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Interfacial analysis to a chemotaxis model equation
with growth in three dimension

Tohru Tsujikawa

Abstract.

We consider the limiting system to a chemotaxis model equation
with growth term by using singular limit analysis, which describes ag-
gregation of biological individuals. The conditions to the linearized
stability of symmetric localized stationary solutions of this system in
R3 is shown.

§1. Introduction

We comnsider the following model equations which describes the move-
ment of the biological individuals by the diffusion and chemotaxis effects
in [4, 5];

1o}
b—Z = d,Au — V(uVx(v)) + f(u)
>0, xeRY  (11)
QU_ =d,Av + h,(u U)
or " ’

where u(7, x) and v(7, x) are respectively the population density and the
concentration of chemotactic substance at time 7 and position x € R.
d,, and d, are diffusion rates of u and v.Vx(v) is the velocity of the direct
movement of u due to chemotaxis, which generally satisfies x(v) > 0
and x'(v) > 0 for v > 0. Here we specify the growth term f(u) as
f(uw) = (g(u) — a)u where g(u) is the growth rate with cooperation
and competition effects and « is the degradation rate due to exterior
forces such as predation or intoxication. Though the functional form of
f(u) is basically classified into several cases depending on g(u) and a, we

Received October 30, 2005.
Revised January 23, 2006.
Partially supported by Grant-in-Aid for Scietific Research (No. 17540125)

by Japan Society for the Promotion of Science.



786 T. Tsujikawa

consider the cubic-like form, which has three roots 0, u and @ of f(u) = 0.
The term h(u,v) in (1.1) is simply specified as h(u,v) = Bu — yv with
the production rate 8 > 0 and the degradation rate v > 0. For (1.1), we
show the existence of the nonnegative global solution in 2—-dimensional
domain and the exponential atractor with finite dimension [8].

In [4, 5], we studied (1.1) assuming the situation that the movement
of individuals is mainly due to chemotaxis and that the chemotactic sub-
stance diffuses so fast compared with the migration of individuals which
move by diffusion and chemotaxis, so we introduce a small parameter
€ > 0. By using the suitable transformations [1], the equations (1.1) can
be rewritten as

0
5:. = e2Au — ekV(uVx(v)) + f(u)
T > 0, X G RN, (1'2)
ov
— =Av+u—yv
or

where k is a positive constant such that x(v) is sutably normalized.
As was stated above, f(u) satisfies f(0) = f(a) = f(1) = 0 for some
0<a<l, fluy<0for0<u<a, f(u)>0fora<u<1and
f'(0) < 0, f'(1) < 0. Here, we assume fol f(u)du > 0. The boundary
and initial conditions are taken to be

lx,&r&m(u(T, x),v(7,x)) = (0,0) T>0 (1.3)
and
(u(0,x),v(0,x)) = (uo(x),v9(x)) x € RV, (1.4)

In [4, 5], the existence and numerical stability of the radially sym-
metric stationary solutions of (1.2) — (1.4) in R ( N = 1,2) are studied
for small € > 0. Moreover, we have the limiting system of (1.2) — (1.4) as
€ | 0 and show that by solving it the stability of the stationary solutions
is suggested for small € > 0.

In 3-dimensional domain, it is interesting to study the pattern for-
mation of the chemotaxis model from the biological view point. But,
it seems to be difficult to do the numerical simulation of (1.2) — (1.4).
From this reason, we first consider the limiting system and by solving
this problem we suggest the existence of the realistic stationary patterns
in this paper.

In Section 2, we introduce the limiting system as € | 0. In Section 3,
the existence of radially symmetric stationary solutions of the limiting
system in R ( N = 2,3 ) is shown. In Sections 4 and 5, we consider the
stability of two different stationary solutions in R3, one is the solution
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constructed by extending the 2—dimensional radially symmetric solution
uniformly toward another axis, which we call cylindrical solution, an-
other one is a 3—dimensional radially symmetric solution, and show the
dependency of the parameter k, the forms of f(u) and x(v) to the sta-
bility. Through this paper, we treat with the specified forms of x(v)
and f(u), that is, x(v) = sv?/(s?> + v?) and f(u) = u(l — u)(u — 0.1),
€ = 0.05,v = 1.0 for the numerical simulations. Finally, the derivation
of the limiting system is written up in Appendix.

