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§0. Introduction 

The isoperimetric inequalities for a simply closed curve C on a Rie­
mannian plane II (i.e., a complete Riemannian manifold homeomorphic 
to R2 ) was first investigated by Fiala in [1] and later by Hartman in [2]. 
These inequalities were generalized by the first named author in [3],[4] 
for a simply closed curve on a finitely connected complete open surface 
and by both authors in [5] for a simply closed curve on an infinitely con­
nected complete open surface. Here a noncompact complete and open 
Riemannian 2-manifold M is called finitely connected if it is homeo­
morphic to a compact 2-manifold without boundary from which finitely 
many points are removed, and otherwise M is called infinitely connected. 
Fiala and Hartman investigated certain properties of geodesic parallel 
circles S(t) := {x E II; d(x, C) = t}, t;::::: 0 around C of a Riemannian 
plane II in order to prove the isoperimetric inequalities, where d denotes 
the Riemannian distance function. Fiala proved in [1] that if a Rieman­
nian plane II and a simple closed curve Con II are analytic, then S(t) 
is a finite union of piecewise smooth simple closed curves except for t in 
a discrete subset of [0, oo) and its length L(t) is continuous on [O, oo). If 
II and Care not analytic but smooth, then L(t) is not always continuous 
as pointed out by Hartman in [2]. What is worse is that S(t) does not 
always admit its length. Under the assumption of low differentiability of 
II and C, Hartman proved that S(t) is a finite union of piecewise smooth 
simple closed curves except for t in a closed subset of Lebesgue measure 
zero in [O, oo ). This result was recently extended by the authors [5] to 
an arbitrary given simply closed curve C in an arbitrary given complete, 
connected, oriented and noncompact Riemannian 2-manifold M. 
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The normal exponential map along C induces a local chart and a 
function L( t) for all t ~ 0 is well defined with the aid of this local 
chart. As mentioned above, L(t) for all t ~ 0 defines the length of 
S(t) whenever S(t) is a finite union of piecewise smooth simple closed 
curves. However we do not know the geometric meaning of L(t) for 
the other t-values. Hartman introduced a certain monotone function 
J: (0, oo) -R by using this local chart and proved in Theorem 6.2 ; (2] 
that the following function 

H(t) := J(t) + L(t) 

is absolutely continuous on every compact interval of (0, oo). 
The purpose of the present article is to extend the absolute continu­

ity of H as defined in ( *) for an arbitrary given simple closed curve C in 
an arbitrary given connected, complete, noncompact and oriented Rie­
mannian 2-manifold M. The cut locus and focal locus to Care essential 
in our discussion. In §1 we introduce the notations concerning with the 
cut points and focal points to C as used in [2],[5]. Under our situation 
M \ C has at most two components. The type of cut locus and focal 
locus changes as the number of components of M \ C. In §2 we deal 
with the simpler case where M \ C has two components and prove the 
absolute continuity of ( *) in this case (see Theorem 2.2). We also need 
to modify the definition of J(t) in the case where M \ C is connected. 
In §3 we prove the absolute continuity of ( *) in the case where M \ C is 
connected (see Theorem 3.2). 

§1. Preliminaries 

From now on let M be a connected, oriented, complete and non­
compact Riemannian 2-manifold and C a smooth simply closed curve 
on M. Since our discussion proceeds in the same manner as developed 
by Hartman , we shall employ the same terminologies as used in [2],[5]. 
Let L 0 be the length of C. A point on C is expressed as z0 ( s) with 
respect to the arclength parameters E [O, Lo]. zo(s) and other functions 
of s will be considered periodic of period of £ 0 for convenience. Let g be 
the Riemannian metric on M and N a unit normal field along C with 
No= NLo· A map z: Rx[O,Lo] - Mis defined by 

z(t, s) := expzo(s) tNs 

where expP is the exponential map of Mat p. If ltl is sufficiently small, 

then z gives a coordinate system ( t, s) and g ( !: , !: ) = 1 holds around 
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( az az) C and g at , as = 0 follows from Gauss Lemma. For every s E [0, Lo] 

let 18: R-+ M be a geodesic with 18 (t) = z(t, s) and es(t) a unit parallel 

vector field along 'Ys with e8 (0) = :: (0, s). For each s let Ys(t) denote 

the Jacobi field along 18 with Ys(0) = e8(0), g(Y8(t), 1 ~(t)) = 0. By 
setting f(t, s) = g(Ys(t), e8 (t)), we have f(0, s) = 1, ft(0, s) = K;(s) 

