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On Horn-Kapranov uniformisation 
of the discriminantal loci 

Susumu Tanabe 

Abstract. 

In this note we give a rational uniformisation equation of the 
discriminant loci associated to a non-degenerate affine complete in­
tersection variety. To show this formula we establish a relation of the 
fibre-integral with the hypergeometric function of Horn and that of 
Gel'fand-Kapranov-Zelevinski. 

§0. Introduction 

In this note we give a concrete rational uniformisation equation for 
the discriminantal loci of non-degenerate affine complete intersection 
depending on deformation parameters. 

First of all, let us fix the situation. For the complex varieties X = 

CxN and S = Ck, we consider the mapping, 

(0.1) f: X -4 S 

such that Xs := {(x1, ... , XN) EX; h(x) + s1 = 0, ... , fk(x) + Sk = 
0}. Let h(x), ... , fk(x) be polynomials that define a non-degenerate 
complete intersection (CI) in the sense of Danilov-Khovanski [3] with 
the following specific form: 

(0.2) 

where iii,£ E (Z;::o)N. Let n be the dimension of the variety X 0 , 

dimXo = n 2:0. Ws := {(x1, ... , XN, Y1, ... , Yk) E Xx(C)k;yl(h(x) 
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+sl) + · · · + Yk(/k(x) + sk) = 0}. Then it is known that the discrimi­
nantalloci of Xs coincides with that of W 8 • That is to say, the study of 
the discriminantal loci of a CI can be reduced to that of an hypersur­
face associated with the original CI in a special manner. This fact has 
been discovered by Arthur Cayley [5] and thus the method to reduce 
the geometric study of a CI to that of a hypersurface is named "Cayley 
trick" in general, even in contexts apart from the study of discriminantal 
loci (e.g. the description of the mixed Hodge structure of the former by 
means of the latter given by T. Terasoma, A. Mavlyutov [9] and others). 
Here we return to the initial spirit of Cayley who treated the question 
of the discriminantal loci. 

The main idea is based on that of the paper [6] which states that 
the singular loci of the linear differential operators annihilating the fibre 
integrals of Xs coincide with the discriminantalloci of X 8 • In the modern 
terminology of the A-hypergeometric functions (HGF), it is equivalent to 
say that A-discriminantalloci are singular loci for generalized A-HGF. 
This fact has been proven in [7] and we give a more precise description of 
the discriminantalloci by means of combinatorial data of the polynomial 
mapping f and the toric geometry of W 8 (see Theorem 2.6). 

Let us review the contents of the note in short. In §1 we recall some 
basic facts on the Cayley trick and Neron-Severi torus. In §2, we cal­
culate the Mellin transform of the fibre integral in an explicit manner. 
Using a representation of the Mellin transform we show that fibre in­
tegral satisfies the Horn type system of differential equations (Theorem 
2.4). From this expression of the Horn type system, we get the discrim­
inantalloci as the boundary of a convergence domain of solutions to the 
system. In §3, we show that the fibre integral calculated in §2 is nothing 
but the quotient of the Gel'fand-Kapranov-Zelevinski generalized hy­
pergeometric function (HGF) by the torus action. In §4 we give two 
computational examples: discriminantalloci for the D4 type singularity 
and the simplest non-quasihomogeneous complete intersection. 

Finally we remark that this note is an abridged version of some parts 
from [13] where one can find more details. 

§1. Cayley trick and Neron-Severi torus 

Throughout this section we keep the notation of §0. Further we 
introduce the following notations. Let Tm = (C\ {0} )m = (Cx )m be the 
complex algebraic torus of dimension m. We denote by xi the monomial 
xi:= xi1 • • ·xYJ with multi-index i = (i1, ... , iN) E zN, and by dx the 
N -volume form dx := dx1 A··· A dxN. We shall also use the notations 
xl := Xl ... XN' y( = yfi ... y~k' sz = sfi ... s~k and ds = dsl A ... A dsk 
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and their analogies for each variable. In this section we consider an 
extension of the mapping f to that defined from P t to Ck. We follow 
the construction by [2] and [9]. Let us define M as the dimension of a 
minimal ambient space so that we can quasihomogenize simultaneously 
the polynomials (/l(x), ... , fk(x)) by multiplying certain terms by new 
variables: 

X i f-----+ x'-xi · 1 2 
J ' J = ' ' .... 

Let us denote by (ft(x, x'), ... , fk(x, x')) the new polynomials ob­
tained in such a way. These polynomials are quasi-homogeneous with 
respect to certain weight system i.e. there exists a set of positive integers 
(w1, ... , WN, wi, ... , wM--N) such that their G.C.D. equals 1 and the 
following relation holds: 

E(x, x')(ft(x, x')) = Peft(x, x') for £ = 1, ... , k, 

( where Pe is some positive integer and 

(1.1) 
N a M-N a 

E(x, x') = L wixi-a . + L wjxj-a , , x, X· 
i=l j=l J 

E an Euler vector field. 

Example. We modify the polynomial f(x) = x! +x1x2 +x~, with 
a, b > 2, GCD(a, b) = 1, in adding a new variable x~ so that the new 
polynomial f(x, x') = x! + x~x1x2 + x~, becomes quasihomogeneous 
with respect to the weight system (b, a, ab- a- b). 

In general there are of course many choices of terms that we modify 
to realize the quasihomogeneiety. 

From now on we will use the notation X : = (X 1o •.• , X M) : = 
(xb ... , XN, x~, ... , xM--N) and that of the polynomial fl(X) := fl(x, 
x'). If we introduce the Euler vector field, 

we have the following relation: 

E(X')(Je(X) + Xff+l se) = pe(Je(X) + Xff+l se) for £ = 1, ... , k. 