§2. Limiting System as e | 0

In order to study the pattern-dynamics arising in solutions to (1.2)-
(1.4) with small € > 0, we derive the limiting system from (1.2) when
€ | 0. To do it, we introduce the new time variable t with 7 = t/. Then
(1.2) is rewritten as '

eus = e2Au — ekV(uVx(v)) + f(u)
t>0, xeRM. (21)
evy = Av 4+ u —yv

Using the well known two-timing methods, one can intuitively under-
stand that the time evolution of the solution of (2.1) consists of two
stages. In the first stage, the solution is approximately described by the
following system:

1
Ut = gf(u)
t>0, xecRM. (2.2)

1
vy = E{Av—ku—'yv}

Since the system for u is bistable from the assumption of f(u), the
solution u(t,x) tends, in short time, to 0 in one region, say o, where
0 < ug(x) < a, while it tends to 1 in the other region, say Q. where a <
up(x). This implies the occurrence of layer regions, say R., which is the
boundary between two regions Q. and Q., that is, R" is decomposed
into RY = Qg. U Q. U R.. In these two subregions, €. and Q.
the second variable v approximately satisfies the following stationary
problems:

0 = Av + gi(v) in Q; (i=0,1), (2.3)

where go(v) = —yv and g1(v) =1 — yv.
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In the second stage, the solution is no longer described by (2.2),
(2.3) so that the layer regions must change. This means that Qq., Q.
and R, vary as time goes on. We now assume the situation in the
limit £ | O such that there is an (N — 1)-dimensional hypersurface I'(¢),
which means the interface of u, in RY such that R.(t) — T'(¢) holds as
£ 1 0, that is, RY = Q(t) U Q;(t) UT(t) where ;. — Q(t) = {x €
RY u(t,x) = i} (i = 0,1). Letting V* be the normal velocity of the
intrface ['(t), we can derive the equation to describe the dynamics of
I'(t) as follows ( see Appendix):

o

V*=c* +kx’(v)% —e(N-1)k+eG t>0, xel(t),

0= Av +g;(v) t>0, xe),

where n means the outerward unit normal vector from Q;(¢) to Qo (¢) on
['(t), x is the mean curvature at the interface. Here, ¢* is the velocity
of the traveling front solution given by Lemma in Appendix. Although
G = O(1) for small € in general, we neglect this term in order to study
the effect of the curvature to the motion of the interface as the first step.
Therefore, the equation is rewritten as

v :c*+kx’(v)§—vﬂa(N—1)n t>0, xel(t),
n (2.4)

0= Av+ gi(v) t>0, xect).

The smoothness of v on the interface I' is imposed to satisfy v € C1,
that is,
v(t,) e CYRY)  t>o0. (2.5)

(2.4), (2.5) is proposed in Appendix, which we call the singular limit
system or simply the interface equation of (2.1). It clearly shows that the
dynamics of the interface is determined by three effects; the velocity of
the 1-dimensional traveling front solution, the chemotactic effect due to
the gradient of x(v) and the geometric effect of the interface. Moreover,
from (1.3), we assume that

lim wo(t,x)=0, t>0. (2.6)

|x)—o00

In the previous paper [4], we show the existence of radially symmetric
stationary solutions (u(r),v(r)) of the interface equation (2.4)-(2.6) in
RN (N =1,2,3) with |x| = 7 where the center and the interface locate
at the origin and r = 7, respectively. Moreover, the stability of these
solutions was discussed for N =1, 2.
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Bonami et al. [1] treated with the case where the equation for v
is stationary and the potentials of two equilibria (0,0) and (1,1/~) are
almost all same, that is, c*, effects of chemotaxis and curvature are same
of order with respect to . In this situation, the solution of the interface
equation is good approximation to one of the original reaction—diffusion
equation.

