Rn is a constant vector. 
Define 

where 
VIYI2 + M(lxi2IYI 2 - (x, Y) 2) a - --'--C:...:....--'---'--'---7-~--'---'-'-'-----'-

~-' - 1 + Mlxl 2 · 

Then a and f3 satisfy (87) and (88) with 

Thus the Finsler metric F = a¢((3 I a) is projectively fiat. 

Using Theorem 8.4, one can classify locally projectively flat (a, (3)­
metrics F = a¢((3 I a) of constant flag curvature. Roughly speaking if F 
is not trivial, then¢= v1 + ks2+cs or¢= (v1 + ks2+cs) 2lv1 + ks2 . 

See [24] for more details. 
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§9. (a, ,6)-metrics with isotropic S-curvature 

The S-curvature is an important geometric quantity. It interacts the 
flag curvature in a delicate way. This stimulates our interest in Finsler 
metrics with special S-curvature property. Our goal is to characterize 
(a, ,6)-metrics with isotropic S-curvature. 

Let¢= ¢(s) be a positive C 00 function on ( -b0 , b0 ). For a number 
bE [0, b0 ), let 

(91) <I>:= -(Q- sQ'){ n~ + 1 + sQ}- (b2 - s2)(1 + sQ)Q", 

where~:= 1 + sQ + (b2 - s2)Q' and Q := ¢' /(¢- s¢'). 
Let F = a¢(,6/a) be an (a, ,B)-metric on ann-dimensional manifold 

M, where a = Jaij(x)yiyJ is a Riemannian metric and ,6 = bi(x)yi 
is a 1-form. Let Gi and (;i denote the spray coefficients of F and a 
respectively. Gi are related to (;i by (5). To compute the S-curvature 
of F, we need the following identities: 

~ = ~{bm-SYm}, 
aym a a 

aa Ym 
aym a 

acm a ( ) 
aym = ym axm lnaa . 

Using the above identities, we obtain 

acm m a ( ) -1 <I> 
aym = y axm lnaa + 2'll(ro +so)- a 2~2 (roo- 2aQso), 

where <I> is given in (91) with b = ll,6xlln· 
Let dV = a-dx denote the volume form of a. By Proposition 4.1, 

dV = adx = f(b)aadx. Thus 

(92) 

m a (1 ) f'(b) m ab m a ( ) 
y axm na = f(b) y axm + y axm lnaa . 

m ab 
y axm 

ro +so 
b 

Then the S-curvature is given by 

{ f'(b)} -1 <I> 
(93) S = 2'll- bf(b) (ro +so)- a 2~2 (roo- 2aQso). 
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Using (93), we can prove the following 

Theorem 9.1. ([19]) Let F = a¢(s), s = /3/a, be an (a, /3)-metric 
on a manifold and b := ll/3xlla· Suppose that¢ i- k1 )1 + k2s2 + k3 s for 
any constants k1 > 0, k2 and k3. Then F is of isotropic S-curvature, 
S = (n + l)cF, if and only if one of the following holds 

( i) /3 satisfies 

(94) rj + Sj = 0 

and ¢ = ¢( s) satisfies 

(95) <I> = 0. 

In this case, S = 0. 
(ii) f3 satisfies 

(96) 

(97) 

(iii) 

(98) 

Sj = 0, 

where E = c( x) is a scalar function, and ¢ = ¢( s) satisfies 

¢!::.2 
<I>= -2(n + l)k-2--2 , 

b - s 

where k is a constant. In this case, S = (n + l)cF with c = kE. 
f3 satisfies 

rij = 0, Sj = 0. 

In this case, S = 0, regardless of the choice of a particular ¢. 

It is easy to see that (98) implies (96), while (96) implies (94). The 
condition (94) is equivalent to that b := ll/3xlla =constant. Thus (95) 
and (97) are independent of x EM. 
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