From now on we denote X':= (X, XM+l)· Let Mz be an integer lattice 
of rang Nand Nz be its dual, Nz = Hom(Mz, Z). We denote by MR 
( resp. N R) the natural extension of Mz ( resp. N z) to its real space. Let 
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US take e1, ... , eM+l a set of generators of one dimensional cones such 
that E:~;i1 Rei= NR. We can define a simplicial fanE in NR as a set 
of simplicial cones spanned by the above ell ... ' eM+l· Our construc­
tion of the Euler vector field E(X') correspond to the superstructure 
NR x Nk with a basis of generators "iN+b ... "iM+l such that 

N M-N 

L wi"ii + L wj"ii + "iM+l = 0. 
i=l j=l 

Here we have PN("ii) =~for the projection PN: NR x Nk -t NR. 
While the dimension of the vector space N R x Nk must be minimal i.e. 
dim(NR x Nk) = M. 

We introduce a polynomial, 

(1.2) H(x, y) := Ylft(x) + · · · + Ykfk(x) E Z[xb ... , XN, Yl, ... , Yk], 

in adding new variables Yl, ... , Yk· Let fh, ... , iiM+k be the elements 
of the set supp(H(x, y)) c zN+k. We define a simplicial rational fan f; 
in RN+k as a set of simplicial cones generated by iii, ... 'iiM+k· We 
consider the injective homomorphism 

rp: Mz -t zM+k, 

for Mz = Mz X zk' defined by 

r.p(rh) = ((rh, ii1), ... , (rh, iiM+k)). 

The cokernel of this mapping is a free abelian group, 

Cl("E) = zM+k jr.p(Mz) 

for which the following group can be defined 

(1.3) D("f:) := Spec C[Cl("f:)]. 

As a matter of fact this group D("E) is isomorphic to an algebraic torus 
TM- N. One can define the to ric variety P f; associated to the affine 
space, 

AM+k =Spec C[X1. ... , XM, Yb .. · , Yk]· 

To this end we proceed following way after the method initiated by 

M. Audin. Let Xa := Ilt::;i::;M,n;lla xi Ill::;j::;k,nM+illa Yi, be a mono­
mial defining a coordinate plane and the ideal 

B("f:) = (Xu; a E "f:) c C[X1. ... , XM, Yl, ... , Yk]· 
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Let Z('t) .- V(B(t)) c AM+k be the variety defined by the ideal 
B("t). We construct the toric variety Pf: as the quotient of U("t) ·­
AM+k \ Z(t) by the group action D("t): 

Pf: = U("t)jD(t), 

with dimD(f:.) = M- N, dimU(f:.) = M + k. 

Definition 1. This group D("t) ~ TM-N is called the Neron­
Severi torus associated to the fan t. 

We introduce the following polynomial (named phase function be­
low), 

(1.4) F(X, s, y) := Yl(h(X) + sl) + · · · + yk(fk(X) + sk), 

that will play essential role in our further studies. In §3, we treat the 
following affine variety defined for (1.4): 

(1.5) ZF(x, 1, l,y)+l = {(x, y) E TN+k; F(x, 1, 1, y) + 1 = 0}. 

Further on we shall prepare several lemmata on combinatorics which 
are useful for the derivation of the discriminant loci equation. We denote 
by L the number of monomials in (X, s, y) that take part in the phase 

function (1.4) for (0.2). That is to say L = L~=1 (rq + 1) Here we 
introduce new variables (T1, ... , TL) E TL that satisfy the following 
relations, 

(1.6) T1 = y1x';,. 1 , T2 = Y1X&2 , 1 , ••• , TL = YkSk. 

Each Tq represents the q-th monomial present in F(x, 1, s, y) (see (2.3) 
below). We will use the following matrix M(A) whose column is a vertex 
of the Newton polyhedron Ll(F(x, 1, 1, y)), 

(1.7) M(A) 

0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 

.- 0 0 0 0 0 0 0 1 
0 nn1 Cl"nll 0 Q121 QT221 0 0 CX!kl aTkkt 

0 CXnN O'r1 1N 0 CX!2N O'r22N 0 0 CX!kN QTkkN 

Further we assume that rank(M(A)) = k + N. We always assume the 
inequality N + 2k ::; L for (0.2). 
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In this situation we can define a non-negative integer m as the min­
imal number of variables 

(1.8) II ( I I ) X = x1, ... , Xm 

to make the number of variables present in the expression (1.4) equal to 
L. That is to say L = N + m + 2k. For example, the relation (1.6) may 
be modified into the following form: 

(1.6)1 

In other words, proper addition of new variables x" = (x~, ... , x~) to 
h(x), ... , fk(x) makes the polynomial F(X, 0, y) quasihomogeneous. 
In this way we have 

(1.9) M=N+m. 

Further we shall consider a simple parametrisation of the variety 

(1.10) ZF(X, s, y) = {(X, y) E TM+k; F(X, s, y) = 0}. 

Namely we denote, 

(1.11) 3 := t(xb ... , XN, x~, ... , x~, s1, ... , Sk, Y1, ... , Yk), 

(1.12) LogT := t(logT1, ... , logTL) 

(1.13) LogS:= t(logx1, ... , logxN, logx~, ... , logx~, 

logs1, ... , logsk, logy1, ···, logyk)· 

Then we have, for example, a linear equation equivalent to (1.6) 1 that 
can be written down as follows, 

(1.14) logT1 = logy1 + logx~ +(til, 1, logx), 

logT2 = logy1 + logx~ + (ti2, 1logx), 

logTL-1 = logyk + logx~ + (tirk,k' logx), 

logTL = logyk +log Sk. 

Let us write down the relation between (1.12) and (1.13) by means 
of a matrix L E End(ZL), 

(1.15) LogT = L ·Log X. 
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Below the columns vi (resp. wi) of the matrix L (resp. L -l) shall always 
be ordered in accordance with (1.11), (1.12), (1.13) unless otherwise 
stated. 

For the polynomial mapping (0.2), the choice of monomials to be 
modified by supplementary variables is a bit delicate. Namely, we have 
to observe the following rules to avoid the degeneracy of the matrix L of 
the relation (1.15). 

