Advanced Studies in Pure Mathematics 47-2, 2007 Asymptotic Analysis and Singularities pp. 623–633

Existence of standing waves for the nonlinear Schrödinger equation with double power nonlinearity and harmonic potential

Hiroaki Kikuchi

Abstract.

In this paper we prove the existence of standing waves for the nonlinear Schrödinger equation with double power nonlinearity and harmonic potential. The nonlinearity of our problem does not satisfy the *global Ambrosetti-Rabinowitz condition*. Therefore, in general, it seems difficult to obtain a boundedness of Palais-Smale sequence for the associated functional. We overcome this by the compactness argument.

$\S1$. Introduction and main theorem

In this paper we consider the existence of a solution to the following semilinear elliptic equation:

(1)
$$-\Delta u + (|x|^2 + \omega)u + |u|^{p-1}u - |u|^{q-1}u = 0 \quad \text{in } \mathbb{R}^N,$$

where $N \ge 1, 1 < q < p < 2^* - 1$ and $\omega \in \mathbb{R}$. Here, we set $2^* = 2N/(N-2)$ if $N \ge 3$, and $2^* = \infty$ if N = 1, 2. A motivation to study the equation (1) stems from the nonlinear Schrödinger equation:

(2)
$$i\partial_t \psi = -\Delta \psi + |x|^2 \psi + |\psi|^{p-1} \psi - |\psi|^{q-1} \psi \quad \text{in } \mathbb{R} \times \mathbb{R}^N.$$

The model equation (2) describes the Bose-Einstein condensate with attractive inter-particle interactions under the magnetic trap. Recently many experiments on this phenomenon were done (see [17], [18]). We are interested in standing waves for the equation (2), that is, solutions of the form $\psi(t, x) = e^{i\omega t}u(x)$. It is observed that the function $\psi(t, x)$ of this form satisfies the equation (2) if and only if u is a solution to the equation (1).

Received November 1, 2005.

Revised January 13, 2006.

Many authors have studied the problem concerning the existence of standing waves ([1], [3], [4], [5], [6], [8], [9], [10], [11], [12], [13], [14], [19]). We recall several known results. We consider the following semilinear elliptic equation:

(3)
$$-\Delta u + V(x)u + f(u) = 0 \quad \text{in } \mathbb{R}^N,$$

where $N \ge 1, f \in C(\mathbb{R}, \mathbb{R})$ and $V \in C(\mathbb{R}^N, \mathbb{R})$. In the case where the potential $V(x) \equiv m > 0$ (constant), that is, in the autonomous case, Berestycki and Lions [4] $(N \ge 3, N = 1)$ and Berestycki, Gallouët and Kavian [5] (N = 2) prove an existence results for a wide class of nonlinearities by the constrained minimization method. From their results, we know that if $f(s) = |s|^{p-1}s - |s|^{q-1}s$ $(1 < q < p < 2^* - 1)$ the equation (3) has a radially symmetric solution in $H^1(\mathbb{R}^N)$ under the assumption $m < m_0$ for some $m_0 > 0$. Berestycki and Lions [4] also show that if $N \ge 3$ the equation (3) does not have a nontrivial solution for $m \ge m_0$ from the Pohozaev identity. Wei and Winter [19] show the uniqueness of the positive radial solution to the equation (3).

In the case where the potential V is not constant, that is, in the nonautonomous case, Berestycki, Lions and Peletier [6] show the existence of a nontrivial solution to the equation (3) for a wide class of nonlinearities including our nonlinearity $f(s) = |s|^{p-1}s - |s|^{q-1}s$ (1 < q) by the shooting method. However, they require the boundeness of the potential V.

In this paper we use the mountain pass theorem ([2]) to show the existence of standing waves. In order to use the mountain pass theorem, we need the following Palais-Smale condition.

Definition. Let E be a Banach space and assume that $J \in C^1(E, \mathbb{R})$.

