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Curvature properties of (o, 3)-metrics

Sandor B4csé!, Xinyue Cheng? and Zhongmin Shen?®

Abstract.

(a0, B)-metrics form a rich class of computable Finsler metrics.
Many («, 3)-metrics with special curvature properties have been found
and discussed. They play an important role in Finsler geometry. In
this article, we introduce the recent developments in the study of (a, 5)-
metrics.

§1. Introduction

In the past several years, we witness a rapid development in Finsler
geometry. Various curvatures have been studied and their geometric
meanings are better understood. This is partially due to the study of a
special class of Finsler metrics. The special Finsler metrics we are going
to discuss are expressed in terms of a Riemannian metric a = \/a;;y'y?
and a l1-form 8 = b;y'. They are called (a, 3)-metrics. The simplest
(o, B)-metrics are the Randers metrics F' = a + 8. Thus more intensive
study has done on Randers metrics than other metrics. For example,
a complete list of local structures of Randers metrics of constant flag
curvature has been given in [13] recently. This motivates people to
study more general (o, §)-metrics. In this article, we will introduce the
recent development of («, 3)-metrics with special curvature properties.
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§2. Preliminaries

There are two important volume forms in Finsler geometry. One
is the Busemann-Hausdorff volume form and the other is the Holmes-

Thompson volume form.
For a Finsler metric F = F(z,y) on an n-dimensional manifold M,
the Holmes-Thompson volume form dVyr = ogy(x)dzx is given by

1
ouT(T) = —/ det <gij(x, y))dy,
Wn J{F(z,y)<1}
and the Busemann-Hausdorff volume form dVp = opg(z)dz is given by

Wn,

~ Vol{(y®) € BMF(z,y) < 1}

opu(x)

Here

wn: = Vol(B"(1)) = —leVol(S"_l)
= Lyoysrz) / sin™~2(t)dt.
n 0

When F = /gi;(z)y*y? is a Riemannian metric, both volume forms
reduce to the same Riemannian volume form

dVey = dVyr = wdet(gi]-)d:z:.

For a Finsler metric, the geodesics are characterized by a system of
2nd ODEs: ‘ A
'+ 2G*(z,2) =0,

where
1

G = Zgil{[Fz]z"'y‘ym - [F2]zl}'
G* define a global vector field G := yia%i —2G¢ aayi on TM. G is called
the spray of F’ and the local functions G* are called the spray coefficients
of F.

For a Finsler metric F' and a volume form dV = o(z)dz on an
n-dimensional manifold M, the S-curvature S is given by
oG™ Olno
1 S = —y™ .
(1) oxm y ox™
The volume form can be the Busemann-Hausdorff volume form dVggy =
oprdz or the Holmes-Thompson volume form dVrg = org(z)dz. Un-
less specified, the S-curvature usually is defined with respect to the
Busemann-Hausdorff volume form.
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Definition 2.1. Let F' be a Finsler metric on an n-dimensional
manifold M.

(a) F is of weakly isotropic S-curvature if there exist a scalar func-
tion ¢ = ¢(z) and a 1-form n on M such that the S-curvature
is in the following form,

S=(n+1)c(z)F +n.

(b) F is of almost isotropic S-curvature if ¢ = ¢(z) is a scalar
function and 7 is a closed 1-form on M;

(c) Fis of isotropic S-curvature if ¢ = ¢(z) is a scalar function and
n=0;

(d) - F is of constant S-curvature if ¢ is a constant and n = 0.

A Finsler metric F is called a Berwald metric if its spray coefficients

1

G ==z
2

Iy (z)y’y"
are quadratic in y = yig’%ﬂz € T, M for any z € M. Thus Riemannian
metrics are special Berwald metrics. The local structure of Berwald
metrics has been completely determined [49).

It is known that for a Berwald metric, the S-curvature (with re-
spect to the Busemann-Hausdorff volume form) vanishes, S = 0. Thus
Finsler metrics with vanishing S-curvature can be regarded as general-
ized Berwald metrics.

There is another important quantity—the Landsberg tensor defined
by
1 »3G*
EF F,

) b =g N ey

Finsler metrics with Ljx; = 0 are called Landsberg metrics. It is obvious
that if G* = 1T, (z)y’y* are quadratic in y = y'5%|, € T M for any
x € M, then Lji; = 0. Thus every Berwald metric is a Landsberg metric.
Landsberg metrics can be regarded as generalized Berwald metrics. It
is a long existing open problem whether or not any Landsberg metric is
a Berwald metric.

In projective geometry of Finsler manifolds, there is an important
projectively invariant quantity—the Douglas tensor defined by
rri
D, = _ﬁl_z_
IR Byigykayl’
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where
1 oagm
n+1 dy™ v

In local coordinates, the following three conditions are equivalent

=G

D]lkl = 0,

1 ) ,
G' = ST’y + Pz, v)y',
DY := Gy — Gy = AY,, (@) 'y
A Finsler metric is called a Douglas metric if Dji w = 0. The notion of

Douglas metrics is first introduced in [6]. Douglas metrics are regarded
as generalized Berwald metrics.

Finally, we come to the most important quantity — the Riemann
curvature defined by
aG" %Gt %Gt aG* OG™

Ry = 2— — ———y™+2G™ - .
k oxk B:Em@yky +26 Oymoyk  dym Oyk

The flag curvature K = K(P, y) of a flag (P, y), where P = span{y,u} C
T, M is defined by

_ 9i; R (z, y)uIu®
F(z,y)%g:5(z, y)uiw? — [gi5(x, y)y'ul]?

It is a natural problem to investigate Finsler metrics with special flag
curvature properties.

Definition 2.2. Let F' = F(z,y) be a Finsler metric on a manifold
M.

(a) F is of scalar flag curvature if K = K(z,y) is independent of
P containing y € T, M;

(b) F is of weakly isotropic flag curvature if K = 3n/F + o, where
n is a 1-form and ¢ = o(z) is a scalar function on M;

(¢) F is of almost isotropic flag curvature if K = 3¢cymy™/F + o,
where ¢ = ¢(x) and ¢ = o(z) are scalar functions on M;

(d) F is of isotropic flag curvature if K = o where 0 = o(z) is a
scalar function on M;

(e) F is of constant flag curvature if K = o = constant.

By Schur Lemma, in dimension n > 3, if F' is of isotropic flag
curvature, then it is of constant flag curvature.
The S-curvature is closely related to the flag curvature.
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Theorem 2.3. ([16]) Let F be a Finsler metric of scalar flag curva-
ture on a manifold M. Suppose that the S-curvature is almost isotropic,
S = (n+1)cF +n, where ¢ = c(z) is a scalar function and n = 1y is a
closed 1-form, then the flag curvature is almost isotropic in the following

form

F

where 0 = o(x) is a scalar function on M.

K= + o,

Let F be a Finsler metric of scalar flag curvature on a manifold M.
In [33], we find a sufficient and necessary condition on a non-Riemannian
quantity for the flag curvature to be weakly isotropic.

§83. (o, B)-metrics

In Finsler geometry, it is in general very difficult to compute the
curvatures of a Finsler metric. Some Finsler metrics are defined by some
elementary functions, but their expressions of curvatures are extremely
complicated so that one can not easily determine their values.