Lemma 1.1. For (0.2) and (1.8), we get a non-degenerate matrix 
L if we observe the following rules: 

a. For the fixed index q E { 1, ... , k}, it is necessary to choose at 
least one of monomials x'h q, 1 :S i :S Tq that remains without modifica­
tion. 

b. For the fixed index j E {1, ... , N} it is necessary to choose at 
least one of monomials x&r, i such that ar, i, j =1- 0, 1 :S i :S k, 1 :S r :S Ti, 

that remains without modification. 

We recall here the notion of non-degenerate hypersurface, 

Definition 2. The hypersurface defined by a polynomial g(x) = 

LaEsupp(g) gax"' E C[x1, ... , Xn] is said to be non-degenerate if and 
only if for any ~ E Rn the following inclusion takes place, 

where g~(x) = L{,8;(,8,~):'0(a,~), for all aEsupp(g)}g"'x"'. We call the CI 
X 0 for (0.2) non-degenerate if the hypersurface ZF(x, 1 , o, y)+l is non­
degenerate. 

The following is an easy consequence of the above Definition. 

Proposition 1.2. If the matrix L is non-degenerate, the hyper­
surface ZF(x, 1 , o, y)+l and the CI Xo are non-degenerate in the sense of 
the Definition 2. 

§2. Horn's hypergeometric functions 

From this section, we change the name of variables x" = ( x~, ... , x~) 
into s' := (s~, ... , s~). We use both of the notations X = (x, x") = 

(x, s'). 
Let us consider the Leray's coboundary (see [14]) to define the fibre 

integral,"( c HN(TN \ U~= 1 {x E TN: fi(X) + si = 0}) such that 
~(fi(X) + si)l, < 0. Further on central object of our study is the 
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following fibre integral, 

(2.1) 

JC.i (s, s') = j(h(x, s') + sl)-(,1 - 1 · · · (fk(x, s') + sk)-C.k- 1xi+1 d~, 
X,"( "! X 

and its Mellin transform, 

(2.2) c, ( ') ·-1 z 1z' c, ( 1 ds ds' Mi ~ z, z .- s s I i s, s )-1 1\ 1• , ' rr x , "~ s s' 

for certain cycle II homologous to R m+k which avoids the singular loci 
of JC.i (s, s') (cf. [11]). After Definition 1 above, we understand that 

X,"( 

s' E D(f::) is a variable on the Neron-Severi torus. Thus the fibre integral 
JC.i (s, s') is a ramified function on the torus D(f::) x Tk. It is useful to 

X,"( 

understand the calculus of the Mellin transform in connection with the 
notion of the generalized HGF in the sense of Mellin-Barnes-Pincherle 
[1], [10]. After this formulation, the classical HG F of Gauss can be 
expressed by means of the integral, 

F ( j3 I ) = _1 1zo+ioo(- )z f(z + o:)f(z + j])f( -z) d 
2 1 a, , "Y s 2 . . s r( + ) z, 

7rZ zo -too Z "'( 

Next we modify the Mellin transform 

Mi~"~(z, z') 

-~o:, -~j] < zo. 

1 xiwC.sz-ls'z'-ldx 1\ !lo(w) 1\ ds 1\ ds' 
= c(() 

s~- 1 (w")x'Yrr (w1(/l(X) + s1) + · · · + Wk(fk(X) + sk))C.d···Hdk 

= c(() r uC.l+··+C.dkdu r wC.!lo(w) 
JR+ u Js~- 1 (w") 

1 xidx r szs'z' e"(wl(h(X)+sl)+··+wk(fk(X)+sk)) ds ds' 
"~ lrr s1 s'1 ' 

with c( () = r( (1 + ... + (k + k) I (r( (1 + 1) ... r( (k + 1)). Here we made 
use of notations 

k-1 11 { w"jw~' w"jw~ S+ (w )= (w1, ... ,wk):w1 +···+wk =1,wc>O 

for all £, w" = IT w~'} 
1:S:i:S:k 
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and Oo(w) the (k- 1) volume form on s!-1(w"), 

k £ 

no(w) = I:(-1)ew~'wedw1/\ -~- 1\dwk. 
£=1 

In the above transformation we used a classical interpretation of Dirac's 
delta function as a residue: 

We introduce the notation 'Yrr := Ucs, s')Err((s, s'), ')'). One shall 
not confuse it with the thimble of Lefschetz, because 'Yrr is rather a tube 
without thimble. We will rewrite the last expression, 

1 w(T) i+l (+1 z 1z' dx dy ds ds' e x y ss -1\-/\-/\-
(R+)kx'"Yn xl yl sl s'l 

where 

(2.3) lll(T) = T1(X, s, y) + · · · + TL(X, s, y) = F(X, s, y), 

in which each term Ti(X, s, y) stands for a monomial in variables (X, s, y) 
of the phase function (1.4). We transform the above integral into the 
following form, 

(2.4) e"" ,s,y x'+lszs' y~+l_ 1\-1\-1\-1 •T•(T(X )) · z' r dx dy ds ds' 
(R+)k x'"Yn xl yl sl s'l 

= (detl)-11 eL:aEIT" rrr;a(i,z,z',() A dTa 
L.(R+kx'"Yn) aEI aEI Ta 

= ( -1)<"'+··+(k+k(det L)-1 

·1 e- L:aEI T., II Tfa(i, z, z'' () A d:.a. 
-L.(R+kx'"YIT) aEI aEI . a 

Here L* (R+ k X ,rr) means the image of the chain in Cljf X c~ X c~ into 
that inc~ induced by the transformation (1.15). We define -L*(R+ k X 

'Yrr) = {( -Tb ... , -TL) E CL; (Tb ... , TL) E l*(R+ k x 'Yrr), ID'a < 
0, a E [1, L]}. The second equality of (2.4) follows from Proposition 2.1, 
3) below that can be proven in a way independent of the argument to 
derive (2.4). We will denote the set of columns and rows of the matrix 
L by I, 

I := {1, · · · , L }. 
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Here we remember the relation L = N + m + 2k = M + 2k. 
The following notion helps us to formulate the result in a compact 

manner. 

