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Existence of standing waves for the nonlinear 
Schrodinger equation with double power 

nonlinearity and harmonic potential 

Hiroaki Kikuchi 

Abstract, 

In this paper we prove the existence of standing waves for the 
nonlinear Schrodinger equation with double power nonlinearity and 
harmonic potential. The nonlinearity of our problem does not satisfy 
the global Ambrosetti-Rabinowitz condition. Therefore, in general, it 
seems difficult to obtain a boundedness of Palais-Smale sequence for the 
associated functional. We overcome this by the compactness argument. 

§1. Introduction and main theorem 

In this paper we consider the existence of a solution to the following 
semilinear elliptic equation: 

where N 2: 1,1 < q < p < 2* - 1 and w E R Here, we set 2* 
2Nj(N- 2) if N 2: 3, and 2* = oo if N = 1,2. A motivation to study 
the equation (1) stems from the nonlinear Schrodinger equation: 

The model equation (2) describes the Bose-Einstein condensate with 
attractive inter-particle interactions under the magnetic trap. Recently 
many experiments on this phenomenon were done (see [17], [18]). We 
are interested in standing waves for the equation (2), that is, solutions 
of the form 7/J(t, x) = eiwtu(x). It is observed that the function 7/J(t, x) 
of this form satisfies the equation (2) if and only if u is a solution to the 
equation (1). 
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Many authors have studied the problem concerning the existence of 
standing waves ([1], [3], [4], [5], [6], [8], [9], [10], [11], [12], [13], [14], [19]). 
We recall several known results. We consider the following semilinear 
elliptic equation: 

(3) -~u + V(x)u + f(u) = 0 in JR.N, 

where N ?: 1, f E C(JR., JR.) and V E C(JR.N, JR.). In the case where the 
potential V(x) = m > 0 (constant), that is, in the autonomous case, 
Berestycki and Lions [4] (N ?: 3, N = 1) and Berestycki, Gallouet 
and Kavian [5] (N = 2) prove an existence results for a wide class 
of nonlinearities by the constrained minimization method. From their 
results, we know that if f(s) = lsiP- 1s- lslq- 1s (1 < q < p < 2*- 1) 
the equation (3) has a radially symmetric solution in H 1(JR.N) under the 
assumption m < m0 for some m 0 > 0. Berestycki and Lions [4] also 
show that if N ?: 3 the equation (3) does not have a nontrivial solution 
form?: m0 from the Pohozaev identity. Wei and Winter [19] show the 
uniqueness of the positive radial solution to the equation (3). 

In the case where the potential V is not constant, that is, in the 
nonautonomous case, Berestycki, Lions and Peletier [6] show the exis­
tence of a nontrivial solution to the equation (3) for a wide class of 
nonlinearities including our nonlinearity f(s) = lsiP- 1 s- lslq- 1 s (1 < 
q < p < 2* - 1) by the shooting method. However, they require the 
boundeness of the potential V. 

In this paper we use the mountain pass theorem ([2]) to show the 
existence of standing waves. In order to use the mountain pass theorem, 
we need the following Palais-Smale condition. 
Definition. Let E be a Banach space and assume that J E C 1 ( E, JR.). 

(i) We say that a sequence { un} is a Palais-Smale sequence (PS 
sequence, for short) associated with the functional J if and 
only if there exists a constant M > 0 such that 

J'(un)--> 0 in E* (n--> oo). 

Here, J'(·) is the Fn§chet derivative of J(·) and E* is the dual 
of E. 

(ii) We say that the functional J satisfies the Palais-Smale condi­
tion (PS condition, for short) if and only if any PS sequence 
has a convergent subsequence. 

When we show the existence of a solution to the equation (3), the 
following condition is often assumed: there exists a constant J.l > 2 such 
that 

0 < J.LF(s) :::;: f(s)s for all s E JR., 
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where F(s) = J; f(t)dt. This condition is called the global Ambrosetti­
Rabinowitz condition. It ensures the boundedness of the PS sequence 
for the functional associated with the equation (3). We explain why 
this condition is useful. For simplicity, we suppose that the potential 
V = m > 0 (constant). We define J: H 1 ----+ JR;. by 

11 2 11 2 1 J(u) =- I'Vul dx +- mlul dx- F(u)dx. 
2 ffi.N 2 ffi.N ffi.N 

The functional J is a C 1 functional on H 1 and u is a solution to the 
equation (3) if and only if u is a critical point of the functional J. If 
{ un} is a PS sequence for the functional J, then we have 

