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80. Introduction

The isoperimetric inequalities for a simply closed curve C on a Rie-
mannian plane II (i.e., a complete Riemannian manifold homeomorphic
to R?) was first investigated by Fiala in [1] and later by Hartman in [2].
These inequalities were generalized by the first named author in [3],[4]
for a simply closed curve on a finitely connected complete open surface
and by both authors in [5] for a simply closed curve on an infinitely con-
nected complete open surface. Here a noncompact complete and open
Riemannian 2-manifold M is called finitely connected if it is homeo-
morphic to a compact 2-manifold without boundary from which finitely
many points are removed, and otherwise M is called infinitely connected.
Fiala and Hartman investigated certain properties of geodesic parallel
circles S(t) := {x € IT ; d(z,C) = t}, t > 0 around C of a Riemannian
plane II in order to prove the isoperimetric inequalities, where d denotes
the Riemannian distance function. Fiala proved in [1] that if a Rieman-
nian plane IT and a simple closed curve C on II are analytic, then S(t)
is a finite union of piecewise smooth simple closed curves except for ¢ in
a discrete subset of [0, 00) and its length L(¢) is continuous on [0, 00). If
IT and C are not analytic but smooth, then L(t) is not always continuous
as pointed out by Hartman in [2]. What is worse is that S(¢) does not
always admit its length. Under the assumption of low differentiability of
II and C, Hartman proved that S(t) is a finite union of piecewise smooth
simple closed curves except for ¢ in a closed subset of Lebesgue measure
zero in [0,00). This result was recently extended by the authors [5] to
an arbitrary given simply closed curve C in an arbitrary given complete,
connected, oriented and noncompact Riemannian 2-manifold M.
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‘The normal exponential map along C induces a local chart and a
function L(t) for all ¢ > 0 is well defined with the aid of this local
chart. As mentioned above, L(t) for all ¢ > 0 defines the length of
S(t) whenever S(t) is a finite union of piecewise smooth simple closed
curves. However we do not know the geometric meaning of L(t) for
the other t-values. Hartman introduced a certain monotone function
J:[0,00) =R by using this local chart and proved in Theorem 6.2 ; [2]
that the following function

(%) H(t):= J(t) + L(t)

is absolutely continuous on every compact interval of [0, 00).

The purpose of the present article is to extend the absolute continu-
ity of H as defined in (x) for an arbitrary given simple closed curve C in
an arbitrary given connected, complete, noncompact and oriented Rie-
mannian 2-manifold M. The cut locus and focal locus to C are essential
in our discussion. In §1 we introduce the notations concerning with the
cut points and focal points to C as used in [2],[5]. Under our situation
M\ C has at most two components. The type of cut locus and focal
locus changes as the number of components of M \ C. In §2 we deal
with the simpler case where M \ C has two components and prove the
absolute continuity of (*) in this case (see Theorem 2.2). We also need
to modify the definition of J(¢) in the case where M \ C' is connected.
In §3 we prove the absolute continuity of (x) in the case where M \ C is
connected (see Theorem 3.2).

§1. Preliminaries

From now on let M be a connected, oriented, complete and non-
compact Riemannian 2-manifold and C a smooth simply closed curve
on M. Since our discussion proceeds in the same manner as developed
by Hartman , we shall employ the same terminologies as used in [2],[5].
Let Lo be the length of C. A point on C is expressed as zg(s) with
respect to the arclength parameter s € [0, Lo]. zo(s) and other functions
of s will be considered periodic of period of L for convenience. Let g be
the Riemannian metric on M and N a unit normal field along C with
No = Np,. A map z : Rx[0, Ly} — M is defined by

2(t,8) := exp,(s) tNs

where exp,, is the exponential map of M at p. If |t| is sufficiently small,
0z 0Oz

5 gt—) = 1 holds around

then z gives a coordinate system (¢, s) and g (
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9z 0
Candg (8—? 8—2) = 0 follows from Gauss Lemma. For every s € [0, Lo]
let v5: R — M be a geodesic with v5(t) = 2(t, s) and es(t) a unit parallel

vector field along 7, with es(0) = gg(o, s). For each s let Y;(t) denote

the Jacobi field along v, with Y;(0) = e5(0), g(Ys(2),7.(t)) = 0. By
setting f(t,s) = g(Ys(t),es(t)), we have f(0,s) = 1, f;(0,s) = k(s)

0z 0O
and g (—Z —z) = f2(t,s), where (s) is the geodesic curvature of C

s’ 0
at zo(s) and f; = % Since Y; is a Jacobi field we have fi(t,s) +
52
G(z(t,s))f(t,s) =0, where fy; = Wf