Definition 3. A meromorphic function g(z, z') is called ~-peri­
odic for ~ E Z>o, if 

for some rational function h((1, ... , (k+m)· 

For the simplicial CI (0.2) (i.e. we can construct F(X, s, y) for which 
the matrix L is non-degenerate), we have the following statement. 

Proposition 2.1. 1) For any cycle 

the Mellin transform (2.1) can be represented as a product off- function 
factors up to a ~-periodic function factor g(z), 

Mi~,(z, z') = g(z) II r(.Ca(i, z, z', ()), 
aEI 

with 

(2.5) .Ca(i, z, z', () 

i:f=1 Aj(iJ + 1) + 2:';=1 Cjzj + 2:;=1 (B£ze + D£((e + 1)) 
~ 

Here the following matrix~ - 1 T = (L)- 1 has integer elements, 

a E J. 

(2.6) tT =(A~, ... ,Af..r,Cf, ... ,C~,Bf, ... ,Bf,DL ... ,D/::h:S:a::;L, 

with GCD(A~, ... , Af..r, Cf, ... , C!, Bf, ... , Bf, D~, · · ·, D/::) = 1, 
for all a E [1, L]. In this way ~ > 0 is uniquely determined. The 
coefficients of (2.5) satisfy the following properties for each index a E J: 

' 
a Either .Ca(i, z, z', () = ~ze, i.e. A~=···= Af..r = 0, B~ =·~·= 

Bf = 0, B£ = 1. 
b Or 

.c (. , ~") _ i:f=1 Aj(iJ + 1) + 2:';=1 Cjzj + 2:;=1 B£(ze- (e- 1) 
a I, z, Z,-, - ~ 
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2) For each fixed index 1 :::; C :::; N, 1 :::; q :::; k, 1 :::; j :::; m the 
following equalities take place: 

(2.7) 
aEI aEI aEI 

3) The following relation holds among the linear functions La, a E 

I: 

2...::: Ca(i, z, z', () = (1 + .. · + (k + k. 
aEI 

Proof. 1) First of all we recall the definition of the f-function, 

for the unique non-trivial cycle Ca that turns around Ta = 0 with the 
asymptotes ~Ta ---> +oo. We consider a transformation of the integral 
(2.4) induced by the change of cycle .A: Ca ---> .A(Ca) defined by the 
relation, 

By the aid of this action the chain L* (R+ k x "Yrr) turns out to be ho­
mologous to a chain, 

with m .(pJ .(pJ E Z. This fact explains the appearance of the factor 
J1 '··· 1 J L 

g(z, z') m.(pJ ·<Pl 
J1 '··· ,JL 

(jJPl, ... , Ji;l )E[l, Ll.] L 

k . II e27rv'=TJ!,Pl£a(i,z,z',() 

a=l 

L . II e27ryC1j~~) La' (i, z, z', () (1 - e27rv'=T.Ca' (i, z, z', ()) 

a'=k+l 

apart from the factors of type r(. ). 
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In the sequel we analyze the r- function factors that arise from the 
integral (2.4). To this end, we represent the matrix L (resp. L - 1) as a 
set of L columns properly ordered: 

(2.8) L = (v1, V'2, ... , vL), L - 1 = (tih, w2, ... , WL), 

Wa = t(wa, 1 1 • • • , Wa, £). 

The interior product of vectors (i + 1, z, z', ( + 1) and Wa defines 
the linear function in question: 

(2.9) .Ca(i, z, z', () = (i + 1, z, z', ( + 1) · Wa· 

The vector columns of L - 1 are divided into 3 groups: 
1 the columns with all formally non-zero elements. 
2 with unique non-zero element (= 1) that produces Zi, 1 :<:::; i :<:::; k 

and zj, 1 :<:::; j :<:::; m in (2.9). 
3 with the non-zero elements that produce a function linear in 

( + 1, i + 1 after (2.5). 
In the further argument, only the first two groups of columns are 

important. 
The column that corresponds to log Si of L contains the unique non­

zero element(= 1) at the position 71 +· · ·+7i+i. Meanwhile the column 
of L that corresponds to the variable log xe consists also of an unique 
non-zero element ( = 1) outside the positions 71 + · · · + 7i + i, ( 1 :<:::; i :<:::; k). 
Let us denote this correspondence by 

C7(i) 
vp(i) = t(o, ... , o, .'!., 1, o, ... , o), 

that yields in L - 1 , 

p(i) 
we7(i) = t(o, ... , o, .'!., 1, o, ... , o). 

Here the mappings p, a: { N + 1, ... , M + k} -> I are injections that 
send the number of columns corresponding to the variables s, x' to the 
total set of indices I. We divide the columns of L - 1 into k groups 
A1, ... , Ak C I each of which corresponds to Ab = {71 + · · · + 7b-1 + 
b, · · · , 71 + · · · + 7b + b} C I. For this group, one can claim following 
assertions. a) The column 

Tl +·+Tb-1 +b Tl + .. ·+n+b 
- t v v 
VM+k+b = (0, ... , 0, 0, ... , 0, 1 , 1, ... , ... , 1, ... , 1, 0, ... , 0), 
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with Tb + 1, (1 :::; b :::; k) non-zero elements ( = 1). b) For the vectors Wa 
of the case 1 above, 

(2.10) L Wa, j = 0 if j =F M + k + b, 1 ::=; b ::=; k, 
aEAb 

and there exists another vector of the same group Ab that satisfies: 

(2.11) Wu(i),j = 8p(i),j• 

where 8., * is the Kronecker delta symbol. The vector (2.11) corresponds 
to the group 2. 

Thus the columns of the group 2 (resp. 1) give rise to the linear 
functions of the group b (resp. a). 

2) The 1-st, ... , M + k-th vector rows of the matrix L -l are or­
thogonal to the vectors VM+k+l. · · · , VM+2k above. This means the 
relations (2.7). 

3) The statement can be deduced from 2). Q.E.D. 

In view of the Proposition 2.1, we introduce the subsets of indices 
a E {1, 2, ... , M} as follows. 