§3. [Existence of the radially symmetric stationary solutions
in RV(N = 2,3)

In this section, we consider the existence of radially symmetric sta-
tionary solutions of the interface equation (2.4)-(2.6). In order to show
that, we first treat with the following problem:

om0
N -1
0= Upr + —T_——‘_v'r + gi(U)» re in (Z = 07 1) (31)
v(0) =0, lim v{r)=0 and ve CYRy),

™00

where |x| =7, 1 = (0,7) and Qo = (1, ).
For N = 2, the solution (1, v(r;n)) from the second and third equa-
tions of (3.1) is explicitly described by
1 1\ Lo(/Ar)
5t <O‘ - ?) e B CL)
o(rin) =

K()(ﬁ?‘)
Ko(/m)? r € (n,00)

with a = v(n;n) = nLi (/Y1) Ko(y/¥1)/+/7, where I,(r) and K, (r) are
the modified Bessel function of the v-th order. In order to obtain the
solution of (3.1), we need to solve the equation

e~k (IR oL (K (/) - 2
(3.2)
= Hy(nk,e)=0.

Next, the solutions (n,v(r;n)) except for the first equations of (3.1) for
N = 3 is described by
inh /1
+la-hHIge re(on)
v(r;n) = (3.3)
e VA= r € (1,00)

2=
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with a = v(n;n) = nK%(ﬂn)I%(ﬁn)/\/f_y. Substituting (3.3) into the
first equation in (3.1), we obtain

I3 (/YmMK 1 (vn)
kX, (._Z_.__\/__’Y_E__) I3 \/_77 % \/—77
(3.4)

= Hs(n,k,e) =0.

By using the solution 1 of Hy(n,k,e) =0 ( N = 2,3 ), one easily finds
that the solution of (3.1) is represented by (n,v(r;n)).

Theorem 1. [4] Let k* > 0 be a constant to satisfy c* — 2—’“\%)(’(%) =

0. For fived smalle > 0, there exists a constant k(e) ( > k* ) such that for
k* < k < k(¢) there are at least two solutions (7,v(r;7)) and (n,v(r;n))
such that 7 = O(1) and n = O(g), for 0 < k < k*, there is at least one
solution (n,v(r,n)) with i = O(¢e) for N =2, 3, respectively.

Letting n = n(k) be a solution of (3.2) or (3.4), we define the pair of
functions (u%(r),v%(r)) by

(3.5)
O(r) = v(rim) 7€ (0,00)

and call it a radially symmetric stationary solution of the interface equa-
tion (2.4)-(2.6) for N =2, 3, respectlvely

Next, as x(v) = SUQ/(S + v?), we draw numerically the global pic-
ture of radially symmetric stationary solutions of (3.1) for N = 3 when
k is varied in Figure 1 ( it is already shown for N =1, 2 in [4] ). In this
case, there are two critical values 0 < s, < s* of a parameter s of x(v)
such that for (i) s« < s < s*, there are three branches corresponding to
71,7 and 7, while for (ii) s* < s, there are two ones corresponding to 7
and 77 when k is varied. In Figure 2, the existence region of the solution
with 77 = O(1) for small € > 0 is shown in the (k, s) - plane for N = 3.

On the other hands, by the numerical simulations it does not able to
suggest which stationary solution in R3 is realistic till now. Therefore,
from the theoretical view point, we consider the stability of the radially
symmetric stationary solutions of the interface equation for N = 2,3
in the 3—dimensional domain in the next two sections. Moreover, it is
shown that the stationary solutions (n, v(r; 7)) are at least unstable with
respect to the disturbances of radial direction due to the discussion.
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3-dim. symmetric stationary solutions

8 ' (s =0.3)
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0 i k
0 k* 15 k(e) %
Figure 1

§4. Stability of the cylindrical stationary solutions in R3

In this section, according to the method in [7], we consider the
stability of the cylindrical stationary solution in R3, that is, the solution
is denoted by (u(z, y, 2), v(x,y, 2)) = (uO(r), v°(r)) where (u°(r), v°(r))
is given by (3.5) and z = rcosf, y = rsinf (0 <80 < 2r ), z € R.
Hereafter, we ounly treat the solution with n = O(1) for small € > 0.
To do it, the interface location is represented by r = 1 + ((g, z, t) with
a disturbance {(yp, 2z,t) where r = (r, ¢, z) is the cylindrical coordinate.
Then, Q;(t) (: =0, 1) are respectively denoted by

