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Abstract. 

The traditional ergodicity consists a crucial part in the theory 
of stochastic processes, plays a key role in practical applications. 
The ergodicity has much refined recently, due to the study on some 
inequalities, which are especially powerful in the infinite dimensional 
situation. The explicit criteria for various types of ergodicity for 
birth-death processes and one-dimensional diffusions are collected in 
Tables 8.1 and 8.2, respectively. In particular, an interesting story 
about how to obtain one of the criteria for birth-death processes is 
explained in details. Besides, a diagram for various types of ergodicity 
for general reversible Markov processes is presented. 

The paper is organized as follows. First, we recall the study on an 
exponential convergence from different point of view in different sub­
jects: probability theory, spectral theory and harmonic analysis. Then 
we show by examples the difficulties of the study and introduce the ex­
plicit criterion for the convergence, the variational formulas and explicit 
estimates for the convergence rates. Some comparison with the known 
results and an application are included. Next, we present ten (eleven) 
criteria for the two classes of processes, respectively, with some remarks. 
In particular, a diagram of various types of ergodicity for general re­
versible Markov processes is presented. For which, partial proofs are 
included in Appendix. Finally, we indicate a generalization to Banach 
spaces, this enables us to cover a large class of inequalities (equivalently, 
various types of ergodicity). 

Let us begin with the paper by recalling the three traditional types 
of ergodicity. 
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§1. Three traditional types of ergodicity 

Let Q = ( Qij) be a regular Q-matrix on a countable set E = 
{i,j,k, ... }. That is, Qij ~ 0 for all i =1- j, Qi := -qii = "f:.#i% < oo 
for all i E E and Q determines uniquely a transition probability matrix 
Pt = (pij(t)) (which is also called a Q-process or a Markov chain). De­
note by 7f = (1ri) a stationary distribution of Pt: 7rPt = 7f for all t ~ 0. 
From now on, assume that the Q-matrix is irreducible and hence the 
stationary distribution 7f is unique. Then, the three types of ergodicity 
are defined respectively as follows. 

(1.1) 

(1.2) 

(1.3) 

Ordinary eryodicity : 

Exponential eryodicity : 

Strong eryodicity : 

where a and /J are (the largest) positive constants and i,j varies over 
whole E. The equivalence in (1.3) is well knowri but one may refer to 
Proof (b) in the Appendix of this paper. These definitions are mean­
ingful for general Markov processes once the pointwise convergence is 
replaced by the convergence in total variation norm. The three types of 
ergodicity were studied in a great deal during 1953-1981. Especially, it 
was proved that . 

strong ergodicity ===>exponential ergodicity ===>ordinary ergodicity. 

Refer to Anderson (1991), Chen (1992, Chapter 4) and Meyn and 
Tweedie (1993) for details and related references. The study is quite 
complete in the sense that we have the following criteria which are de­
scribed by the Q-matrix plus a test sequence (Yi) only, except the expo­
nential ergodicity for which one requires an additional parameter A. 

Theorem 1.1 (Criteria). Let H =1- 0 be an arbitrary but fixed fi­
nite subset of E. Then the following conclusions hold. 

(1) The process Pt is eryodic iff the system of inequalities 

(1.4) 

has a nonnegative finite solution (Yi)· 
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(2) The process Pt is exponentially ergodic iff for some >. > 0 with 
>. < qi for all i, the system of inequalities 

(1.5) 

(3) 

{
L.':j qijYj ::::; ->.yi- 1, i ¢. H 

L::iEH L.':#i qijYj < 00 

has a nonnegative finite solution (Yi)· 
The process Pt is strongly ergodic iff the system (1.4) of inequal­
ities has a bounded nonnegative solution (yi)· 

The probabilistic meaning of the criteria reads respectively as fol­
lows: 

where aH = inf{t 2': the first jumping time: Xt E H} and>. is the same 
as in (1.5). The criteria are not completely explicit since they depend 
on the test sequences (yi) and in general it is often non-trivial to solve 
a system of infinite inequalities. Hence, one expects to find out some 
explicit criteria for some specific processes. Clearly, for this, the first 
candidate should be the birth-death process. Recall that for a birth­
death process with state space E = Z+ = {0, 1, 2, ···},its Q-matrix has 
the form: qi,i+1 = bi > 0 for all i 2': 0, qi,i-1 = ai > 0 for all i 2': 1 and 
qij = 0 for all other i =1- j. Along this line, it was proved by Tweedie 
(1981)(see also Anderson (1991) or Chen (1992)) that 

(1.6) S := L /-tn L ~b. < oo ==> Exponential ergodicity, 
n::::0:1 j:s;n-1 1-tJ 3 

where /-to= 1 and 1-tn = bo · · · bn-da1 ···an for all n 2': 1. Refer to Wang 
(1980), Yang (1986) or Hou et al (2000) for the probabilistic meaning of 
S. The condition is explicit since it depends only on the rates ai and bi. 
However, the condition is not necessary. A simple example is as follows. 
Let ai = bi = i"~ ( i 2': 1) and b0 = 1. Then the process is exponential 
ergodic iff 'Y 2': 2 (see Chen (1996)) but S < oo iff 'Y > 2. Surprisingly, 
the condition is correct for strong ergodicity. 

