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Embedding the graphs of regular tilings and 
star-honeycombs into the graphs of hypercubes and 

cubic lattices* 

Michel Deza and Mikhail Shtogrin 

Abstract. 

We review the regular tilings of d-sphere, Euclidean d-space, hy­
perbolic d-space and Coxeter's regular hyperbolic honeycombs (with 
infinite or star-shaped cells or vertex figures) with respect of possible 
embedding, isometric up to a scale, of their skeletons into a m-cube 
or m-dimensional cubic lattice. In section 2 the last remaining 2-
dimensional case is decided: for any odd m 2".: 7, star-honeycombs 
{m,m/2} are embeddable while {m/2,m} are not {unique case of 
non-embedding for dimension 2). As a spherical analogue of those 
honeycombs, we enumerate, in section 3, 36 Riemann surfaces rep­
resenting all nine regular polyhedra on the sphere. In section 4, 
non-embeddability of all remaining star-honeycombs ( on 3-sphere and 
hyperbolic 4-space) is proved. In the last section 5, all cases of em­
bedding for dimension d > 2 are identified. Besides hyper-simplices 
and hyper-octahedra, they are exactly those with bipartite skeleton: 
hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 
5-space (only two, {4,3,5} and {4,3,3,5}, of those 11 have compact 
both, facets and vertex figures). 

§1. Introduction 

We say that given tiling ( or honeycomb) T has a li -graph and embeds 
up to scale >. into m-cube Hm (or, if the graph is infinite, into cubic 
lattice Zm), if there exists a mapping f of the vertex-set of the skeleton 
graph of Tinto the vertex-set of Hm (or Zm) such that 

>.dr(vi, vi)= 11/(vi), f(vi)ll11 

= L lfk(vi) -fk(vi)I for all vertices vi,Vj, 
l~k~m 
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where dr denotes the graph-theoretical distance in contrast to the nor­
med-space distance [i. The smallest such number >. is called minimal 
scale. 

Denote by T -+ Hm (by T -+ Zrn) isometric embedding of the 
skeleton graph of Tinto m-cube (respectively, into m-dimensional cubic 
lattice); denote by T-+ (1/2)Hm and by T-+ (1/2)Zrn isometric up to 
scale 2 embedding. 

Call an embeddable tiling ii-rigid, if all its embeddings as above are 
pairwise equivalent. All, except hyper-simplexes and hyper-octahedra 
(see Remark 4 below), embeddable tilings in this paper turn out to 
be ii-rigid and so, by a result from [Shp93], having scale 1 or (only 
for non-bipartite planar tilings) 2. Those embeddings were obtained 
by constructing a complete system of alternated zones; see [CDG97], 
[DSt96], [DSt97]. 

Actually, a tiling is a special case of a honeycomb, but we reserve the 
last term for the case when the cell or the vertex figure is a star-polytope 
and so the honeycomb covers the space several times; the multiplicity of 
the covering is called its density. 

Embedding of Platonic solids was remarked in [Kel75] and pre­
cised, for the dodecahedron, in [ADe80]. Then [Ass81] showed that 
{3, 6}, {6, 3}, and {m, k} (for even m ~ 8 and m = oo) are embeddable. 
The remaining case of odd m and limit cases of m = 2, oo was decided 
in [DSt96]; all those results .are put together in the Theorem 1 below. 

All four star-polyhedra are embeddable. The great icosahedron 
{3, 5/2} of Poinsot and the great stellated dodecahedron {5/2, 3} of 
Kepler have the skeleton (and, moreover, the surface) of, respectively, 
icosahedron and dodecahedron; each of them has density 7. All ten 
star-4-polytopes are not embeddable: see the Theorem 3 below. 

The case of Archimedean tilings of 2-sphere and of Euclidean plane 
was decided in [DSt96]; it turns out that for any such tilings (except 
Prism3 and its dual, both embeddable) exactly one of two (a tiling 
and its dual) is embeddable. For 3-sphere and 3-space it was done 
in [DSt98b]; for example, Gosset's semiregular 4-polytope snub 24-cell 
turns out to be embeddable into half-12-cube. All 92 regular-faced 
3-polytopes were considered in [DGr97b] and, for all higher dimen­
sions, in [DSt96]. The truncations of regular polytopes were consid­
ered in [DSt97]. Another large generalization of Platonic solids - bi­
faced polyhedra - were considered in [DGr97b]. (Some generalizations 
of Archimedean plane tilings, 2-uniform ones and equi-transitive ones, 
were treated in [DSt96], [DSt97], respectively.) Finally, skeletons of (De­
launay and Voronoi tilings of) lattices were dealt with in [DSt98a]. 
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Embeddable ones, among all regular tilings of all dimensions, having 
compact facets and vertex fugures, were identified in [DSt96], (DSt97]. 

Coxeter (see [Cox54)) extended the concept of regular tiling, permit­
ting infinite cells and vertex figures, but with the fundamental region of 
the symmetry group of a finite content. His second extension was to per­
mit honeycombs, i.e. star-polytopes can be cells or vertex figures. For 
the 2-dimensional case, on which we are focusing in the next Section, 
above extensions produced only following new honeycombs - { m/2, m} 
and {m, m/2} for any odd m 2::: 7 - which are hyperbolic analogue of 
spherical star-polyhedra {5/2, 5} (the small stellated dodecahedron of 
Kepler) and {5, 5/2} (the great dodecahedron of Poinsot). Both {5/2, 5} 
and { 5, 5 /2} have the skeleton of the icosahedron. For any odd m above 
honeycombs cover the space (2-sphere form= 5) 3 times. The skeleton 
of { m, m/2} is, evidently, the same as of {3, m }, because it can be seen 
as {3, m} with the same vertices and edges forming m-gons instead of 
triangles. Thefaces of {m/2, m} are stellated faces of {m, 3} and it have 
the same vertices as {3,m}. 