M + lluniiHl 2': J-Ll(un)- (J'(un), Un) 

= (!:!:_- 1)llunll~l + { (f(un)un- J-LF(un)) dx. 
2 Jffi.N 

If the nonlinearity f satisfies the global Ambrosetti-Rabinowitz condi-
tion, we have 

M + lluniiHl 2': (~- 1)llunll~l· 

This implies that the sequence { un} is bounded in H 1 . When the po­
tential V is not constant, we can also obtain the boundedness of the PS 
sequence similarly. However, our nonlinearity f(s) = lslp-Is- lslq-Is 
does not satisfy the global Ambrosetti-Rabinowitz condition. Note that 
if p < q, then f(s) satisfies the global Ambrosetti-Rabinowitz condition. 
It seems difficult to show that the associated functional satisfies the 
PS condition without the global Ambrosetti-Rabinowitz condition. Re­
cently there are several existence results without the global Ambrosetti­
Rabinowitz condition. Jeanjean [8] obtains the existence of a positive so­
lution to the Landesman-Lazer type problem. Jeanjean and Tanaka [10] 
prove the existence of semiclassical states to the nonlinear elliptic equa­
tion with potentials. Zou [22] shows the existence of infinitely many 
solutions to the equation (3) by the fountain theorem. These results 
are based on Struwe's method (see e.g. [15], [16]). However, they need 
the following additional condition on the nonlinearity f: there is K ;:::: 1 
such that 

(4) F(s):::; KF(t) for all 0:::; s:::; t, 

where F Y(~)~- F(~). Our nonlinearity f(s) = lsiP- 1s- lslq-Is 
satisfies neither global Ambrosetti-Rabinowitz condition nor the above 
condition (4). Recently Jeanjean and Tanaka [11] prove the existence 
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of the solution to the equation (3) for a wide class of nonlinearities. 
However, they require that the nonlinearity f has a superlinear growth 
at infinity and that there exists a function ¢ E £ 1 (JRN) such that lx · 
\i'V(x)l :::; ¢(x) for all x E JRN. 

To state our theorem, we give some notation. We define the function 
space X by 

equipped with the inner product 

(u,v)x= r (V'u·V'v+lxl 2uv+uv)dx. 
JJRN 

We use ll·llx to denote the norm of the function space X. We denote the 
dual of X by X*. Note that X is continuously embedded in H 1(JRN). 
Furthermore, the embedding X '--' Lr is compact, where 2 :::; r < 2* 
(see e.g. [3], [21]). we define two constants m 0 > 0 and B > 0 such that 

m 1 1 
m 0 =sup{ m > 0 I -s2 + --sP+1 - --sq+l < 0 for somes > 0}, 

2 p+1 q+1 

- _!:!.. ( 2 )!if- (p+1)WS+ B-n 2 -- --

q+1 q+1 

Our result is the following. 

Theorem 1.1. Assume that 1 < q < p < 2* - 1. Let )11 be the first 
eigenvalue of-~+ lxl2. If -)q < w < Bmo- >.1, there exists a solution 
to the equation ( 1) in X. 

Remark. We can show that the equation (1) has a family of so­
lutions (u(c), >.(c)) bifurcating from (0, >.1). Indeed, for some Eo, the 
solution can be expressed as 

u(c) = c<l> + cz(c) for 0 < E <Eo, 

where <I> is an eigenfunction corresponding to >.1 and z E X is a continu­
ous function of E such that z(O) = 0 and (z, <I>)x = 0 (see [7]). However, 
we do not determine the size of c0 . Our theorem gives a range of w for 
which the equation (1) has a solution. 
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We prove this theorem by the variational method. We define a C 1 

functional I: X ----> lR by 

I(u) = ~ r IV'ul 2dx + ~ r (lxl 2 + w)u2dx + - 1- r lulp+l 
2 Jffi.N 2 Jffi.N p + 1 lrrtN 
- - 1- r lulq+ldx. 