Definition 4. The subset I: C {1, 2, ... , k} (resp. I;;, Ig) con­
sists of the indices a such that the coefficient B~ of .Ca(i, z, z', () (2.5) 
is positive (resp. negative, zero). Analogously we define the subset 
J: C {1, 2, ... , m} (resp. J;, J~) that consists in such indices a that 
the coefficient C~ of .Ca(i, z, z', ()is positive (resp. negative, zero). 

To assure the convergence of the Mellin inverse transform of Mr'Y ( z, 
z') from (2.1) in a properly chosen angular sector in the variables (s, s') E 

ck+m, we shall verify that the Mellin transform Mr'Y(z, z') admits the 
following estimation modulo multiplication by a ~-periodic function 
g(z, z'). 

IMr.y(z, z')l < ci exp( -EI Imzl) while 

Imz -too, in a sector of aperture< 211'. 

for certain E > 0, 
Here we remember an elementary lemma for the integral: 

(2.12) 
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Lemma 2.2. If one chooses one of the following functions g+(z) 
(resp. g-(z)) in terms of g(z, z'), then the integrand of (2.12) is expo­
nentially decaying as Im z tends to oo within the sector 0 :::; arg z < 27r, 
( resp. -1r :::; arg z < 1r.) 

g±(z) = 1 + e±27ri,B~ IT s~n27r(z + ai), 
i=l sm 21r(z +Pi) 

with f3v = -1 + E;=l (Pi- ai) 

Proof. It is enough to recall 

ITV f(x+iy+a·) (10 1) 
. 3 ~ const.JyJ- ~-'~+ 

i=l f(x + zy +Pi) 

while y ~ ±oo. Here we used the formula of Binet: 

a-a2 
logf(z +a)= logf(z) + alogz- -- + O(Jzl-2) 

2z 

if Jzl >> 1, The factor Js-{x+iy)J = r-xe8Y, for s 
exponentially decreasing contribution in each cases. 

Let us introduce a simplified notation, 

rei8 gives the 
Q.E.D. 

Ci(z) = Ai1z1 + Ai2z2 + · · · + AikZk + Aio, 1 :::; j:::; p, 

Mi(z) = Bi1z1 + Bi2z2 + · · · + BikZk + Bio, 1 :::; j :::; r. 

Lemma 2.3. The sufficient conditions so that 

(2.13) 1 z f]}=1 f(£i(z)) 
s g(z) fY f(M ·( )) dz1 A··· A dzk 

II i=l J Z 

defines a polynomially increasing function with g(z) a properly chosen 
f:l-periodic function (including the infinity oo) are the following. 

i) For every i > 0 

p r 

LAi,i = LBi,i 
i=l i=l 

ii) The real number 

is non negative. 
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To see the exponential decay property of the integrand, one shall 
make reference to Norlund's trick [10]. Further we apply the Stirling's 
formula on the asymptotic behaviour of the f-function (Whittaker­
Watson, Chapter XII, Example 44). 

If we apply this lemma to our integral, we see that there exists a 
cycle IT such that 

(2.14) I(1 (s, s') 
X,"f 

i fLntur" r(£a(i, z, z', 0) -z' 
:= g(z, z') q • 1 s-zs' dzlldz', 

II TiaEI,;- r(1- La(I, z, z' ()) 

with a ~-periodic function g(z, z') rational with respect to 
e27rv=T.Ca(i,z,z', 0, a E I. Here we remember the relation e1rv=Tzr(z) 
f(1- z) = n/(1- e-21rv=Tz). Thus we get the theorem on the Horn 
type system. 

Theorem 2.4. The integral I(1 (s, s') satisfies the hypergeomet-
x,"f 

ric system of Horn type as follows: 

(2.15)1 Lq,i(1'Js, 1'J8 ,S, s', ()I~;,)s, s') 

:= [Pq,i(1'J 8 , 1'J8 ,, ()- s~Qq,i(1'J8 , 1'J8 ,, ()]I~1 ,"f(s, s') = 0, 1 :S: q :S: k 

with 

B;-1 

(2.15)2 Pq,i(rJs, 1'Js', () = IT IT (L:a(i, -1'Js, -1'Js', () + j), 
aEI;j j=O 

-B:-1 

(2.15)3 Qq, i(1'Js, 1'Js,, () = IT IT (L:a(i, -rJs, -rJs,, () + j), 
aEI,;- j=O 

where I:, I;;, 1 ::; q ::; k are the sets of indices defined in Definition 4. 

(2.15)4 L~,JrJ., 1'J8 ,, s, s', ()I~1 ,"f(s, s') 

:= [P;,i(rJs, 1'Js', ()- S~ t.Q~, i(1'J8 , 1'Js,, ()]I~1 ,)s, s') = 0, 1 :S: q :S: k 

C~-1 

(2.15)5 P;,i(1'Js, 1'Js', () = IT IT (L:a(i, -1'Js, -1'Js', () + j) 
aEJt j=O 
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-C~-1 

(2.15)6 Q~,i(~s' ~s'' () = II II (.Ca(i, -~s' -~s'' () +j). 
aEJ;: j=O 

where J:, J;, 1 :::; r :::; m are the sets of indices defined in the Defini­
tion 4. The degree of two operators Pq,i(~s, ~s'' (), Qq,i(~s' ~s'' ()are 
equal. Namely, · 

(2.16) degPq,i(~8 , ~8 ', () 

= L B~ =- L B: = degQq,i(~8 , ~8 ,, (). 

aEit aEI~ 

Analogously, 

degP:,i(~s, ~s', () = L c~ =- L c: = degQ~,i(~s, ~s'' (). 
aEJl aEJ;: 

The proof is mainly based on the Proposition 2.1. To deduce (2.15) 
from the Mellin transform Mi~-y(z, z') we use the following well known 
recurrence relation: 

r(a(n;~) +() 
=r(7 +()(7 +()(7 +1+() ... (7 +n-1+(), 

if a > 0 a positive integer. 

r(a(n: ~) + () 

=r(7 +()(7 +(-1)-1(7 +(-2)-1··· (7 +(+a)-1, 
if a < 0 a negative integer. 