( az az) and g as, as = P(t, s), where K;(s) is the geodesic curvature of C 

at zo(s) and ft= !{- Since Ys is a Jacobi field we have ftt(t,s) + 
a21 

G(z(t, s))f(t, s) = 0, where ftt = 8t2 • 

Let P(s) (respectively N(s)) denote the least positive (respectively 
the largest negative) t with f(s, t) = 0, or P(s) = +oo (respectively 
N(s) = -oo) if there is no such zero. If P(s0 ) < +oo (respectively 
N(so) > -oo), then P (respectively N) is smooth around s0 and 
z(P(s0 ), s0 ), (respectively z(N(s0 ), s0 ) is called the first positive (re­
spectively negative) focal point to C along 'Yso• 

A unit speed geodesic o-: [0, .e] -+ Mis called a C-segment iff o-(0) E C 
and d(o-(t),C) = t holds for all t E [0,.e]. Every C-segment is a subarc of 
some 'Ys. Let p(s) := sup{t > 0; d('Ys(t),C) = t} and v(s) :=inf{t < 
0; d('Y8 (t), C) = -t}. p(s) (respectively v(s)) is the cut point distance 
to C along ,sl[0, oo) (respectively ,sl(-oo, 0]). z(p(s), s) is called a cut 
point to C along , s and I s I [0, p( s)] is a maximal C-segment contained 
in ,sl [0, oo ). A cut point is a first focal point of a C-segment or the 
intersection of at least two distinct C-segments. 

A cut point at C is called normal if it is the endpoint of exactly two 
distinct C-segments and is not a first focal point along either of them. 
A cut point to C which is not normal is called anormal. An anormal cut 
point z(p(s ), s) ( or z(v(s ), s)) is called totally nondegenerate iff z(p(s ), s) 
(or z(v(s), s)) is not a first focal point to C along any C-segment ending 
at z(p(s),s) (or z(v(s),s)). An anormal cut point is called degenerate 
iff it is not totally nondegenerate. A number t > 0 is called anormal 
iff there exists a value s E p-1 (t) (ors E v- 1 (-t)) such that z(t, s) (or 
z(-t, s )) is anormal. It t > 0 is not anormal, then t is called normal. 
Also t > 0 is called exceptional iff it is either anormal or normal but 
there exists an s such that p(s) = t (or v(s) = -t) and p' = 0 (or 
11' = 0) at s. A positive number tis by definition non-exceptional iff it 
is not exceptional. 
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§2. The case where C bounds a domain 

Throughout this section let M \ C have two components and M1 
the component containing { z (p( s), s) ; p( s) < oo}. Note that the sets 
{z(p(s), s); p(s) < oo} and {z(v(s),s); v(s) > -oo} have no common 
point. We only restrict to consider M 1 , since the same discussion holds 
for M\ M1, 

We begin with the discussion of degenerate cut points that was not 
discussed in [2]. It seems to the authors that the lack of degenerate cut 
points in [2] would cause unclearness in the proof of Theorem 6.2 in [2]. 
The following Lemma 2.1 is useful to prove our results. 

Lemma 2.1. The set F = {s E [O, L0 ] ; p(s) < P(s), but z(p(s), s) 
E M1 is a degenerate cut point along some C-segment} is of Lebesgue 
measure zero. 