Q + 1 Jffi.N 
Then we find that u is a critical point of the functional I if and only 
if u is a solution to the equation (1). We briefly explain the outline of 
the proof. We use the mountain pass theorem. We first prove that the 
functional I satisfies the mountain pass geometry in Lemma 2.2. Next, 
we show that the functional I satisfies the PS condition. Main difficulty 
is to obtain a boundedness of a PS sequence. In Lemma 2.3, we prove 
this by the following way. Let { Uj} be the PS sequence of the functional 
I and we suppose that llujllx----> oo as j ____, oo and set Wj = ujllu1llx1 · 

Since the sequence { w1} is bounded in X, there exists a subsequence 
{ Wj} (we still denote by { Wj}) and a function w E X such that Wj ____, w 
weakly in X. We derive a contradiction in both the cases w = 0 and 
w =1- 0 in X. Finally, we show that any PS sequence has a convergent 
subsequence in Lemma 2.4. 

§2. Proof of the main theorem 

We recall the mountain pass theorem to prove Theorem 1.1. 

Theorem 2.1 ([2]). Let E be a Banach space equipped with the 
norm II · II· Suppose that a functional J E C 1 (E, JR) satisfies the PS 
condition and 

(i) J(O) = 0, 
(ii) there exist constants p, a > 0 such that J( u) 2': a for all u E E 

and llull = p, 
(iii) there exists a function e E E such that J(e):::; 0 and II ell > p. 

Then J possesses a critical value c 2': a. Moreover the critical value c 
can be characterized as 

c = inf max J(r(t)), 
1'Er tE [0, 1 J 

where r =hE C([O, 1], E) I 1'(0) = 0, 1'(1) = e}. 

We first show that the functional I satisfies the mountain pass ge­
ometry, that is, we check that the functional I satisfies assumptions (i), 
(ii) and (iii) of Theorem 2.1. We find that I(O) = 0. Next lemma shows 
that the functional I satisfies the assumptions (ii) and (iii). 
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Lemma 2.2. Assume that 1 < q < p < 2* - 1 and ->.1 < w < 
Bm0 - .A1. Then we find that 

( 1) there exist constants p, a > 0 such that I ( u) :::0: a for all u E X 
and //u//x = p. 

(2) there exists a function vEX\ {0} such that I(v) ~ 0, 

Proof. (1) Let e1 = n~lf exp( _lxf) be the eigenfunction corre­
sponding to >. 1 for -6 + /x/ 2 with //ei!I 2 = 1. For h > 0, we have 

We put £1 = II ei!I~ti and £2 = II ei!I ~ti. Then we have 

E..=l. !1...=l 
A simple calculation yields that for w + .A1 < L[-" L:;,-q m 0 there exists 
a positive number h1 such that 

E..=.! .2..=..!. 

L hq+l 
2 1 < 0. 
q+1 

Therefore, if we set e = L[-" L!],-" and e = h 1e1 then we deduce that 
I(e) < 0 for all w < Bmo- .A1. 

(2) Since w > ->.1 , there exists a E (0, 1) satisfying w > -a.A1. 
Then we obtain 
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Since a)q + w > 0, we have 

If llull = p is sufficiently small, then there exists a constant a > 0 such 
that I(u) ~a. Q.E.D. 

Next we check that the functional I satisfies the PS condition. We show 
this by two steps. First, we obtain the boundedness of the PS sequence. 
Then we find that there exists a sequence { UJ} (we still denote by { UJ}) 

and a function u E X such that uJ ----+ u weakly in X. Second, we show 
that UJ ----+ u strongly in X. 

Lemma 2.3. Every PS sequence of the functional I is bounded in 
X. 

Proof. We shall prove this lemma by contradiction. Let { u1 } be 
a PS sequence of the functional I and suppose that II Uj II x ----+ oo as 
j----+ oo. We set w1 = uJIIuJIIx1 · There exist subsequence {wJ} (we still 
denote by { w1}) and a function w such that w1 ----+ w weakly in X. Since 
X is compactly embedded in Lr for 2 :::; r < 2*, we deduce that Wj ----+ w 
strongly in Lr for 2 :::; r < 2* as j ----+ oo. Furthermore, we find that 
wJ(x)----+ w(x) for a.a.x E JRN as j----+ oo. We derive a contradiction in 
both the cases w J= 0 and w = 0 in X. 