We adopt here classical definition of the regularity: the transitiv­
ity of the group of symmetry on all faces of each dimension. But, as 
remarked the referee, the modern concept of regularity, which requires 
transitivity on flags, would not necessitate any change in the results. 

The following 5-gonal inequality (see [Dez60]): 
dab+ (dxy + dxz + dyz) $ (dax +day+ daz) + (dbx + dby + dbz) 
for distances between any five vertices a, b, c, x, y, is an important 

necessary condition for embedding of graphs, which will be used in proofs 
of Theorems 3,4 below. 

This paper is a continuation of general study of ii-graphs and li­
metrics, surveyed in the book [DLa97], where many applications and 
connections of this topic are given. In addition, we tried here to extract 
from purely geometric, affine structures, considered below, their new, 
purely combinatorial (in terms of metrics of their graphs) properties. 

§2. Planar tilings and hyperbolic honeycombs 

They are presented in the Table 1 below; we use the following nota­
tion: 

1. The row indicates the facet (cell) of the tiling (or honeycomb), 
the column indicates its vertex figure. The tilings and honeycombs are 
denoted usually by their Schlafli notation, but in the Tables 1, 3-5 below 
we omit the brackets and commas for convenience (in order to fit into 
page). 

2. By m we denote m-gon, by m/2 star-m-gon (if mis odd). By a:3 , 
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/33, 13, Ico, Do and 82 we denote regular ones tetrahedron {3, 3}, octa­
hedron {3,4}, cube {4,3}, icosahedron {3,5}, dodecahedron {5,3} and 
the square lattice Z2 = { 4, 4}. The numbers are: any m 2: 7 in 8th 
column, row and any odd m 2: 7 in 9th column, row. 

3. We consider that: {2, m} is a 2-vertex multi-graph with m edges; 
{ m, 2} can be seen as a m-gon; all vertices of { m, oo} are on the absolute 
conic at infinity (it has an infinite degree); the faces oo of { oo, m} are 
inscribed in horocycles ( circles centered in oo). 

Table 1. 2-dimensional regular tilings and honeycombs. 

11 2 I 3 I 4 I 5 I 6 I 1 I m I 00 11 ~ 11 ~ 11 
2 22 23 24 25 

3 32 lt3 /33 Ico 

4 42 13 <>2 45 

5 52 Do 54 55 

6 62 63 64 65 

7 72 73 74 75 

m m2 m3 m4 m5 
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I~ II 
I ~ II 

26 27 2m 

36 37 3m 

46 47 4m 

56 57 5m 

66 67 6m 
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m!I! 2 

II II 
II II 

Theorem 1. All 2-dimensional tilings {m, k} are embeddable, 
namely: 

(i) if 1/m + 1/k > 1/2 (2-sphere), then 
{2, m} - H1 for anym, {m, 2} - (1/2)Hm for oddm and {m, 2} -

Hm/2 for even m; 
{3, 3} = a3 - (1/2)H3, (1/2)H4; {4, 3} = 13 - H3; {3, 4} = /33 -

(1/2)H4; 
{3,5} = Ico(~ {3,5/2} ~ {5,5/2} ~ {5/2,5}) - (1/2)H6 and 

{5, 3} = Do(~ {5/2, 3}) - (1/2)H10 ; 

(ii) if 1/m + 1/k = 1/2 (Euclidean plane), then 
{2, oo} - H1, { oo, 2} - Z1; { 4, 4} = 82 - Z2, {3, 6} - (1/2)Z3, 

{6, 3} - Z3; 
(iii) if 1/2 > 1/m + 1/k (hyperbolic plane), then 
{m, k} - (1/2)Z00 if mis odd, k ~ oo and {m, k} - Z00 ism is 

even or oo, k ~ oo. 

Remark 1 (notation and terms here are from [Cox37], [Cro97]). 
(i) The embedding of the icosahedron {3, 5} into (1/2)H6 was men-
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tioned in [Cox50] on pages 450-451, as regular skew icosahedron. There 
are 5 proper regular-faced fragments of {3, 5}: 5-pyramid, 5-antiprism, 
para-bidiminished {3, 5}, meta-bidiminished {3, 5}, and tridiminished 
{3, 5}; 5-pyramid embeds into (1/2)H5 , all others into (1/2)H6 . 

(ii) The antipodal quotients of (embeddable, see Theorem 1 (i) 
above) cube, icosahedron, dodecahedron are regular maps {4, 3}3, {3, 5}5, 
{5, 3}5 on the projective plane, which are K4, K6 , the Petersen graph; 
they embed into (1/2)Hm for m = 4, 6, 6, respectively. 

(iii) Besides {4,4}, {3,6}, {6,3} (embeddable, see Theorem 1 (ii) 
above), there are exactly three other infinite regular polyhedra. They 
are regular skew polyhedra {4,614}, {6,414}, {6,613}, which can be ob­
tained by deleting of cells from the tilings of 3-space by cubes (Z3 ), 

by truncated octahedra (the Voronoi tiling for the lattice A3), by reg­
ular tetrahedra and truncated tetrahedra (Foppl uniform tiling). They 
are, respectively: embeddable into Z3, embeddable into Z6 , not 5-gonal. 
All finite regular skew 4-polytopes are: the family { 4, 41m} of self-dual 
quadringulations of the torus (it is the product of two m-cycles and 
so embeddable into (1/2)H2m for odd m or into Hm for even m), not 
5-gonal {6,413}, {4,613}, {8,413} and its undecided dual {4,813}. 

