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Characterization of Images of Radon Transforms 

Tomoyuki Kakehi and Chiaki Tsukamoto 

§0. Introduction 

Since F. John [7], the characterization of images of Radon transforms 
has been one of the main subjects of the theory of Radon transforms. 
When we recall that the origin of Radon transform was the transform of 
functions on the 2-sphere by averaging over the great circles, it is rather 
surprising to find that the characterization of images of Radon trans­
forms on compact symmetric spaces had not been treated until E. Grin­
berg [4]. There Grinberg showed that the image of Radon transform 
concerning real or complex Grassmann manifolds can be characterized 
by an invariant system of differential operators, using the representation 
theoretical argument. We can see easily that the characterization may 
also be done by an invariant differential operator of higher order, though 
Grinberg did not mention it explicitly. 

The purpose of this paper is to give another type of characterization, 
that is, the characterization by an invariant differential operator that 
takes values in the sections of a vector bundle. The approach by Grinberg 
used the left action of a group, and ours uses the right action, which 
lies, in a sense, on the other side with respect to the bi-sided invariant 
differential operator. We hope our approach will be the first step to fill 
some vacancy in the theory of invariant differential operators on compact 
symmetric spaces. 

§1. The Radon transform on the sphere 

We first consider the case of the standard sphere sn of radius 1 in 
the Euclidean space Rn+ 1 . A geodesic 'Y of the sphere sn is nothing 
but a great circle, which is determined by a 2-dimensional vector sub­
space of Rn+l. We shall treat the geodesics with their orientation for 
convenience' sake. The set of oriented geodesics, which we denote by 
Geod sn, is the oriented real Grassmann manifold Gn+l,Z (R). 
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For a function f on 5n, we define its Radon transform R(f) to be a 
function on Geod 5n, the value of which at a point 'Y E Geod 5n is given 
by the average off over 'Y· More specifically speaking, we set 

1 /2,r 
(R(J))h) = 27r Jo f('Y(s)) ds, 

where "!( s) is the parametrization of 'Y by its arclength. We will always 
concern with smooth functions and denote the space of smooth functions 
by :F. The Radon transform R is a mapping from the space :F(5n) to 
the space :F(Geod 5n). 

The antipodal mapping CJ" on the sphere is a smooth involution given 
by CJ"( X) = -x for X E 5n C R n+l. A function f on the sphere is 
called even when f o CJ"= f, and odd when f o CJ"= -f. We denote by 
Feven ( 5n) and Fodd ( 5n) the spaces of smooth even functions and smooth 
odd functions, respectively. It is obvious that the space :F0 aa ( 5n) is 
included in the kernel of the Radon transform R. 

In the case of n = 2, Geod 5 2 is isomorphic to 5 2 , for an oriented 
geodesic has one-to-one correspondence with the north pole that makes 
that geodesic the equator with the suitable orientaion of longitude. The 
Radon transform R on 5 2 is considered to be a mapping from the space 
:F(52 ) to itself. It is also obvious that the image of R is included in the 
space Feven ( 5 2 ). 

The following theorem by P. Funk [2] was the starting point of the 
theory of Radon transform. 

Theorem 1.1. The kernel of the Radon transform R on 5 2 is 
equal to the space :F0 aa(52 ). As the mapping from Feven(52 ) to itself, 
the Radon transform R is an isomorphism. 

We can generalize this theorem to higher dimensions in the same 
form if we consider not the geodesic, that is, the great circle, but the 
great sphere of codimension l. See, for example, S. Helgason [6]. Since 
the average of a function f E :F(5n) over a great sphere of codimension 
1 can be calculated by averaging the values of (R(f))h) for all the "( 
included in the great sphere, we can deduce the following theorem. 

Theorem 1.2. The kernel of the Radon transform R on 5n is 
equal to the space :Fodd ( 5n). The image Im R is a closed subspace of 
:F(Geod5n) in the c=-topology. 

We notice that the latter part of Theorem 1.2 is a consequence of the 
inversion formula of the Radon transform concerning the great sphere 
of codimension l. 
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Since the dimension of Geod sn is greater than n for n ?: 3, we 
cannot expect the Radon transform R to be surjective. In the next 
section, we try to find a good characterization of the image of R. 