Proof. It suffices for the proof to show that for any s E F there 
exists a positive 8 such that F n (s - 8, s + 8) is of Lebesgue measure 
zero. Let s0 E F and set p = z(p(s0 ), s0 ). Choose a small positive 
E such that B, is an open normal convex E-ball around p. For each 
s E [O, L0 ] with z(p(s), s) = p lets' denote the common point of 8B, and 
1's([O,p(s0 )]). The circle 8B, is naturally oriented. Define the oriented 
open subarc from Si to s; of 8B, by (si, s;). For each s E [O,L0 ] \ 

{ s0 } with z(p( s), s) = p let D( s~, s') (respectively D( s', s~)) be the disk 
domain bounded by three arcs 'Ysol[p(so) - E,p(so)], 'Ysl[p(so) - E,p(so)] 
and (s~, s') (respectively D(s', s~)). Since p(s0 ) < P(s0 ), there exist 
s+, s_ E [O, Lo] such that z(p(s+), s+) = z(p(s_), s_) = p and such 
that D+ := D(s~,s~) and D_ := D(s'_,s~) are disjoint and they do 
not contain any C-segment passing through p. Let (n, NC, M) be the 
normal bundle over C with projection n, total space NC and base space 
M. Since pis not a focal point to C along 'Yso ,there exist a neighborhood 
V of p( so)· ')'80 (0) in NC and a neighborhood U of pin M such that the 
restriction expv of the normal exponential map to V is a diffeomorphism 
of V onto U. Since p is a degenerate cut point, there is a C-segment 
ending at p along which pis the first focal point to C. Suppose P(s+) = 
p(s+)- Choose a positive number E1 such that U contains z(p(s), s) and 
z(P(s), s) for alls E [s+ - E1 , s+ + E1]. From construction of D+ we can 
choose a positive number 81 < E1 such that if z(p(s1),s1) = z(p(s),s) 
for s1 E [O,L0], s E (s 0 ,s0 +81), thens= s1 or s1 E (s+-E1,s+)- Let 
v: (s+ - E1, s+)-+ (s1, so+ 81) be defined as 

v(s) :=zo1 ono(exp:i;:1)(z(p(s),s)) 

Ifs E (s+ - E, s+) satisfies P'(s) = 0 and P(s) = p(s), then v'(s) = 0, 
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and hence s is a critical point of v. Let K C (s+ - c1 , s+) be the 
set of all critical points of v. If s E ( s0 , s0 + 81 ) is an element of F, 
then there exists an s 1 E [O, Lo] such that z(p(s), s) = z(p(s1), s 1), 

P(s1) = p(s1). It follows from the choice of 81 and Proposition 2.1 in 
[5] that P'(s1) = 0 and s 1 E (s+ - E1 , s+) . Therefore we find an s 1 EK 
such that z(p(s), s) = z(p(s1), s 1 ) = z(P(s1), s 1 ). This fact means that 
(so, s0 +81)nF is contained entirely in v(K). The Sard Theorem implies 
that v(K) is of Lebesgue measure zero. If p(s+) < P(s+), then there 
exists a positive number 8 such that (so, s0 + 8) n F = 0 . Summing up 
these discussion we observe that there exists a positive number 81 such 
that (so, s0 + 81 ) n Fis of measure zero. 

An analogous discussion applies to D _ to prove that ( s0 - 8i, s0 ) n F 
is of measure zero for some positive number 8i. This completes the proof 
of Lemma 2.1. 

Let D := {(t, s) ; 0 ~ t < p(s), 0 ~ s ~ Lo} and x(t, s) the charac­
teristic function of D such that x(s, t) = 1 or O according as (t, s) ED 
or not. For any t 2: 0 set 

[Lo 
L(t) := Jo x(t, s)J(t, s) ds 

This L(t) is the length of S(t) = {x E M 1 ld(x,C) = t} if tis a non­
exceptional value. We define fort 2: 0 the set Q(t) as follows. 

Q(t) := {s E p- 1 (t); z(s,t) is normal and p'(s) = O}. 