Theorem 1.2 (Zhang, Lin and Hou (2000)). 

S < oo {:::::::::} Strong ergodicity. 

Refer to Hou et al (2000). With a different proof, the result is extended 
by Y. H. Zhang (2001) to the single-birth processes with state space 
Z+· Here, the term "single birth"means that qi,i+l > 0 for all i 2': 0 
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but Qij 2: 0 can be arbitrary for j < i. Introducing this class of Q­
processes is due to the following observation: If the first inequality in 
(1.4) is replaced by equality, then we get a recursion formula for (Yi) 
with one parameter only. Hence, there should exist an explicit criterion 
for the ergodicity (resp. uniqueness, recurrence and strong ergodicity). 
For (1.5), there is also a recursion formula but now two parameters are 
involved and so it is unclear whether there exists an explicit criterion or 
not for the exponential ergodicity. 

Note that the criteria are not enough to estimate the convergence 
rate & or /3 (cf. Chen (2000a)). It is the main reason why we have to 
come back to study the well-developed theory of Markov chains. For 
birth-death processes, the estimation of & was studied by Doorn in a 
book (1981) and in a series of papers (1985, 1987, 1991). He proved, for 
instance, the following lower bound 

which is exact when ai and bi are constant. The following formula for 
the lower bounds was implicated in his papers and rediscovered in a 
different point of view (in the study on spetral gap) by Chen (1996): 

Besides, the precise & was determined by Doorn for four practical mod­
els. The main tool used in Doorn's study is the Karlin-Mcgregor's rep­
resentation theorem, a specific spectral representation, involving heavy 
techniques. There is no explicit criterion for & > 0 ever appeared so far. 

§2. The first (non-trivial) eigenvalue (spectral gap) 

The birth-death processes have a nice property-symmetrizability: 
J.LiPij(t) = J.LiPii(t) for all i,j and t 2: 0. Then, the matrix Q can 
be regarded as a self-adjoint operator on the real £ 2-space £ 2 (J.L) with 
norm II · II· In other words, one can use the well-developed £ 2-theory. 
For instance, one can study the £ 2-exponential convergence given below. 
Assuming that Z = 'Ei J.Li < oo and then setting 1ri = J.Li/Z. Then, the 
convergence means that 

(2.1) 

for all t 2: 0, where rr(f) = J fdrr and >.1 is the first non-trivial eigenvalue 
(more precisely, the spectral gap) of (-Q) ( cf. Chen ( 1992, Chapter 9)). 
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The estimation of )'1 for birth-death processes was studied by Sul­
livan (1984), Liggett (1989) and Landim, Sethuraman and Varadhan 
(1996) (see also Kipnis & Lamdin (1999)). It was used as a comparison 
tool to handle the convergence rate for some interacting particle sys­
tems, which are infinite-dimensional Markov processes. Here we recall 
three results as follows. 

Theorem 2.1 (Sullivan (1984)). 
satisfying 

> L:j>i Jlj 
ci _sup , 

i:;::I Jli 

Then )'1 2: 1/ 4ci Cz. 

Theorem 2.2 (Liggett (1989)). 
satisfying 

Then AI 2: 1/4cicz. 

Theorem 2.3 (Liggett (1989)). 
(J.Li) has an exponential tail. 

Let CI and c2 be two constants 

Let CI and c2 be two constants 

For bounded ai and bi, AI > 0 iff 

The reason we are mainly interested in the lower bounds is that on 
the one hand, they are more useful in practice and on the other hand, 
the upper bounds are usually easier to obtain from the following classical 
variational formula. 

AI = inf { D(f) : JLU) = o, JL(f2 ) = 1 }, 

where 

D(f) = ~ LJLi%(fJ- fi) 2 , 

i,j 

~(D)= {f E L 2 (JL): D(f) < oo} 

and JL(f) = f fdJL. 
Let us now leave Markov chains for a while and turn to diffusions. 

§3. One-dimensional diffusions 

As a parallel of birth-death process, we now consider an elliptic 
operator L = a(x)d2 /dx2 + b(x)d/dx on the halfline [0, oo) with a(x) > 
0 everywhere. Again, we are interested in estimation of the principle 
eigenvalues, which consist of the typical, well-known Sturm-Liouville 
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eigenvalue problem in the spectral theory. Refer to Egorov & Kondratiev 
(1996) for the present status of the study and references. Here, we 
mention two results, which are the most general ones we have ever known 
before. 

Theorem 3.1. Let b(x) = 0 {which corresponds to the birth-death 
process with ai = bi for all i ;::: 1} and set 8 = supx>O x fxoo a-1 . Here 
we omit the integration variable when it is integrated with respect to the 
Lebesgue measure. Then, we have 

1. Kac fj Krein {1958}: 8-1 ;::: .A0 ;::: (48)-1 , here .A0 is the first 
eigenvalue corresponding to the Dirichlet boundary f(O) = 0. 

Z. Kotani fj Watanabe {1982}: 8- 1 ;::: .A1 ;::: (48)-1 . 

It is simple matter to rewrite the classical variational formula as 
(3.1) below. Similarly, we have (3.2) for .A0 . 

Poincare inequalities. 