(i) We say that a sequence $\{u_n\}$ is a Palais-Smale sequence (PS sequence, for short) associated with the functional J if and only if there exists a constant M > 0 such that

$$|J(u_n)| \le M, \qquad J'(u_n) \to 0 \text{ in } E^* \ (n \to \infty).$$

Here, $J'(\cdot)$ is the Fréchet derivative of $J(\cdot)$ and E^* is the dual of E.

(ii) We say that the functional J satisfies the Palais-Smale condition (PS condition, for short) if and only if any PS sequence has a convergent subsequence.

When we show the existence of a solution to the equation (3), the following condition is often assumed: there exists a constant $\mu > 2$ such that

 $0 < \mu F(s) \leq f(s)s$ for all $s \in \mathbb{R}$,

624

where $F(s) = \int_0^s f(t)dt$. This condition is called the *global Ambrosetti-Rabinowitz condition*. It ensures the boundedness of the PS sequence for the functional associated with the equation (3). We explain why this condition is useful. For simplicity, we suppose that the potential $V \equiv m > 0$ (constant). We define $J: H^1 \to \mathbb{R}$ by

$$J(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx + \frac{1}{2} \int_{\mathbb{R}^N} m |u|^2 dx - \int_{\mathbb{R}^N} F(u) dx.$$

The functional J is a C^1 functional on H^1 and u is a solution to the equation (3) if and only if u is a critical point of the functional J. If $\{u_n\}$ is a PS sequence for the functional J, then we have

$$M + \|u_n\|_{H^1} \ge \mu J(u_n) - \langle J'(u_n), u_n \rangle$$

= $(\frac{\mu}{2} - 1) \|u_n\|_{H^1}^2 + \int_{\mathbb{R}^N} (f(u_n)u_n - \mu F(u_n)) dx.$

If the nonlinearity f satisfies the global Ambrosetti-Rabinowitz condition, we have

$$M + \|u_n\|_{H^1} \ge (\frac{\mu}{2} - 1) \|u_n\|_{H^1}^2.$$

This implies that the sequence $\{u_n\}$ is bounded in H^1 . When the potential V is not constant, we can also obtain the boundedness of the PS sequence similarly. However, our nonlinearity $f(s) = |s|^{p-1}s - |s|^{q-1}s$ does not satisfy the global Ambrosetti-Rabinowitz condition. Note that if p < q, then f(s) satisfies the global Ambrosetti-Rabinowitz condition. It seems difficult to show that the associated functional satisfies the PS condition without the global Ambrosetti-Rabinowitz condition. Recently there are several existence results without the global Ambrosetti-Rabinowitz condition. Jeanjean [8] obtains the existence of a positive solution to the Landesman-Lazer type problem. Jeanjean and Tanaka [10] prove the existence of semiclassical states to the nonlinear elliptic equation with potentials. Zou [22] shows the existence of infinitely many solutions to the equation (3) by the fountain theorem. These results are based on Struwe's method (see e.g. [15], [16]). However, they need the following additional condition on the nonlinearity f: there is $K \ge 1$ such that

(4)
$$\hat{F}(s) \le K\hat{F}(t)$$
 for all $0 \le s \le t$,

where $\hat{F} = \frac{1}{2}f(\xi)\xi - F(\xi)$. Our nonlinearity $f(s) = |s|^{p-1}s - |s|^{q-1}s$ satisfies neither global Ambrosetti-Rabinowitz condition nor the above condition (4). Recently Jeanjean and Tanaka [11] prove the existence

of the solution to the equation (3) for a wide class of nonlinearities. However, they require that the nonlinearity f has a superlinear growth at infinity and that there exists a function $\phi \in L^1(\mathbb{R}^N)$ such that $|x \cdot \nabla V(x)| \leq \phi(x)$ for all $x \in \mathbb{R}^N$.