Q(t) has the property that elements in it are pairwise disjoint, and hence 
it is of Lebesgue measure zero except for an at most countable set of 
[O, oo ). We define for t 2: 0 the function 

J(t) := L 1 J(u,s)ds. 
O:<,;u:<,;t Q(u) 

Note that L and also J is discontinuous at t = t 0 iff the Lebesgue 
measure of Q(t0 ) is positive. 

In order to prove Theorem 2.2 we shall need some basic tools from 
measure theory which is referred to [6]. Leth be a continuous function of 
bounded variation defined on a closed interval [a, b]. Then the function 
h defines a Lebesgue-Stieltjes measure Ah such that Ah((x, y]) for each 
subinterval (x, y] of [a, b] equals the total variation of h on [x, y]. It is 
known that any Borel set B in [a, b] is Ah-measurable. For each Lebesgue 
measurable set SC R, ISi denotes its Lebesgue measure. 
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Theorem 2.2. ThefunctionH(t) = L(t)+J(t) is absolutely con­
tinuous on any compact subinterval of [O, oo). 

Proof. Let [a, b] be a compact subinterval of [O, oo). In order to 
prove the theorem we shall show that for any positive E there exists 
a positive rt= rJ(E,a,b) such that if /51,/52, ... ,/5k are non-overlapping 
subintervals of [a, bl, then 

k k 

(2.1) L l15iHI < (Lo+ 2)E whenever L l15il < rt 
i=l i=l 

where /5iH = H(T) - H(cr) , l15il = T - er if /5i = (cr,T]. Let E > 0 
be fixed. It follows from Proposition 3.1 in [5] that the set Tb := { s E 
[O, Lo] ; p(s) ::; b, z(p(s), s) is a totally nondegenerate anormal point} 
is finite. Let c = c(b) be a constant satisfying 

IJ(t, s) I ::; c, lft(t, s )I ::; c, (t, s) E [O, b] x [O, L0 ] 

By Lemma 2.1 the set F• defined by 

F° = {s E [O, Lo] ; p(s)::; b, s E F, f(p(s), s) ~ E/2} 

is compact and of Lebesgue measure zero. Here there exists a set v• 
with IV'I < E/c consisting of a finite number of open subintervals of 
[O, Lo] such that v• :) n n F'. Let Q' be the set 

Q' := {s E [O, Lo] ; p(s)::; b, f(p(s), s)::; E/2}. 

Since Q' is compact, Q• can be covered by a set s• consisting of a finite 
number of open subintervals of [O, Lo] on which f(p(s), s) < 3E/4. Then 
the set R• = [O, Lo] - (S• U VE) consists of a finite number of closed 
subintervals Ii, ... , Ip of [O, Lo]. It follows from construction of R' and 
from Proposition 2.2 in [5] that p is smooth at each point s E RE if 
p( s) ::; b. Hence the function Pb :=Max {p, b} is Lipschitz continuous 
on each closed intervals Ij,j = 1, ... ,p. In particular the restriction Pj 
of Pb to Ij is of bounded variation. If Aj denotes the Lebesgue-Stieltjes 
measure defined by Pj, then we observe from Corollary 3.1 in [2] that 

(2.2) 

where n(r) is the Lebesgue summable function defined by the number 
of the elements of the set { s E RE ; p( s) = r}. Let 0( i) be an open set 
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containing R(i) = Ua-<t~rQ(t) such that IO(i) - R(i)I < l8il• Setting 
S(i) = p- 1 (8i), we define 

S1 = (S(i) - R(i)) n O(i) 

S2 = (S(i) - R(i)) n [{s; f(p(s), s) < E} u VE] 

S3 = (S(i) - R(i)) - (S1 u S2). 