(iv) Examples of other interesting regular maps are the Dyck map 
{3, 8}6 (8-valent map with 12 vertices and 32 triangular faces), the Klein 
map {3, 7}s (7-valent map with 24 vertices and 56 triangular faces) and 
{ 4, 5}5 (5-valent map with 16 vertices and 20 quadrangular faces). Those 
maps (all of oriented genus 3) come from the hyperbolic tilings {3, 8}, 
{3, 7}, {5, 4}, respectively (which are embeddable; see Theorem 1 (iii) 
above) by identification of some vertices of the unit cell. Those three 
maps and their duals are all not 5-gonal. But, for example, the 3-valent 
partition of the torus into 4 hexagons is embeddable: it is the cube on 
the torus. 

Remark 2 (notation and terms here are from [Cox73], [Wen71] 
and [Cro97]). With V.P. Grishukhin we considered embeddability of 
following non-convex polyhedra: 

(i) All non-Platonic facetings of Platonic solids (see [Cox73], page 
100) are: 4 star-polyhedra {5/2, 5}, {5, 5/2}, {5/2, 3}, {3, 5/2} and 4 
regular compounds 20:3 (Kepler's stella octangula), 5')'3, 50:3, 100:3. The 
remaining regular compound is 5/33 , which is dual to 5')'3. In this Remark 
only, contrary to Theorem 1 (i), we consider all visible "vertices" of poly­
hedra, not only those of their shells. Then it turns out, that {5/2, 5}, 
{5, 5/2}, {5/2, 3}, {3, 5/2}, 20:3, 5/33 have the same skeletons as dual 
truncated, respectively, {3, 5}, {5, 3}, {5, 3}, truncated {3, 5}, 13, icosi­
dodecahedron. 50:3 has the same skeleton as dual snub dodecahedron. 
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Among all 4 star-polyhedra, 5 regular compounds and their 9 duals, all 
embeddable ones are: 

{5/2, 5} - (1/2)Hrn, {5, 5/2} ( ~ {5/2, 3}) - (1/2)H26, {3, 5/2} -
(1/2)H10, 20:3 - (1/2)H12, dual 5/33 ( ~ 513) - H15, dual 50:3 -
(1/2)H15. 

(ii) Among 8 stellations A - H of {3, 5} (the main sequence, see 
[Cro97], page 272), all embeddable ones are A = {3, 5}, B ~ {5, 5/2} 
and G ~ H ~ {3, 5/2}. Also the dual of the stellation De2h of {3, 5} 
has the same skeleton as the rhombicosidodecahedron and it embeds 
into (1/2)Hrn. The stellations De1 ~ Fg2 ~ C = 50:3 and Fg1, De2h 
are not embeddable. 

(iii) Among the compounds of two dual Platonic solids and dual 
compounds, all embeddable ones are 20:3 and, into (1/2)H2s, the dual of 
{3, 5} + {5, 3}. Among all 53 non-convex non-regular uniform polyhedra 
(Nos. 67-119 in [Wen71]), two are quasi-regular: the dodecadodecahe­
dron and the great icisidodecahedron (see [Cox73], page 101 and Nos. 
73, 94 in [Wen71]). Again we consider all visible "vertices" and see a 
pentagram 5/2 as pentacle (10-sided non-convex polygon). Then both 
above polyhedra and their duals are not embeddable. But, for example, 
the ditrigonal dodecahedron (No. 80 in [Wen71], a relative of No. 73) 
embeds into (1/2)H20-

The following theorem gives the family of all non-embeddable regu-
lar planar cases. 

Theorem 2. For any odd m 2: 7 we have 
(i) { m/2, m} is not embeddable; 
(ii) {m,m/2} (~ {3,m}) - (1/2)Z00 • 

The assertion (ii) is trivial. The proof of (i) will be preceded by 3 
lemmas and first two of them are easy but o( independent interest for 
embedding of (not necessary planar) graphs. Lemma 1 can be extended 
on the isometric cycles. 

Let G be a graph, scale A embeddable into Z,.,., let C be an oriented 
circuit of length t in G and let e be an arc in C. Then there are A 
elementary vectors, i.e. steps in the cubic lattice Z,.,., corresponding to 
the arc e; denote them by x1(e), ... , x.x(e)· Clearly, the sum of all vectors 
xi(e) by all i and all arcs e of the circuit, is the zero-vector. 

Now, if t is even, denote by e* the arc opposite to e in the circuit 
C; if t is odd, denote by e', e" two arcs of C opposite to e. For even t, 
call the arc e balanced if the set of all its vectors Xi ( e) coincides with 
the set of all xi(e*), but the vectors of arc e* go in opposite direction on 
the circuit C to the vectors of e. For odd t, call the arc e balanced if a 
half of vectors of e' together with a half of vectors of the second opposite 
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arc e" form a partition of the set of vectors of e and those vectors go in 
opposite direction ( on C) to those of arc e. 

Remind, that the girth of the graph is the length of its minimal 
circuit. 