There is a class of Finsler metrics defined by a Riemannian metric
and a 1-form on a manifold, which is relatively simple with interesting
curvature properties. More important, these metrics are “computable”.
Thus they first deserve our attention.

Let @ = y/a;j(x)y"y’ be a Riemannian metric and 8 = b;(z)y* be a
1-form on an n-dimensional manifold M. Using o and § one can define
a function on T M as follows

3) F = a¢(s), § = g.

where ¢ = ¢(s) is a C*° positive function on an open interval (—b,, b,).
The norm ||3;||o of B with respect to « is defined by

1Bslla := sup ﬁg"’?ﬁ:,/az’j(x)bi(x)bj(z).

yeT. M &

In order to define F', 8 must satisfy the condition ||8;]le < b, for all

zeM.
To find a condition on the function ¢ such that F in (3) is a Finsler

metric, one computes the Hessian g;; := $[F?],:,; as follows,
9ij = pai; + pobib; + p1(bioyj + bj;) — sprosa,
where a; := ay: and

p= ¢2 - 5¢¢I7 Po = ¢¢” + ¢I¢Iv
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p1 = —s(¢¢" + ¢'¢") + &9,

where the functions are evaluated on s := 3/a. By linear algebra, one
gets

det(gij) = 6" (¢ — 5¢")" 7 [(¢ — 59') + (b7 — 5%)¢"] det(as;).
Using the above formula, one can easily get the following

Lemma 3.1. ([20]) The function F = ap(8/cx) is a Finsler metric
for any a = \/a;;y'y7 and any B = by with ||Bs]la < bo o and only if
¢ = ¢(s) is a positive C™ function on (—b,,b,) satisfying the following
condition:

(4) B(s) — s¢'(s) + (b — 52)¢"(s) > 0, [s| < b < b,.
(From (4), one can see that ¢ must satisfy
é(s) — sd'(s) >0, Is| < bo-
Some computations on the Hessian g;; of (o, §)-metrics are done in [37].

Definition 3.2. A Finsler metric F' on a manifold M is called an
(o, B)-metric if it is expressed as F' = a¢(0/a) with ||8z||e < bo, where
¢ = ¢(s) is a positive C™ on (—b,, b,) satisfying (4).

Let ¢ = 1+ s. The («, 8)-metric defined by ¢ is given by
F=a+p

It is easy to verify that F' is a Finsler metric if and only if ||G;]la <
1 for all z € M. Such metric is called a Randers metric. General
(c, B)-metrics were first studied by M. Matsumoto [28] in 1972 as a
direct generalization of Randers metrics. They have many applications
in physics and biology(ecology) ([3][9][36]). The study of (&, 8)-metrics
no doubt leads us to a better understanding on the geometric properties
of Finsler metrics.

In order to study the geometric properties of (v, §)-metrics, one
needs a formula for the spray coeflicients of an («, 5)-metric. Let

1 1
rig 1= 5 by +050), sig = S bayy — bype),

m o—
=b Smj) €5 1= Tij + biSj + bjsi,
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where “|” denotes the covariant derivative with respect to the Levi-Civita
connection of a. We will denote rog := Ti;y'y?, so := s;47, etc. Let G*
and G* denote the spray coefficients of F' and «, respectively, given by

“|77

6 = L {1~ (P}, @ = o oy~ ),

where (g) := (3[F?],:s) and (a¥) := (a;;)~!. By a direct computa-
tion, one gets the following formula:

%

Gt = G’i+aQsi0+@{—2Qa30+roo}y

(%

(5) +‘I’{ - 2Qas + Too}bi,
where
. ¢
Q: ey
¢ —s¢’ ¢
0: = = — sV,
2((6 - 56 + (2 = $?)9)
qj : _ ¢//

2((¢ - s¢') + (2 = 579" )

where s := 3/a and b := ||8;]|a. The formula (5) is given in [20] and
[40]. A different version of (5) is given in [27].

The above formula (5) is very useful in computing curvatures of an
(a, B)-metric F = a¢(B/a). However, it is still difficult to simplify a
curvature equation expressed in terms of o and (3, because the complex-
ity of ¢. A useful technique is to take a local coordinate system at x
such that

(6)

Let s = 8/c. Then

where
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One obtains a coordinate transformation (s, u%) — (y') given by

S _
(7) y! = ma’ y* =ut

Then
b bs

a= ———a, f=-——ma.
/b2 _ s2 VB2 — 52
If the curvature equation involves r;;, s;; or their covariant derivatives,
one needs the following expressions:

ry=0bry, Ta=0bre, s51=0, s4=Dbsi.

2-2 -
s2a sa  _ _
Too = 555711 + 2—====T10 + 700,
b2 — 52 VB2 — g2

sQ 7 _
T = —7T 7 810 =35
10 0 o2 11 10 10 10,

where 7gg 1= Tapu®u®, 719 = r14u® and 319 = s1ou®. Then the curvature
equation can be reduced to the following form

& + P20 =0,
where ®; = ®1(s,u) and ®3 = $3(s,u) are polynomials in (u®). Thus
=0, &, =0.
This technique is first used in [42].

Below are some important examples (cf. [43]).
(i) ¢ =1+ s. The metric defined by ¢ is a Randers metric given

by
F=a+g3.
We have
Q=1 e = ! =0
- S 2(1+s) -

Thus the spray coefficients are given by

o . 1 ,
(8) G'=G"+ OtSZO + 2_ﬁ{ — 2a80 + Too}yl.
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(ii) ¢ = ¢(s) satisfies
(9) $(s) — s9'(s) = (p + 75" ().
In this case, both © and ¥ take the following simple forms

p+rs? ¢
0 = B /1
2(p+1s? + (b2 —s2)) @ s
1

2(p+rs?+ (b2 —s?))’

Note that the only unpleasant term in © is the-quotient ¢'/¢.
For certain values of p and r, the solutions of (9) can be expressed
in terms of elementary functions (cf. [43]).
(a) If r = —1 and p = £1, then

V1 —52+sarctan(\/lstgf) +es, if p=1

V1452 —sln(s+v1+s?)+es, if p=1
(b) If r =1 and p = +1, then

V14 s24es, if p=1
¢:
V1—s2+es, if p=-1.

() fr=-1/2,p==£1/2, then

1+ 52 +es, ifp=1/2
¢ =
1-52+es, ifp=-1/2.

(d) If r =1/2 and p = £1/2, then
1+ sarctan(s) +¢es, if p =1/2

1+ sln ﬁ—jﬁtes, if p=-1/2.
(e) If r = —1/3 and p = £1/3, then

(1 + %52)\/1_j3—2+ 3sarctan (ﬁ) +es, ifp=1/3

(1 - %32>\/1_+_s—2— %sln (s-l— m) +es, if p=-1/3.
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(f) If r =1/3 and p = £1/3, then
VIH S+ e tes, if p=1/3

¢ =

\/1—32—\/;-_2-;2-+ss, if p=-1/3.
(g) If r=-1/4 and p = £1/4, then

14252 — st +es, if p=1/4

1-—2s% - %54 +es, if p=-1/4.
(h) If r =1/4 and p = £1/4, then

2%1+T$§;) + 3sarctan(s) +es, if p=1/4

2%1 332) + 2 sln hz +es, if p=-1/4.