@) ={(re,2)] 0<r <n+{(p,21), 0<p<2m z€ R},
Qo(t) ={(r,p,2)| n+C(p,2,t) <7, 0 <p <21, z€R}.
It follows from (2.4) that

0=Av+ H(n+ (g, z,t)—71)— 0. (4.1)
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3-dim. symmetric stationary solutions

s
1

0.8
0.6
EXIST
0.4
0.2
0 k
0 5 10 15
Figure 2

Putting vq(t) = [ v(r,t)e!9Tdr where q = (¢4, gy, q.) € R3, we have
0= (7 +¢*)vq + Hq(t)

where Hgy(t) = /H(n + ¢(p, 2,t) — r)e’¥"dr with ¢ = |q|, which im-

plies vg(t) = Hq(t)/(y + ¢%). Therefore, v(r,t) is represented by

1 Hqg(t)
(2m)3 Jgrs v+ ¢*

—iq-r

v(r,t) = dq.

Here, we note the asymptotic expansion of Hg(t) with respect to ¢ as
follows:

Hq(t) = H" + H{Y + 0(¢?)  for small ¢
where
0) o igh cos(w—p)
HO = /0 /0 he™ dhdip

and

27
H((ll) :n/Re”qz/O et W=) (o 7 t)dpdz

with s = 1/q2 + ¢2 and g, cos ¢ + gy sinp = scos(w — ) for some angle
w. Then, v(r,t) is given by the representation as follows:

1 HY + HEY

t
vie.1) (2n)% Jrs  v+4?

e dg + O(¢?)

= wvp+uvi(p, z,t) +va(p, 2,t) + O(¢C?) for small ¢



Interfacial analysis to a chemotazxis model 793
with 7 = 9 + ((y, z,t) where

Vo = %KO(ﬁn)Il(ﬁn)a ’U1(Q0,Z,t) = —Wll(ﬁn)Kl(ﬁ”)C(%Zat),

(1)
1 H
’UQ(QO,Z,t) = ( 3

2m)3 Jrs v + 42

e~ gz cosptaysinp)ntazz} g

Since the interface stands for I'(t) = (r cos ¢, 7sin ¢, z), it holds

0
Vi=c kx’(v)-a—z — %k =<Tyn>=(+0(C?). (42)
Since
ov_ 0w 9 102, k=1 Coo 1, € 2
= +ar(v1+v2)+0(< ), k= 5 <sz + o s + = +0(¢*),

8110 13
. % ! -y
it follows from 0 = ¢* + kx'(vo) o 7 that
0 Ov
= {3 (o o) 4 X )+ o) 2
(4.3)

o 2
te (czz » o F) L o).

Here, we remark that

1 27 . .
— / / va(p, 2, 1)e™* P dpdz
27 RrRJo

= nL(Vy + m2n)Ke(Vy + m2n)Cem(t),

27
where (om(t) = %/ / Clp, z,t)e™* ¥ dzdyp for two disturbance
o JR

modes £ and m.
Moreover,

0 3}
Ev(% z,t) = E(’UO + vy 4 v2) + O(¢?) for small ¢.

From the easy computation, we obtain

% = —nLi (v Ki(v7m),
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1 81)1 eimz— il
o / / 8r dzdyp
(

0
= [YPna(AmKo(n) - Loy (/)
+L (VK1 (V) [Cem(t)

and

2m
/ av? eimez— 'L&pdzd(p
= g\/’y+m [I¢+1( v+ m2n)Ke(v/v + m3n)