§2. The differential operator £ on Geod sn 
We fix an orthonomal basis { e1, e2, ... , en+i} of Rn+l. The special 

orthogonal group SO(n + 1) acts on sn transitively and isometrically. 
We set G = SO(n + 1), and denote the isotropy group at e1 E sn by 
H ~ SO(n). The group G acts transitively on the set of all oriented 
geodesics Geod sn, too. We take the oriented geodesic 'Yo that passes 
through e1 and is pointing e2 there as the origin of Geod sn and denote 
the isotropy group at 'Yo by K ~ S0(2) x SO(n - 1). We consider 
Geod sn as a symmetric space G / K with the standard invariant metric. 

We take { Xij h::;j<i=:;n+l as a basis of the Lie algebra g of G, where 
Xij is a matrix whose (k, [)-element is given by /5ik{5jl - /5il/5jk· As usual, 
the orthogonal complement of the Lie algebra t of K in g is denoted 
bym. 

g = t EBm, m= EB RXa,l· 
3<a<n+l 

-1=1,2 

We always consider the action of G on the functions of a G-space to 
be the contravariant action of the left action. 

(g • F)(x) = F(g-1x), for g E G, x a point of a G-space. 

We consider the group G to be a G-space by multiplication from the left. 
The element Xij is considered to be an invariant differential operator 
acting on the space F( G) as follows. 

d 
(Xi1F)(g) = dt F(gexptXi1)lt=O, for FE F(G), g E G. 

For each pair of integers a and b satisfying 3 s; a < b s; n + l, we 
define a second order differential operator Lab acting on F( G) by 

The commutation relations [Xa1,Xb2] = [Xa2,Xb1] = 0 enable us to 
rewrite it as 

(LabF)(g) = ( _8_2 - - _8_2 -) F(gexpX(t))I ' 
8ta18tb2 8ta28tb1 t=O 
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where an element X(t) ofm depending on t = {ta1h::=;a::=;n+1 is given by 
1=1,2 

X(t) = I:3:5a:5n+l ta1Xal• 
l=l,2 

The space F(Geod sn) is regarded as a subspace of F(G) consisting 
of the elements F that satisfy F(gk) = F(g) for all k EK, g E G. For 
these elements F, we have 

(LabF)(gk) = ( EP 02
) I 8t O - 0 0 F(gkexpX(t)k- 1k) 

al tbz taz tbl t=O 

( 82 82 ) I 0 0 - 0 0 F(gexpAd(k)X(t)) . 
tal tbz taz tbl t=O 

Notice that Ad(k)X(t) is written as X(t'), where t' is a linear combina­
tion of t determined by k. For an element k E K of the form 

k = ( :~;; ~:~ne°) X (kcd)3:5c,d$n+1 ((kcd) E SO(n - 1)), 

an easy calculation gives 

(LabF)(gk) = 

Now we consider a vector space V of dimension (n - l)(n - 2)/2, 
with a fixed basis {ua I\ ub} (3::; a< b::; n + 1) and an action p of K 
given by 

and define a V-valued function CF on G by 

CF= 

Then we have 

(CF)(gk) = 

= p(k- 1 )(LF)(g), 

which means that CF is a section of the vector bundle E = G x V on 
K 

G / K ~ Geod sn of rank ( n - 1) ( n - 2) /2, associated with the principal 
bunclJe G -+ G / K under the representation p. 
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We take the formal adjoint operator .C* of .C with respect to the in­
variant inner products on F(Geod) and C 00 (E) induced by the invariant 
measure on G, and set D = .C* .C. In fact, the differential operator D is 
given by 

(DF)(g) = 

By construction, it is obvious that .C and D are invariant differential 
operators. 

Proposition 2.1. The image of the Radon transform R is in­
cluded in the kernel of the differential operator D. 

Proof Since Ker D is equal to Ker .C, it is enough to show that 
.C(R(f)) vanishes for any function f on sn. Since Rand.Care invariant 
operators, it is enough to show .C(R(f))("'/0 ) = 0 for any f E F(Sn). 
(Notice that, for any 'Y E Geod sn, there exists an element g E G that 
satisfies 'Y = g"(o, and that we have .C(R(f))("Y) = .C(R(g-1 • f))("'/0 ).) 