Let P(s) (respectively N(s)) denote the least positive (respectively
the largest negative) t with f(s,t) = 0, or P(s) = 400 (respectively
N(s) = —oo) if there is no such zero. If P(sg) < +oo (respectively
N(sg) > —o0), then P (respectively N) is smooth around s, and
2(P(sg), 80), (respectively z(N(sg), so) is called the first positive (re-
spectively negative) focal point to C along ~s, -

A unit speed geodesic o: [0, £] — M is called a C-segmentiff 7(0) € C
and d(o(t),C) =t holds for all ¢t € [0,£]. Every C-segment is a subarc of
some s . Let p(s) := sup{t > 0; d(vs(¢),C) = t} and v(s) := inf{t <
0; d(vs(t),C) = —t}. p(s) (respectively v(s)) is the cut point distance
to C along v;|[0,00) (respectively vs|(—00,0]). z(p(s), s) is called a cut
point to C along ~, and v,|[0, p(s)] is a maximal C-segment contained
in v5|[0,00). A cut point is a first focal point of a C-segment or the
intersection of at least two distinct C-segments.

A cut point at C is called normal if it is the endpoint of exactly two
distinct C-segments and is not a first focal point along either of them.
A cut point to C which is not normal is called anormal. An anormal cut
point z(p(s), s) (or z(v(s), s)) is called totally nondegenerate iff z(p(s), s)
(or z(v(s), s)) is not a first focal point to C' along any C-segment ending
at z(p(s),s) (or z(v(s),s)). An anormal cut point is called degenerate
iff it is not totally nondegenerate. A number ¢t > 0 is called anormal
iff there exists a value s € p~1(t) (or s € v~1(—t)) such that z(t,s) (or
2(—t,s)) is anormal. It ¢ > 0 is not anormal, then ¢ is called normal.
Also t > 0 is called ezceptional iff it is either anormal or normal but
there exists an s such that p(s) = t (or v(s) = —t) and p' = 0 (or
v/ =0) at s. A positive number ¢ is by definition non-ezceptional iff it
is not exceptional.
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§2. The case where C bounds a domain

Throughout this section let M \ C have two components and M,
the component containing {z(p(s),s) ; p(s) < oo}. Note that the sets
{z(p(s),s) ; p(s) < oo} and {z(v(s),s) ; v(s) > —oo} have no common
point. We only restrict to consider M , since the same discussion holds
for M\ M.

We begin with the discussion of degenerate cut points that was not
discussed in [2]. It seems to the authors that the lack of degenerate cut
points in [2] would cause unclearness in the proof of Theorem 6.2 in [2].
The following Lemma 2.1 is useful to prove our results.

Lemma 2.1. The set F = {s € [0, Lo] ; p(s) < P(s), but z(p(s), s)
€ M, is a degenerate cut point along some C-segment} is of Lebesgue
Measure Zero.

Proof. It suffices for the proof to show that for any s € F' there
exists a positive § such that F N (s — é,s + 8) is of Lebesgue measure
zero. Let so € F and set p = z(p(so), S0). Choose a small positive
€ such that B, is an open normal convex e-ball around p. For each
s € [0, Lo] with z(p(s), s) = p let s’ denote the common point of 8B, and
~s([0, p(s0)}]). The circle 8B, is naturally oriented. Define the oriented
open subarc from s} to s, of 8B, by (s, s5). For each s € [0, L] \
{so} with z(p(s),s) = p let D(s},s") (respectively D(s', s;)) be the disk
domain bounded by three arcs 7, |[p(s0) — €, p(50)], Vs|[0(s0) — € p(s0)]
and (sp, s’} (respectively D(s’,s()). Since p(so) < P(so), there exist
S+,5— € [0,Lg] such that z(p(s4+),s+) = z(p(s-),s—) = p and such
that D, := D(sg, s, ) and D_ := D(s_,sp) are disjoint and they do
not contain any C-segment passing through p. Let (w, NC, M) be the
normal bundle over C with projection 7, total space NC and base space
M. Since p is not a focal point to C along v,,,there exist a neighborhood
V of p(s0) - ¥s, (0) in NC and a neighborhood U of p in M such that the
restriction expy, of the normal exponential map to V' is a diffeomorphism
of V onto U. Since p is a degenerate cut point, there is a C-segment
ending at p along which p is the first focal point to C. Suppose P(sy) =
p(s4). Choose a positive number €; such that U contains z(p(s), s) and
z(P(s),s) for all s € [s4 — €1, 54 + €1]. From construction of D, we can
choose a positive number 8 < € such that if z(p(s1),s1) = 2z(p(s), s)
for s; € [0, Lo] , s € (80,80 +81) , then s = s1 or 51 € (s —€1,54). Let
v:(s4 —€1,54) — (81,80 -+ 61) be defined as

v(s) = 25 oo (expyt)(2(p(s), 5))