—L(vV7v+m2n)Ke 1 (V7 + an)] Co,m (t)-

Thus, it follows from (4.3) that for the balance of the lowest terms of ¢,
it holds that

d . 021
%CZ’m = -—£ <m + ol ;{5) Co,m

1 2m 8 ) )
+ K [X’(UO)%/ / —(111 +’L)2)e’lmz—le‘ﬁdzd(p

8 1 27

Therefore, the equation of (;,, is obtained by
d s 1
ECZ,m = —€ <m + 77_2 - 77_2) <E,m

w k(oA ) { 52wk
= To(vymKi(vm) + Li(vymKi(vn)
+ Iy (L (Va + KoV o+ men)



Interfacial analysis to a chemotaxis model 795

- L7+ mPn)Ke (v mPn) )

X" (\%Ko(ﬁn)ll(ﬁm)

n°L (vAmKi(vAn) {Ie( v+ m2n)Ke(v/y + m2n)

X

- L(/"Ki(vAm}H ¢em

= FQ(Evmykvs)CZ,m-
Definition ( Linearlized stability of the stationary solution )
If Fo(f,m,k,e) < 0 for all £,m € N except for (£,m) = (1,0),
then the stationary solution (n,v(r;n)) is stable. If not, the solution is
unstable.

For m = 0, that is, this means the stability of the radially symmetric
stationary solution in R?2,

Fu(6,0,k,¢) = ;—2(1 — )
o k| (Zekotyanttyn ) { 5 datyamKa(yT)
~ To(/AKs () + T/ 0K ()

+ @(Iﬂl(ﬁn)Kf(\ﬁn) - Ie(ﬁn)Kéﬁl(ﬁn))}

!

N (%Ko(ﬁn)ll(ﬁn)) 7L (VK () (el T Ke (/)

- L(vimKi(vm)l-

We already discussed this equation in [4].

On the other hand, for m = 0 and £ = 0, we have F5(0,0,k,¢) =
B%Hz(n,k,s). Therefore, it follows that the stability with respect to
disturbances for radial direction depends on the form of Ha(n, k, ).

Remark 1 Let (7, v(r; 7)) be the solutions corresponding to the up-
per branch for s, < s < s* in Figure 1. Since %Hg(ﬁ,k,s) > 0, the
stationary solution (7, v(r; 7)) s unstable.
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For m =0 and £ =1, (3,0(t) satisfies

60 = k¢ (koA ) { 5 @y (i)

— Lo(vAmKi(vn) + Li(v ) Ki(v/7n) }CLO:O,

which means that the solution has phase shift free in the whole plane.

3-dim. cylindrical stationary solutions

s F2(1,2,%,0.05)=0

1.0

0.8 v},yl:l

0.6

0.4

0.2

0 k
0 5 10 15
Figure 3

Next, we numerically treat with the functional form of Fy(¢, m, k, =)
for the solution (7, v(r;7)). In Figure 3, the curves of Fao(¢,m,k,e) =0
for £ =1,2 and m = 2 is shown in the (k, s)-plane. For small s > 0, the
solution is stable and with any fixed s > 0, the solution is so for large
k > 0. From these numerical results, we will consider the asymptotic
behavior of F5(¢, m, k,€) as k tends to k*, that is, 77 goes to infinity. Let

F(t,m, k* e) = — ( en_1>

Wl (@) = @)
) v 4y/y +m \/"n
ko (i) VI—Vrtm? 3y y+mi(y +m?) — (4% — 1)\ /7y
2 6472/ + m2n? 3292/ + m2(y + m?)n?
with k* = 2\/'70*/)('(%).

Proposition 1 ( Asymptotic behavior of Fy(¢,m, k,)) Forn =17,
it holds that

{F2(6,m,k,e)+ F(¢,m,k* €)} —0
— =0.

k—»k* n
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Proof. Because of kliril* 77 = 00, we can prove this proposition by. using

the asymptotic behavior of the modified Bessel functions I,(z) and K,(z)
as z tends to infinity.

Remark 2 Let F*(¢) = & — k*X"(35)/(87%). Form =0, (in the
case of 2-dimensional domain ), it holds that

Jim {Fo(6,0,k, &) + (€ + 1)(¢ — DF*(e)} =0.

If F*(g) > 0, it follows from the proposition that for any integer £ > 1, it
holds F5(£,0,k,&)72 < 0, that is, the stationary solution becomes stable
as k tends to k™.