Let us fix the indices a and b and show that Lab(R(f))(e) = 0 for 
any f E F(Sn). We recall that, for f E F(G/H), our definition of the 
Radon transform R is rewritten as 

where 

R(f)(g) = 2~ fo 2
1rf(gk(0)) d0, 

k(B) = (c?s0 -sin0) x Id. 
sm0 cos0 

Therefore we have 

Lab(R(f))(e) 

1 ( 8 2 8 2 ) j 2
1r I = - -- - -- f(expX(t)k(0)) d0 

27r 8tal 8tb2 8ta28tb1 O t=O 

= _!_ f 21r8 a; f(expX(t)k(0))1 d0 
27r lo tal tb2 t=O 

- _!_ f2
1r 

82 f(expX(t)k(0))1 d0. 
27r lo 8ta28tb1 t=O 

The value off E F(G) at the point expX(t)k(0) E G where the 
components of t vanish except for ta1 = r and tb2 = s is given by the 
value off E F(Sn) at th<: point cos0(cosre1 +sinrea)+sin0(cosse2+ 
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sin s eb) E sn. Therefore the former integral in the last expression is 
equal to 

1 1271" 
- cos0sin0('v'ea Vebf)(cos0e1 + sin0e2) d0. 
2n 0 

Since the point expX(t)k(0) where the components oft vanish except 
for ta2 =rand tb1 = s corresponds to the point cos 0( cos s e1 +sin s eb) + 
sin 0( cos r e2 + sin r ea), the latter integral in the last expression has the 
same value, and hence Lab(R(f))(e) vanishes. Q.E.D. 

Remark 2.2. The vanishing of Lab(R(f))(e) is deduced from the 
geometric observation related to two 2-parameter families of geodesics, 
which is the same argument as given in F. John [7]. 

Remark 2.3. The ring of invariant differential operators on the rank 
2 symmetric space Geod sn ( n > 3) is generated by the Laplace operator 
~ and the 4-th order differential operator D. For the case n = 3, see 
the next section. 

§3. The case n = 3 

Let us recall the elementary facts on Geod S3 . An oriented great 
circle on S3 is specified by its point e1 and its unit tangept vector e2 
at e1, and corresponds one-to-one to the exterior product w = e1 /\ e2 
with unit norm. A 2-vector w E A 2 R 4 with unit norm corresponds to 
a great circle if and only if it is decomposable, that is, w I\ w vanishes. 

In view of the Hodge star operator * on A 2 R4, the latter condition is 
the same as saying the norm of the self-dual part w+ = (w + *w)/2 is 
equal to the norm of th anti-self-dual part w_ = (w - *w)/2. Since 
the self-dual 2-vectors and the anti-self-dual 2-vectors both form the 
3-dimensional vector spaces V+ and V_, a decomposable 2-vector with 
unit norm has one-to-one correspondence with the product of two 2-
spheres, Si c V+ and S: c V_, with radius 1/,/2. We thus have the 

isomorphism Geod S 3 ~ Si x S:. 
In the case n = 3, since the representation p in the last section 

is trivial, the vector bundle E of rank 1 is also trivial. We have only 
to consider the invariant differential operator £ = £ 34 . In view of the 
above isomorphism, £ is shown to be the differential operator ~+ - ~-, 
where ~± is the Laplace operator on Si. 

Notice that the ring of invariant differential operators on the rank 2 
(but not irreducible) symmetric space Geod S3 is generated by the Lapla­
cian ~ = ~+ + ~- and the second order differential operator£. 
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We shall show the main theorem for S3 by means of the represen­
tation theory of S0(4). 

We denote by Ek the space of fucntions on sn that are the restric­
tions of the harmonic polynomials on Rn+l of degree k. The following 
decompositions of the function spaces are well-known. 

Lemma 3.1. We have the direct sum decompositions 

co 

F(S3 ) ~ L Ef, 
k=O 
co 

Feven(S3 ) ~ L EJk, 
k=O 

co 

F(S! XS~)~ L Ef ~E?, 
k,l=O 

where the symbol ~ means that the right-hand side is densely included 
in the left-hand side. 

The above decompositions are in fact the decompositions as S0(4)­
modules. We fix the Lie algebra t C 9 corresponding to S0(2) x S0(2) C 

S0(4), and the basis {.\1 , .\2 } of the complexified dual space tc oft as 
follows. 