To state our theorem, we give some notation. We define the function space X by

$$X = \left\{ u \in H^1(\mathbb{R}^N) \mid \int_{\mathbb{R}^N} |x|^2 |u|^2 dx < \infty \right\}$$

equipped with the inner product

$$(u,v)_X = \int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + |x|^2 uv + uv) dx.$$

We use $\|\cdot\|_X$ to denote the norm of the function space X. We denote the dual of X by X^{*}. Note that X is continuously embedded in $H^1(\mathbb{R}^N)$. Furthermore, the embedding $X \hookrightarrow L^r$ is compact, where $2 \leq r < 2^*$ (see e.g. [3], [21]). we define two constants $m_0 > 0$ and $\theta > 0$ such that

$$m_{0} = \sup\{m > 0 \mid \frac{m}{2}s^{2} + \frac{1}{p+1}s^{p+1} - \frac{1}{q+1}s^{q+1} < 0 \text{ for some } s > 0\},$$

$$\theta = \pi^{-\frac{N}{2}} \left(\frac{2}{q+1}\right)^{\frac{N}{2}} \left(\frac{p+1}{q+1}\right)^{\frac{N(q-1)}{2(p-1)}}.$$

Our result is the following.

Theorem 1.1. Assume that $1 < q < p < 2^* - 1$. Let λ_1 be the first eigenvalue of $-\Delta + |x|^2$. If $-\lambda_1 < \omega < \theta m_0 - \lambda_1$, there exists a solution to the equation (1) in X.

Remark. We can show that the equation (1) has a family of solutions $(u(\varepsilon), \lambda(\varepsilon))$ bifurcating from $(0, \lambda_1)$. Indeed, for some ε_0 , the solution can be expressed as

$$u(\varepsilon) = \varepsilon \Phi + \varepsilon z(\varepsilon) \quad \text{for } 0 < \varepsilon < \varepsilon_0,$$

where Φ is an eigenfunction corresponding to λ_1 and $z \in X$ is a continuous function of ε such that z(0) = 0 and $(z, \Phi)_X = 0$ (see [7]). However, we do not determine the size of ε_0 . Our theorem gives a range of ω for which the equation (1) has a solution.

626

We prove this theorem by the variational method. We define a C^1 functional $I: X \to \mathbb{R}$ by

$$\begin{split} I(u) &= \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx + \frac{1}{2} \int_{\mathbb{R}^N} (|x|^2 + \omega) u^2 dx + \frac{1}{p+1} \int_{\mathbb{R}^N} |u|^{p+1} \\ &- \frac{1}{q+1} \int_{\mathbb{R}^N} |u|^{q+1} dx. \end{split}$$

Then we find that u is a critical point of the functional I if and only if u is a solution to the equation (1). We briefly explain the outline of the proof. We use the mountain pass theorem. We first prove that the functional I satisfies the mountain pass geometry in Lemma 2.2. Next, we show that the functional I satisfies the PS condition. Main difficulty is to obtain a boundedness of a PS sequence. In Lemma 2.3, we prove this by the following way. Let $\{u_j\}$ be the PS sequence of the functional I and we suppose that $||u_j||_X \to \infty$ as $j \to \infty$ and set $w_j = u_j ||u_j||_X^{-1}$. Since the sequence $\{w_j\}$ is bounded in X, there exists a subsequence $\{w_j\}$ (we still denote by $\{w_j\}$) and a function $w \in X$ such that $w_j \to w$ weakly in X. We derive a contradiction in both the cases w = 0 and $w \neq 0$ in X. Finally, we show that any PS sequence has a convergent subsequence in Lemma 2.4.

$\S 2.$ Proof of the main theorem

We recall the mountain pass theorem to prove Theorem 1.1.

