
Advanced Studies in Pure Mathematics 47-1, 2007 
Asymptotic Analysis and Singularities 
pp. 321-328 

Small data scattering for the Klein-Gordon equation 
with a cubic convolution 

Hironobu Sasaki 1 

Abstract. 

We consider the scattering problem for the Klein-Gordon equa­
tion with cubic convolution nonlinearity. We present the method to 
prove the existence of the scattering operator on a neighborhood of 0 
in the weighted Sobolev space Hs,a = (1- ~)-•12 (x)-a L2 (Rn). The 
method is based on the complex interpolation method of the weighted 
Sobolev spaces and the Strichartz estimates for the inhomogeneous 
Klein-Gordon equation. 

§1. Introduction 

This paper is concerned with the scattering problem for the nonlin­
ear Klein-Gordon equation of the form 

(1.1) 8'fu-~u+u=Fy(u) 

in space-time IR x IRn, where u is a real-valued or a complex-valued 
unknown function of (t,x) E IR X IRn, 8t = a;at and~ is the Laplacian 
in !Rn. The nonlinearity F7 (u) is a cubic convolution term F7 (u) 
-(V7 * lul 2 )u with 

Here, 0 < "Y < n and * denotes the convolution in the space variables. 
The term F7 ( u) is an approximative expression of the nonlocal inter­
action of specific elementary particles. Menzala and Strauss started to 
study this equation in [1]. 
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In order to treat the scattering problem, we define the scattering 
operator for (1.1). First, we list some notation to give the definition. 
Let H 8 be the usual Sobolev space (1 - Li)-s/2 L2(1Rn) and let H 8 •" 

be the weighted Sobolev space (1- ~)-sf2 (x)-a L2(1Rn). A Hilbert 
space xs,a is denoted by Hs,a EB Hs-l,a. For a positive number 15 and 
a Banach space A, we denote the set {a E A; llaiAII ~ 15} by B(15; A). 
Then the scattering operator is definedas the mappingS: B(I5;X8 •") 3 
(f _, g_) ~ (f+, g+) E X s,o if the following condition holds for some 
15 > 0: 

For any (f_,g_) E B(15;X8 •"), there uniquely exist a time-global 
solution u E C(IR;H8 ) of (1.1}, and data (f+,g+) E xs,o such that u(t) 
approaches U±(t) in H 8 as t tends to ±oo, where u±(t) are solutions of 
linear Klein- Gordon equations whose initial data are (f ±, g±), respec­
tively. 

We call that "(S, X 8 ·") is well-defined" if we can define the scattering 
operators: B(15; X 8 •") ___., xs,O for some 15 > 0. 

By Mochizuki [2], it is shown that if n ~ 3, s ~ 1, "'( < n and 
2 ~ "'( ~ 2s + 2, then (S, X 8 •0 ) is well-defined. By using the methods of 
Mochizuki and Motai [3] and Strauss [7], we see that if n ~ 2, s ~ 1, 
4/3 < "Y < 2 and a > 1/3, then (S, X 8 •") is well-defined. In view of the 
condition of a, there is a gap between the two cases "Y ~ 2 and "Y < 2 if 
we use only the methods of [2, 3, 7]. 

In (6], it is proved that (S, X 8 ·") is well-defined if 4/3 < "Y < 2 and 
a > (2 - "Y)/2. The proof is based on the Strichartz estimate for pre­
admissible pair, and the complex interpolation method for the weighted 
Sobolev spaces. Accordingly, we can fill the gap in some sense. 

In this paper, we shall introduce the method of [6]. For this purpose, 
we first give notation. 

ForsE lR and (1/p, 1/q) E (0, 1] x [0, 1), let H; be the Sobolev space 
(1- ~)-sf2Lp(1Rn). ForsE IR, we set E 8 [u](t) = ll(u(t),8tu(t))IX8 ' 0 II· 
For so E lR and Q (1/q, 1/r) E [0, 1] x [0, 1], L(s0 , Q) 
denotes Lq(IR;H~0 (1Rn)). Put w = v'1- ~ and U(t) = exp(±itw). 
For a Banach space A, B0 (1R; A) is the set of all A-valued, continu­
ous and bounded functions on JR. Moreover, if f in B0 (JR; A) has its 
derivative, and if 8tf E B0 (JR; A), then we write f E B1(1R; A). For 
s E IR, rfB denotes B0 (1R; H 8 ) n B1 (JR; Hs-l) with the norm llul7t8 11 = 
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lluiL(s, (0, 1/2))11 + ll8tuiL(s- 1, (0, 1/2))11· Furthermore, we set 

'H 8 = { u E 'H 8 ; there exist f, g E S' (R.n) such that 

u(t) = costwf + w- 1 sintwg,w- 18tu(t) E 'H 8 }. 