(3.1) 

(3.2) 

A1 : II! - 7r(f) 11 2 ~ .A11 D(f) 

.Ao : 11/112 ~ .A01 D(f), f(O) = 0. 

It is interesting that inequality (3.2) is a special but typical case of 
the weighted Hardy inequality discussed in the next section. 

§4. Weighted Hardy inequality 

The classical Hardy inequality goes back to Hardy (1920): 

1oo (~)P ~ (p~ 1)P 1oo f'P, f(O) = O,J';::: 0, 

where the optimal constant was determined by Landau (1926). After 
a long period of efforts by analysts, the inequality was finally extended 
to the following form, called weighted Hardy inequality (Muckenhoupt 
(1972)) . 

(4.1) 100 
f 2dv ~A 100 j'2 d.A, f E Cl, f(O) = 0, 

where v and .A be nonnegative Borel measures. 
The Hardy-type inequalities play a very important role in the study 

of harmonic analysis and have been treated in many publications. Refer 
to the books: Opic & Kufner (1990), Dynkin (1990), Mazya (1985) and 
the survey article Davies (1999) for more details. We will come back 
this inequality soon. 
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We have finished the overview of the study on the exponential con­
vergence (equivalently, the Poincare inequality) in the different subjects. 
In order to have a more concrete feeling about the the difficulties of the 
topic, we now introduce some simple examples. 

§5. Difficulties 

First, consider the birth-death processes with finite state space E. 

When E = {0, 1}, the Q-matnx becomes Q = . Then, . (-bo bo ) 
a1 -a1 

it is trivial that ,\1 = a1 + b0 . The result is nice since either a 1 or b0 

increases, so does >.1. If we go one more step, E = {0, 1, 2}, then we 
have four parameters bo, b1 and a1, a2 and 

>.1 = T 1 [a1 + a2 + bo + b1- J(a1- a2 + bo- b1)2 + 4a1b1]· 

Now, the role for ,\1 played by the parameters becomes ambiguous. 
When E = {0, 1, 2, 3}, we have six parameters: bo, b1, b2, a1, a2, a3. Then 

D C 2113 (3B- D 2 ) 

,\1 = 3 - 3 . 2113 + 3 c ' 
where the quantities D, B and Care not too complicated: 

D = a1 + a2 + a3 + bo + b1 + b2, 

B = a3 bo + a2 ( a3 + bo) + a3 b1 

+ bo b1 + bo b2 + b1 b2 + a1 (a2 + a3 + b2), 

C= (A+V4(3B-D2)3 +A2)
113 

However, in the last expression, another quantity is involved: 

A = -2 ar - 2 a~ - 2 a~ + 3 a~ bo + 3 a3 b6 - 2 b~ + 3 a~ b1 

- 12 a3 bo b1 + 3 b6 b1 + 3 a31Ji + 3 bo bi - 2 br - 6 a~ b2 + 6 a3 bo b2 

+ 3 b6 b2 + 6 a3 b1 b2 - 12 bo b1 b23 bi b2 - 6 a3 b~ + 3 bo b~ + 3 b1 b~ 

- 2 b~ + 3 ai ( a2 + a3 - 2 bo - 2 b1 + b2) 

+ 3 a~ [a3 + bo- 2 (b1 + b2)] 

+ 3 a2 [a~ + b6 - 2 bi - b1 b2 - 2 b~ 

- a3 ( 4 bo - 2 b1 + b2) + 2 bo ( b1 + b2)] 

+ 3 a1 [a~+ a~ - 2 b6- bo h - 2 bi - a2( 4 a3- 2 bo + b1 - 2 b2) 

+ 2 b0 b2 + 2 b1 b2 + b~ + 2 a3(bo + b1 + b2)]. 
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Thus, the roles of the parameters are completely mazed! Of course, it 
is impossible to compute >.1 explicitly when the size of the matrix is 
greater than five! 

Next, we go to the estimation of >q. Consider the infinite state space 
E = {0, 1, 2, · · · }. Denote by g and D(g), respectively, the eigenfunction 
of >.1 and the degree of g when g is polynomial. Three examples of the 
perturbation of >.1 and D(g) are listed in Table 1.1. 

bi (i 2:: 0) ai (i 2:: 1) ).1 D(g) 
i+c(c>O) 2i 1 1 

i+1 2i +3 2 2 
i+1 2i + (4 + v'2) 3 3 

Table 1.1 Three examples of the perturbation of >.1 and D(g) 
The first line is the well known linear model, for which ).1 = 1, inde­
pendent of the constant c > 0, and g is linear. Next, keeping the same 
birth rate, bi = i + 1, changes the death rate ai from 2i to 2i + 3 (resp. 
2i + 4 + J2), which leads to the change of >.1 from one to two (resp. 
three). More surprisingly, the eigenfunction g is changed from linear to 
quadratic (resp. triple). For the other values of ai between 2i, 2i + 3 
and 2i + 4 + J2, >.1 is unknown since g is non-polynomial. As seen from 
these examples, the first eigenvalue is very sensitive. Hence, in general, 
it is very hard to estimate >.1 . 

Hopefully, I have presented enough examples to show the difficulties 
of the topic. 