Theorem 2.1 ([2]). Let E be a Banach space equipped with the norm $\|\cdot\|$. Suppose that a functional $J \in C^1(E, \mathbb{R})$ satisfies the PS condition and

- (i) J(0) = 0,
- (ii) there exist constants $\rho, \alpha > 0$ such that $J(u) \ge \alpha$ for all $u \in E$ and $||u|| = \rho$,

(iii) there exists a function $e \in E$ such that $J(e) \leq 0$ and $||e|| > \rho$. Then J possesses a critical value $c \geq \alpha$. Moreover the critical value c can be characterized as

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)),$$

where $\Gamma = \{ \gamma \in C([0, 1], E) \mid \gamma(0) = 0, \ \gamma(1) = e \}.$

We first show that the functional I satisfies the mountain pass geometry, that is, we check that the functional I satisfies assumptions (i), (ii) and (iii) of Theorem 2.1. We find that I(0) = 0. Next lemma shows that the functional I satisfies the assumptions (ii) and (iii).

Lemma 2.2. Assume that $1 < q < p < 2^* - 1$ and $-\lambda_1 < \omega < \theta m_0 - \lambda_1$. Then we find that

- (1) there exist constants $\rho, \alpha > 0$ such that $I(u) \ge \alpha$ for all $u \in X$ and $||u||_X = \rho$.
- (2) there exists a function $v \in X \setminus \{0\}$ such that $I(v) \leq 0$,

Proof. (1) Let $e_1 = \pi^{-\frac{N}{4}} \exp(-\frac{|x|^2}{2})$ be the eigenfunction corresponding to λ_1 for $-\Delta + |x|^2$ with $||e_1||_2 = 1$. For h > 0, we have

$$\begin{split} I(he_1) &= \frac{h^2}{2} \{ \int_{\mathbb{R}^N} \left(|\nabla e_1|^2 + |x|^2 e_1^2 - \lambda_1 e_1^2 \right) dx \} \\ &+ \frac{(\omega + \lambda_1)h^2}{2} \int_{\mathbb{R}^N} e_1^2 dx + \frac{h^{p+1}}{p+1} \int_{\mathbb{R}^N} e_1^{p+1} dx - \frac{h^{q+1}}{q+1} \int_{\mathbb{R}^N} e_1^{q+1} dx \\ &= \frac{(\omega + \lambda_1)h^2}{2} \int_{\mathbb{R}^N} e_1^2 dx + \frac{h^{p+1}}{p+1} \int_{\mathbb{R}^N} e_1^{p+1} dx - \frac{h^{q+1}}{q+1} \int_{\mathbb{R}^N} e_1^{q+1} dx. \end{split}$$

We put $L_1 = ||e_1||_{p+1}^{p+1}$ and $L_2 = ||e_1||_{q+1}^{q+1}$. Then we have

$$I(he_1) = \frac{(\omega + \lambda_1)h^2}{2} + \frac{L_1h^{p+1}}{p+1} - \frac{L_2h^{q+1}}{q+1}.$$

A simple calculation yields that for $\omega + \lambda_1 < L_1^{\frac{p-1}{p-q}} L_2^{\frac{q-1}{p-q}} m_0$ there exists a positive number h_1 such that

$$\frac{(\omega+\lambda_1)h_1^2}{2} + \frac{L_1h_1^{p+1}}{p+1} - \frac{L_2h_1^{q+1}}{q+1} < 0.$$

Therefore, if we set $\theta = L_1^{\frac{p-1}{p-q}} L_2^{\frac{q-1}{p-q}}$ and $e = h_1 e_1$ then we deduce that I(e) < 0 for all $\omega < \theta m_0 - \lambda_1$.

(2) Since $\omega > -\lambda_1$, there exists $a \in (0,1)$ satisfying $\omega > -a\lambda_1$. Then we obtain

$$\begin{split} I(u) &= \frac{1}{2} \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \frac{1}{2} \int_{\mathbb{R}^{N}} (|x|^{2} + \omega) u^{2} dx + \frac{1}{p+1} \int_{\mathbb{R}^{N}} |u|^{p+1} dx \\ &- \frac{1}{q+1} \int_{\mathbb{R}^{N}} |u|^{q+1} dx \\ &\geq \frac{1-a}{2} \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \frac{1-a}{2} \int_{\mathbb{R}^{N}} |x|^{2} u^{2} dx + \frac{a\lambda_{1} + \omega}{2} \int_{\mathbb{R}^{N}} u^{2} dx \\ &+ \frac{1}{p+1} \int_{\mathbb{R}^{N}} |u|^{p+1} dx - \frac{1}{q+1} \int_{\mathbb{R}^{N}} |u|^{q+1} dx. \end{split}$$