The evident compatibility (i.e. integrability) of the above system 
(2.15)* in the sense ofOre-Sato ([12]) can be formulated like the following 
cocycle condition. To state the proposition we introduce the notation 
Z + ~er = (z1, ... , Zr-1, Zr + ~' Zr+b ... , Zk)· 

Proposition 2.5. The rational expression 

(2.17) R ( ')- Pq,i(z,z',() 
q z, z - Q ( A I () ' q,iz+ueq,z, 
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defined for the operators {2.15)2, (2.15)3 satisfies the following relation: 

(2.18) Rq(z + Aen z')Rr(z, z') 

= Rr(z + Aeq, z')Rq(z, z'), q, r = 1, ... , k. 

Similarly for 

(2.19) 1 ( ') P~, i(z, z', () 
R" z, z = Q' . (z z' + Ae' r) , 

K,l ' K.'~ 

satisfies the following relation: 

(2.20) R~(z, z' + Ae~)R~(z, z') 

= R~(z, z' + Ae~)R~(z, z'), ,..,, p = 1, ... , m. 

Remark 1. As m = dimD(f:) (see {1.3}}, one can consider that 
the above system {2.15}* is defined on Tk x D(E) for D(E): the Neron­
Severi torus associated to the fan f:. 

We introduce here the main object of our study: the discriminantal 
loci of the CI defined by the polynomials fi(x, s')+st, ... , fk(x, s')+sk. 

(2.21) D s, s' := {( s, s') E Tk+m; 

h(x, s') + s1 

= fk(x, s') + sk' 
=0 

(
gradx fi(x, s')) 

rank : < k, 

gradx fk(x, s') 

for certain x E TN}. 

As it is easy to see [5), Ds, s' coincides with the discriminantal loci of 
F(x, s', s, y). 

Let us define the A-th roots of rational functions associated with 
the linear functions (2.5) as follows. 

(2.22) 

(2.23) 

(2.24) h: ck+m \ {0}--+ (Cx)k+m, 

(z, z')--+ ('l/ll(z, z'), ... , 'l/lk(z, z'), <h(z, z'), ... , <l>m(z, z')). 
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By virtue of the property (2.7), the rational function '1/Jq(z, z1)A (resp. 
¢r(z, z1)A) is of weight zero with respect to the variables (z, z1) and thus 
it is possible to consider the mapping h defined on cpk+m- 1 instead of 
ck+m. 

Let b.J(s, s1) be a polynomial that defines the discriminantal loci 
Ds, s' without multiplicity. 

Theorem 2.6. The image of h: cpk+m- 1 ---> (Cx )k+m is identi­
fied with the discriminantalloci Ds, s' if we choose a proper tl.-th bmnch 
in the equations (2.2), (2.3). 

Proof From the system of equations (2.15) we see that Ds,s' is 
contained in the set: 

(2.25) "Vs,s' := {(s, s1 ) E Tk+m; 

a(Lq, -1)(s~, s1e, s, s1, -1) = 0, 1:::; q:::; k, 

a(L~, _d(s~, s1~1 , s, s1, -1) = 0, 1 :::; r:::; m 

for some(~, 0 E Tk+m}. 

here we use the notation 

(s~, s10 = (s16, ... , Sk~k, s~~~' ... , s~~;,.). 

The existence of(~, 0 E Tk+m in (2.25) is equivalent to the existence of 
(z, z1) = (s~, s1e) E Tk+m. Thus the set '\1 s, s' admits a representation, 

{ 

A= Pq,-1(z, Z
1
, -1) < < k } 

Sq Q ( I -1)' 1 - q- ' 
q,-1 z, z ' 

(s s1 ) E Tk+m. 
' ' p1 ( I ) • 

( I )A= r, -1 z, z' -1 1 <_ r <_ m 
sr Ql ( I 1)' 

q, -1 z, z' -

While after Theorem 2.1, a) and Remark 2.4 of [7], this set "Vs,s' coin­
cides with Ds, s' if b.= 1. As for the case b. > 1, it is natural to consider 
the b.-covering h of the mapping h, 

while the branch of the image of h shall be specified in a proper way. 
To do that we remark that h(cpk+m-1) C "Vs,s' where the differ­
ence '\1 s, s' \ h( cpk+m- 1) consists of the divisors that arise from the 
b.-branching effect h(CPk+m- 1). In considering Ds,s' we shall discard 
the superfluous b.-branching effect h(CPk+m-1) \h(Cpk+m-1). Q.E.D. 
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The mapping (2.24) is nothing but the inverse mapping of the log­
arithmic Gauss map; 

Ds, s' ---+ cpk+m-1' 

(s, s') ---+ ( s1 8
8 f).J(S, s'): ···: Skaa tiJ(S, 81) 
81 Sk 

s~ 8~~ ti1(s, s'): ···: s'ma:'m ti1(s,s')). 

This is a direct consequence of the cocycle property (2.18), (2.20) of the 
operators Lq,i('l'Js, 'l'Js,, s, s', ()and L~,i(iJ8 , iJ8 ,, s, s', (),see [7], Theo­
rem 2.1, b). 

§3. A-Hypergeometric function of Gel'fand-Kapranov-
Zelevinski 

Let us consider the set of polynomials with deformation parameter 
coefficients (au, 1, ... , ark, k) associated to the polynomial system (0.2), 

For the sake of simplicity we will further make use of the notation a:= 
(ao,1, ... 'aTk,k) E TL. We consider the Leray coboundary a'Ya of a 
cycle "fa E Hn(Xa, Z) of the CI Xa = {x E TN;f1(x, a) = · · · = 
fk(x, a) = 0}. 

Then we can define the A-hypergeometric function cli(1 (a0 1. ... , 
X, 'Ya ' 

ark, k) introduced by Gel'fand-Zelevinski-Kapranov [4] associated to the 
polynomials, 

Namely it is defined as a kind of multiple residue along Xa, 

(3.2) 
k ( ·-1 IJ - -(e-1 i+l dx eli , (au 1. ... , ark k) .- fe(x, a) x - 1 . 

