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Vassiliev Invariants of 
Braids and Iterated Integrals 

Toshitake Kohno 

§ Introduction 

The notion of finite type invariants of knots was introduced by Vas­
siliev in his study of the discriminats of function spaces (see [13]). It 
was shown by Kontsevich [9] that such invariants, which we shall call the 
Vassiliev invariants, can be expressed universally by iterated integrals of 
logarithmic forms on the configuration space of distinct points in the 
complex plane. 

In the present paper we focus on the Vassiliev invariants of braids. 
Our main object is to clarify the relation between the Vassiliev invari­
ants of braids and the iterated integrals of logarithmic forms on the 
configuration space which are homotopy invariant. A version of such 
description for pure braids is given in [6]. We denote by Bn the braid 
group on n strings. Let J be the ideal of the group ring C[Bn] generated 
by ai - a;1, where { ai}i::;i::;n-1 is the set of standard generators of Bn. 
The vector space of the Vassiliev invariants of Bn of order k with values 
in C can be identified with Hom(C[Bn]/ Jk+l, C). Let us stress that such 
vector space had been studied in terms of the iterated integrals due to 
K. T. Chen before the work of Vassiliev. We introduce a graded algebra 
An, which is a semi-direct product of the completed universal enveloping 
algebra of the holonomy Lie algebra of the configuration space and the 
group algebra of the symmetric group. We construct a homomorphism 
0 : Bn --+ An expressed as an infinite sum of Chen's iterated integrals, 
which gives a universal expression of the holonomy of logarithmic con­
nections. This homomorphism may be considered as a prototype of the 
Kontsevich integral for knots. Using this homomorpshim we shall deter­
mine all iterated integrals of logarithmic forms which provide invariants 
of braids (see Theorem 3.1). As a Corollary we recover the isomorphism 

An~ limC[Bn]/Jj 
+-
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which also follows from Chen's theory of iterated integrals (see also [11]). 
Here we notice that the above isomorphism can be shown over Q by 
means of the expression of the Vassiliev invariants based on the Drinfel'd 
associator defined over Q. 

The paper is organized in the following way. In Section 1 we discuss 
in general the situation of the complement of an arrangement of hyper­
planes in a complex vector space and recall basic facts on the itegrability 
of logarithmic connections. In Section 2 we give a brief summary of fun­
damental results in Chen's theory of iterated integrals. Section 3 is the 
main part of the present paper. We describe the Vassiliev invariants of 
braids and their relation with Chen's iterated integrals of logarithmic 
forms. 

§1. Arrangements and integrable connections 

Let Hi, I :::; j :::; m, be affine hyperplanes in the complex vector 
space en and we denote by /j a linear form defining Hi. We define the 
logarithmic differential form wi by 

1 1 d/j 
Wj = A dlog/j = A f . 271" -1 271" -1 i 

We put X = en \ Ui=1 Hi. Let V be a complex vector space and we 
consider the trivial vector bundle E =Xx V over X. For Ai E End(V), 
1 :::; j :::; m, the 1-form w = I:;_7=1 AjWj defines a connection on the 
vector bundle E. We have the following Lemma. 

Lemma 1.1. The I-form w = I:;_7=1 Aiwi defines an integrable 
connection if the condition 

[Aiv• Ai1 +···+Ai.]= 0, 1:::; p:::; s 

is satisfied for any maximal family of hyperplanes Hii, · · · , Hi. such that 

codimc(Hj1 n · • • n Hi.)= 2. 

Proof. For each triplet of hyperplanes Hi, Hj, H k contained in the 
set of hyperplanes { Hjp h:5p:5s we have the relation 

To show the integrability of the connection defined by w it is sufficient 
to prove w Aw = 0 since dw = 0. This follows from the above quadratic 
relations among logarithmic forms. Q.E.D. 



Braids and Iterated Integrals 159 

The relation among the logarithmic forms used in the proof of 
Lemma 1.1 is a special case of the relations for describing the struc­
ture of the cohomology ring of X given by Orlik and Solomon [12]. We 
denote by Xn the configuration space of ordered distinct n points in the 
complex plane. Namely Xn is defined by 

Xn = {(z1, · · · , Zn) E en ; Zi =/- Zj if i =/- j}. 

Let us consider the action of the symmetric group Sn on Xn by the 
permutation of the coordinates. The quotient space Sn \ Xn is denoted 
by Yn. We have an unramified covering 7r: Xn-+ Yn. We fix basepoints 
x E Xn and y E Yn satisfying 1r(x) = y. The fundamental group of 
Xn is by definition the braid group on n strings and is denoted by Bn. 
The fundamental group of Yn is the pure braid group on n strings and is 
denoted by Pn. We denote by O"j, 1 :=; j :=; n-1, the standard generators 
of Bn, where O"j is represented by the braid interchanging the j-th and 
(j + 1 )-st strings in the positive direction. We put 

for 1 ::; i < j :::; n. It is known that Pn is generated by ,'ij, 1 ::; i < j :::; n 
(see [l]). 