Since $a\lambda_1 + \omega > 0$, we have

$$I(u) \ge c \|u\|_X^2 - \frac{1}{q+1} \|u\|_{q+1}^{q+1} \ge c \|u\|_X^2 - c \|u\|_X^{q+1}.$$

If $||u|| = \rho$ is sufficiently small, then there exists a constant $\alpha > 0$ such that $I(u) \ge \alpha$. Q.E.D.

Next we check that the functional I satisfies the PS condition. We show this by two steps. First, we obtain the boundedness of the PS sequence. Then we find that there exists a sequence $\{u_j\}$ (we still denote by $\{u_j\}$) and a function $u \in X$ such that $u_j \to u$ weakly in X. Second, we show that $u_j \to u$ strongly in X.

Lemma 2.3. Every PS sequence of the functional I is bounded in X.

Proof. We shall prove this lemma by contradiction. Let $\{u_j\}$ be a PS sequence of the functional I and suppose that $||u_j||_X \to \infty$ as $j \to \infty$. We set $w_j = u_j ||u_j||_X^{-1}$. There exist subsequence $\{w_j\}$ (we still denote by $\{w_j\}$) and a function w such that $w_j \to w$ weakly in X. Since X is compactly embedded in L^r for $2 \le r < 2^*$, we deduce that $w_j \to w$ strongly in L^r for $2 \le r < 2^*$ as $j \to \infty$. Furthermore, we find that $w_j(x) \to w(x)$ for a.a. $x \in \mathbb{R}^N$ as $j \to \infty$. We derive a contradiction in both the cases $w \ne 0$ and w = 0 in X.

First, we consider the case $w \neq 0$ in X. We define the subspace $\Omega \subset \mathbb{R}^N$ by $\Omega = \{x \in \mathbb{R}^N | w(x) \neq 0\}$. Since $w \neq 0$ in X, we deduce that $\Omega \neq \emptyset$ and $|u_j(x)| \to \infty$ as $j \to \infty$ for $x \in \Omega$. We have

$$\begin{aligned} (p+1)M + \|u_j\|_X &\geq |(p+1)I(u_j) - \langle I'(u_j), u_j \rangle| \\ &\geq \frac{p-q}{q+1} \int_{\mathbb{R}^N} |u_j|^{q+1} dx - \frac{p-1}{2} c \|u_j\|_X^2. \end{aligned}$$

Dividing the above inequality by $||u_i||_X^2$ yields that

$$\begin{aligned} \frac{(p+1)M}{\|u_j\|_X^2} + \frac{1}{\|u_j\|_X} &\geq \frac{p-q}{q+1} \int_{\mathbb{R}^N} |u_j|^{(q-1)} |w_j|^2 dx - \frac{p-1}{2}c \\ &\geq \frac{p-q}{q+1} \int_{\Omega} |u_j|^{(q-1)} |w_j|^2 dx - \frac{p-1}{2}c. \end{aligned}$$

By Fatou's lemma, we deduce that $\liminf_{j\to\infty} \int_{\Omega} |u_j|^{(q-1)} |w_j|^2 dx = \infty$. However, we find that $(p+1)M||u_j||_X^{-2} + ||u_j||_X^{-1} \to 0$. This contradicts the above inequality.