Making use of the inequality (6.20) in [2], we obtain 

(2.3) 

3 

l8iHI :s; "I:,1 f(p(s),s)ds+2cLal8il 
j=l S; 

:S cl8il + EJS(i)I + cJVE n S(i)I + cJS3I + 2cLolbil 

Since S3 C RE and S3 n O(i) = 0, p is smooth at each point of S3 and 
Jp'I ~ c1 on S3 holds for some positive constant c1 = c1(E,a,b). From 
the property of the Lebesgue-Stieltjes measure Aj we obtain 

p p 

"I:,Aj(Ij n S3) ~ c1 'I:, llj n S31 = c1IRE n S31 = c1IS3I. 
j=l j=l 

From (2.2) and the above inequality, we get 

From inequalities (2.3) and (2.4) we have 

k k k 

(2.5) L lbiHI :S c(l + 2Lo) L lbil +(Lo+ l)E + cc11 LL n(r) dr. 
i=l i=l i=l ti, 

The inequality (2.5) implies that we can find a positive rJ = rJ( E, a, b) 
satisfying (2.1). Note that the function n(r) is Lebesgue summable. 

§3. The case where C bounds no domain 

We deal with the case where a closed curve C does not bound any 
domain of M. Our situation means that there exists a cut point p E M 
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to C such that p = z(p(s1), s1) = z(v(s2), s2) for some s1, s2 E [0, Lo]. 
Three types of cut points to C appear. A cut point p to C is by definition 
of p-type (respectively 11-type) iff all C-segments ending at pare tangent 
to N (respectively to - N) at their starting points. A cut point p to C is 
of mixed type iff p = z(p(s1), s1) = z(v(s2), s2) for some s1, s2 E [0, Lo]. 
For a mixed type cut point to C the normality, anormality, degeneracy 
and all other properties are well defined by the same manner as before. 
These properties are defined for t-value where S(t) contains a mixed 
type cut point having the corresponding properties. Let F+, F_ be the 
sets 

F+ := {s E [0,L0]; p(s) < P(s), 

but z(p(s),s) is a degenerate cut point} 

F_ := {s E [O, L0 ] ; v(s) > Q(s), 

but z(v(s), s) is a degenerate cut point}. 

Since the proof of Lemma 2.1 is done by a local discussion in a small 
convex ball around a cut point, we obtain the following lemma by a 
similar discussion. 

Lemma 3.1. The set F := F+ U F_ is of Lebesgue measure zero. 

Let D+ := {(t,s); 0 :'.S: t < p(s),s E [0,L0]} and D_ := {(t,s); 
v(s) < t :'.S: 0,s E [0,L0]}. We then define two functions L+ and L_ on 
[O, oo) by 

{Lo 
L+(t) := lo x+(t, s)f(t, s) ds 

{Lo 
L_(t) := lo X-(t,s)f(-t,s)ds 

where x+(t, s) and x-(t, s) are the characteristic functions of D+ and 
D _ respectively. If t > 0 is non-exceptional, then the function 

L(t) := L+(t) + L_(t) 

is nothing but the length of S(t) = {x EM; d(x, C) = t}. 
Note that ift0 > 0 is a normal exceptional value, then S(t0 ) consists 

of a set of piecewise smooth curves. However the length of S(t0 ) is not 
necessarily equal to L(t0 ) but equal to 
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L(to)+!{f f(to,s)ds+ { f(-to,s)ds}. 
2 }Q+(to) }q_(to) 

Here we set 

Q+(t) := {s E p-1 (t); z(t,s)is normal andp'(s) = O}, 

Q_(t) := {s E v- 1(-t); z(-t,s)is normal andv'(s) = O}. 

In order to define J ( t) in this case we need to set 

J+(t) := L 1 f(u, s) ds, 
o:::;u:::;t Q+(tl 

L(t) := L 1 f(-u,s)ds. 
o:::;u:::;t q_ (t) 

We then define J ( t) as follows. 

J(t) := J+(t) + L(t). 

307 

By a similar discussion as in the proof of Theorem 2.2 we obtain the 
following 

Theorem 3.2. The function H(t) = L(t) + J(t) is absolutely con­
tinuous on any compact subinterval of [O, oo). 
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