Lemma 1. Let G be an embeddable graph of girth t. Then 
(i) any arc of a circuit of length t is balanced; 
(ii) if t is even, then any arc of a circuit of length t + 1 is also 

balanced. 

Lemma 2. Let G be an embeddable graph of girth t and let P be 
an isometric oriented path of length at most l t /2 J in G. Then there 
are no two arcs on this path having vectors, which are equal, but have 
opposite directions on the path. 

Lemma 3. The girth of the skeleton of { m/2, m} is 3 for m = 5 
and m - 1 for any odd m 2'.: 7. 

Proof of Lemma 3. 
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Fig . la. A fragment of {7 /2, 7} 

Consider Fig. la. Take a cell A= (ao, ... ,am= ao) of the {m/2, m}, 
i.e. a star m-gon, seen as an oriented cycle of length m = 2k + 1. Con­
sider following automorphism of the honeycomb: a turn by 180 degrees 
around the mid-point of the segment [ao, ak]- The image of A is the ori­
ented star m-gon B = (bo, ... , bm = bo) with bo = ak, bk = ao. Consider 
now oriented cycle C = (ao, a1, ... , ak = bo, ... , bk = ao) of even length 
m - 1 = 2k. In order to prove the Lemma 3, we will show that C is a 
cycle of minimal length. 
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First we show that the graph distance d(ao, ak) = k, i.e. the path 
P := (a0 ,a1 , ••• ,ak) is a shortest path from ao to ak. It will imply 
that d(a0 ,c(A)) = d(ak,c(A)) = k, where c(A) is the center of the cell 
A, because all vertices of {m/2, m} are vertices ofregular triangles of 
{3,m}. 

Let Q be a shortest path from ao to ak. Then it goes around the 
vertex c(A) or the center c(B) of the cell B, because otherwise Q goes 
through at least one of the vertices ak+I, a2k, bk+ 1, b2k and so Q contains 
at least one of the pairs of vertices (ao, ak+I), (ao = bk, b2k), (bk = 
ao, a2k), (ak = bo, bk+I)- But each of those pairs has, by the symmetry 
of our honeycomb {m/2,m}, same distance between them as (ao,ak); 
it contradicts to the supposition that Q is a shortest path. So, we can 
suppose that Q goes around c(A) (the argument is the same if it goes 
around c(B)). Now, to each edge (s, t), corresponds, from the center 
c(A) of A, the angle (s, c(A), t). The 2k + 1 edges of A are only edges, 
for which this angle is 4k7r/(2k + 1); for any other edge, the angle is 
smaller, since it is more far from c(A). So, if Q contains an edge, other 
than one from A, then, in order to reach ak from ao, it should be of 
length more thank. Therefore, any shortest path from ao to ak, should 
consist only of edges of A and then it is of length k. So, d( ao, c( A)) = k 
also, as well as for any edge of {3, m }. Same holds for m = 5. 

We will show now that: 
(i) any path R of length 2k - 2 is not closed and 
(ii) R cannot be closed by only one edge. 
But C is a closed path of length 2k; so (i), (ii) will imply that 2k 

( respectively, 2k + 1) is the minimal length of any ( respectively, any odd) 
simple isometric cycle in the graph. Form= 5 (ii) does not holds. 

Suppose that R is closed; let as see it as a 2k - 2-gon on hyperbolic 
plane. Any angle of R is a multiple i(2rr /m), but i > 1 for at least 
one angle, because (2k - 2)(2rr/m) < 2rr. Suppose that a angle has 
1 < i S k; the argument will be the same if k + I Si< m - 1, but for 
the complementary angle (m - i)(2rr/m) with 1 < m - i S k. 

See Fig. lb for the following argument. Fix an angler, s, t between 
two adjacent edges (r, s) and (s, t) of R. Let S* be the opposite vertex to 
son R, let (s, r'), (s, t') be the edges such that the angles r, s, r', t, s, t' 
are 2rr/m. Let A, B be the cells m/2, defined by pairs (r,s), (s,r') and 
(t, s), (s, t') of their adjacent edges and c(A), c(B) are their centers. The 
vertex c( A) not belongs to the path from s to S* oflength k - 1, since we 
proved above that d(s,c(A) = k); so this path should go around c(A). 
Let p be the vertex of A, reachable from s by k - I steps on A, starting 
by r; let q be the vertex of B, reachable from s by k - I steps on B, 
starting by t. By mirror on (r, s) (respectively, (s, t)) we obtain the cells 
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A', B', their centers c(A'), c(B') and vertices p', q', which are reflections 
of p, q. Call A-domain, the part of the hyperbolic plane, bounded by 
half-lines (c(A),p,oo), (c(A'),p'oo) and the angle (c(A),s,c(A')); call 
B-domain, the part, bounded similarly for B. Actually, B-domain is the 
reflection of A-domain by the bisectrisse of the angle (r, s, t). 

We will show now that the vertex S* should belong to both A-and 
B-domains. But they do not have common points, besides s. This 
contradiction will show that our R, a closed path of length 2k - 2, do 
not exists. Any edge of the path ( s, t, ... , S*) of length k - l is seen from 
c(A) under angle at most 41r /m with equality if and only if this edge 
belongs to A (as, for example, the edge (r, s)). Summing up those angles 
along the path (st, ... , S* ), we get less than (k - 1)( 41r /m), obtained for 
the path of length k - l from s to p, going along A. It implies that S* 

belongs to A-domain and also, by reflection, to B-domain. 