§6. Results about >.1 , & and >.0 

It is position to state our results. To do so, define 

"'f/ = {w: wi jj,11'(w) 2:: 0}, Z = LJLi, 

1 
8=sup L -b LJLi, 

i>O j::;i-1 JLj j j~i 

where jj means strictly increasing. By suitable modification, we can 
define "'f/' and explicit sequences 8n and 8~. Refer to Chen (2001a) for 
details. 

The next result provides a complete answer to the question proposed 
in Section 1. 

Theorem 6.1. For birth-death processes, the following assertions 
hold. 
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(1) Dual variational formulas: 

[Chen (1996)] 

[Chen (2001a)] 

(2) Appoximating procedure and explicit bounds: 

[Chen (2000b, 2001a)]. 

(3) Explicit criterion: A.1 > 0 iff8 < oo [Miclo (1999), Chen (2000b)]. 
(4) Relation: a= A.1 [Chen (1991)]. 

In (6.1), only two notations are used: the sets 1f/ and "'f/' of test 
functions (sequences). Clearly, for each test function, ( 6.1) gives us a 
lower bound of A. 1 . This explains the meaning of "variational". Because 
of (6.1), it is now easy to obtain some lower estimates of A.1 , and in 
particular, one obtains all the lower bounds mentioned above. Next, 
by exchanging the orders of "sup" and "inf", we get (6.2) from (6.1), 
ignoring a slight modification of "'f/. In other words, (6.1) and (6.2) are 
dual of one to the other. For the explicit estimates "8- 1 2 A.0 2 ( 48)- 1 " 

and in particular for the criterion, one needs to find out a representa­
tive test function w among all w E 1f/. This is certainly not obvious, 
because the test function w used in the formula is indeed a mimic of the 
eigenfunction (eigenvector) of A.1, and in general, the eigenvalues and 
the corresponding eigenfunctions can be very sensitive, as we have seen 
from the above examples. Fortunately, there exists such a representa­
tive function with a simple form .. We will illustrate the function in the 
context of diffusions in the second to the last paragraph of this section. 

In parallel, for diffusions on [0, oo], define 

C(x) = 1x b/a, 8 =sup 1x e-c 100 
e0 ja, 

0 x>O 0 x 

$ = {f E C[O,oo) nC1 (0,oo): f(O) = 0 and f'l(o,oo) > 0}. 

Theorem 6.2 (Chen (1999a, 2000b, 2001a)). For diffusion 
on [0, oo), the following assertions hold. 
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(1) Dual variational formulas: 

(6.3) 

(6.4) 

(2) 

Ao z sup inf ee(x)f'(x)/1
00 

fee/a 
/Eff' x>O x 

Ao < inf sup ee(x) /'(x)/ 1
00 

fee fa 
- /Eff'' x>O x 

Furthermore, the signs of the equality in (6.3) and (6.4) hold if 
both a and b are continuous on [0, oo). 
Appoximating procedure and explicit bounds: A decreasing se­
quence { 8n} and an increasing sequence { 8~} are constructed ex­
plicitly such that 

for all n. 

(3) Explicit criterion: Ao (resp. A1) > 0 iff 8 < oo. 

We mention that the above two results are also based on Chen and 
Wang (1997a). 

To see the power of the dual variational formulas, let us return to 
the weighted Hardy's inequality. 

Theorem 6.3 (Muckenhoupt (1972)). The optimal constant A in 
the inequality 

satisfies B::;: A::;: 4B, where B = supv[x,oo]fx00 (dAabs/dLeb)-1 and 
x>O 

dAabs/dLeb is the derivative of the absolutely continuous part of A with 
respect to the Lebesgue measure. 

By setting v = 1r and A = ee dx, it follows that the criterion in 
Theorem 6.2 is a consequence of the Muckenhoupt's Theorem. Along 
this line, the criteria in Theorems 6.1 and 6.2 for a typical class of the 
processes were also obtained by Bobkov and Gotze (1999a, b), in which, 
the contribution of an earlier paper by Luo (1992) was noted. 

We now point out that the explicit estimates "8-1 z Ao z (48)- 1" 

in Theorems 6.2 or 6.3 follow from our variational formulas immediately. 
Here we consider the lower bound "(48)-1" only, the prooffor the upper 
bound "8-1" is also easy, in terms of (6.4). 
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Recall that 8 = SUPx>O J; e-C r: ec fa. Set cp(x) = J; e-c. By 
using the integration by parts formula, it follows that 

1oo y<P ec _ 1oo ( 1oo ec) ---- 0'd -
x a x • a 

Hence 

e-C(x) roo .,j<PeC e-C(x) ~ 28 
I(0')(x) = (J<P)'(x)lx -a-:::; (1/2)e-C(x) . ~ = 48· 

This gives us the required bound by (6.3). 
Theorem 6.2 can be immediately applied to the whole line or higher­

dimensional situation. For instance, for Laplacian on compact Riemann­
ian manifolds, it was proved by Chen & Wang (1997b) that 

.A1 ~ sup inf J(f)(r)- 1 =: 6, 
JEff' rE(O,D) 

where I(!) is the same as before but for some specific function C(x). 
Thanks are given to the coupling technique which reduces the higher 
dimensional case to dimension one. We now have 8-1 ~ 8~ - 1 l ~ 6 ~ 
8;;1 j ~ (48)-I, similar to Theorem 6.2. Refer to Chen (2000b, 2001a) 
for details. As we mentioned before, the use of the test functions is 
necessary for producing sharp estimates. Actually, the variational for­
mula enables us to improve a number of best known estimates obtained 
previously by geometers, but none of them can be deduced from the 
estimates "8-1 ~ 6 ~ (48)-1". Besides, the approximating procedure 
enables us to determine the optimal linear approximation of 6 in K: 

where D is the diameter of the manifold and K is the lower bound of 
Ricci curvature (cf., Chen, Scacciatelli and Yao (2001)). We have thus 
shown the value of our dual variational formulas. 