First, we consider the case w J= 0 in X. We define the subspace 
D c JRN by D = {x E JRNiw(x) J= 0}. Since w J= 0 in X, we deduce that 
D # 0 and lu1(x)l ----+ oo as j----+ oo for xED. We have 

(p + 1)M + llu1llx ~ I(P + 1)I(uJ)- (I'(uJ), Uj)l 

~p-q f luJiq+ldx-p- 1 clluJII~-
q + 1 Jffi.N 2 

Dividing the above inequality by lluJII~ yields that 

(p+1)M +-1->p-q { lul(q-l)lwl2dx-p-1c 
lluJII~ lluJIIx - q + 1 }ffi.N 1 1 2 

> -- lu·l q-l lw·l 2dx- --c. p-ql ( ) p-1 
-q+1 11 1 1 2 

By Fatou's lemma, we deduce that liminf1___. 00 f11 luJI(q-l)lwJI 2dx = oo. 

However, we find that (p + 1)MIIuJIIx2 + lluJIIx1 ----+ 0. This contradicts 
the above inequality. 
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Second, we consider the case w = 0 in X. Therefore, we find that 
w1 --+ 0 in Lr if 2 ::::; r < 2*. By the Holder inequality, we have 

lluJIIq+l:::::: lluJII~+llluJII~1 -o), 

where e = (p+ 1)(q -1)(p-1)- 1(q+ 1)-1 . Dividing the above inequality 
by lluJIIi yields that 

Furthermore, we find that 

(q + 1)M + lluJIIx ~ l(q + 1)I(uJ)- (I'(u1), UJJI 
p- q p+l q- 1 2 

~ p+ 111uJIIv+l- - 2-clluJIIx· 

It follows that there exists a positive constant c such that lluJ ll~!i lluJ II.X2 :::::: 

c for sufficiently large j. Since llwJII§--+ 0 and lluJII~!illuJII.X2 :::::: c, we 

deduce that lluJII~!illuJII.X2 --+ 0 as j--+ oo. On the other hand, we have 

(p + 1)M + lluJIIx ~ I(P + 1)I(uJ)- (I'(uj), UJJI 

p- 1 II 11 2 p-qll llq+l ~ -2-C Uj X- q + 1 Uj q+l" 

Dividing the above inequality by lluJ IIi yields that 

Since lluj ll~!i lluj II.X2 --+ 0 as j --+ oo, we deduce that for any E > 0, there 
exists sufficiently large j such that E > ~c. This is a contradiction. 

Q.E.D. 

Lemma 2.4. Assume that 1 < q < p < 2* - 1. The functional I 
satisfies the PS condition. 

Proof. Let { u1 } be the PS sequence of the functional I. From 
Lemma 2.3, we deduce that {u1} is bounded in X. Then there exists a 
subsequence { u1} (we still denote by { u1}) and function u E X such that 
u1 --+ u weakly in X. Since X '--+ Lr is compact in Lr for 2 ::::; r < 2*, 
we deduce that u1 --+ u strongly in Lr for 2 ::::; r < 2*. Since I' ( u1) --+ 0 
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in X* as j ---+ oo, we have (J'(uj), h) ::; c-111hllx for all h E X, where 
C"j = III'(uj)ll· We note that C"j---+ 0 as j---+ oo and 

(5) ILN (vuj · V'h + (lxl 2 + w)ujh + lu1lp-lu1h -iu1iq-lu1h) dxl 

:S c1llhllx-

If we put h = u1 in (5) and let j---+ oo, then we have 

(6) lim r (1Y'ujl 2 + (lxl 2 + w)u]) dx 
J-+00 }RN 

= lim (- r iujlp+ldx + r iujlq+ldx) 
J-+oo }RN }RN 

= - r luiP+ldx + r lulq+ldx. 
JRN JRN 

If we put h = u in (5), then we obtain 

ILN (vuj · V'u + (lxl 2 + w)uju + iu11P- 1uju -iu1iq- 1u1u) dxl 

:S c1llullx-

.!±! !l.±! 
Since u1 ---+ u weakly in X and the embedding L v , L • '-----' X* is 
compact, letting j ---+ oo, we have 

(7) 

From (6) and (7), we have limj-+oo llu1lli- = llulli-- Therefore, we deduce 
that 

= llulli- + llulli- - 2llulli- = 0. 

This completes the proof. Q.E.D. 

From Lemmas 2.2 and 2.4, we can use the mountain pass theorem and 
deduce that I possesses a critical value c which is characterized as c = 
inf-yEr maxtE[O,l] I('y(t)). 
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