Second, we consider the case w = 0 in X. Therefore, we find that $w_i \to 0$ in L^r if $2 \le r < 2^*$. By the Hölder inequality, we have

 $||u_j||_{q+1} \le ||u_j||_{p+1}^{\theta} ||u_j||_2^{(1-\theta)},$

where $\theta = (p+1)(q-1)(p-1)^{-1}(q+1)^{-1}$. Dividing the above inequality by $||u_j||_X^2$ yields that

$$\frac{\|u_j\|_{q+1}^{q+1}}{\|u_j\|_X^2} \le \|w_j\|_2^{2\frac{p-q}{p-1}} \left(\frac{\|u_j\|_{p+1}^{p+1}}{\|u_j\|_X^2}\right)^{\frac{q-1}{p-1}}$$

Furthermore, we find that

$$\begin{aligned} (q+1)M + \|u_j\|_X &\geq |(q+1)I(u_j) - \langle I'(u_j), u_j \rangle| \\ &\geq \frac{p-q}{p+1} \|u_j\|_{p+1}^{p+1} - \frac{q-1}{2} c \|u_j\|_X^2. \end{aligned}$$

It follows that there exists a positive constant c such that $||u_j||_{p+1}^{p+1}||u_j||_X^{-2} \le c$ for sufficiently large j. Since $||w_j||_2^2 \to 0$ and $||u_j||_{p+1}^{p+1}||u_j||_X^{-2} \le c$, we deduce that $||u_j||_{q+1}^{q+1}||u_j||_X^{-2} \to 0$ as $j \to \infty$. On the other hand, we have

$$\begin{aligned} (p+1)M + \|u_j\|_X &\geq |(p+1)I(u_j) - \langle I'(u_j), u_j \rangle| \\ &\geq \frac{p-1}{2} c \|u_j\|_X^2 - \frac{p-q}{q+1} \|u_j\|_{q+1}^{q+1}. \end{aligned}$$

Dividing the above inequality by $||u_j||_X^2$ yields that

$$\frac{(p+1)M}{\|u_j\|_X^2} + \frac{1}{\|u_j\|_X} \ge \frac{p-1}{2}c - \frac{(p-q)\|u_j\|_{q+1}^{q+1}}{(q+1)\|u_j\|_X^2}$$

Since $||u_j||_{q+1}^{q+1}||u_j||_X^{-2} \to 0$ as $j \to \infty$, we deduce that for any $\varepsilon > 0$, there exists sufficiently large j such that $\varepsilon > \frac{p-1}{2}c$. This is a contradiction. Q.E.D.

Lemma 2.4. Assume that $1 < q < p < 2^* - 1$. The functional I satisfies the PS condition.

Proof. Let $\{u_j\}$ be the PS sequence of the functional I. From Lemma 2.3, we deduce that $\{u_j\}$ is bounded in X. Then there exists a subsequence $\{u_j\}$ (we still denote by $\{u_j\}$) and function $u \in X$ such that $u_j \to u$ weakly in X. Since $X \hookrightarrow L^r$ is compact in L^r for $2 \le r < 2^*$, we deduce that $u_j \to u$ strongly in L^r for $2 \le r < 2^*$. Since $I'(u_j) \to 0$ in X^* as $j \to \infty$, we have $\langle I'(u_j), h \rangle \leq \varepsilon_j ||h||_X$ for all $h \in X$, where $\varepsilon_j = ||I'(u_j)||$. We note that $\varepsilon_j \to 0$ as $j \to \infty$ and

(5)
$$\left| \int_{\mathbb{R}^N} \left(\nabla u_j \cdot \nabla h + (|x|^2 + \omega) u_j h + |u_j|^{p-1} u_j h - |u_j|^{q-1} u_j h \right) dx \right|$$

$$\leq \varepsilon_j \|h\|_X.$$

If we put $h = u_j$ in (5) and let $j \to \infty$, then we have

(6)
$$\lim_{j \to \infty} \int_{\mathbb{R}^N} \left(|\nabla u_j|^2 + (|x|^2 + \omega) u_j^2 \right) dx$$
$$= \lim_{j \to \infty} \left(-\int_{\mathbb{R}^N} |u_j|^{p+1} dx + \int_{\mathbb{R}^N} |u_j|^{q+1} dx \right)$$
$$= -\int_{\mathbb{R}^N} |u|^{p+1} dx + \int_{\mathbb{R}^N} |u|^{q+1} dx.$$

