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The Bergman kernel of Hartogs domains and 
transformation laws for Sobolev-Bergman kernels 

Gen Komatsu 

Introduction 

If we consider the Bergman kernel of strictly pseudoconvex domains, 
we can discuss a scalar invariant theory associated with CR geometry of 
the boundaries. This is Fefferman's program proposed in [3] and then 
developed in [6], [10], [1], [11], [8] and others. What will happen if 
the Bergman kernel is replaced by reproducing kernels associated with 
spaces of holomorphic functions contained in L2 Sobolev spaces? Let us 
restrict ourselves to the case where the Sobolev order is a half integer 
8/2 (8 E Z). The case 8 = 0 corresponds to the Bergman kernel. The 
case 8 = 1 corresponds to the Szego kernel, and the invariant theory 
is essentially the same as that of the Bergman kernel ([10], [11]). The 
situation changes with the signature of this 8. More precisely, it is 
at first necessary that the inner product of the Hilbert space which 
admits the reproducing kernel must satisfy a transformation law under 
biholomorphic mappings. Existence of such an inner product is obvious 
when 8 ~ 0 (8 E JR), whereas it is unknown for 8 > 0 except for 8 = 1. 
Next, boundary invariants will be contained in the singularity of the 
reproducing kernel, and if the singularity is of the same type as that of 
the Bergman kernel ([3], [2]) then in particular 8 ~ 0 is necessary ([9]). 
This fact suggests that the type of the singularities of the reproducing 
kernels for 8 < 0 are different from that of the Bergman kernel. Is it 
possible to avoid considering such new singularities? In what follows, we 
shall give an almost affirmative answer by considering Hartogs domains 
and Hirachi's formulation in [8] of a biholomorphic transformation law 
for local defining functions of strictly pseudoconvex domains. 
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§1. Hartogs domains and biholomorphic transformation laws 

Points ofen+t =en X et (n ~ 2) will be denoted by (z, zo), (w, wo), 
etc. Recall that a domain n c en is said to have coo boundary if there 
exists a real valued function p E C 00 (0) = C00 (enHn such that 

n = {z 1 p(z) > o}, dp # 0 on an; 

we then write p E C~r(O). Given such a defining function p E C~r(fi), 
the Hartogs domain D = D~ c en+t associated with it is defined by 

D := {(z, zo) I A(z, zo) > 0}, A(z, zo) := p(z)- lzol 2 ; 

thus A E C~r(D) which depends on tEN and p E C~r(fi). 

Remark 1. D is defined even when p rf- coo (0), but if an E coo 
then aD E coo because aA = ap- zo · dzo. If in addition an is strictly 
pseudoconvex, so is aD on z0 = 0. If furthermore -p is strictly pluri­
subharmonic, so is -A and thus aD is everywhere strictly pseudoconvex. 

In what follows, we assume p E C~r(O) and consider for simplicity 
only strictly pseudoconvex domains n. For subscripts i = 1, 2, we use 
the following notation: 

E C oo (l"i") \ I 12 D,· = vtP·i c ,-..n+t. Pi def Hi , Ai = Pi - zo , ~G 

By elementary operations on determinants, we have: 

Fact 1. The Levi determinants {i.e. the complex Mange-Ampere 
operators) on n and D satisfy 

Jn[p] := ( -1)n det ( ~ ~) = Jv[A], 

where the subscripts j, k stand for differentiation with respect to Zj, Zk. 

Recall by Fefferman [4] that if <I> : n1 ~ n2 is biholomorphic then 
Jn1 [ul] = Jn2 [u2] o <I> with u1 := I det <I>'I-2/(n+l) (u2 o <I>) for functions 
U2 in n2, where <f>' denotes the holomorphic Jacobian matrix of <f>. 

Lemma 1. Given a biholomorphic map <I>: n1 ~ n2 , let 

'l1: (z,zo) f--t (<I>(z), m(z)zo), m(z) := [det<I>'(z)]1f(n+l). 

Then 'l1 : D1 ~ D2 is a biholomorphic lift, provided 

(1.1) Pl = I det <I>'I-2/(n+l) (P2 o <I>). 
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Incidentally, 

(1.2) det w'(z, zo) = [det lf>'(z)]w{-t)/(n+l), w( -t) := n + 1 + t. 

Proof. It follows from (1.1) that A2(1J!(z, zo)) = lm(z)l 2 A1(z, zo) so 
that IJ!(DI) c D2 , and similarly w- 1(D2 ) c D 1. Now (1.2) is easy. 

Remark 2. The lift W is motivated by that of Fefferman [4], [5]: 

The map If># : C* X nl ~ C* X n2 is biholomorphic. The multiplicative 
factor of the variable ZF in If># is the inverse of that in W. Thus it 
is natural to consider the Lorentz-Kiihler potential lzFI 2 p(z) upstairs 
(cf. [4], [5]), whereas we consider A(z, zo) = p(z)- lzol 2 in Lemma 1. 