One can easily write down a formula for the («, 3)-metric defined by any
of the above functions ¢. For example,

2
F = a:l:—'@*-—i-sﬁ,
2 1 4
F = a:tQﬂ—~—ﬁ—+£ﬁ,
a 3a3

F = a+5arctan<ﬂ)+eﬂ,

F o= Vi@ pm[YEE A0

_ [a—B
F = a+ghn +,8+€ﬂ’

F = (1+___)\/—ﬁ2+gﬂarctan( 5 >+€/63

Va7
12 Va2
- (o LE) e ]
2%+ 36 3 3
F = W Qﬂarctan( >+€,8,
2
F = Ma—kéﬂm a—ﬂ-f—sﬂ.

2(a? - 3?) 2 a+ 8
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For any of the above functions ¢, one can find o and 8 such that
F = a¢(B/a) is of scalar flag curvature.

§4. Volume forms of (o, §)-metrics

To compute the S-curvature, one should first find a formula for the
Busemann-Hausdorff volume forms dVpg and the Holmes-Thompson
dVyr.

Proposition 4.1. ([19]) Let F = a¢(s), s = B/a, be an (o, §)-
metric on an n-dimensional manifold M.
Let

N sin™ "2 (t)dt

T sin”_i(t) dt Zf dV = dVBH’

IS 3temsan™
f(b) =
S sin™~2(t)T(bcost)dt
Jo sin™~2(t)dt

if dV = dVir.

Then the volume form dV is given by
dV = f(b)dVy,

where dV,, = y/det(a;;)dz denotes the Riemannian volume form of a.

Proof. In a coordinate system, the determinant of g;; := %[F Hyiyis
is given by

det(gi) = "+ (¢ — 5¢')"2[(¢ ~ 5¢') + (b7 — 5%)¢"] det(ay;).

First we take an orthonormal basis at a point z with respect to o so
that

a=4/> ()%  B=by,

where b = ||8;||o- Then the volume form dV,, = o,dz at z is given by

0o = y/det(a;;) = 1.

In order to evaluate the integrals

i

Vol{(yi) € R"|F(z,y) < 1} = dy / dy,
{F(z,y)<1} {ag(B/a)<1}

and

/ det(gi;)dy = / det(g;)dy,
{(F(z,y)<1} {ad(B/a)<1}
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we take the coordinate transformation, v : (s, u%) — (y*) given by (7):

S
1 _ P a _ _.a

where & = /Y - _,(y*)2. Then

bo(s) _
= ablpfe) = s
and the Jacobian of the transformation ¢ is given by b%(b
Then
vol{(yi) € R F(z,y) < 1}
b2 _
= /W( ) o —————(bz — 82)3/2adsdu
b 2
b _
= /_b (b2 — 52)3/2 [/CK‘/,T adu] ds
1 b b2 Vb2 — g2\ n
= =Vol(s"?
Jvois ) [ s (e ) &
1 b (b2 . 82)(n—3)/2
= —Vol(S"2 —
s [ T :
1 - ()
= =Vol(§s" 2 —dt.
n ol( )/0 (b cos(t))™
Therefore
Jo sin™” 2(t)dt
OBH =~ r iy . 7
Jo Fbeasmydt
Let
(10) T(s) = 96 — s¢/)"*[(¢ = 5¢) + (b — 5%)¢"]
Then

det(gi;) = ¢(s)"T(s) det(ai;).

2 _ $2)73/2G,
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By a similar argument, we get

1
OHT = — $(s)"T(s)dy" - - - dy"
Wn J{F(2,)<1}

1 b b? Vb2 — s2\n
= Vol(s"?) /_ T ( s ) T(s)ds
Jo sin" " 2(t)T(bcost)dt
- s 2(dt
Thus
o sin®2(t)T (bcost)dt
THT = Jo sin" 2 (t)dt *
This proves the proposition. ’ Q.E.D.

It is surprised to see that for certain ¢, dVrgyg = dV,.

Corollary 4.2. Let F = ag¢(s), s = /e, be an («, B)-metric on an
n-dimensional manifold M. Let T = T(s) be defined in (10). Suppose
that T — 1 is an odd function of s. Then dVryg = dV,.

Proof: Let p(s) = T(s) — 1. By assumption, p(—s) = —p(s). It is
easy to see that

/07r sin™ 2 (t)(bcos(t))dt = 0.
Thus . .
/ sin™ 2 ()T (b cos(t))dt = / sin™ ! (t)dt.
0 0

This implies that cgr = 1 in the above special coordinate system at x.
Then in a general coordinate system oy = 04. Q.E.D.

§5. Randers metrics of scalar flag curvature

Randers metrics are the simplest («, 8)-metrics. The spray coeffi-
cients of a Randers metric are given by (8). Then one can use (8) to
compute the Ricci curvature and the Riemann curvature. On the other
hand, it is one of important problems in Finsler geometry to study and
characterize Finsler metrics of constant (or scalar) flag curvature. Thus
it is natural to investigate Randers metrics first.

Bao-Robles [11] [12] first observe that for a Randers metric F' = a+
on an n-dimensional manifold M, if the Ricci curvature is in the following
form

(11) Ric = (n — 1)oF?,
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where 0 = o(z) is a scalar function, then the 1-form 3 = b;(z)y® satisfies
the following PDE:

(12) roo + 2800 = 2c(cz2 — ,82),

where c is a constant. The equation {12) is equivalent to a condition on
the S-curvature,

(13) S = (n+ 1)cF,

where ¢ is a constant (cf. [17]).

In [11], Bao-Robles obtain another PDE on § which together with
(12) characterizes Randers metrics of constant flag curvature (see also
[12]). Independently, Matsumoto-Shimada obtain the same result ([31]).
However, it is very difficult to solve these PDEs for a and 8 to classify
such metrics.

Using Zermelo’s navigation idea ([39][40]), one can obtain Randers
metrics of constant flag curvature. The crucial idea is to express a Ran-
ders metric F' = a+ 3 in terms of a Riemannian metric h = \/h;;(z)y'y?
and a vector field W = Wi2; by

/ 2 2 .
(14) F = )\h )\+ WO - KA/—Qa WO = Wiyla

where Wz = hij Wj and
Ai=1-W,W'=1-h(z, W)

Theorem 5.1. ([13]) For a Randers metric F' expressed in the form
(14), it has constant flag curvature, K = k if and only if h has constant
sectional curvature K = k + ¢ and W satisfies

(15) Wo.o = —2ch?,

where c is a constant, Wo,o := Wi;y'y? and the covariant derivatives
DW = W, ;dz' @ dz? are taken with respect to h.

When A has constant sectional curvature K = , it is easy to solve
(15) for W to obtain a complete list of local structure of Randers metrics
of constant flag curvature.

Theorem 5.2. ([13]) Let F = o+  be a Randers metric on a
manifold M which is expressed in terms of a Riemannian metric h and
a vector field W by (14). F has constant flag curvature if and only if at
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any point, there is a local coordinate system in which h and W are given
by

= V1P + u(zPlyP - (z,9)%)
1+ plzf?

(16)

)

(17) W = =2¢y/1+ plz|? x4+ 2Q + b+ p(d, z)z,

where ¢ and p are constants with cu =0, Q = (qji) is an anti-symmetric
matriz and a,b € R™ are constant vectors. In this case, the flag curvature
is given by K = p — 2.