If s € (s4 —€,54) satisfies P'(s) = 0 and P(s) = p(s), then v/(s) = 0,
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and hence s is a critical point of v. Let K C (s; — €1,54) be the
set of all critical points of v. If s € (sg,80 + 1) is an element of F,
then there exists an s; € [0, Lo] such that z(p(s),s) = z(p(s1),81),
P(s1) = p(s1). It follows from the choice of §; and Proposition 2.1 in
[5] that P’'(s1) =0 and s € (s4 —€1,54) . Therefore we find an s; € K
such that z(p(s), s) = z{p(s1),s1) = z(P(s1),s1). This fact means that
(s0,80+61)NF is contained entirely in v(K). The Sard Theorem implies
that v(K) is of Lebesgue measure zero. If p(s;) < P(s), then there
exists a positive number § such that (sg, 50 + 6) N F =@ . Summing up
these discussion we observe that there exists a positive number §; such
that (sg, so + 81) N F' is of measure zero.

An analogous discussion applies to D_ to prove that (sg— 67, s0)NF
is of measure zero for some positive number §;. This completes the proof
of Lemma 2.1.

Let D :={(t,s); 0 <t < p(s),0 <s < Lo} and x(¢, s) the charac-
teristic function of D such that x(s,t) = 1 or 0 according as (¢,s) € D
or not. For any t > 0 set

Lo
L(t) := /0 x(t,s)f(t,s)ds

This L(¢) is the length of S(¢t) = {x € M;|d(z,C) =t} if t is a non-
exceptional value. We define for ¢t > 0 the set Q(¢) as follows.

Q(t) :={s € p ' (t) ; 2(s,t) is normal and p(s) = 0}.

Q (%) has the property that elements in it are pairwise disjoint, and hence
it is of Lebesgue measure zero except for an at most countable set of
[0, 00). We define for ¢ > 0 the function

Jt) = > f(u,s)

o<u<t” @)

Note that L and also J is discontinuous at ¢t = t; iff the Lebesgue
measure of Q(¢o) is positive.

In order to prove Theorem 2.2 we shall need some basic tools from
measure theory which is referred to [6]. Let & be a continuous function of
bounded variation defined on a closed interval [a,b]. Then the function
h defines a Lebesgue-Stieltjes measure Ay, such that Ay((z,y]) for each
subinterval (z,y] of [a, b] equals the total variation of h on [z,y]. It is
known that any Borel set B in [a, b] is Aj,-measurable. For each Lebesgue
measurable set S C R, |S| denotes its Lebesgue measure.
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Theorem 2.2. The function H(t) = L(t)+ J(t) is absolutely con-
tinuous on any compact subinterval of [0,00).

Proof. Let [a,b] be a compact subinterval of [0,00). In order to
prove the theorem we shall show that for any positive ¢ there exists
a positive n = 7(e, a,b) such that if 6;,68,,...,8; are non-overlapping
subintervals of [a, b], then

k k
(2.1) Z |6; H| < (Lo + 2)e whenever Z 16;] <7

i=1 =1

where 6 H = H(t) — H(o) , |6;)| = 7— 0o if 6 = (0,7]. Let € > 0
be fixed. It follows from Proposition 3.1 in [5] that the set Tp, := {s €
[0,Lo] 5 p(s) < b,z(p(s),s)is a totally nondegenerate anormal point}
is finite. Let ¢ = ¢(b) be a constant satisfying

If & 9)] <e |fi(t,s)] <ec (£ 5) €]0,b] x [0, L]
By Lemma 2.1 the set F'¢ defined by

Fe={s€[0,Lo]; p(s) <b,s€F, fp(s),s) >e/2}

is compact and of Lebesgue measure zero. Here there exists a set V¢
with |V¢| < €/c consisting of a finite number of open subintervals of
[0, Lo] such that V¢ D Ty N F€. Let Q° be the set

Q¢ :={se[0,Lo]; p(s) <b, f(p(s),s)<e/2}.

Since Q¢ is compact, Q¢ can be covered by a set S¢ consisting of a finite
number of open subintervals of [0, Lo] on which f(p(s),s) < 3¢/4. Then
the set R® = [0, Lo] — (S€ U V¢) consists of a finite number of closed
subintervals I, ..., I, of [0, Lo]. It follows from construction of R¢ and
from Proposition 2.2 in [5] that p is smooth at each point s € R¢ if
p(s) < b. Hence the function p, :=Max {p, b} is Lipschitz continuous
on each closed intervals I;,5 = 1,...,p. In particular the restriction p;
of py to I; is of bounded variation. If A; denotes the Lebesgue-Stieltjes
measure defined by p;, then we observe from Corollary 3.1 in [2] that

k T
(2.2) ZAj(pJTI(&i)):/ n(r)dr

where n(r) is the Lebesgue summable function defined by the number
of the elements of the set {s € R ; p(s) =r}. Let O(i) be an open set
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containing R(%) = U,<¢<-Q(t) such that |O(z) — R(i)| < |8;|. Setting
S(i) = p~1(8;), we define

S1=(5(9) — R(3)) N O(i)
Se = (S(1) — R@E) N [{s; flp(s),s) <ef UV
Ss = (5(1) — R(9)) — (S1 U S2).