We consider the logarithmic differential forms 

1 
Wij = Adlog(zi - Zj), 1::; i < j:::; n 

27r 

defined on Xn. It was shown by Arnold that the cohomology ring of Xn 
is generated by the de Rham cohomology classes of the above logarithmic 
forms with the relations 

Wij I\ Wjk + Wjk I\ Wki + Wki I\ Wij = 0, i < j < k. 

Let V be a complex vector space and let Aij, 1 ::; i =/- j :::; n, be 
linear transformations of V satisfying Aij = Aji• We consider the 1-form 
w = Li<j AijWij· As a special case of Lemma 1.1, we see that w defines 
an integrable connection if the condition 

[Ak, Aij + Ajk] = 0 i, j, k distinct 

[Aij, Aki] = 0 i, j, k, l distinct 

is satisfied. The above relation among Aij is called the infinitesimal pure 
braid relation. 

Now we explain the Knizhnik-Zamolodchikov connection as a typical 
example. Let g be a finite dimensional complex semi-simple Lie algebra 
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and we denote by Iµ,, 1 ::; µ :s; dimg, an orthonormal basis of g with 
respect to the Cartan-Killing form. Let p1 : g -t End(½), 1 ::; j ::; n, 
be representations of the Lie algebra g. We put 

nij = L 1 ® • •. ® 1 ® Pi(Iµ,) ® 1 ® •. • ® l® p1(Iµ,) ® 1 ® ... ® 1 
µ, 

for 1 ::; i,j::; n, where Pi(Iµ,) stands for the action on the i-th component 
of the tensor product Vi®···® Vn. By using the fact that the Casimir 
element Lµ, Iµ,• Iµ, lies in the center of the universal enveloping algebra of 
g we can show that the above nij, 1 ::; i, j ::; n, satisfy the infinitesimal 
pure braid relation. Therefore the I-form 

w = .x LnijWij 

i<j 

defines an integrable connection for any complex parameter A, which we 
shall call the Knizhnik-Zamolodchikov connection. AB the holonomy of 
this connecion we obtain linear representations of the pure braid group. 
We refer the readers to [4] and [7] for a detailed description of these 
representations. 

§2. Review of Chen's iterated integrals 

We recall the definition and basic properties of Chen's iterated in­
tegrals. Let M be a smooth manifold and we fix two points a and b in 
M. We denote by 'Pa,b(M) the set of smooth paths 'Y: [O, 1] -t M. Let 
D..q denote the simplex defined by 

Let us consider the map 

defined by 
¢(-r,(ti,··· ,tq)) = ('Y(ti),··· ,'Y(tq)) 

where Mq stands for the q-fold Cartesian product of the manifold M. Let 
w be a differential form of degree p on M. Then integrating the pull-back 
</J*w along the fiber of the projection map 7r: 'Pa,b(M) x D..q -t 'Pa,b(M), 
we obtain 
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which is considered to be a differential form of degree p - q on the path 
space Pa,b(M). For differential forms Wj, 1 ::; j ::; q, on M we denote by 
w1 x · · · x Wq the differential form on Mq given by niw1 /\· · ·/\n;wq where 
11"j : Mq---+ M denotes the projection on thej-th factor. By applying the 
above construction we obtain the differential form 71" * ¢* ( w1 x • • • x Wq) on 
the path space Pa,b(M). The value of n*¢*(w1 x · · · xwq) at 'i' E Pa,b(M) 
is also denoted by 1 Wt· ··Wq. 

which is by definition Chen's iterated integral of w1, • • • ,wq along the 
path 'i'· We can show that the differential form d(n*</J*w) on the path 
space Pa,b(M) is written as the sum of 11"*</J*(dw) and 

with a suitable sign convention. This leads us to define the following 
double complex. 

We denote by AP(M) the vector space of smooth differential forms 
of deree p on M. We define ev,-q(M) to be the direct sum 

EBp1 +··+p.=p, Pt>O,-·· ,p.>0 [AP1 (M) @ · · · @ AP• (M)]. 

Let us introduce the differentials 

by 

q 

d1(w1 © · · · © wq) = 2)-l)i(Jw1 © · · · © Jwi-1 © dwi © · · · © wq) 
i=l 

q-1 

d2(w1 © · · · © wq) = ~)-l)i-1(Jw1 © · · · © Jwi-1 © (Jwi I\ WH1) 
i=l 

© Wi+2 © ···©Wq) 

where Jw stands for (-l)degww. Putting en = EBv-q=nev,-q and d = 
d1 + d2, we obtain the associated total complex e· = EBnEZ en, which 
we shall call the bar complex. 