In fact, without the condition on the flag curvature, (15) is equiv-
alent to (12) for any scalar function ¢ = c¢(z) ([50]). Therefore (15) is
equivalent to (13) for any scalar function ¢ = ¢(z) by [17].

The expression (14) is a key to classify Randers metrics of constant
flag curvature. It is a natural idea to use (14) to study Randers metrics

of scalar flag curvature.
Let F' = oo + [ be defined by (14). Let

1 1
Rij = 5 (Wi + Wia), Sy = 5(Wey = Wia),

Rj = WiRij, R = WjRj, Sj = WiSi]‘.

Let G* and G* denote the spray coefficients of F and h, respectively. We
have the following
(18)

L . . R _
G =G - %FZ(S‘ +RY) = FS'y+ 5 (y'/F - W) (2RoF — Rog — RF?),

where &' := RYS;, R! := hUR;, R := R;y* and Roo = Ryy'y’.
Formula (18) is due to C. Robles [35].
By a direct computation, one can obtain from (18) that
oG™  9G™ n+1

= 2FRo — Roo — F*R }.
19) Gy = Gy * 3 (2FRe ~ R = PR}

Let dVy = opdx!---dz™ and dVj, = opdz!---dz™ denote the volume
form of F' and h respectively. An important fact is that dVp = dV,,, i.e.,
oF = op. Since h is a Riemannian metric, we have

(20)
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Then it follows from (19) and (20) that

aGm .9
(21) S = W—y a_’lj—m(anF)
_ n+l 9
(22) - = {2FR0 “Reo— F R}
Let
(23) ¢ i=y' - F(z,y)W"

z € T M can be arbitrary.

Since [Wqlln < 1, the vector £ = &'52;
Moreover, it is easy to verify that

hij(2)€'€¢ = F(z,y)”.
Then it follows from (22) that

S n+1 lezgj
24 _ = '_"l—,__.—.
(24) F 2 hy&

By (24), one gets the following

Lemma 5.3. ([50] [20]) Let F be a Randers metric F defined by
(14) and ¢ = c(x) be a scalar function on an n-dimensional manifold.
S = (n+ 1)cF if and only if

(25) Roo = —2ch?.
Note that (25) is equivalent to (15).

In the following, we are going to discuss Randers metrics of scalar
flag curvature and isotropic S-curvature.

First we assume that a Randers metric F expressed in (14) has
isotropic S-curvature, S = (n + 1)cF. By Lemma 5.3, W satisfies (25).
Then the spray coefficients G in (18) are reduced to the following ex-
pression:

) -~ . 1 A .
(26) G'=G"-FS'y - EFZS’ + cFyt.

By the simplified expression (26), one can express the Riemann curvature
in terms of h and W. Rewrite (26) as follows

G'=G" +Q,
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where .
Q= —FS’A0 — §F2Si + cFyt.

The Riemann curvature R'; = R’ (z,y)y’y' of F and the Riemann

curvature RY, = R.i,,(x)y’y' of h are related by

(27) Ry = R +2Q% — [Qmlyry™ + 2Q™[Qymyr — [Q'lym [Q]ys-

where “;” denotes the horizontal covariant differentiation with respect
to h (cf.[41]). By a direct and lengthy argument, one can get

Ry = R}y (y" — FWP)(y? — FWY)
—FyR} o (yF — FWP)(y? — FWO)W™

P mq
(28) +(3c";ym e 2c,mwm) {F%}C - FFykyi}.
Let

hi=/hi(x)€i€1, Ry =R, 7€
It follows from (28) that for any scalar function u = p(z) on M,

R, - (SC“”;ym +pu—ct- 2cszm) {Fzé,ic - FFykyi}

(29) = Rik - #(5252 - gkfz) - 3 ‘kaO {Rip - #(7125; - fpfi) }W”’

where &; := h;;¢7.
From (29), one can easily prove the following

Theorem 5.4. ([18]) Let F be a Randers metric on n-dimensional
manifold M defined by (14). Suppose that S = (n+1)cF where ¢ = c(x)
is a scalar function. Then F is of scalar flag curvature if and only if
h is of sectional curvature K = u, where p = u(x) is a scalar function
(=constant if n > 3). In this case, the flag curvature of F is given by

m

3Cg;m y

(30) K= =2

+ o,

where 0 1= p — c2 — 2czm W™,

Proof Assume that F is of scalar curvature, then by Theorem 2.3
above, the flag curvature of F' is given by

K = 3meym/F+0', .
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where ¢ = o(z) is a scalar function on M. This is equivalent to the
following equation:

(31) R,

@??M+Q{W&-FQW}

Plugging (31) into (29) yields
1
+ W

By — (126, — 68') — -t B, — (P26, ~ 6€) jw? =0,

where p 1= 0 + ¢ + 2c,»W™. Immediately, one obtains
(32) Ry = (20}, — xt’).

Thus h has sectional curvature K = u(x). By the Schur lemma, p =
constant in dimension n > 3.

Conversely, if h has sectional curvature K = u(z), then (32) holds.
By (29) again, we get (31) with 0 = u — c? — 2¢,mW™. Thus F is of
scalar curvature and its flag curvature is given by (30). Q.E.D.

If a Riemannian metric h has constant curvature K = y, then one
can easily solve (25) for W and obtain the list of local structures of
Randers metrics of scalar flag curvature and isotropic S-curvature.

Theorem 5.5. ([18]) Let F = o+ 8 be a Randers metric on a
manifold M of dimension n > 3, which is expressed in terms of a Rie-
mannian metric h and a vector field W by (14). Suppose that F is of
isotropic S-curvature S = (n + 1)cF. Then it is of scalar flag curva-
ture, K = K(x,y), if and only if at any point, there is a local coordinate
system in which h, ¢ and W are given by

o — VWP T p(alPlP — @, y)%)

(33) 1+ plzf? ’
0+ (a,z)

(34 V1 plaf?

(35)

|z|%a -
W =— 2 [ bt
| 2{ <5\/1 + plz|?+{a, x))x e }+xQ+b+u(b, z)T,

where &, are constants, Q = (qji) is an anti-symmetric matriz and
a,b € R™ are constant vectors. In this case, the flag curvature is given

by (80).
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Since locally projectively flat Randers metrics are always of scalar
flag curvature, Theorem 5.5 generalizes the main result in [16]. Since
every Randers metric of constant flag curvature must have constant S-
curvature, the class of Randers metrics with isotropic S-curvature and
scalar flag curvature contains all Randers metrics of constant flag cur-
vature.

Let us take a look at a special example. In (33)-(35), let £ = 0,6 =
0,Q =0and b =0. We get

h=yl, c={a,2z), W=-2azx)z+]|zla.
The Randers metric F = a + 3 is given by
V(A —laPlz*)y[? + (z[*(a, y) — 2{a, z){z,y))?

Fo= T~ |aPlaf?
lela,y) - 2a,2){,y)
T JaPlal?

The S-curvature and the flag curvature are given by

S=(n+1){a,x) F, K= i<—%_’,l>—|—3(a,:}£)2—2|a|2|:z:|2.

Clearly F is not locally projectively flat because g is not closed. This
example is constructed in [40].