§7. Three basic inequalities 

Up to now, we have mainly studied the Poincare inequality, i.e., 
(7.1) below. Naturally, one may study other inequalities, for instance, 
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the logarithmic Sobolev inequality or th,e Nash inequality listed below. 

(7.1) 

Poincare inequality: II!- 1r(J)II 2 :::; >-11 D(J) 

(7.2) 

Logarithmic Sobolev inequality: J P log(IJI/IIJII)d7r :::; a-1 D(J) 

(7.3) 

Nash inequality: II!- 7r(f)ll 2+4/v:::; ry-1 D(J)IIJII~/v 

(for some v > 0). 

Here, to save notation, a (resp. rJ) denotes the largest constant so that 
(7.2) (resp. (7.3)) holds. 

The importance of these inequalities is due to the fact that each 
inequality describes a type of ergodicity. First, (7.1) ~ (2.1). Next, 
the logarithmic Sobolev inequality implies (is indeed equivalent to, in the 
context of diffusions) the decay of the semigroup Pt to 7r exponentially 
in relative entropy with rate a and the Nash inequality is equivalent to 
IIPtf -7r(f)ll:::; CIIJIII/tv/2 • 

§8. Criteria 

Recently, the criteria for the last two inequalities as well as for the 
discrete spectrum (which means that there is no continuous spectrum 
and moreover, all eigenvalues have finite multiplicity) are obtained by 
Mao (2000, 2002a, b), based on the weighted Hardy's inequality. On 
the other hand, the main parts of Theorems 6.1 and 6.2 are extended 
to a general class of Banach spaces in Chen (2002a, d, e), which unify 
a large class inequalities and provide a unified criterion in particular. 
We can now summarize the results in Table 8.1. The table is arranged 
in such order that the property in the latter line is stranger than the 
former one, the only exception is that even though the strong ergodicity 
is often stronger than the logarithmic Sobolev inequality but they are 
not comparable in general (Chen (2002b)). 

Birth-death processes 
Transition intensity: 

i --+ i + 1 at rate bi = qi,i+1 > 0 

--+ i- 1 at rate ai = qi,i-1 > 0. 
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J.Lo = 1, 
bo ... bn-1 

Jln = -----, n ::::: 1; 
al .. ·an 

Property 

Uniqueness 

Recurrence 

J.L[i, kJ = 2: Jlj· 
iS,jS,k 

Criterion 

Ergodicity (•) & 1'[0,=) < = 
Exponential ergodicity 

£ 2 -exponential convergence 

Logarithmic Sobolev inequality 

Strong ergodicity 
L 1-exponential convergence 

Nash inequality 

Table 8.1. Ten criteria for birth-death processes 

Here, "( *) & · · · " means that one requires the uniqueness condition in 
the first line plus the condition"···". The "(c)" in the last line means 
that there is still a small gap from being necessary. In other words, when 
v E (0, 2], there is still no criterion for the Nash inequality. 

Diffusion processes on [0, oo) with reflecting boundary 
Operator: 

d2 d 
L = a(x) dx2 + b(x) dx. 

Define 

C(x) = 1x b/a, 

For the Nash inequality, we have the same remark as before. The reason 
we have one more criterion here is due to the equivalence of the loga­
rithmic Sobolev inequality and the exponential convergence in entropy. 
However, this is no longer true in the discrete case. In general, the loga­
rithmic Sobolev inequality is stronger than the exponential convergence 
in entropy. A criterion for the exponential convergence in entropy for 
birth-death processes remains open (cf., Zhang and Mao (2000) and Mao 
and Zhang (2000)). The two equivalences in the tables come from the 
next diagram. 



102 M.-F. Chen 

Property Criterion 

Uniqueness {"" J-t[O, x]e-C(x) = oo (•) 

Recurrence L e-C(x) = OCl 

Ergodicity (•) & J-t[O,oo) < oo 
Exponential ergodicity 

(•) & f c L 2 -exponential convergence 
sup 1-L[x, oo) e- < oo 
x>O 0 

Discrete spectrum (•) & lim sup J-t[x, oo) }, e 
-C 

=0 
n-+=x>n n 

Logarithmic Sobolev inequality 
(•) & sup J-t[x, oo)log[J-t[x, oo)-1Jfc'" e-C < oo 

Exponential convergence in entropy x>O 0 
Strong ergodicity 

(•) & ~oo J-t[x, oo)e-C(x) <oo? 
L 1 -exponential convergence 

Nash inequality (•) & sup J-t[x, ooj<v- 2)/v 1'" e-C <oo(e) 
x>O 0 

Table 8.2. Eleven cntena for one-d1mens10nal d1ffus10ns 

§9. New picture of ergodic theory 

Theorem 9.1. Let (E, 6") be a measumble space with countably 
genemted 6". Then, for a Markov processes with state space (E, 6"), 
reversible and having tmnsition probability densities with respect to a 
probability measure 1r, we have the diagmm shown in Figure 9.1. 