We call u = u(t, x) a free solution if u E 'H 8 for some s E R For a free 
solution u0 , u E S(R.n) is said to be a u0-solution if 

1t sin(t- T)w 
u(t) = uo(t) + . F(u(T))dT. 

0 w 

For s, s0 E JR. and Q = (1/q, 1/r) E [0, 1] x [0, 1], we denote L(s0 , Q) n'Hs 
and L(s0 , Q) n 'H 8 by Z(s0 , s, Q) and Z(s0 , s, Q), respectively. Define 
1/qc: = 1/3- c and 1/ro = 1/2- (1 + e)j3n. Assume that 4/3 < "Y < 2. 
Then there exist sufficiently small c("Y) > 0 and e("Y) E (0, 1) such that 

1 n1 1 1 1 1 
- < -(-- -) <- < n(-- -), 
6 2 2 ro("y) qc:("y) 2 ro("y) 

"'( = 2- 2{-2 - n(!- - 1-) }· 
qc:("y) 2 ro(-r) 

For Q, = (1/qc:("y), 1/ro("y)), we set 

s(Q,) = max{n + 2 (1- - 3-), 2 - 1 }. 
n qc:("y) 4 

We are now ready to state the results in [6]. 

Theorem 1.1. Assume that n :::: 2, 4/3 < "Y < 2, s :::: 1, and put 
s, = s(Q,), Z = Z(s, + s -1,s,Q,), Z.. = Z(s, + s -1,s,Q,). Then 
there exist some positive numbers 80 , 8+, 8_ satisfying the following 
properties: 

(i) If u0 E B(8o; Z), then there uniquely exist u E Z and u+, u_ E Z.. 
such that u is a uo -solution and we have 

(1.2) 

(ii) 

Moreover, the operators V± : B ( 80 ; Z..) 3 uo t--t U± E Z are well 
defined, injective and continuous. 
If U± E B(8±; Z), then there uniquely exist u E Z and uo E Z 
such that u is a u0 - solution and (1.2) holds. 
Moreover, the operators w± : B(8±; Z) 3 U± t--t uo E z are well 
defined, injective and continuous. 
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(iii) The numbers <~'± satisfy B( L; Z) C B( 80 ; Z,), W _ (B( L; Z,)) C 

B(8o;Z.) and B(8+; Z) c V+ o W_(B(L; Z)). In particular, the 
operatorS= V+ oW_ : B(L; Z) --+ Z, is well defined, injective 
and continuous. 

The following result follows from Theorem 1.1. 

Theorem 1.2. Assume that n ~ 2, 4/3 < 'Y < 2, 0' > (2- 'Y)/2, 
s ~ 1 and puts,= s(Q,), Z = Z(s, + s- 1, s, Q,), u*(t) = costwf*+ 
w- 1 sin tw f*, where * denotes either 0, + or -. Then there exist some 
positive numbers 'T}o and 'TJ- satisfying the following properties: 

(i} If (f0 ,g0 ) E B('T}o;Xs,a), then there uniquely exist u E Z and 
(f+, g+ ), (! _, g_) E xs,o such that u is a u0 - solution and {1.2} 
holds. 
Moreover, the operators V± : B('T}o; xs,a) 3 (fo, go) ~--+ (/±, g±) E 
Xs,O are well defined, injective and continuous. 

(ii} If(!_, g_) E B('TJ-; xs,a), there uniquely exist u E Z and(!+' g+) 
E Xs,O such that U satisfies 

100 sin(t- r)w 
u(t) = u_(t) + F(u(r))dr 

t w 

and (1.2} holds. 
Moreover, the scattering operatorS: B('T}-;Xs,a) 3 (J_,g_) ~--+ 

(f+,g+) E Xs,O is well defined, injective and continuous. 

§2. Outline of the proof 

Let us give a sketch of the proof of the theorems. We need the 
Strichartz estimates proved by Nakamura and Ozawa [5] (see also [4]). 

Proposition2.1. PutJ=(O,t) or(-oo,t) or(t,oo). 

(i) If2/q1 = n(1/2-1/r1), 2p1 = (n+2)(1/2-1/r1), 2 ~ q1, r1 ~ oo, 
(q1 ,r1) i- (2,oo), j = 1,2, then we have 

II r U(t- r)h(r)driLql H~Plll ~ llh1L<i2H~2 II· JJ 2 

(ii} If 

(2.1) 1/r4 + 2/nq4 = 1/rg + 2/nq3 + 2/n, 

max(O, 1/2- 1/n) < 1/ri < 1/2, 0 < 1/QJ < n(1/2- 1/r1), 
1/q3 < 1/Q4, P3 + P4 = (n + 2)(1/r'4- 1/r3)/2, then we have 

IIi U(t -r)h(r)dr1Lq3 H;/1 II ~·llh1Lq4 H~:II· 
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A pair (q,r) satisfying 2/q = n(1/2- 1/r) is called an admissi­
ble pair. We immediately see that admissible pairs (q3, r3) and (q4, r4) 
satisfy (2.1). 