According to Theorem 2.3, for a Finsler metric F' of scalar flag cur-
vature on an n-dimensional manifold M, if the S-curvature is isotropic,
S = (n + 1)cF, where ¢ = ¢(x) is a scalar function on M, then the flag
curvature must take the form

3emy™
F
A natural question arises: does (36) imply that the S-curvature is iso-

tropic? The answer is affirmative for Randers metrics.
Let F=a+ (3 and let

(36) K= +a

e m .M e pmy
tij = 8, Smj, Gij :=T;" Smj» tj = b"tmy,

where b® := a¥b;. By a direct and lengthy computation, we get the
following formula for the Ricci curvature:

Ric = Ric+ {2as"8|m — 2tg0 — a2t"}n}

3(roo — 2s0a)?  4afgoo — toa] — [rooj0 — 250j00] }

e - 2(a+ B)
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where Ric denotes the Ricci curvature of a. The formula (37) is due to
Bao-Robles ([12], p 220).
Lemma 5.6. ([46]) Let F = a+f be a Randers metric on a manifold
M. Then the Ricci curvature is in the form
3 m m
(38) Ric = (n—1){c’”Ty +a}F2,

where ¢ = c(z) and o = o(z) are scalar functions, if and only if

Ric = (n- 1){(0 —38)a? + (0 + )82 + (3co — &) — sojo — sg}
(39) +2tgo + o™,

-1 _ _ _
(40) sy = ’—"2—{3co+co +2(c + &) + 4éso + 2to }

(41) roo + 2508 = 28(a® — %),
where ¢ = &(z) is a scalar function on M.

Note that (41) is equivalent to that S = (n 4+ 1)éF. Then one can
easily prove the following

Theorem 5.7. ([46]) Let F = « + (8 be a Randers metric on a
manifold M and (h, W) be its navigation representation (14). Then the
flag curvature K of F is in the form (36) if and only if the sectional
curvature K of h and the vector field W satisfy

(42) K=y

(43) Wo.0 = —2¢h%.

where p = p(x) and ¢ = &(x) are scalar functions on M. In either case,
the scalar functions are related by

c— &= constant, o= p— ¢ — 2mW™.

Q.E.D.
By Theorem 5.7 and Theorem 5.5, we can classify n-dimensional
Randers metrics (n > 3) with flag curvature in the form (36).

For the Ricci curvature, we have the following



Curvature properties of (a, 8)-metrics 93

Theorem 5.8. ([46]) Let F = o + (3 be a Randers metric on a
manifold M and (h, W) be its navigation representation. Then the Ricci
curvature of F is in the form

m
(44) Ric — (n-1){-3-c—yF—y— ro}F?,

where ¢ = c(z) and 0 = o(zx) are scalar functions, if and only if the
Ricci curvature Ric of h and the vector field W satisfy

(45) Ric = (n — 1)ph?,

(46) Wo.0 = —26h2.

where p = p(zr) and é = é(x) are scalar functions on M. In this case,
the scalar functions are related by

¢ —¢&=constant, o =p—& — 2gmW™.

§86. (o, )-metrics of Landsberg type

It is a long existing open problem in Finsler geometry whether or
not every Landsberg metric is of Berwald type. Since (q,3)-metrics
are “computable” metrics, it is natural to investigate this problem on
(a, B)-metrics.

Let F = a¢(8/a) be an (a, B)-metric. If G is parallel with respect
to o (r;; = 0 and s;; = 0), then by (5), G* = G' are quadratic in y. Thus
F is a Berwald metric.. The converse is true too ([23][29]). In fact, one
can show that every Landsberg («, 5)-metric must satisfies that s;; =0
and r;; = 0. Thus it is a Berwald metric.

By a simple computation, one gets

(47) FFyi = gijy’ = (6% — s¢¢")yi + ¢¢'ab;.

By (2), (5) and (47), one gets the following formula for L ;.
(48)

Lju = —é—g{hjhkcl + hjthk + hkthj +3Ejhg +3Echj + 3Elhkl}a
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where
hj: ab; — sy;
hijk 1 = o’ajk —yyk,
Cj = (A17'00 + AQC!So)hj + 3AJj
Ej D= (Bl’r'oo + BgOlSo)hj + 3,qu
J;: = o(sjo+Trjo + Has;) — (Proo + Hase)y;
1 n ! " "
At = gra{ - 20Q7+3(Q - sQ)Q"+3(° - Q")
1 I "
A = 5{200Q" +38QQ" -30Q"(Q - sQ'+ (6"~ Q") |.
1 I 14
Bi: = 55{(Q-sQ)%+ (20 +6°Q) - ("~ s)(Q - 5Q))Q
1
By: = E{ - (sA +(s+ b2Q))QQ”
+@-s@)(8Q' - (@-52)Q) },
A: = "
— 1 /
M - _g(Q - SQ )7
1
F : = Z
.- 9
m: = -7
R )
@ = ¢ —s¢’
p: = ¢(¢—s¢)
A: = 1+sQ+ (¥ —-s)Q
Let
J: = ijj = a{a(so +I'rg) — (Troo + Haso)s}.
C: = bCj = (A1roo + Agaso)a(b® — s?) + 3AJ,
E: = VWE; = (Biroo + Bzaso)a(b? — s?) + 3uJ.

It follows from the definitions of C; and E; that
(49)  a(b® —s2)C; —Ch; = 3A{a(b2 — ) - th},

(50)  a(b?—s})E; — Eh; = 3,u{a(b2 —$2)J, — th}.
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One can easily prove the following

Lemma 6.1. ([42]) Assume that the dimension n > 3. Then the
following two conditions are equivalent.

(i) Lju =0,

(i) C;j=0and E; =0.

By the above lemma, one can show the following

Theorem 6.2. ([42]) Let ¢ = ¢(s) be a C* positive function on an
interval I = (—b,, b,). Suppose that ¢ satisfies (4), but ¢ # kov/1 + k152
on I for any constants k1 and ky > 0. For an (a, 8)-metric F = a¢(6/a)
with 0 < b(x) := ||Bzlla < bo on a manifold of dimension n > 3, F is a
Landsberg metric if and only if 8 is parallel with respect to o (i.e. F is
a Berwald metric).

One can use (ii) in Lemma 6.1 to prove Theorem 6.2. The problem is
how to deal with the terms involving ¢(3/«) in simplifying the equation
E; = 0. To overcome this difficulty, we change the y-coordinates (y*)
at a point to “polar” coordinates (s,y®), where i = 1,--- ,n and a =
2,--+,n. Fix an arbitrary point z € M. Take an orthonormal basis {e;}
at x such that

Here b = ||3;]|«- Take a coordinate transformation (s,u®) — (y*) given
by (7). By a direct computation E; = 0 is equivalent to the following
two equations:

(51) {(b2 ~s)B; - 3s,ul"}7’00 + s{sB1 n 3MF}T11a2 -0,

(% - 52){ (2331 + 3uF)r10 + <b2BQ + 3#)510}

(52) —33u{sI‘r10 + (b2 — 3)510} —0.
E, = 0 is equivalent to the following two equations:

s{ <(b2 — 32)31 — 3s,uF)foo + s(sBl + 3uF)r116¢2}u“

(53) —3b2u{1‘(ﬁ]a6z2 - Foou“) - §0ad2} =0.
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s{(b2 — 32) [(2331 + 3uF)r10 + (b232 + 3;;)510]

—3us [Fsrlg + (b*11 — s)sm] }u“
(54) = 3,ub2{ [Fsrla + (b2II — s)sla] a* - [I‘srm + (b1 — s)sm] ua}.
Equation (53) implies (51) and (54) implies (52). But we need (51)
and (52) to simplify (53) and (54). Similarly, we get four equations for

C; =0 by replacing B; and u by A; and A respectively.
By the above equations, one can show the following

Proposition 6.3. (n > 3) Assume that ¢ # ki1 + kas? for any
constants ky and ky. Assume that 3 is parallel with respect to . Then
F = a¢(8/a) is a Landsberg metric if and only if B satisfies

(55) 8y = bi2<bisj - bjsi),

(56) Ti; = k(anij — bibj) + Cbibj + d(biS]' + bjsi).

where k = k(z), ¢ = ¢(z) and d = d(z) are scalar functions, and ¢
satisfies

(57) {®* - 5?41 - 3sAT ke + {524, + 3ATs fe = 0,
(58) {(b2 —sH)B; — 3,usF}k + {3231 + 3uI’s}c =0.