X ,')'a ' ' X 
8"(a £=1 

We impose here the non-degeneracy condition of the Definition 2 for the 
complete intersection X 8 after the procedure described in §1. 
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In the sequel we consider a lattice A c zL of £-vectors defined by 
the system of following linear equations: 

Tq 

L b(j, q, v) = 0, 1 ::::; q ::::; k, 
i=O 

k Tq 

LLD<Jqeb(j, q, v) = 0, 1::::; C::::; N. 
q=lj=l 

Here we denoted by (b(0,1,v), ... ,b(T1 ,1,v),b(0,2,v), ... ,b(T2,2,v), 
... , b(Tk, k, v)), 1::::; v::::; m + k, a Z basis of A. 

For the subset K C {(0, 1), ... , (k, Tk)} such that the columns 
m1,q(A), (j, q) E K of the matrix M(A) (1.7) span RN+k over Rand 
IKI = N +k we define the set of indices (a generalisation of the Frobenius' 
method) after [4], 

II(((+ 1, i + 1), K) = {((>.(0, 1, v), ... , A(TI, 1, v), 

... , A(Tk, k, v))h::;v:Sidet(mj,q(A))(j,q)EKI' 

which satisfy the following system of equations, 

Tv 

L >.(j, q, v) + (q + 1 = 0, 1 ::::; q ::::; k, 
j=O 

k Tq 

LLD<JqeA(j, q, v)- (ie + 1) = 0, 1::::; C::::; N. 
q=lj=l 

LetT be a triangulation of the Newton polyhedron ti(F(x, 1, 1, y) + 1) 
for F(x, 1, 1, y) of (1.4) after the definition [4], 1.2. Here we im­
pose that >.(j, q, v) E Z for (j, q) tj_ K. Let K1, K2 E T be two 
different simplices of the triangulation T. We suppose that ~(vp) := 

(>.(0, 1, vp), ... , >.(k, Tk, lip)) E II(((+ 1, i + 1), Kp), >.(j, q, lip) E Z 
for (j, q) tj_ Kp, (p = 1, 2) with 1::::; lip::::; I det(mp(A))pEKpl· We intro­
duce the condition ofT-non-resonance on (( + 1, i + 1) 

(3.3) (,\(0, 1, ZII), ... , A(k, Tk, v1)) 'I- (,\(0, 1, !12), ... , A(k, Tk, !12)) 

mod A, 

for any pair ~(vp) (>.(0, 1, vp), ... , >.(k, Tk, vp)) E II(((+ 1, i + 
1), Kp), p = 1, 2. An adaptation of Theorem 3 [4] to our situation 
can be formulated as follows. 
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1) The A-HGF <I>(, (a) satisfies the following 
X ,fa 

( IT (~)b(j,q,v) _ IT (~)-b(j,q,v)) 
. . a~q . . a~q 

{(J, q);b(J, q, v)>O} {(J, q);b(J, q, v)<O} 

· <I>~•,-yJa) = 0, 1:::; v:::; L- (k + N). 

2) The dimension of solutions of the system above at a generic 
point a E TL is equal to 

(N + k)! volN+k 6.(F(x, 1, 1, y) + 1) = lx(ZF(x, 1, 1, y))l 

if the T -non-resonant condition (3.3) is satisfied. 

In the sequel we shuffle the variables a = ( ao, 1, ... , a7 ., k) in accor­
dance with the order of their appearance and we define anew the indexed 
parameters a1 = a1,1, ... , ar1 = ar1 ,1, ar1 +1 = ao,1, ... , aL-l 

a7 k, k, aL = ao, k· Let us introduce notations analogous to (1.14), 

(3.5) B(A) := 

t(logX1, ... , logXN, loga1, ... , logaL, logU1, ... , logUk)· 

logT1 = (&1,1, log X)+ loga1 + logU1, 

We consider the equation 

L(A) · LogB(A) = L ·1ogB, 

where the matrix L(A) is constructed as follows. The columns l:(A) =vi, 
1 :::; i :::; N with vectors Vi defined like the column of the matrix L in 
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(1.15). For the columns of number N + 1 to N + L 

The columns 

T!+···+Tj-l+j-1 Tj+1 

- t~~ 
£'N+L+j(A) = ( 0, ... , 0, 0, , 1, 1, ... , 1, 0, ... , 0), 1.::; j.::; k, 

the matrix L(A) is obtained after implementation of the matrix id£ into 
the transposed matrix tM(A) between the k-th and the (k+l)-th column 
up to necessary permutations necessary after the implementation. 

Proposition 3.2. There exists a cycle "fa such that the following 
equality holds for the integral defined in (3.2), 

(3.6) 

here 

<I>(, (a)= Bf(a)/(1 (s(a), s'(a)), 
X, Ia X,')' 

L 

st(a) =II a;i,N+£, 1.::; £.::; k, 
j=1 

L 

s~(a) = II a;j N+k+p, 1 .::; p.::; m, 
j=1 

N L i£+1 k L (v+1 

Bf(a) = II(II a;i·') II(II a;i N+k+m+v) . 
£=1 j=1 v=1 j=1 

The exponents w1, £ are determined by the following relation, 

(3.7) L - 1 · L(A) 

1 0 w1,1 W£,1 0 

0 1 W1,N WL,N 0 
0 0 wl,N+1 WL,N+1 0 

0 0 W1,N+k+m WL,N+k+m 0 
0 0 W1,N+k+m+1 WL,N+k+m+1 1 

0 0 W1,L WL,L 0 

0 

1 
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that has been essentially introduced in (2.8). The transition of the cycle 
')'(a) to 1' is controlled by the transformations, 

Proof It is enough to remark the following property, 

Q.E.D. 