As k tends to k*, it holds that if F*(e) > 0, then

0> F5(2,0,k,e) > F5(3,0,k,&) > - -+
> Fy(2,0,k,e) > Fo(0+1,0,k,e) > -+,
if F*(€) <0, then
0 < F2(2,0,k,e) < F5(3,0,k,e) < ---

< Fy(0,0,k,¢) < Fy(£+1,0,k,¢) < ---.

For the numerical simulation, it holds that F*(¢) < 0 for 0.98--- < s <
5.45---.

§5. Stability of the spherical stationary solutions in R?

In this section, we consider the stability of the radially symmetric
stationary solution of (2.4)—(2.6) for N = 3, which satisfies n = O(1) for
small € > 0.

To study the stability, we represent deformations of the interface
r = 1 by the polar coordinate (r,6,¢) = (n + ((¢,0,¢),6,¢) with the
azimuthal angle (8, ), where u takes 1 for (r,0,¢) € (0,74 (¢, 6, p)) X
(0,7) x (0, 27), while u takes 0 for (7,8, ) € (n+¢((¢,0, ), 00) x (0, 7) x
(0,2m). For I' = (rsinfcosyp, rsinfsingp,rcosb), it follows from (4.2)
that

rsin

Gt
\/1"2 sin? 6 + 2+¢ sin? 6§

vyr2sin? @ — vp sin® 0¢e — vy sin® e

—2ek + O(C?).

=c+ kx'(v)

rsinfy/r?sin® 6 + 2+¢ sin? §
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By using the balance of the above equation with respect to lower parts
of ¢ and their derivatives, it holds that

= k {X'(Uo) (v,(.l) + vﬁz)) + x" (vo)vor (’U(l) + v(z))}

¢ . Coo Cop (o cos 6 2
2 = o .
e (77 - 2n? z ¥ 212 sin? 6 * 202 sin 0 +0(C)

(5.1)

Defining the completely orthonormal system {Yz,,(6, )} on the sphere
by

Yom(8,0) = \/(6 _(Iﬂn?i)l!gé!+ D P™(cos 8) exp(—imyp)

m _ g Lml diml 1 dt )
where Py"(z) = (1 —2%) % - Po(z) and Pe(z) = 55— (x

we have

2m
0
/ { Cee n Cop + Cp cOS } Yi.m (0, @) sin 0dfdyp

72 ' p2sin?6  mgsing

- 1),5’

“;5(5 +2)(£ = 1)Cem(t),
‘1’/%/”““)” (6, ) sin 6d8dp = - vo(n)Cm()
A e,m(0, ) sin o = —vo(n)Cem(t),
27 T
| 0 em(6.0) s b8 = ey (VTK sy (VTG0
2m T8 )
/0 EU Ye.m (0, ) sin6dfdy
1)1
=3 {5 + v (T3 (VK (V) - 2Ig<ﬁn>Kg<ﬁn>)] Cem(t),
2 T8
/ é—v(z)Yg,m(ﬂ, ) sin 8dAdy
0 r

gt |5 VA (T (VK (V)

(€4 DIy (VMK 13 (V)] Gt

1 27 T
where Gen(t) = 1= [ [ €60.60,)Yem(0,9)sin 08
0 0
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It follows from (5.1) that

d
ECZ,W = {kX”(UO)'UOT [UOT + nIz+%(\/’_Yﬁ)Ke+%(\/’7ﬁ)]

“kx(w) |3 54 v (1A Ky () = 203 (V7K (/)|

_ﬂ% E + M (er—é(ﬁﬁ)KH%(ﬁn)

DTy (K (V) || = 5+ 2= D Gem®

= F3(4, k,€)Com (),

(5.2)
where vy, = —T]Is \/_n \/'17

By a simple computatlon we note that (i) F53(0,k,¢) = —%Hg,(?’]; k,e),
that is, the stability of the spherical stationary solution under the radi-
ally symmetric disturbances is determined by the sign of %Hg (n; k, €);
(ii) F53(1,k,e) =0, that is, the stationary solution has phase shift free
in (2.4).