If we put h = u in (5), then we obtain

$$\left| \int_{\mathbb{R}^N} \left(\nabla u_j \cdot \nabla u + (|x|^2 + \omega) u_j u + |u_j|^{p-1} u_j u - |u_j|^{q-1} u_j u \right) dx \right|$$

$$\leq \varepsilon_j \|u\|_X.$$

Since $u_j \to u$ weakly in X and the embedding $L^{\frac{p+1}{p}}, L^{\frac{q+1}{q}} \hookrightarrow X^*$ is compact, letting $j \to \infty$, we have

(7)
$$\int_{\mathbb{R}^N} |\nabla u|^2 dx + \int_{\mathbb{R}^N} |x|^2 u^2 dx + \omega \int_{\mathbb{R}^N} u^2 dx$$
$$= -\int_{\mathbb{R}^N} |u|^{p+1} dx + \int_{\mathbb{R}^N} |u|^{q+1} dx.$$

From (6) and (7), we have $\lim_{j\to\infty} \|u_j\|_X^2 = \|u\|_X^2$. Therefore, we deduce that

$$\lim_{j \to \infty} \|u_j - u\|_X^2 = \lim_{j \to \infty} (u_j - u, u_j - u)_X$$
$$= \|u\|_X^2 + \lim_{j \to \infty} \|u_j\|_X^2 - 2\lim_{j \to \infty} (u_j, u)_X$$
$$= \|u\|_X^2 + \|u\|_X^2 - 2\|u\|_X^2 = 0.$$

This completes the proof.

From Lemmas 2.2 and 2.4, we can use the mountain pass theorem and deduce that I possesses a critical value c which is characterized as $c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t))$.

Q.E.D.

References

- A. Avila and L. Jeanjean, A result on singularly perturbed elliptic problems, Commun. Pure Appl. Anal., 4 (2005), 341–356.
- [2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381.
- [3] T. Bartsch and Z. Q. Wang, Existence and multiple results for some superlinear elliptic problems on ℝⁿ, Comm. Partial Differential Equations, 20 (1995), 1725–1741.
- [4] H. Berestycki and P. L. Lions, Nonlinear scalar field equation I, Arch. Rational Mech. Anal., 82 (1983), 313–346.
- [5] H. Berestycki, T. Gallouët and O. Kavian, Equations de Champs scalaires eucliiens non lin'eaire dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307–310.
- [6] H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in ℝ^N, Indiana Univ. Math. J., **30** (1981), 141–157.
- [7] R. Fukuizumi, Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dynam. Systems, 7 (2001), 525-544.
- [8] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R^N, Proc. Roy. Soc. Edinburgh Sect. A, **129** (1999), 787–809.
- [9] L. Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z., 232 (1999), 651–664.
- [10] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problem with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21 (2004), 287–318.
- [11] L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on \mathbb{R}^N , Indiana Univ. Math. J., **54** (2005), 443–464.
- [12] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, J. Differential Equations, 158 (1999), 94–151.
- [13] P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291.
- [14] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149–162.
- [15] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Third edition.
- [16] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19–64.
- [17] T. Tsurumi and M. Wadati, Collapses of wavefunctions in multi-dimensional nonlinear Schrödinger equations under the harmonic potential, J. Phys. Soc., 66 (1997), 3031–3034.
- [18] T. Tsurumi and M. Wadati, Instability of Bose-Einstein condensate under Magnetic Trap, J. Phys. Soc., 66 (1997), 3035–3039.

- [19] J. Wei and M. Winter, On a cubic-quintic Ginzburg-Landau equation with global coupling, Proc. Amer. Math. Soc., 133 (2005), 1787–1796 (electronic).
- [20] J. Yang, Existence of solutions for semilinear elliptic problems without (PS) condition, Proc. Amer. Math. Soc., 132 (2004), 1355–1366 (electronic).
- [21] J. Zhang, Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498–503.
- [22] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358.

Department of Mathematics, Faculty of Science, Kyoto University Kyoto 606-8502 JAPAN