One can thus conclude (at least locally on the chart ai f 0 for 
j E I, III = k + m) A-HGF of GZK (3.2) is expressed by means of 
a fibre integral annihilated by the Horn system (2.15). One can find 
a similar statement in [7] where Kapranov restricts himself to a power 
series expansion of the solution to (3.2). 

Corollary 3.3. The dimension of the solution space of the sys­
tem (3.3) at the generic point is equal to lx(ZF(x,l,l,y))l if the T-non­
resonance condition (3.3) is satisfied. 

Proof We shall consider the convex hull of vectors that correspond 
to the vertices of the Newton polyhedron of the polynomial Y1 (/I (x) + 
1) + · · · + Yk(fk(x) + 1). That is to say 

(a1,11 1, o, ... , o), ... , (ar1 ,I, 1, o, ... , o), 
(a1,2, o, 1, o, ... , o), ... , (aTk,k' o, ... , o, 1) E zN+k. 

They are located on the hyperplane ( 1 + · · · + (k = 1. Thus it is possible 
to measure (N + k- 1) dimensional volume 

(N + k -1)!volN+k-I(~(F(x, 1, 1, y)) 

that is equal to (N + k)!volN+k(~(F(x, 1, 1, y) + 1). The Euler char­
acteristic admits the following expression 

after Khovanski [8]. 

p 

= (N+k-1)!volN+k-l(~(F(x, 1, 1,y))), 

Q.E.D. 
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We define the A-discriminantal loci V'~ in TL like following, 

(3.8) { 
f1(x, a) 

0 L = 
V' a = a E T ; = fk(X, a) ' 

=0 

(
gradx /1(x, a)) } 

rank : < k . 

gradx fk(x, a) 

As it is seen from (3.7) the uniformisation equations (2.22), (2.23) give 
rise to an uniformisation of A-discriminantalloci V'~ without ~-branch­
ing effect. 

Corollary 3.4. We have the following relations among a E TL 

located on the discriminantal loci V'~, 

(3.9)1 
L ( Bq 

11 £. ( -1 :j z' -1) ) 
1 

= 1' 
j=1 J ' ' ' 

1:::; q:::; k, 

L cr 

11 ( £. ( -1 :j z' -1) ) 
1 

= 1' 
j=1 J ' ' ' 

(3.9)2 1:::; r:::; m. 

This allows us to express V'~ by means of the deformation parameters 
(z, z') E Cpk+m- 1 and a' E TL-k jD(~) ~ TL-(k+m). 

§4. Examples 

4.1. Deformation of D 4 . 

Let us consider the versal deformation of D4 singularity of the fol­
lowing form, 

(4.1) f(x, so, s1, s2, S3) = xr + X1X~ + S3XI + S2X1 + S1X2 +So. 

By means of the resultant calculus on computer, we get a defining equa­
tion of the discriminantalloci as follows, 

(4.2) ~J(s) = 1024sY(432s6 + 64sY + 576s5sis2 + 128s{s~ 
+ 64s5s~ + 64si s~ + 192sos{s3 - 288s~s2s3 
- 320sosis~s3- 24s5sis5- 144s{s2s5- 16s5s~s5 

- 16sis~s5 + 64s~s~ + 72sosis2s~ + 27sfsj). 

This is a polynomial with quasihomogeneous weight 24 if we assign to 
the variables (x1, x2; so, s1, s2, s3) the weights (1, 1; 3, 2, 2, 1). Here 
we remark that s 1 = 0 branch of the discriminantallocus Ds = {s E 

C 3 ; ~J(s) = 0} corresponds to the deformation of A2 singularity. 
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On the other hand, our Theorem 2.6 states that the uniformisation 
equation of the discriminantalloci for the deformation (i.e. torus action 
quotient of the deformation parameter space (so, s 1, 0, s3 ) on the chart 
S3 =I= 0), 

has the following form, 

(4.3) so= 
z2(3zl + 4z2) 2 

4(2zl + 3z2)3 ' 

If we eliminate the variables (z1 , z2 ) from the expressions (4.3), we get 
an equation 

64s~ + 432s6- 24s6si + 27sf + 192sosf + 64s~ = 0. 

We recall here that our method requires that the expression yf(x, s) 
contains so much terms as the variables in it. The reason why the value 
(s 2 , s3 ) = (0, 1) has been chosen is of purely technical character. In 
substituting the special value (0, 1) for (s 2 , s3 ) in (4.2) we get, 

4.2. Deformation of a non-quasihomogeneous complete intersec­
tion. 

Let us consider the following pair of polynomials that define a non­
degenerate complete intersection Xs in C 2 , 

(4.4) 

The discriminant of this CI in C 2 can be calculated as follows, 

(4.5) (si + s~) 3 (s~ + si)3 (800000 + 387420489s~- 43740000s1s2 + 

+438438825si s~ + 387 420489si s~ + 387 420489s~). 

Evidently the fibres corresponding to the parameter values on the divisor 
(sy + s§) 3 (s~ + si)3 = 0 are contained in {(x1 , x 2 ) E C 2 ; x 1x 2 = 0}. 
Thus the discriminant of CI Xs n T 2 is given by the third factor of 



248 S. Tanabe 

(4.5). After Theorem 2.6, we can find an uniformisation equation of the 
discriminantal loci D 8 , 

(4.6) 

81 = -((4zl +6z2)4 (Sz1)5(6z1 +4z2)6 ) 115 , 
(9zl + 6z2)9 (6z1 + 9z2)6 

82 = _ ( (4zl + 6z2)6 (Sz2)5(6z1 + 4z2)4 ) 115 

(9zl + 6z2)6 (6z1 + 9z2)9 

If we eliminate the variables (z1, z2) from the expressions (4.6), we get 
an equation of V' s, 

(800000 + 387420489s~- 43740000sls2 + 438438825s~s~ 

+ 387420489s~s~ + 387420489s~)R(zl. z2), 

where R(z1 , z2) is a polynomial whose Newton polyhedron is contained 
in a four sided rectilinear figure with vertices (0, 0), (20, 0), (12, 12), 
(0, 20). This factor contains the image of h(CP1) outside of D8 • 
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