Next, we numerically treat with the functional form of F3(¢,k,¢)
for the solution (7, v(r;%)). In Figure 4, the curves of F3(¢,k,e) = 0 for
¢ = 2,3,4 is shown in the (k, s)-plane. For small s > 0, the solution
is stable and with any fixed s > 0, the solution is so for large k¥ > 0.
Figure 5 shows the form of F3(¢,k,) for s = 0.6,1.0 and £ = 2,3,4. It
is known that these results are similar to that of the case for N = 2 in
[4].

Proposition 2. ( Asymptotic behavior of F3(¢, k,¢)) It holds that

Jim {Fs (¢, k, N + (£ +2)(¢—1)F*(e)} =0,

where F*(g) stands in Remark 2.
Proof. Because of klirE 7] = 00, we can prove this proposition from

(5.2) by using the asymptotic behavior of the modified Bessel functions
I;41(2) and Ky 1(2) as z tends to infinity.
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This propostion imples that the similar results to the last part in
"Remark 2 holds for F5(¢, k,¢) depending on the sign of F*(g). We note
that F*(e) < 0 at s = 1.0 and F*(e) > 0 at s = 0.6 for x(v) =
sv2/(s2 + v2). On the other hands, it is suggested that F3({,k,e) < 0
for £ > 1 as k tends to k(¢) in Figure 5. Since k(g) is the turning point
of the global branch of the stationary solution, we may assume that 7j(e)
becomes of order ¢ for small € as k tends to k(g) from Theorem 1. Then,

we have

Fy(Lke)  (C+(f-1u
o - +0(1) (5.3)

for some positive constant u. Therefore, as k tends to k(e), it follows
from (5.3) that

0> F3(2,k,e) > F5(3,k,e) > - > F3(0,k,e) > F3(L + 1,k,e) > - .

In this paper, we do not discuss the relation of the solutions between
the interface equation (2.4) and the original reaction—diffusion equation
(1.2). That is, the solution of (2.4) becomes the good approximation of
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the solution of (1.2). Moreover, there is the problem such that the as-
ymptotic behavior of the critical eigenvalues of the linearized eigenvalue
problem of (1.2) is represented by using F3(¢, k, &) ( see [9]).

F3(1,k0.05) (s = 0.6) Fall £ 0.05) (s =1.0

0.2 0.4
&\ 0.2
0 / @
0.2 0
e I= =3 1= 02
04 1=4 I= 1=2
-0.4
0.6 06
0.8 0.8
1 k -1 k
0 2 4 6 8 10 0 5 10 15 20
Figure 5.1 Figure 5.3

F3(l,k, 0. 05 = 1.
F3(l,k,0.05) (s = 0.6) 3k, ) (s 0

0.002
0.15 o
1=3 1=4 [ /123 /" 1=2
0.1 0.001
0.05
0

4

-0.001 k
-0.05 k
16 18 2 22 24 26 176 177 178 178 18

Figure 5.2 Figure 5.4

§6. Appendix

In this section, we obtain the equations (2.4), (2.5) which describes the
motion of the interface according to [2, 6] by using the matched asymptotic
expansion. To do so, we set the outer expansion as follows:

u = ugteuy+eugt---

v o= wvgtev +elvg .

Substituting this expansion into (2.1), we shall have the outer solutions uo,
uy,--- and vg, v, - as follows:

O(1)- term

Since ug satisfies 0 = f(uo) and the original system is bistable, we may set

0 in Q[) (t)

(tv )=
w * 1 in Ql(t)
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Here, we assume that Qq(t), Q1 (¢) and I'(¢) satisfy T'(¢) = RV \{Q(t) U Q1 (1)}
and Qo(¢) NQy(t) = ¢ where Q4 (¢) is a bounded domain and I'(¢) is (N — 1)—
dimensional hypersurface.

On the other hand, vo satisfies the second equation of (2.4).

O(g)- term

Since 0 = f'(ugp)u; and f'(ug) < 0 for ug = 0, 1, we have u;(x) = 0.
Therefore, v; satisfies vg; = Av; — yv; in RY with v; € CY(RN).