Following Hirachi [8], we lift the Levi determinant Jn [ ·] on n to 
Fefferman's C* bundle in [4], [5]. That is, we set, for functions U = 
U(zF, z) inC* X n, 

( U:- U-) 
Jn,#[U] := ( -1)n det ~; ~~ , 

where the subscripts F, F stand for differentiation with respect to ZF, 

ZF. Then, as in the proof of Fact 1, we have: 

Fact 2. Let A(zF, z, zo) := U(zF, z) - lzFI2 Izol 2 in C* x D for 
functions u = U(zF, z) inC* X n. Then 

Remark 3. Roughly speaking, there does not exist any natural fam­
ily, in the context of local biholomorphic invariant theory, of c= (local) 
defining functions which satisfy the transform law (1.1) (cf. Theorem 
2 of [9] for a precise statement). That is, (1.1) necessarily contains an 
error (cf. [5], [6], [7], [1], [11]). According to Hirachi's theory in [8], 
this difficulty in Fefferman's program for the invariant theory of the 
Bergman kernel can be avoided by considering asymptotic solutions of 
the complex Monge-Ampere equation upstairs 

Jn,#[U] = lzFI 2n & u > 0 in C* X n, u = 0 on C* X an. 
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More precisely, asymptotic solutions are of the form 

00 

u = P# + P# L 1Jk,O (pn+llogp#)k, 1Jk,O E c=(n), 
k=l 

where P# takes the form P#(zF, z) = lzFI 2 p(z) with special p E C.fer(O). 
(This p involves an ambiguity pammeter but transforms by (1.1), because 
the class of these p's are so chosen and an action is defined on the 
ambiguity parameter. See [8] for the detail.) On the other hand, A := 

U- lzFI 2 Izol 2 in Fact 2 formally satisfies 

Jv,#[A] = lzFI 2n+2t & A> 0 in C* X D, A= 0 on C* X av. 

It might be interesting to study the role of A in the framework of 
Hirachi's theory [8]. 

§2. Sobolev-Bergman kernels of n in terms of the Bergman 
kernel of D 

We denote the Bergman kernel of a Hartogs domain D = D~ c cn+t 

by 
K~((z,zo),(w,wo)) ((z,zo),(w,wo) ED), 

and the restriction to the diagonal by K~((z, z0 )) = K~((z, z0 ), (z, z0 )). 

Lemma 2. If~ : 01 --+ 02 is biholomorphic, then under the 
condition (1.1) in Lemma 1, 

(2.1) K~1 ((z, 0)) = K~2 ((~(z), 0)) I det<P'(z)l 2w(-t)/(n+l)_ 

More precisely, for the lift W : D1 --+ D2 in Lemma 1, 

(2.2) Kl ((z, zo)) = K~2 (w(z, z0 )) I det <P'(z)l 2w(-t)/(n+l). 

Proof. It follows from the transformation law in general for the 
Bergman kernel that if W : D1 --+ D2 is biholomorphic then 

Kl ( (z, zo)) = K~2 (W'(z, zo)) I det w' (z, z0 ) 1
2 • 

Thus (2.2) follows from (1.2). Setting z0 = 0 in (2.2), we get (2.1). 

This lemma makes sense when it is combined with the following 
elementary observation by Ligocka in [12]. Recall by definition that 
the Bergman kernel of D is the reproducing kernel associated with the 
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Hilbert space HB(D) = L 2 (D) nO(D), where O(D) denotes the totality 
of holomorphic functions in D. Let us set, for k E N0 , 

(2.3) gk(z) = gk[P](z) := ck(t) p(z)t+k, 
1 7rt 

ck(t) := t + k r(t) 

and consider the Hilbert space HB(O,gk) := L 2(0,gk) n 0(0) with re­
spect to the measure having each 9k(z) as the weight function. Denoting 
the reproducing kernel by K! (z, w), we set K! (z) = K:k (z, z). It will 
be sometimes clearer if we factor out the positive constant ck ( t) and 
consider the following (then f = t + k is not necessary): 

HB(o, /-) = £ 2 (0, /-) n 0(0), K~ (z) = K~ (z, z) (f E No). 

K~ is called the Sobolev-Bergman kernel of Sobolev order -f/2 in [9]. 
Then, it is shown in Ligocka [12] that 

(2.4) K~((z, zo), (w,wo)) = L K:k(z,w) L zgwg. 
kE!IIo l<>l=k 

Theorem. Given a biholomorphic map q>: 0 1 -+ 0 2 , consider the 
Hartogs domains Di = D~, c cn+t (i = 1, 2) defined by Pi E Ccl:;r(Oi) 
satisfying the condition (1.1) in Lemma 1. Then the reproducing kernel 
K:k [p] ( z) associated with the Hilbert space HB {0, gk[p]) defined via the 

function gk = gk [p] in (2.3) satisfies the following transformation law 

(2.5) K![Pl](z) = K![P2](q)(z)) I detq>'(z)l2w(-t-k)/(n+ll. 

That is, K~+k(z) = K~+k(q>(z)) ldetq)'(z)l 2w(-t-k)/(n+1). 
pl p2 

Proof If we set zo = 0 or wo = 0 in (2.4), then all terms in the 
right vanish except for a= 0 (i.e. k = 0), so that K~((z,O)) = K!(z). 
Thus (2.5) for k = 0 follows from (2.1) in Lemma 2. The result (2.5) for 
general k E No also follows similarly by using (2.2) and Lemma 1. 

Remark 4. Taking k = 0, we may write K:,(z) = eo(t)K~((z,O)) 
with eo(t) = 1rt jr(t + 1). Varying the dimension t, we get Sobolev­
Bergman kernels of any negative half-integral order -t/2 (t E N). On 
the other hand, if we take t = 1, then we have gk(z) = ck(1) p(z)k+1 

with ck(1) = 1rj(k + 1) and 

00 

K~((z, zo)) = L K:k (z) lzol2k ((z, zo) ED c cn+l). 
k=O 
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Varying this time the power k of lzol 2 , we again get Sobolev-Bergman 
kernels of any negative half-integral order -(k + 1)/2 (k E No). 

Remark 5. The singularities of these Sobolev-Bergman kernels of 
n are computable from that of the Bergman kernel K~ of the Hartogs 
domain D = D~, but there remains a problem of localizing the singu­
larity of Kl The author expects that the argument here will be used 
rather as a heuristics of formulating a local or microlocal version. 
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