If so # 0, then ¢ = ¢(s) satisfies three additional ODEs:

(59) db?sT' 4 b*I1 — s = 0,
(60) {23A1 + 3AI‘}db2 + {b2A2 + 3A} =0.
(61) {2331 + 3,uF}db2 + {b232 + 3u} —0,

One can actually solve the above ODE’s for ¢. The key idea is as
follows. Since @ is not parallel, {(57) and (58) hold for (k,c) # (0,0).
Then

(62) pA; — AB; = (Q —5Q)Q" +3s(Q")? o

3(1+sQ+ (b2 - s%H)Q")
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The numerator of the equation (62) is independent of the norm of 3!
More surprisingly, it is solvable. If we impose the regularlty on @ at
s = 0, we obtain the following general solution

Q =c1V1+ cas? + c3s,

where ¢y, ¢z and c3 are constants with ¢; # 0. Then plugging it into the

equations in Proposition 6.3, one can completely determine the coeffi-

cients c;, that is, cz = —1/b%. Thus b = constant. Since ¢ = ¢(s) is C>®
n (—bo, bo), we conclude that b = b,. Then

(63) ) = cqexp / civ/ 1= (¢/bo)® + cot dt]
o 1+ cst? +city/1 — (t/b,)?

However, the function F' = a¢(8/a) is always singular in the directions
y € Ty M with |8(z,y)| = boa(z,y). Therefore a regular (e, 3)-metric
F = a¢(B/a) is a Landsberg metric if and only if 3 is parallel with
respect to a. In this case, it is a Berwald metric. This proves Theorem
6.2.

The above argument also gives us singular Landsberg («, 8)-metrics.
Let ¢ = ¢(s) be a positive C* on (—b,,b,) satisfying (4). For any
Riemannian metric @ = +/a;jyy? and any 1-form 8 = b;y* on an n-
dimensional manifold M, the function F' := a¢(5/a) has the following
properties: (i) F(z,y) > 0 and (ii) gij = $[F?ysy(x,y) > 0 for any
y € TyM with |8(z,y)| < boo{z,y). But F might be singular or even
not defined for y € T, M with |8(z,y)| = boa(z,y). Such function is
called an almost regular («, 8)-metric.

Theorem 6.4. ([42]) (n'> 3) Let F = ad(B/c) be an almost regular
(a, B)-metric where ¢ = $(s) is a function on (—be,b,) such that ¢ #
ko/1+ k152 for any constants ky and ky > 0. Then F is a Landsberg
metric if and only if B is parallel with respect to o (hence F is a Berwald
metric) or

(64) b(z) = b,.

_ $ e1/1 = (t/bo)? + cst
(65) ¢(s) = cyexp [/0 PR Y ry T dt].

(66) Sij = 0,

(67) ri; = k(b%as; — bib;),
J J J
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where ¢y, c3,cy are constants with ¢; # 0 and ¢4 > 0 such that

1+ c38? +c1sv/1—(8/b,)2 > 0, (Is| < bo),

and k = k(z) is a scalar function. Moreover, F is not a Berwald metric
if and only if k #£ 0.

It follows from Theorem 6.4 that a regular (o, §)-metric is a Lands-
berg metric if and only if it is a Berwald metric. The third author
claimed this in the first version of [42] in May 2004. But there is a
computational mistake in an expression for E;. After two years, G.S.
Asanov discovered that his metrics arising from Physics actually . are
Landsberg metric but not Berwaldian [1][2]. Then the third author
corrected the expression for E; and proved the claim for regular (o, 8)-
metrics. Meanwhile he characterizes almost regular Landsberg (o, 3)-
metrics and obtains a two-parameter family of Landsberg (a, 3)-metrics
including Asanov’s examples.

Below is a simple example.

Example 6.5. At a point x = (x,y,2) € R® and in the direction
y = (u,v,w) € Ty R3, define a = a(x,y) and 3 = B(x,y) by

(63

\/u2 + erm(vZ + ’LUZ)
8: = u

where k # 0 is an arbitrary constant. Then a and B satisfy (66) and
(67) with b = ||fx||la = 1. Let

Bl i VT =42 + est
F =aexp [ dt]
0 1+ c3t? + city/1 — t2

Then F is a Landsberg metric but not a Berwald metric. This metric is
singular in two directions y = (£1,0,0) € TyR3 at any point x.

The reader is referred to [22] for the early discussion on Landsberg
(a, B)-metrics in dimension two. Recently, Li and the third author have
given a complete characterization of almost regular Landsberg (a, 8)-
metrics and shown that they are all Berwaldian. Further, they have
characterized weakly Landsberg («, 8)-metrics and shown that there are
almost regular (o, 3)-metrics which are weakly Landsbergian but not
Berwaldian ([25]).
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87. (a, B)-metrics of Douglas type

Douglas metrics can be viewed as generalized Berwald metrics. What
makes them special is that being a Douglas metric is a projective prop-
erty, that is, if a Finsler metric F' has the same geodesics as a Douglas
metric, then F is a Douglas metric.

In 1997, the first author and M. Matsumoto proved the following

Theorem 7.1. ([6]) A Randers metric F = o + (3 is a Douglas
metric if and only if B is closed.

Proof. From (8), we have

Gy —Gly' = (G - Gy) +(QY - Q'y)
(G = Gy") + afs'oy” — s'0y"),

where G* denote the spray coefficients of a and Q* = as’y. Thus G'y? —
GJy* are homogeneous polynomials in (y*) of degree three.

Assume that F' is a Douglas metric. Then the terms on the left side
are homogeneous polynomials in (y*) of degree three. Note that a is
irrational in (y*), one concludes that the coefficients of o must be zero,
namely,

(st — sjoyi) =0.
Then it follows that s*; = 0. That is, 3 is closed.
Conversely, if 3 is closed, then Q* = 0 in (8). Therefore, from (8),

Giyj _ G]y’L _ éiyj _ G_gjyi

are homogeneous polynomials in (y*) of degree three. Hence, F is a
Douglas metric. Q.E.D.
For a general (o, 8)-metric F' = a¢(8/a), it follows from (5) that

Gyl — Gyt = Gy — Gy +aQ(s'y’ — s'oy)
(68) +9{ — 2Qs0 + oo } (b'y’ — by,

In 1989, M. Matsumoto introduced an (o, 3)-metric F = o2/(a—3)
as a realization of P. Finsler’s idea “ a slope measure of a mountain with
respect to a time measure”. This metric is called Matsumoto metric.
By (68), one can show the following

Proposition 7.2. ([7][27]) A Matsumoto metric F = o?/(a — )
1s Douglas metric if and only if B is parallel with respect to . In this
case, F' is a Berwald metric.
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Proposition 7.3. ([51]) The exponential metric F = aexp(f/a) +
eB is a Douglas metric if and only if 3 is parallel with respect to a. In
this case, F' is a Berwald metric.