Fig. lb. A fragment of {9/2, 9} 

But A-and B-domains intersect only in point s, because the lines 
through (c(A),p) and (s,r') diverge on the hyperbolic plane. In fact, 
denote by o:1 , o:2 , /31 , {32 the angles (p, c(A), s ), ( c(A), s, r'), ( c(A), p, r'), 



82 M. Deza and M. Shtogrin 

(p, r', s), respectively. They are equal to 47f /m+27f /m, 7r/m, 7f /m+7r/m, 
21r/m + 7r/m, respectively. So 0:1 + 0:2 = 71r/m :S 1r, since m 2 7 and 
the lines, if they converge or parallel, do it on the right side of Fig. 1 b. 
Now, /31 + /32 = 57r / m < 7f and the lines, if they converge or parallel, do 
it on the left. So, they diverge. 

We demonstrated ad absurdum, the non-existence of the vertex S* 

and so, of the closed path R. So, a path R of length 2k - 2 is not closed. 
But p, q is never an edge; so we need at least two edges in order to 
close R. If two edges are enough, then points r', t' coincide, i.e. i = 2; 
actually, two edges will be enough in the case m = 7. The proof of 
Lemma 3 is completed. Q.E.D. 

Proof of Theorem 2. Consider star-m-gons A, B and the circuit 
C as in beginning of the proof of Lemma 3 above. Take the arc e = 
(a0 , a 1) on the circuit C; by Lemma 1 (i), e is balanced, i.e. the vectors 
xi(e*) of the opposite arc e* = (bo, b1 ) are the same, as of the arc e, but 
they have opposite directions with respect of the circuit C. The same 
arc e, seen as an arc of the circuit B of length m, is opposite to two 
arcs in this odd circuit and, in particular, to the arc (ak, ak+1)- The last 
arc has, by Lemma 1 (ii), >../2 vectors, coinciding with vectors of e, but 
with opposite direction on the circuit B. Finally, consider the oriented 
path (ak+I,ak = b0 ,b1 ) of length 2 in our {m/2,m}. Its two arcs have 
vectors, coinciding, but going in opposite direction on this path. But it 
contradicts to Lemma 2, because 2 < k. Q.E.D. 

§3. Spherical analogue of Coxeter's honeycombs 

In this Section we consider, for any pair (i, m) of integers, such 
that 1 :Si< m/2 and g.c.d.(i, m) = 1, star-polygons m/i. Clearly, m/1 
denotes now a convex m-gon; so we see star-polygons as a generalization 
of convex ones. We will allow further extension: star-polygons m/i with 
m/2 < i < m, let us call them large star-polygons. They cannot be 
represented on Euclidean or hyperbolic plane, because they have there 
the same representation as m/(m - i). But they can be represented on 
the sphere by the following way; see Fig. 2 for the simplest 3/1 and 3/2. 
Let ao, ... , am-1 be m points, placed in this order, on a great circle of 
the sphere, in order to form a regular m-gon. Then the spherical (great 
circle) distance d(a0 , ai) is 27fi/m, but on m/i, the length of the way 
is d(ao,ai) for i < m/2 and 27f - d(ao,ai) otherwise. Using this larger 
set of polygons, we will look for spherical representations of regular (i.e. 
with a group of symmetry acting transitively on all j-faces, 0 :S j :S 2) 
polyhedra. 
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Fig. 2a. 3/1 Fig. 2b. 3/2 

In the Table 2 below, the rows (columns) denote a cell (respectively, 
a vertex figure) of would-be representations. If the representation, cor­
responding to a given pair of {m/i, n/j} of polygons, exists, we denote 
it by this pair and write its density in corresponding cell of the Ta­
ble 2. The densities were counted directly, by superposing the repre­
sentation on corresponding regular polyhedron. But the expression of 
the density, given in the formula 6.41 of [Cox73] for multiply-covered 
sphere is valid for our representations, i.e. the density of {m/i, n/j} is 
N 1 (i/m + j/n -1/2), where N 1 is the number of edges. (Above expres­
sion is equivalent to Cayley's generalization of Euler's Formula, given as 
the formula 6.42 in [Cox73].) Our representations are Riemann surfaces, 
i.e. d-sheeted spheres (or d almost coincident, almost spherical surfaces) 
with the sheets connected in certain branch-points. 

We see a m/i as a representation of the m-cycle on the sphere, 
together with a bi-partition of i-covering of the sphere. Call interior 
the part with angle, which is less than 1r. For representations below, 
the vertex figure selects uniquely the part of the cell: namely, the vertex 
figure n/ j gives the value 2-,rj /n for the angle of the cell. It takes interior 
of the cell if j < n/2 and exterior otherwise. 

The Table 2 shows that each of all nine regular polyhedra (seen as 
abstract surfaces) admits four such Riemann surfaces and we checked, 
case by case, that all 36 are different and that remaining 28 possible 
representations do not exist. Each of four representations for each regu­
lar polyhedron has same genus as corresponding abstract surface; so the 
genus is four for 8 representations of the form {5/i, 5/ j} and zero for all 
others. 

In the Table 2, the column with 2/1 corresponds to doubling of 
regular polygons. Alexandrov ([Ale58]) considered, for other purpose, 
the doubling of any convex polygon as an abstract sphere, realized as a 
degenerated (i.e. with volume 0) convex polyhedron. { m, 2} and {2, n} 
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on the plane and the sphere appeared also in Section 7 of [FTo64]. By 
analogy, we will do such doubling for star-polygons m/i with i < m/2. 
But for large star-polygons we should do doubling on the sphere. The 
row and the column with m/i correspond to any pair of mutually prime 
integers ( i, m), 1 :::; i < m. As Table 2 shows, there exist all represen­
tations {2/1, m/i} and {m/i, 2/1} and each of them has density i (and 
the genus 0). 