Nash inequality 

£ ~ 
Logarithmic Sobolev inequality L 1 -exponential convergence 

JJ- II 
Exponential convergence in entropy 1r-a.s. Strong ergodicity 

JJ- JJ-
Poincare inequality {==} 1r-a.s. Exponential ergodicity 

JJ-
£2 -algebraic ergodicity 

JJ­
Ordinary ergodicity 

Fig. 9.1. Diagram of nine types of ergodicity 

Here are some remarks about Figure 9.1. 

(1) The importance of the diagram is obvious. For instance, by us­
ing the estimates obtained from the study on Poincare inequal­
ity, based on the advantage on the analytic approach - the 
£ 2-theory and the equivalence in the diagram, one can estimate 
exponentially ergodic convergence rates, for which, the known 
knowledge is still very limited. Actually, these two convergence 
rates are often coincided (cf. the proofs given in Appendix). In 
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particular, one obtains a criterion for the exponential ergodicity 
in dimension one, which has been opened for a long period. Con­
versely, one obtains immediately some criteria, which are indeed 
new, for Poincare inequality to be held from the well-known crite­
ria for the exponential ergodicity. Next, there is still very limited 
known knowledge about the L1-spectrum, due to the structure 
of the L1-space, which is only a Banach but not Hilbert space. 
Based on the probabilistic advantage and the identity in the di­
agram, from the study on the strong ergodicity, one learns a lot 
about the L 1-spectral gap of the generator. 

(2) The L 2-algebraic ergodicity means that Var(Ptf) ~ CV(f)tl-q 
(t > 0) holds for some V having the properties: V is homoge­
neous of degree two (in the sense that V ( cf +d) = c2 V (f) for any 
constants c and d) and V(f) < oo for all functions f with finite 
support (cf. Liggett (1991)). Refer to Chen and Wang (2000), 
Rockner and Wang (2001) for the study on the L2-algebraic con­
vergence. 

(3) The diagram is complete in the following sense: each single­
directed implication can not be replaced by double-directed one. 
Moreover, the L 1-exponential convergence (resp., the strong er­
godicity) and the logarithmic Sobolev inequality (resp., the ex­
ponential convergence in entropy) are not comparable. 

(4) The reversibility is used in both of the identity and the equiva­
lence. Without the reversibility, the L 2-exponential convergence 
still implies n-a.s. exponentially ergodic convergence. 

(5) An important fact is that the condition "having densities" is 
used only in the identity of L1-exponential convergence and n-a.s. 
strong ergodicity, without this condition, L1-exponential conver­
gence still implies n-a.s. strong ergodicity, and so the diagram 
needs only a little change (However, the reversibility is still re­
quired here). Thus, it is a natural open problem to remove this 
"density's condition". 

(6) Except the identity and the equivalence, all the implications in 
the diagram are suitable for general Markov processes, not neces­
sarily reversible, even though the inequalities are mainly valuable 
in the reversible situation. Clearly, the diagram extends the er­
godic theory of Markov processes. 

The diagram was presented in Chen (1999c, 2002b ), originally stated 
mainly for Markov chains. Recently, the identity of L 1-exponential con­
vergence and the n-a.s. strong ergodicity is proven by Mao (2002c). A 
counter-example of diffusion was constructed by Wang (2001) to show 
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that the strong ergodicity does not imply the exponential convergence 
in entropy. Partial proofs of the diagram are given in Appendix. 

§10. Go to Banach spaces 

To conclude this paper, we indicate an idea to show the reason why 
we should go to the Banach spaces. 

Theorem 10.1 (Varopoulos, N. (1985); Carlen, E. A., Kusuoka, 
S., Stroock, D. W. (1987); Bakry, D., Coulhon, T., Ledoux, M. and 
Saloff-Coste, L. (1995)). When v > 2, the Nash inequality 

is equivalent to the Sobolev-type inequality 

II/- 7r(f)ll~/(v-2) :::; C2D(f), 

where II · liP is the LP(t-L)-norm. 

In view of Theorem 10.1, it is natural to study the inequality 

for a general Banach space (lBl, ll·lba, f..L). It is interesting that even for the 
general setup, we still have quite satisfactory results. Refer to Bobkov 
and Gotze (1999a, b) and Chen (2002a, d, e) for details. 

§11. Appendix: Partial proofs of Theorem 9.1 

The detailed proofs and some necessary counterexamples were pre­
sented in Chen (1999c, 2002b) for reversible Markov processes, except 
the identity of the L1-exponential convergence and 71'-a.s. strong ergod­
icity. Note that for discrete state spaces, one can rule out "a.s." used 
in the diagram. Here, we prove the new identity and introduce some 
more careful estimates for the general state spaces. The author would 
like to acknowledge Y. H. Mao for his nice ideas which are included in 
this appendix. The steps of the proofs are listed as follows. 

(a) Nash inequality===> L1-exponential convergence 
and 71'-a.s. Strong ergodicity. 