We define a linear mapµ: e• ---+ A•(Pa,b(M)) by 

µ(w1 © · · · ©wq) = n*¢*(w1 x · • • x wq)­

We have the following Proposition. 
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Proposition 2.1 (K. T. Chen [2]). The map 

defines a homomorphism of graded differential algebras. 

We fix a basepoint x EM and we denote by f!x(M) the loop space 
of M based at x. Namely f!x(M) is by definition the space of paths 
Px,x(M). The following is a fundamental result due to K. T. Chen in 
the case M is simply connected. 

Theorem 2.2 (K. T. Chen [2]). Let M be a simply connected 
manifold. The above map µ induces an isomorphism of cohomology 

where HbR(Ox(M)) denotes the de Rham cohomology of the loop space 
f!x(M). 

Let us describe the relation between the fundamental group of M 
and the 0-th cohomology H 0 (C•) of the bar complex c•. The iterated 
integration map 

l : c0 X nx(M) -4 R 

defined by i(w1 0 · · • ®wq, 1) = J, w1 · · · Wq induces a natural paring map 

H0 (C-) x 1r1(M,x) -4 R 

which gives a bilinear map 

H0 (C-) x R[1r1(M, x)] -4 R. 

Here R[1r1(M, x)] stands for the group algebra of 1r1(M, x) over R. 
We denote by I the kernel of the augmentation homomorphism c : 
R[1r1 ( M, x)] -4 R. Let us introduce the increasing filtration :Fkcn, 
k ?:: 0, on the bar complex c• defined by 

The above filtration is preserved by the differential and induces a filtra­
tion on the cohomology of the bar complex c•. The following Theorem 
is due to K. T. Chen. 

Theorem 2.3 (K. T. Chen [3]). The iterated integration map in­
duces an isomorphism 
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Let us denote by Lib(H1 (M, Q)) the free Lie algebra over Q gener­
ated by the first homology H 1(M, Q). We consider the dual of the cup 
product homomorphism 

and the ideal in Lib(H1 (M, Q)) generated by Im a is denoted by I. Here 
we identify the wedge product with the Lie bracket. The holonomy Lie 
algebra of M over Q is defined to be 

g(M)Q = Lib(H1 (M, Q))/I. 

We have the filtration 

defined inductively by rj+l = [fo, rj] for j 2'.'. 0. As the quotient 
g(M)Q/fj we obtain a nilpotent Lie algebra whose universal envelop­
ing algebra is denoted by U(g(M)Q/fj)- We consider the Q-algebra 
A(M)Q defined by the inverse limit 

In the case when the manifold Mis the complement of hyperlpanes 
X = en \ u7t= 1 Hj we have an isomorphism 

which induces an isomorphism of complete Hopf algebras 

A(X)Q ~ limQ[1r1 (X,x)]/JJ_ 
<-

We refer the readers to [6] for the above isomorphisms. In this case 
the algebra A(X)Q has the following explicit description. We take basis 
Xj, 1 :::; j :::; m, whose dual basis consists of the logarithmic forms Wj, 1 :::; 
j:::; m. Let us denote by Q((X1 , • • • , Xm)) the algebra of formal power 
series in the non-commutative indeterminates Xj, 1 :::; j :::; m, and let J 
be its ideal generated by 

for any maximal family of hyperplanes Hj 1 , • • • , Hj, such that 

codimc(Hj1 n · · · n HJs) = 2. 
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Then we have an isomorphism 

A(X)q ~ Q((X1, · · ·, Xm))/.:J 

as complete Hopf algebras. 
For a field k containing Q we put A(X)k = A(X)q@ k. We are 

going to construct a homomorphism 

0: 1r1(X,x)-+ A(X)c 

which gives a universal expression of the holonomy of the connection 
w = ~~1 Ajwj in Section 1. We put w = ~,7'=1 Xj @ Wj and we define 
the map 0 as the infinite sum of iterated integrals given by 