An infinity of other representations can be obtained by permitting 
polygons m/(i+tm) for any integer t 2'.'. O; the way on the edge (ao, ai+tm) 
will be 21rt - d(ao, ai+tm), 

I 

I 

I 

I 

Table 2. 36 representations of regular polyhedra on the 
sphere. 
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5 4 4 
5 

II 
2 

11 t3 ~: II I 
3 I~~ I I II I I 

2 
5 3 9 3 

I m~i II m~i II II I I I II I II I II 
§4. Star-honeycombs 

Besides star-polygons and four regular star-polyhedra on 2-sphere, 
which are all embeddable (last four are isomorphic to Ico or Do), there 
are ([Cox54]) only following regular star-honeycombs: ten regular star­
polytopes on 3-sphere and four star-honeycombs in hyperbolic 4-space; 
see the Tables 1, 3-5. In this Section we show that none of last 14 is 
embeddable. Consider first the case of 3-sphere. 

There are six regular 4-polytopes ( 4-simplex 0:4, 4-cross-polytope {34 , 

4-cube 'Y4, self-dual 24-cell and the pair of dual 600-cell and 120-cell) and 
ten star-4-polytopes; see the Chapter 14 in [Cox73]. [Ass81] showed non­
embeddability of 24-and 600-cell; [DGr97c] did it for 120-cell. Clearly, 
'Y4 and /34 are H4 and (1/2)H4 themselves. 
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Embeddable ones among Archimedean tilings of 3-sphere and 3-
space, were identified in [DSt98b]; for example, snub 24-cell (semi-regular 
Gosset's 4-polytope s{3, 4, 3}) embeds into (1/2)H12 while the Grand 
Antiprism of [Con67] is not embeddable. 

The isomorphisms among ten star-4-polytopes, see [vOs15] and pages 
266-267 of [Cox73], preserve all incidencies and imply, of course, isomor­
phisms of the skeletons of those polytopes. Using Schliifli notation, those 
isomorphisms of graphs are: 

(i) {5/2, 5, 3} ~ {5, 5/2, 3}; 
(ii) {5/2, 3, 3} ~ 120-cell (remind the isomorphism of {5/2, 3} and 

{5, 3} ); 
(iii) all remaining seven skeletons are isomorphic with the skeleton of 

600-cell (moreover, {3, 5, 5/2} has same faces; remind the isomorphism 
of {3, 5/2} and {3, 5} ). 

So eight star-polytopes from (ii) and (iii) above are not embeddable. 
Remaining case (i) is decided by the Theorem 3 below, using 5-gonal 
inequality. 

Theorem 3. None of ten star-4-polytopes is embeddable. 

Proof of Theorem 3. In view of above isomorphisms, it will be 
enough to show that (the skeleton of) 4-polytope P := {5/2, 5, 3} is not 
5-gonal. P is the stellated 120-cell and {5/2, 5} is the (small) stellated 
dodecahedron, i.e. all face-planes are extended until their intersections 
form a pyramid on each face. P has 120 vertices, as 600-cell; namely, 
the centers of all 120 (dodecahedral) cells of 120-cell. For any vertex s 

of P, denote by Do(s) the corresponding dodecahedron. P has (as well 
as 120-cell) 1200 edges, 720 faces and 120 cells; its density is 4. Any 
edge (s, t) of P goes through interiors of Do(s), Do(t) and the edge of 
120-cell, linking those dodecahedra; (s, t) is a continuation of this edge 
in both directions till the centers of dodecahedra Do(s), Do(t). 

Consider now Fig. 3. Take as vertices a and b (for future contre­
example for 5-gonal inequality) some two vertices of {5/2, 5} (a cell of 
P), which are centers of two face-adjacent dodecahedral cells of 120-cell. 
Let Q := (q1 , q2, q3, q4, q5 ) be this common face of adjacency, presented 
by the 5-cycle of its vertices. For any Qi there is unique star-5-gon 
(a, di, b, d~, d~'), such that sides (b, dD and (d/, a) intersect in the point 
Qi• Now, D := (d1, d2, d3, d4, d5) is a 5-cycle in P, because each (di-1, di) 
is an edge in one of five cells {5/2, 5} of P, containing vertices a and b. 
Put x := d1 , y := d2 , z := d4 and check that the 5-gonal inequality for 
five vertices a, b, x, y, z of P, does not hold. 

In fact, dxy = l :C::C dax = day = daz = dbx = dby = dbz, because 
of the presence of corresponding edges in P. Therefore, dxz, dyz and 
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Fig. 3. A fragment of 5/2 5 3 

dab are at most 2. So, the absence of edges (x,z), (y,z) and (a,b) will 
complete the proof of the Theorem 3. The edge ( a, b) does not exist, 
because Do(a) is face-adjacent to Do(b). The edge (x, z) does not exists, 
because the line, linking vertices x and z, goes, besides Do( x) and Do( z), 
through two other dodecahedra (such that their stellations are {5/2, 5}, 
containing vertices a, b, d2 , d3 or a, b, d3, d4). By symmetry, the edge 
(y, z) does not exist also. We are done. Q.E.D. 

Corollary. None of four star-honeycombs in hyperbolic 4-space is 
embeddable. 