Making use of the inequality (6.20) in [2], we obtain

0y HIS Z/ F(p(s), 8) ds + 2¢Lo|8|

< i) + €lSE)] + c|VEN S(2)| + ¢|S3] + 2¢Loé:]

Since S3 C R€ and S35 N O(3) = 0, p is smooth at each point of S3 and
|p’| = ¢1 on Ss holds for some positive constant ¢; = ¢1(€,a,b). From
the property of the Lebesgue-Stieltjes measure A; we obtain

D
> A;(I;0 Ss) >c12|1 N S3) = c1|RE N S3] = ¢1|S3).
j=1 J=1

From (2.2) and the above inequality, we get

(2.4)

p T

|Ss| < et A (I;NSs) < ept ZA Np &) = c;1/ n(r) dr.

j=1 j=1 o

From inequalities (2.3) and (2.4) we have

k

k k
(2:5) > |8:H| 5c(1+2L0)Z|6Z-|+(L0+1)e+ccl"12/ n(r) dr
i=1 i=1 Y6

=1
The inequality (2.5) implies that we can find a positive n = 7(€, a,b)
satisfying (2.1). Note that the function n(r) is Lebesgue summable.
§3. The case where C bounds no domain

We deal with the case where a closed curve C does not bound any
domain of M. Our situation means that there exists a cut point p € M
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to C such that p = z(p(s1), s1) = 2(v(s2), s2) for some s1,s2 € [0, Lo].
Three types of cut points to C appear. A cut point p to C is by definition
of p-type (respectively v-type) iff all C-segments ending at p are tangent
to N (respectively to —N) at their starting points. A cut point p to C is
of mized type iff p = 2(p(s1), s1) = 2(v(s2), 52) for some s1,s2 € [0, Lo].
For a mixed type cut point to C the normality, anormality, degeneracy
and all other properties are well defined by the same manner as before.
These properties are defined for t-value where S(t) contains a mixed
type cut point having the corresponding properties. Let F., F_ be the
sets

Fy ={s€[0,Lo] ; p(s) < P(s),
but z(p(s), s) is a degenerate cut point}

F_:={s€0,Lg] ; v(s) > Q(s),
but z(v(s), s) is a degenerate cut point}.

Since the proof of Lemma 2.1 is done by a local discussion in a small
convex ball around a cut point, we obtain the following lemma by a
similar discussion.

Lemma 3.1. The set F := F UF_ is of Lebesgue measure zero.

Let Dy = {(t,s); 0 <t < p(s),s € [0,Lg]} and D_ := {(¢,5) ;
v(s) <t <0,s €[0,Lo]}. We then define two functions L, and L_ on
[0, 00) by

Lo
Ly(t) = / i (t,8) (8, ) ds

Lo
L_(t) = /O Xo(t,8)f(—t, 5) ds

where x4 (t,s) and x—(t,s) are the characteristic functions of D, and
D_ respectively. If t > 0 is non-exceptional, then the function

L(t) := L (t) + L_(t)

is nothing but the length of S(¢) = {zx € M ; d(z,C) = t}.

Note that if o > 0 is a normal exceptional value, then S(¢y) consists
of a set of piecewise smooth curves. However the length of S(¢) is not
necessarily equal to L(tp) but equal to
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L(to) + 1{ f(to, s) ds +/ f(=to,s)ds}.
2 Q+(to) Q- (to)

Here we set

Q+(t) :=={s€p *(t); 2(t,s)is normal and p(s) = 0},
Q_(t) :={s € v™}(~t) ; z(—t,s)is normal and v/(s) = 0}.

In order to define J(t) in this case we need to set

Ji(t) == flu,s)ds,
() Z&/Q() (u, 5) ds
J_(t) == F—u, 5) ds.
(t) OSZW/Q_(t)(us)s

We then define J(t) as follows.
J(t) == Jy(t) + J_(2).

By a similar discussion as in the proof of Theorem 2.2 we obtain the
following

Theorem 3.2. The function H(t) = L(t)+ J(t) is absolutely con-
tinuous on any compact subinterval of [0, 00).
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