The above two propositions show that the Matsumoto metric and
the exponential metric are very “projectively hard”. These metrics
might have no good flag curvature properties.

It is natural to consider more general (a, 8)-metrics F' = a¢(s),
where ¢ = ¢(s) satisfies (9), i.e.,

(69) ¢—s¢' = (p+rs°)e",
It is easy to verify that if 3 satisfies
(70) by = 2r{ (b + ¥)ais + (r = 1bids

where 7 = 7(z) is a scalar function, then F' is a Douglas metric. Several
people have shown that the converse is true too for some specific (a, 5)-

metrics. For example, F' = o &+ %i + e8 is a Douglas metric if and only
if
(71) biyj = T{(ﬂ +2b%)ay; — 3bibj},

where 7 = 7(x) is a scalar function. This generalizes a theorem in
([7][27)). The Finsler metric F = a + 3?/a was first proposed in [27].
Another example is that F' = a + 2%2 - %g—: + &4 is a Douglas metric if
and only if

(72) bijj = g{(:tl + 4b%)ay; — 5bibj},

where 7 = 7(x) is a scalar function. The above two examples show
2

that F = a % % +¢efand F=azx 2%2 - %g—z + e are “projectively

soft”. Most recently, B. Li and the third author have just completely

characterized all (a, 3)-metrics of Douglas type using a result from [44].

See Theorem 8.4 below.

Theorem 7.4. ([26]) Let F = a¢(s), s = B/a, be an (o, B)-
metric on an open subset U in the n-dimensional FEuclidean space R"

(n > 3), where & = \/a;;(z)y'y? and B = b;(z)y* # 0. Suppose that
the following conditions: (a) B is not parallel with respect to a, (b)

& # k1v/1+ ko252 + kss for any constants k1, ke and k3, and (c) db # 0
everywhere or b = constant on U. Then F is a Douglas metric on U if
and only if the function ¢ = ¢(s) satisfies

(73) {1 + (kg + kos?)s? + k332}¢”(s) = (ky + kgsz){qﬁ(s) - s¢'(s)},
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and (B satisfies
(74) . bi|j = 2’7’{(1 + k1b2)a,—j + (k2b2 + kg)bibj},

where T = 7(x) is a scalar function onU and k1, ko and k3 are constants

with (kz,k3) # (0,0)

§8. Projectively flat (o, 3)-metrics

It is Hilbert’s Fourth Problem in the regular case to study and char-
acterize Finsler metrics on an open domain & C R™ whose geodesics are
straight lines. Finsler metrics with this property are called projectively
flat metrics.

It is easy to see that a Finsler metric F' = F(z,y) on an open subset
U C R™ is projectively flat if and only if the spray coefficients are in the
following form

G' = Py,
where P = P(x,y) is a positively homogeneous function of degree one
in y. In 1903, G. Hamel found a system of partial differential equations
that characterize projectively flat metrics F = F(z,y) on an open subset
U C R™. That is,

(75) Fz‘myiym = L.

A natural problem is to find projectively flat metrics by solving (75). Ac-
cording to the Beltrami Theorem, a Riemannian metric F' = \/g,;(z)y*y?
is projectively flat if and only if it is of constant sectional curvature.
Thus this problem has been solved in Riemannian geometry. However
for Finsler metrics, this problem is far from being solved. In this section,
we shall discuss some projectively flat (a, §)-metrics.

The Funk metric on the unit ball B™ C is given by

VA= ZP) P+ (zy)? | ()
©= 1- |z R

(76)

where y € T,B™ =~ R". Here |-| and (, ) denote the standard Euclidean
norm and inner product. By a direct computation, one can verify that
the Funk metric is projectively flat on B™. The Funk metric has a very
important curvature property: the flag curvature K = —1/4.

Note that the Funk metric © on B" is a special Randers metric
expressed in the form

(77) 0=a+p5,
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where

VA - [zP)lyP + () f= @y

1—|zf? ’ 1—|af*

(78) a=

Thus it is natural to investigate projectively flat Randers metrics with
constant flag curvature.
First we have the following

Theorem 8.1. A Randers metric F = a + 8 on an open subset
U C R™ is projectively flat if and only if « is projectively flat and 5 is
closed.

The proof is straight forward using Theorem 7.1.

In [38], it is proved that a Randers metric on a manifold is locally
projectively flat with constant flag curvature if and only if it is locally
Minkowskian or up to a scaling and reversing, it is locally isometric to

@a =a+ Baa
where @ is defined above and 3, is given by

2 . (:c,y) <aay>
fa:= 1—|z|2 1+ (a,z).’

where a € R" is a constant vector with |a|] < 1. The metric O, is
projectively flat with K = —1/4.

L. Berwald ([4]) constructed a projectively flat metric with zero flag
curvature on the unit ball B”, which is given by

_ VA - 12P)lyl? + (z,9) + (z,v))?
1= [z2)2 /A = [2P)ly? + (z,y)?
where y € T,B" = R™. Berwald’s metric can be expressed in the form

(79) ‘ p. a +_AB)2 N +_5)2
A& a

Y

where & and (3 are defined in (78) and X := 1/(1 — [z|?).
In [32], it is shown that the following metric B, on B™ C R" is
projectively flat with K = 0.

(M@ +AaBa)® _ | (& +Ba)?

Ao a

(80) B, =

k)
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where )\, 1= (1 + (a,z))?/(1 — |z|?) and a € R™ with |a| < 1.

The above discussion leads us to study the following metric on a
manifold M,

(81) Gl

where o = /a;;(z)y'ys is a Riemannian metric and 8 = b;(z)y’ is a
1-form on M. It is known that F = (a + (8)?/a is a Finsler metric if
and only if b(z) := {|8z]la < 1 at any point x € M. A natural question

arises: is there any other projectively flat metric in the form (81) with
constant flag curvature?

Theorem 8.2. ([47]) Let F = (a + 8)%/a be a Finsler metric on a
manifold M. F is projectively flat if and only if

(@) by = 2r{(4 + P)ay; — 30,), L

(ii)  the spray coefficients G* of a are in the form: G* = 6y* —1a2b?,
where b := || Bz|la, bsj; denote the covariant derivatives of 3 with respect
to a, T = 7(x) is a scalar function and 0 = a;(z)y* is a 1-form on M.

In [32], it has been shown that if « and 3 satisfy the conditions (i)
and (ii), then F = (a + B)?/a is locally projectively flat. Theorem 8.2
asserts that the converse is true too.

By Theorem 8.2, we can completely determine the local structure of
a projectively flat Finsler metric F in the form (81) which is of constant
flag curvature.