Proof of Corollary. In fact, {5/2, 5, 3, 3} has cell which contains 
(because of the Theorem 3), as an induced subgraph, non-5-gonal graph 
K 5-K3. But any induced graph of diameter 2 is isometric; so {5/2, 5, 3, 3} 
is not 5-gonal. {3, 3, 5, 5/2} has cell {3, 3, 5} = 600-cell. Two other have 
cells which are isomorphic to 600-cell. But 600-cell (seen by Gosset's con­
struction as capping of all 24 icosahedral cells of snub 24-cell) contains 
also a forbidden induced graph of diameter 2: pyramid on icosahedron 
(it violates 7-gonal inequality, which is also necessary for embedding; see 
[Dez60], [DSt96]). So, three other star-4-polytopes are also non-7-gonal 
and non-embeddable. Q.E.D. 
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§5. Regular tilings of dimension d ~ 3 

The Tables 3-5 below present all of them and also all regular honey­
combs in the dimensions 3, 4, 5; for higher dimensions, ( d + 1 )-simplices 
O'.d+i, (d + 1)-cross-polytopes f3d+l, (d+ 1)-cubes 'i'd+l and cubic lattices 
8d are only regular ones. 

In those Tables, 24-, 600-, 120- are regular spherical 4-polytopes 
{3, 4, 3}, {3, 3, 5}, {5, 3, 3} with indicated number of cells and De(D4 ), 

Vo(D4) are regular partitions {3, 3, 4, 3}, {3, 4, 3, 3} of Euclidean 4-
space, which are also Delaunay (Voronoi, respectively) partitions as­
sociated with the (point) lattice D4. 

All cases of embeddability are marked be the star * in the Tables. 
As in Table 1 above, we omit in Tables 3-5 (in order to fit them in the 
page) the brackets and commas in Schliifli notation. 

Table 3. 3-dimensional regular tilings and honeycombs. 

II <>3 I ')'3 I {h I Do I Ico II 62 I 63 I 36 II 3½ I ½3 I 5½ I ½5 II 

<>3 <>4* /34* 600- 336 33½ 

/33 24- 344 

'Y3 'Y4* 6s* 435* 436* 

Ico 353 35½ 

Do 120- 534 535 536 53½ 

62 443* 444* 

36 363 

63 633* 634* 635* 636* 

½3 ½33 ½35 
3.§. 

2 3½5 

½5 ½53 ½5½ 
5.§. 2 5½3 5½5 

Table 4. 4-dimensional regular tilings and honeycombs. 

11 <>4 I ')'4 I /34 I 24- i 120- I 600- 11 63 11 35½ I ½53 I 5½5 11 

<>4 <>5* /35* 3335 

/34 De(D4) 

')'4 ')'5* 64* 4335* 

24- Vo(D4) 3434 

600- 335½ 

120- 5333 5334 5335 

63 II I 11 II II 

I:~ II I I I 
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Table 5. 5-dimensional regular tilings and honeycombs. 

II ::: I I :: II 
De(D4) 33433 
Vo(D4) 34333 34334 

84 43343* 

Theorems 1, 2 above show that all regular 2-dimensional tilings and 
star-honeycombs are embeddable except {m/2,m} for all odd m ~ 7. 
The following Theorem decides all remaining regular cases. 

Theorem 4. All embeddable regular tilings and honeycombs of di-
mension d ~ 3 are tilings: 

(i) either ad+l, or /3d+i, or 
(ii) all with bipartite skeleton: 
(ii-1) all with cell ,d: rd+1, 8d and 3 hyperbolic ones: { 4, 3, 5}, 

{4,3,3,5}, non-compact {4,3,6}; 
(ii-2) all 4 with cell c5d-1: hyperbolic non-compact { 4, 4, 3}, { 4, 4, 4}, 

{4,3,4,3} and {4,3,3,4,3}; 
(ii-3) all 4 with cell {6, 3}: hyperbolic non-compact {6, 3, 3}, {6, 3, 4}, 

{6, 3, 5}, {6, 3, 6}. 
All li -rigid regular tilings are the bipartite ones; all bipartite ones 

( except rd+l and 8d themselves) embed into Z00 . 

Proof of Theorem 4. In fact, we review all cases of Tables 3-5. 
All compact cases ( on first 5 rows, columns of Table 3 and first 6 rows, 
columns of Table 4) were decided in [DSt97]. Non-embeddability for all 
14 star-polytopes and star-honeycombs (in Tables 3, 4) was established 
in Section 4. It remains 11, 2, 5 non-compact tilings of hyperbolic 3-, 4-, 
5-space; we will show that 7, 1, 1, respectively, of them are embeddable 
into Z00 , while 8 others are not 5-gonal. 

The tilings {3, 4, 3, 4}, {3, 4, 3, 3, 3}, {3, 3, 4, 3, 3}, {3, 4, 3, 3, 4} have 
non-5-gonal graph K5 - K3 as induced subgraph of the cell. {3, 6, 3} 
(respectively, {3,4,4}) contain induced K5 - K3, because each its edge 
is common to 3 (respectively, to 4) triangles. {3, 3, 6} is a simplicial 
manifold with 6 triangles on an edge; taking 1-st, 3-rd and 5-th of them, 
we get again induced K5 - K3. A particularity of T := {3, 3, 3, 4, 3} is 
that the cell /34 of its vertex figure De(D4) is also the equatorial section 
of the cell /35 ofT. All neighbors of a vertex s ofT form De(D4). Take an 
isometric subgraph K5 -K3 in De(D4), given in [DSt98a]. The vertex s 
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is a neighbor of each of its five vertices; obtained 6-vertex graph is non-5-
gonal graph of diameter 2, which is, using above particularity of T, is an 
induced subgraph of T. (Compare with embeddable tiling { 4, 3, 3, 4, 3} 
by ')'5 , having the same vertex figure.) All seven above tilings are not 
5-gonal, because any induced graph of diameter 2 is isometric. Finally, 
each edge of {5, 3, 6} is common to 6 disjoint pentagons; taking 1-st, 3-rd 
and 5-th of them we obtain non-5-gonal 11-vertex induced subgraph of 
diameter 4 of {5, 3, 6}; a routine check shows that it is isometric. 