O(e?)- term

From 0 = f'(ug)uz, we have uz(z) = 0. Therefore, vy satisfies vy =
Avy ~ yvg in RV,

Because the constructed solution is discontinuous on the interface I', we
need to consider the another approximation near I'.

To do so, we introduce the new stretched variable £ = d(t, z)/e where d(¢, z)
is the signed distance function to T,

dist(z,T") in Qq(t)
d(t,z) =
—dist(z,T') in Q4(2).

We note that d(t,z) = 0 on I'(t) and |Vd| = 1. Then, we set the inner expansion
as follows:

d = dg+ed +e%dy+-
U = Up+eU'+e2U2+---
V = Vo+eVi4e2v2g...

To make the outer and inner expansions consistent, we require the matching
condition on I'(¢):

lim {(U(t7 3 :L'),V(t, é, x)) - (u(tv y),v(t, y))} = (07 0)7 ye, € F(t),

y—z
§— 0

lim — {(U(,¢2),V(§,€ ) - (ut,y),v(t,y)} = (0,0), y € Qo, z €T(1).

y—x
£~ —o0

Substituting these inner expansions into (2.1) and using the above matching

condition, we shall have the inner solutions Uy, U, --- and Vi, Vi, -+ as
follows:
O(e~?)- term

Vo satisfies
0= Vo and 5lirin Vo(t, &, z) = vo(t, z).

From the condition vg € C*(RY), we have Vj(t, &, z) = vo(t, z).
O(e71)- term
V1 satisfies
0=V and E_ljgloo Vi(t, &, z) = vi{t, x).
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From the condition v; € C1(RY), we have V| (t,£,z) = v1(t, z).
O(1)- term
Uy satisfies

dOtU0§ = Uogg — kX’(Uo)VdQV’UoUog + f(Uo), f R
Jim Us(©) =1 and lim Us(§) =0

where Vv is the gradient of vg on the interface I.
Lemma ( Fife and McLeod [3] ) For some constant c*, there is a monotone
solution W (&) of

O:W§§+C*W5+f(W), EeR
1
lim W() =1 and £lim w(€) =0. (e1)

g——-o0
Therefore, we set Uy = W and —c* = kx'(vo)VdoVug + dot on T, that is,
(o)
—c* = kXI(vO)B_rf +dp; onT.
O(e)- term

Let L be the linearized operator of (a.l) around the monotone solution
W (€) as follows:

dZ * d !
Then, U, (§) satisfies
LUl = (dlt - Ado)Ugé + k{X’(’Uo)[(lev’Uo + VdoV’Ul + Vzg)Uog

P!
ZO Y, Upe + (va)ZUO)}

+(A’U0 + Vz{{)Uo] + X" (Uo) an

= G

where V; satisfies

1 (£<0)
Vzg{ + Uo = —A’Uo +’)”U0 = Ug =
0 (& >0).
Let L* be the adjoint operator of L defined by
d? d
L* _ = =2 1 .
AT + f'(Uo)

Then, ¢ = Upe and ¢ = ec"¢¢ are eigenfunctions of 0 eigenvalues of L and L*,
respectively. From the solvability condition, G satisfies

0=<G, ¥ >2r,
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where < -, >2(g, is the inner product of L%(R). Let V* be the normal velocity
of the interface I" and « be the mean curvature. In our case, we define that I'
is positive if Q; is convex. From Ady = (N — 1)k and V* = —d; on T, that is,
(V* +dog)/e = —dqs + O(e). Then, we have

VE=ct 4 kx'(vo)% —&(N — 1)k +eG (a.2)
where

G= k{X,(’Uo)levvo + Vdov(xl(’vo)’vl)

(o) [ " Y (UneVag + UoVage) de
+V o)) [ vt del/ [ o ds}

Therefore, we have the interface equation as follows:
31}0
V* =c* + kx’(vg)a— —e(N—-1)k+eG on I'(t), t>0
n

OZAU0+gi(U0) in Q,(t) (Z =0, ].), t>0
vw(t,-) € CYRY), t >0,

where g;(v) =1 — yv.
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