Theorem 8.3. ([47]) Let F = (a + B)?/a be an (a, B)-metric on
a manifold M. Then F is locally projectively flat with constant flag
curvature if and only if one of the following conditions holds

(a) « is flat and B is parallel with respect to . In this case, F is
locally Minkowskian,
(b) Up to a scaling on = and a scaling on F', Fis locally isometric
to B, in (80).
In either case (a) or (b), the flag curvature of F' must be zero, K = 0.
Below is an outline of the proof of Theorem 8.3. By imposing the
curvature condition that the flag curvature be constant, one first shows

that the flag curvature must be zero, K = 0. If 7 = 0, then F' is locally
Minkowskian. In the case when 7 # 0, one gets that

(82) dr +2728 =0,  Ouy® — 6% = 37%(a® — 267).
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Then we show that 70 is closed. Thus there is a local scalar function p =
p(z) such that 78 = %dp and 7 = ce”? for some constant c. Immediately,
one can see that & := e P« is projectively flat, hence & is of constant
curvature K = p by the Beltrami theorem. The constant y must be
nonpositive. By choosing the projective form of &, one can solve (82)
for p. Then one can determine o and (3. The detailed argument is given
in [47].

The reader is referred to [14], [48],[52] and [51] for results on other
special (a, §)-metrics.

Recently the third author has characterized all projectively flat
(a, B)-metrics.

Theorem 8.4. ([44]) Let ¢ := ¢(s), —b, < s < by, be a positive C™
function satisfying (4). Let F = a¢(s), s = B/a, be an (o, B)-metric
on an open subset U in the n-dimensional Euclidean space R™ (n > 3),

where a = y/a;;(z)yiy? and B = bi(x)y’ # 0. Suppose that the following
conditions:

(a) B is not parallel with respect to a,

(b) & # kov/1+ kys? + kas for some constants k1, ke and ks with
ko > 0, and

(c) the norm b(x) := ||Bzlle satisfies either db # O everywhere or
b = constant on U.

Then F' is projectively flat on U if and only if

(83) {1 + (c1 + cas?)s? + 0332}¢”(s) = (c1 + 0252){¢(s) - s¢’(s)},
(84) biyy = 27{(1 +e1b?)ay; + (cab? + 03)bibj},

(85) Gl =¢y' — T(Cla2 + Czﬂg)bi,

where T = 7(x) is a scalar function on U and ci,co and c3 are constants
with (02,03) 7é (0,0)

Let ¢1 = 1/p, co =0 and c3 = (r —1)/p, where p and r are constants
with p # 0. Then (83) becomes

(86) ¢(s) — s¢'(s) = (p +15)¢" (s).

Projectively flat (o, 8)-metrics F = a¢(8/a) with ¢ = ¢(s) satisfying
(86) were first studied by the third author in [43]. He finds a sufficient
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condition on @ under which F = a¢(8/a) is projectively flat. That is,
if ¢ satisfies (86) and « and 3 satisfy

(87) by = 2r{(p+¥ai; + (r — 1)bib }
(88) Gl = &y —1a?h,

where ¢ = &;(z)y’ is a 1-form, then F = a¢(3/a) is projectively flat.
Later on, the second author and Li prove that (87) and (88) are also
necessary conditions for F' = a¢(8/a) to be projectively flat provided
that ¢ = ¢(s) is analytic in s.

Explicit examples can be constructed.

Example 8.5. ([43]) Let ¢ = ¢(s) be a function satisfying (4) and
(86) with p # 0. Let

1 n)z|?
89 hie —— 0y + a2y + — D1
(89) ﬁ——l_ﬂtmz{ 1+ (a,z) = f——l_l_'umz}

and let p = p(t) be given by

——(C;)Z (Cg +nt — %ut2> if =0
©0)  plt) = 1
ln[—z—r(gz—)z(ao,—i-nt—%uﬁ)] 21‘ if r#0
where n and C; are constants (Cy > 0) and a € R™ is a constant vector.

Define
a:=efMWa,, B := CoelmtDrMgp

where
Y I L )
g 1+ plzf?
Then o and (3 satisfy (87) and (88) with
so_ )
T 92C,e(r+1)p(h)”

Thus the Finsler metric F = ag(8/a) is projectively flat.

Using Theorem 8.4, one can classify locally projectively flat (c, 3)-
metrics F' = a¢p(B/a) of constant flag curvature. Roughly speaking if F
is not trivial, then ¢ = V1 + ks2+esor ¢ = (V1 + ks2+es)?/v/1 + ks?.

See [24] for more details.
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§89. (a, f)-metrics with isotropic S-curvature

The S-curvature is an important geometric quantity. It interacts the
flag curvature in a delicate way. This stimulates our interest in Finsler
metrics with special S-curvature property. Our goal is to characterize
(a, B)-metrics with isotropic S-curvature.

Let ¢ = ¢(s) be a positive C* function on (—b,, b,). For a number
be0,b,), let

(9)  ®:=—(@Q-sQ){rA+1+5Q} - (67 - 51 +5Q)Q",

where A :=1+ sQ + (b2 — s2)Q’ and Q := ¢' /(¢ — s¢').

Let F = a¢(6/a) be an (a, 8)-metric on an n-dimensional manifold
M, where o = y/a;;(z)y’y’ is a Riemannian metric and 8 = b;(z)y"
is a 1-form. Let G* and G* denote the spray coefficients of F' and «
respectively. G? are related to G* by (5). To compute the S-curvature
of F', we need the following identities:

7 o=t}

y™ «
Oa _ Ym
oym a’
aG™ 7]
—— =y"——|(Inoy ).
oy™ y 8zm( ne )
Using the above identities, we obtain
oG™ m 0 . ®
8y—m =y %(lnaa> +2¥(ro 4+ s0) — @ W(TOO - 2aQ)sy),

where @ is given in (91) with b = || ]|a-
Let dV = &dz denote the volume form of . By Proposition 4.1,
dV = odx = f(b)o,dz. Thus

ym&%(m(,) ];”((b)) xm+ymafm(1“"“>'

ob _ bibi|mym L) + So
drm b b
Then the S-curvature is given by

f'(6)
bf(b)

(92) y™

(93) S {2‘1’ }(To -+ 80) — aal%(ﬁ)o — 2aQ80).
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Using (93), we can prove the following

Theorem 9.1. ([19]) Let F = a¢(s),s = 8/a, be an (o, 8)-metric
on a manifold and b := || Bz||a. Suppose that ¢ # ki1v/1 + kes? + kzs for
any constants k1 > 0,k and k3. Then F is of isotropic S-curvature,

S = (n+ 1)cF, if and only if one of the following holds
(i) B satisfies
(94) ri+s;=0
and ¢ = ¢(s) satisfies
(95) & =0.

In this case, S = 0.
(ii) B satisfies

(96) Tij = E{bzai]‘ — bibj}, Sj = 0,
where € = €(x) is a scalar function, and ¢ = ¢(s) satisfies
pA?

where k is a constant. In this case, S = (n+1)cF with ¢ = ke.

(iii) B satisfies
(98) Tij = 0, S5 = 0.

In this case, S = 0, regardless of the choice of a particular ¢.

It is easy to see that (98) implies (96), while (96) implies (94). The
condition (94) is equivalent to that b := ||B;lla = constant. Thus (95)
and (97) are independent of z € M.
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