Other hyperbolic tilings embed into Z00 , because of Lemma 4 below; 
it is easy to find reflections, required by Lemma 4 in each case. It is easy 
to check l 1 -rigidity for all ( except of Tetrahedron, which is not li -rigid) 
cases of embedding for dimension 2. Now, any bipartite embeddable 
graph is ii-rigid, because it has scale 1. The proof is complete. Q.E.D. 

Let T be any (not necessary regular) convex d-polytope or tiling 
of Euclidean or hyperbolic d-space by convex polytopes, such that the 
skeleton is a bipartite graph. (We admit infinite cells and, if regular, 
infinite vertex figures.) Then the set of its edges can be partitioned into 
zones, i.e. sequences of edges, such that any edge of a sequence is the 
opposite to the previous one on a 2-face (which should, therefore, be 
even). 

Lemma 4. Let T is as above; suppose that the mid-points of edges 
of each zone lie on hyperplanes, different for each zone, which are ( some 
of) reflection hyperplanes of T and perpendicular to edges of their zones. 
Then T embeds into Zm with m no more than the number of zones. 

Proof of Lemma 4. It follows directly from the fact that each 
geodesic path (in the skeleton of T) intersects any zone in at most one 
edge. Q.E.D. 

Remark 3. Embedding of any bipartite regular tiling can be ob­
tained, using Lemma 4. The reflections, required by Lemma 4 (let us call 
them zonal reflections) generate, because of simple connectedness of T, a 
vertex-transitive group of automorphisms of T (call it zonal group); so T 
is uniform and the zonal group is generated by the zonal reflections of all 
edges incident to a fixed vertex of T. For any fixed 2-face of T, which is 
a 2k-gon, let m 1, ... ,mk be the zonal reflections of its edges, considered in 
the cyclic order. Then the product m1 ... mkm1 ... mk = (1) (i.e. m1 ... mk 
is an involution) and those relations, for all 2-faces around a fixed vertex 
of T, are all defining relations for the zonal group of T. So, the zonal 
group is not 2-transitive on vertices. For example, the zonal group of 
Archimedean truncated (33 is an I-transitive subgroup of index 2 of the 
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octahedral group Aut(T) = Oh, which is 2-transitive. Also, a polytope 
in the conditions of Lemma 4 is not necessary zonotope. For example, 
any centrally-symmetric non-Archimedean (by choice of the length of 
truncation) truncated {33 fits in it; it is a zonohedron in original sense 
of Fedorov, but not in usual sense of Minkowski (with all edges of each 
zone having same length). 

Remark 4. All infinite families of regular tilings are embeddable. 
In fact, m-gons, c>n-1 = Zn, "'fn = Hn, an, f3n are embeddable and, 
moreover, first three are li-rigid. But embeddings of skeletons of O:n and, 
for n ~ 4, f3n, is more complicate. It is considered in detail (in terms of 
corresponding complete graph Kn+l and Cocktail-Party graph Knx2 in 
Chapter 23 [DLa97] and Section 4 of Chapter 7 [DLa97], respectively. 
Any an, n ~ 3, is not li-rigid, i.e. it admits at least two different 
embeddings. We give now two embeddings of O:n into m-cubes with 
scale A , realizing, respectively, maximum and ·minimum of m/ A. The 
first one is O:n---+ (1/2)Hn+l· Now define mn = 2n/(n+l) for odd n and 
= (2n + 2)/(n + 2) for even n; define An be the minimal even positive 
number t such that tmn is an integer. Then O:n embeds into tmn-cube 

with scale An; for example, 0:4 embeds into 10-cube with scale 6. Any 
f3n, n ~ 4, is not li-rigid. All embeddings of f3n are into 2A-cube with 
any such even scale A that O:n-1 embeds into m-cube, m ~ 2A, with 
scale A. For minimal such scale, denote it µn, the following is known: 
n > µn ~ 2f n/41 with equality in the lower bound for any n ~ 80 and, 
in the case of n divisible by 4, if and only if there exists an Hadamard 
matrix of order n. In particular, {33 ---+ (1/2)H4, {34 ---+ (1/2)H4 (in fact, 
they coincide as 4-polytopes, but there are two embeddings), and {35 

embeds only with scale 4 (into Hs)-

Remark 5. This note finalizes the study of embeddability for reg­
ular tilings done in [DSt96], [DSt97]; we correct now following misprints 
there: a) in the sentence "Any li-graph, not containing Kn, is li-rigid" 
on p.1193 [DSt96], should be K4 instead of Kn; b) in the sentence, on 
p.1194 [DSt96], about partitions of Euclidean plane, embeddable into 
Zm, m < oo, should be ~ instead of<; c) in the sentence about Foppl 
partition on p.1292 [DSt97], should be 0:3 and truncated o:3 instead of 
0:3. 
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