(b) L 1-exponential convergence {::==> 7r -a.s. Strong ergodicity. 
(c) Nash inequality===> Logarithmic Sobolev inequality. 
(d) L2-exponential convergence===> 71'-a.s. Exponential ergodicity. 
(e) Exponential ergodicity ===> L2-exponential convergence. 
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(a) Nash inequality===} £ 1-exponential convergence and 1r-a.s. 
Strong ergodicity [Chen (1999b)). Denote by ll·llp---+q the operator's norm 
from £P(1r) to Lq(1r). Note that 

Nash inequality{::::::::} Var(Pt(f)) = IIPd- 1r(f)ll~ ::::; C2IIJI1Utq-1 

(q:=v/2+1) 

{::::::::} II(Pt- 1r)JII2::::; Cll!lh/t(q-1)12-

{::::::::} IIPt- 71"111---+2 ::::; c jt(q-1)/2 . 

Nash inequality===} £ 1-algebraic convergence. 

Furthermore, because of the semigroup property, the convergence of 
II· 111---+1 must be exponential, we indeed have 

Nash inequality===} £ 1-exponential convergence. 

In the symmetric case: Pt- 7r = (Pt- 1r)*, and so 

esssup.,IIPt(x, ·)- 1rllvar = esssup., sup I(Pt(x, ·)- 7r)fl 
1!19 

::::; esssupx sup I(Pt(x, ·)- 7r)fl = sup esssup.,I(Pt(x, ·)- 1r)JI 
11!1119 11!1119 

= IIPt - 1rll1---+oo ::::; C jtq-1 -t 0, as t -t 00. 

This gives us the 1r-a.s. strong ergodicity. 

(b) £ 1-exponential convergence {::::::::} 1r-a.s. Strong ergodicity [Mao 
(2002c)). Since (L1 )* = Loo ===} IIPt - 1rll1---+1 = IIPt - 7rlloo---+oo and 
Pt(x, ·) «: 1r, we have 

IIPt -7rlloo---+oo = esssupx sup I(Pt-7r)f(x)l 
11JIIoo=1 

= esssupx sup I(Pt- 1r)j(x)l 
suplfl=1 

= esssup.,IIPt(x, ·)- 1rllvar· 
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Hence, 1r-a.s. strong ergodicity is exactly the same as the L 1-exponential 
convergence. Without condition "Pt(x, ·) « 1r", the second equality 
becomes "~", and so we have in the general reversible case that 

L 1-exponential convergence===? 1r-a.s. Strong ergodicity. 

(c) Nash inequality===? Logarithmic Sobolev inequality 
(Chen {1999b)]. Because II/III :::; II/IlP for all p ~ 1, we have II · 112---+2 :::; 
II · III--->2 :::; C jt(q-l)/2, and so 

Nash inequality===? Poincare inequality{=:::} >.1 > 0. 

IIPtllp--->2 :::; IIPtll1__.2:::; IIPt- 1rll1__.2 + ll1rlh__.2 < oo, p E (1, 2). 

The assertion now follows from [Bakry (1992); Theorem 3.6 and Propo­
sition 3.9]. 

The remainder of the Appendix is devoted to the proof of the asser­
tion: 

(A1) L 2-exponential convergence {=:::} 1r-a.s. Exponential ergodicity. 

Actually, this is done by Chen (2000a). Because, by assumption, the 
process is reversible and Pt(x, ·) « 1r. Set Pt(x, y) = dP~~,.) (y). Then 
we have Pt(x,y) = Pt(y,x), 1r x 1r-a.s. (x,y). Hence 

(A2) J Ps(x,y)27r(dy) = J Ps(x,y)ps(y,x)7r(dy) =P2s(x,x) < oo 

(Carlen et al (1987)). 

This means that Pt(x, ·) E L2(1r) for all t > 0 and 1r-a.s. x E E. Thus, by 
[Chen (2000a); Theorem 1.2] and the remarks right after the theorem, 
(A1) holds. 

The proof above is mainly based on the time-discrete analog result 
by Roberts and Rosenthal (1997). Here, we present a more direct proof 
of (A2) as follows. 
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(d) £ 2-exponential convergence====> n-a.s. Exponential ergodicity [Chen 
(1991, 1998, 2000a)]. Let p, « n. Then 

JJp,Pt -nJJvar = sup J(p,Pt- n)fl = sup ln(dp, Ptf- 1) I 
1!19 1!19 dn 

= l}~f11n(fPt(~~) -t)l 

(A3) = l}~f1 1n[t(Pt*(~~ -1))]1 

~liFt(~~ - 1)111 ~ ~~~~ - 1112e-tgap(L*) 

= ~~~~ -1112e-tgap(L)_ 

We now consider two cases separately. 
In the reversible case with Pt(x, ·) « n, by (A2), we have 

(A4) ~ JIPs(x, ·)- 1JJ2e-(t-s)gap(L) 

= [ VP2s(x,x) -1esgap(L)]e-tgap(L), t:::: s. 

Therefore, there exists C(x) < oo such that 

(A5) IJPt(x, ·) -nJJvar ~ C(x)e-tgap(L), t:::: 0, n-a.s. (x). 