0(-y) = 1 + 1 w + .. · + 1 w .. ·w + .. · 
"'I "'I '---v---' 

k 

for 'Y E n 1 ( X, x). Here by definition 

We see that 0 induces a homomorphism of algebras 

0: C[1r1(X, x)]-+ A(X)c-

§3. Iterated integrals and invariants of braids 

First we describe the notion of Vassiliev invariants of braids by 
means of the group algebra of the braid group. Let J be the kernel 
of the natural homomorphism 7r: C[Bn] -+ CSn, It turns out that J is 
the ideal generated by O'i -a;1, where {aihs;is;n-1 is the set of standard 
generators of Bn, Let v: Bn -+ C be an invariant of braids with values 
in C. Extending v linearly we obtain a linear map v : C[Bn] -+ C. We 
shall say that v is a Vassiliev invariant of order k if v factors through 
C[Bn]/ Jk+l. We denote by Vk(Bn) the complex vector space of the 
Vassiliev invariants of order k for Bn, We have an identification 

as complex vector spaces. We have an increasing sequence of vector 
spaces 



Braids and Iterated Integrals 165 

whose union V(Bn) = Uk>O Vk(Bn) is called the vector space of Vassiliev 
invariants of braids. 

For the configuration space Xn defined in Section 1, we set An = 
A(Xn)c- The algebra An is described as the quotient C((Xij )) / .J where 
C((Xij )) is the algebra of formal non-commutative power series with 
indeterminates Xii, 1 :::; i =/- j :::; n, and .J is the ideal generated by 
Xii - Xii and the infinitesimal pure braid relations 

[Xik, Xii + Xjk] i, j, k distinct 

[Xii, Xkt] i, j, k, l distinct. 

Let us notice that An has a structure of a graded algebra with deg Xij = 
1. We denote by A~ the degree p part of An- We put A~k = EBp9A~­
We introduce an extension An of the algebra An- As a vector space An 
is defined to be the tensor product An 0C[Sn]- We introduce a structure 
of an algebra for An by 

XijS = sXs(i)s(j)· 

for Xij E An and s E Sn- The algebra An is the semi-direct product 
of An and C[Sn] defined by the above relation. This algebra has a 
structure of a graded algebra with deg Xij = 1 and deg s = 0 for s E Sn. 
As in the case of An, we denote by A~ the degree p part of An. We put 
-<k -

A;, = EBp:s;kA~. 
Our next object is to define a linear map 

First we observe that an element of A~k is written as a linear combina­
tion of elements of the form 

We choose a E Bn such that p(a) = s. The map w is defined by 

w(v)(X · • • · X · s) •1J1 ip]p 

= ii((,'idi - 1) · · · (,'ipJp - 1) a). 

We see that since v is of order k the map w is well-defined. The above 
w(v) is called the weight system for v. 

Let us consider the loop space Dy (Yn) with basepoint y E Yn. An 
element of Dy(Yn) is called a geometric braid. We define C0 (Dy(Yn)) to 
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be the subspace of A 0 (0y(Yn)) spanned by the functions whose values 
at 'Y E Oy (Yn) are given by the iterated integrals of the form 

with some k, where i' is the lift of 'Y in Xn starting at the basepoint 
x E Xn. The 0-th cohomology H 0 (C•(Oy(Yn))) consists of the iterated 
integrals of logarithmic forms depending only on the homotopy classes of 
loops 'Y E Oy(Yn)- This cohomology group has the increasing filtration 
FkH0 (c•(Oy(Yn)), k ~ 0, defined by the length of the iterated inte­
grals. The following Theorem permits us to determine all such iterated 
integrals combinatorially in terms of the algebra An. 

Theorem 3.1. We have isomorphisms 

Proof. We defined the map 

by taking the associated weight system. To construct the inverse map 
we consider the universal holonomy homomorphism 

defined in the following way. We put w = :Ei<j Xij 0 Wij and we define 
the map 0 as the infinite sum of iterated integrals given by 

for Bn, where i' is the lift of 'Y in Xn starting at the basepoint x E Xn 
as above and p : Bn ~ Sn is the narutal homomorphism. We denote by 
T: An~ A~k the truncation map. For (3 E Homc(A~k, C) we obtain a 
Vassiliev invariant of order k of Bn as the composition (3oTo0. One can 
check that this construction gives the inverse of the map w. We observe 
that each element in FkH0 (c•(Oy(Yn)) defines a Vassiliev invariant of 
braids of order k. Conversely, given a Vassiliev invariant v of braids of 
order k, we consider the associated weight system w(v). Then as the 
composition w( v) o T o 0 we recover the iterated integral expression of 
the Vassiliev invariant v. This shows the first isomorphism. Q.E.D. 
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Corollary 3.2. We have an isomorphism 

which induces an isomorphism of complete Hopf algebras 

An~ lim C[Bnl/ Ji 
<-

Remark 3.3. It can been shown that the universal Vassiliev in­
variants with values in Q can be defined by means of the Drinfel'd 
associator defined over Q (see [4], [5] and [10]). Using this expression 
we can establish the isomorphism in the above Corollary over Q. 
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