We next state the estimate of the nonlinearity. 

Lemma 2.2. Assume that 0 ::::; p ::::; p, 0 < 1/f < 1/2 ::::; 1/r < 1, 
0 < "( < n. If there exist some ()J E [0, 1], j = 1, 2, satisfying 

1 + ~ = 1 + ( ~ - ()1 p - p) + 2 ( ~ - ()2 E.), 
r n r n r n 

1 p-p 1 p 
-::- {}1--,-::- {}2- > 0, 
r n r n 

then we have 

(2.2) 

Proof By the Holder inequality, the Hardy-Littlewood-Sobolev in­
equality and the Sobolev embedding theorem, we obtain (2.2). Q.E.D. 

We state the lemma which is useful to prove Theorem 1.1. 

Lemma 2.3. Assume that n ~ 2, 4/3 < 'Y < 2, s ~ 1 and put 
L = L(s-y + s - 1, Q-y)· Then there exists some 8 > 0 satisfying as 
follows: If uo E B(8; L), then there uniquely exists u E L such that we 
have 1 sin(t- T)w 

u(t) = u0 (t) + F(u(T))dT, 
J w 

4 
lluiLII ::::: 3lluoiLII, 

(2.3) IIi U(t- T)F(u(T))dTIL(s -1, (0, 1/2))11 :S: ~lluoiLII· 

Proof. (Step I.) In order to show the existence of a time-global 
solution, we define the contraction mapping on the suitable complete 
metric space. Put Y = B(~lluoiLII; L) and d(u, v) = llu- viLli· Then 
(Y, d) is a nonempty complete metric space. We define a mapping <P by 

·1 sin(t- T)w <P: u f-----> uo + F(u(T))dT. 
J w 

By Proposition 2.1,(ii), we have 

1 sin(t- T)w 3 1 II F(u(T))dTILII ~ IIF(u)IL(s-y + s- 2 + p, (-,-:-))II· 
J W qc re 
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Here (E, B) denotes (E('y ), B('y)) and (ro, p) satisfies 

1 6 1 2 2 
-:::-+-=-+-·-+-, 
re nqc: re nqc: n 

p = n + 2 ( : _ _!_) = n + 2 ( ~ _ ___±__) = n + 2 + 2 n + 2 E. 

2 re re 2 n nqc; 3n n 

Since p :::; 1, we have 

3 1 3 1 
IIF(u)IL(s"Y + s- 2 + p, (-,-:::-))II ;S IIF(u)IL(s"Y + s- 1, (-,-:::-))II· 

qc: re qc; re 

It follows from Lemma 2.2 that 

3 1 
IIF(u)IL(s"Y + s- 1, (-,-:::-))II ;S lluiLII 3 

qc: re 

since 1 + 1/re = '/ /n + 3/re. 
(Step II.) We estimate the left hand side of (2.3). By Proposition 2.1,(2), 

111 U(t- T)F(u(T))dTIL(s- 1, (0, 1/2))11 

3 1 
;S IIF(u)IL(s- 1 + p, (-,--:-))II, 

qc: re 

where 

1 1 2 3 . n+2 3 
--;- =- + -(1- -),p = -(1- -). 
re 2 n qc; n qc: 

Put 

Then we have 0 :::; p :::; s"Y, 0 :::; (} :::; 1, 

1 + _;._ = 2 + _!_ + 2( _!_ - (} s - 1 + s"Y)' 
re n re re n 

_!_ _ (} s- 1 + s"Y > O. 
re n 

Thus, by Lemma 2.2, we have 

3 1 
IIF(u)IL(s- 1 + p, (-,--:-))II ;S lluiLII 3 -

qE re 

(Step III.) If lluoiLII is sufficient small, we see from Steps I and II that 
<I> is a contraction mapping from (Y, d) into itself, and that (2.3) holds. 

Q.E.D. 
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Using Lemma 2.3, we easily show Theorem 1.1. 

For the Theorem 1.2, we state the following lemma which is shown 
by the complex interpolation method for the weighted Sobolev spaces 
(see, e.g., [8]), and the Strichartz estimate for the free Klein-Gordon 
equation. 

Lemma 2.4. Assume that n 2:: 2, max(O, 1/2- 1/n) < 1/r < 1/2 
and (n/2- n/r)/2 < 1/q < (n/2- njr). Then we have 

(2.4) 

if 

and 

n+2 1 1 n+2 2 1 1 
s > ·_ (- - -) + - {- - n(- - -)} 

2 2 r 2n q 2 r 

2 1 1 
O">--n(---). 

q 2 r 

By substituting q = qE(-y) and r = re(-y) for (2.4), we obtain Theorem 
1.2. 
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