Denote by .::1 be the largest c such that IJPt(x, ·)- nJJvar ~ C(x )e-t:t for 
all t. Then .::1 :::: gap(L) = .A1. 

In the cp-irreducible case, without using the reversibility and transi­
tion density, from (A3), one can still derive n-a.s. exponential ergodicity 
(but may have different rates). Refer to Roberts and Tweedie (2001) for 
a proof in the time-discrete situation (the title of the quoted paper is 
confused, where the term "£1-convergence" is used for the n-a.s. ex­
ponentially ergodic convergence, rather than the standard meaning of 
£ 1-exponential convergence used in this paper. These two types of con­
vergence are essentially different as shown in Theorem 9.1). In other 
words, the reversibility and the existence of the transition density are 
not essential in this implication. 

(e) n-a.s. Exponential ergodicity ====> £ 2-exponential convergence [Chen 
(2000a), Mao (2002c)]. In the time-discrete case, a similar assertion was 



108 M.-F. Chen 

proved by Roberts and Rosenthal(1997) and so can be extended to the 
time-continuous case by using the standard technique (cf., Chen (1992), 
§4.4]. The proof given below provides more precise estimates. Let the 
u-algebra cff be countably generated. By Numemelin and P. Tuominen 
(1982) or (Numemelin (1984); Theorem 6.14 (iii)], we have in the time­
discrete case that 

1r-a.s. geometrically ergodic convergence 

-¢:::::::? IIIIPn(•, ·)- 1rllvarll1 geometric convergence, 

here and in what follows, the L 1-norm is taken with respect to the 
variable "•". This implies in the time-continuous case that 

1r-a.s. exponentially ergodic convergence 

-¢:::::::? IIIIPt(•, ·) -1rllvarll1 exponential convergence. 

Assume that IIIIPt(•, ·)- 7rllvarll1 s ce-:e2 t with largest C2· 
Wenowprovethat 1111Pt(•,·)-7rllvarll1 ~ 11Pt-7rlloo-+1· Let llflloo = 

1. Then 

II(Pt -1r)JII1 = J 1r(dx)lf [Pt(x,dy) -7r(dy)]f(y)l 

s J 1r(dx) sup I J [Pt(x, dy)- 1r(dy) J g(y) I 
ll9lloo :51 

= IIIIPt(•, ·) -7rllvarlli 

(Need Pt(x, ·) «: 1r or reversibility!). 

Next, we prove that IIP2t -7rlloo-+1 = IIPt -7rll~-2 in the reversible case. 
We have 

II(Pt- 7r)fll~ = ((Pt- 1r)j, (Pt- 7r)f) = (!, (Pt- 7r)2 f) 

= (!, (P2t- 1r)f) S llfllooii(P2t- 1r)JII1 

s IIJII~IIP2t- 1rlloo-1· 

Hence IIP2t- 'lrlloo-+1 ~ IIPt- 1rll~-2 . The inverse inequality is obvious 
by using the semigroup property and symmetry: IIP2t -7rlloo-+1 S IIPt-
1rlloo-2IIPt- 1rll2-1 = IIPt- 1rll~-2· 

We remark that in general case, without reversibility, we have IIPt-
7rlloo-+1 ~ IIPt- 1rll~-2/2. Actually, 

II(Pt- 1r)JII~ s j I(Pt- 1r)JI2d1r s 2ll!lloo j I(Pt- 1r)Jid1r 

S 2IIJII~IIPt- 1rlloo-+b J E L 00 (7r). 
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Finally, assume that the process is reversible. We prove that .>.1 = 
gap(£) 2 c2. We have just proved that for every f with 1r(f) = 0 and 
llfll2 = 1, IIPtfll~ :$ Cllfll~e-2e:2 t. Following [Wang (2000; Lemma 2.2), 
or ROckner and Wang (2001)], by the spectral representation theorem, 
we have 

IIPdll~ = 1oo e-2>-td(E>-f, f) 

2 [ 1oo e-2>-sd(E>.f, f) r/s 
= IIPs/ll;t/s, t 2 S. 

(by Jensen inequality) 

[ ] 
sft 

Thus, IIPsfll~ :$ Cllfll~ e-2e:2 s. Letting t -+ oo, we get 

1r(f) = 0, llfll2 = 1, f E L00 (7r). 

Since L00 (7r) is dense in L2 (1r), we have 

Therefore, .>.1 2 c2. Q.E.D. 

Remark Al. Note that when p28 (·, ·) E £1l2 (1r) (in particular, when 
P2s ( x, x) is bounded in x) fgr some s > 0, from (A 4), it follows that there 
exists a constant C such that IIIIPt(•,·) -7rllvarlh :$ ce->.1 t. Then, we 
have c-2 2 .>.1 • Combining this with (e), we indeed have .>.1 = c-2 . 

Remark A2. It is proved by Hwang et al (2002) that under mild 
condition, in the reversible case, .>.1 = c-1 . Refer also to Wang (2002) for 
related estimates. 

Final remark. The main body of this paper is an updated version of 
Chen (2001c), which was written at the beginning stage of the study 
on seeking explicit criteria. The resulting picture is now quite complete 
and so the most parts of the original paper has to be changed, except 
the first section. This paper also refines a part of Chen ( 2002c). 
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