.\1 ( ( ~ ~a) , ( ~ ~b)) = Ha, 

.\2 ( ( ~ ~a) , ( ~ ~b)) = Hb. 

We order them as .\1 > .\2 . The following lemma is easy to verify. 

Lemma 3.2. The space Ef is an irreducible SO(4)-module with 
the highest weight k.\1 . The space Ef ~ Ef is an irreducible SO( 4)­
module with the highest weight (k + l).\1 + (k - l).\2. 

Theorem 3.3. The image of the Radon transform R is equal to 
the kernel of the differential operator .C. 

Proof. Since the operator R is injective on Feven(S3 ) and com­
mutes with the action of SO( 4), it isomorphically maps the space EJk 
with the highest weight 2k.\1 to the space of the same highest weight, 
which must be the space Ef ~ Er Therefore we have Im R ~ Lk Ef ~ 
Er 
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On the other hand, since D..+ acts on El rzJ Ef as k(k + l)Id and D,._ 

acts on it as l(l + l)Id, 

Ker( D..+ - D,._) ~ L El rzJ E[ = L El rzJ Ef. 
kJ k 

k(k+l)=l(l+l) 

Since we have Im R C Ker .C and these closed subspaces include the 
same dense subspace in common, they must coincide. Q.E.D. 

§4. Reduction to the case n = 3 

We shall prove the main theorem for a general case by reducing it 
to the case n = 3. 

We denote by SJ the totally geodesic 3-sphere in sn that is included 
in the subspace spanned by e1 , e2 , e3 , and e4 . All the other totally 
geodesic 3-sphere in sn is written as gSJ for some element g E G = 
SO(n + 1). The manifold N = GeodSJ of the oriented great circles 
included in SJ is a homogeneous manifold G' / K', where G' is SO( 4) 
considered as a subgroup of G and K' is G' n K ~ S0(2) x S0(2). 

Now let us consider what happens when the vector bundle E is 
restricted to N. Since E is an associated vector bundle G x V and N 

K 

is a homogeneous manifold G'/K', we have EIN = G' x V, where the 
K' 

action of K' on V is that of K restricted. When the representation p 

of K in V is restricted to the subgroup K', it decomposes to a sum 
of irreducible components and has the subspace spanned by the vector 
u3 I\ u4 as its irreducible component with trivial action. Therefore the 
vector bundle EIN splits to a sum of subbundles, one of which is the 
trivial sub bundle of rank 1 corresponding to u3 /\ u4 . 

When a section .C(F) of E for FE F(GeodSn) is restricted to N, 
its u3 /\ u 4-component is just L34(F), and, by construction, is equal to 
.C(FIN ). The vanishing of .C(F) implies the vanishing of .C(FIN ), and 
FIN is in the image of the Radon transform on SJ by Theorem 2.1. 
Taking account of the equivariance of our construction, we have the 
following lemma. 

Lemma 4.1. If F E F ( Geod sn) is in the kernel of .C, its restric­
tion to the submanifold gN = Geod(gSJ) is in the image of the Radon 
transform on S3 = gSJ for every g E G. 

We notice that this lemma implys that F E Ker .C is an even function 
in the sense that, for any totally geodesic S 2 C sn, the restriction of 
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F to Geod 8 2 is an even function; there exists a totally geodesic 8 3 

statisfying 8 2 c 8 3 c 3n and the restriction of F to Geod 8 3 , and 
hence to Geod 8 2 , is in the image of the Radon transform. 

Theorem 4.2. For n ~ 3, if F E .r( Geod 3n) is in the kernel of 
£, it is in the image of the Radon transform R on 3n. Therefore we 
have Ker V = Ker£, = Im R. 

Proof. We take a point x E 3n and shall fix a value f(x) of a 
function f E .r(8n) for which we should have R(f) = F. 

If we choose a totally geodesic 2-sphere 8 2 containing x, we can 
uniquely determine an even function f on 8 2 with the property that 
the image of the Radon transform on 8 2 of f is equal to the restriction 
of F, since the Radon transform on 8 2 is an isomorphism on the even 
functions. We claim that the value f(x) does not depend on the totally 
geodesic 8 2 chosen. 

For any two totally geodesic 2-spheres 8~ and 8~ containing x, there 
exist the third totally geodesic 2-sphere 8';, containing x and two totally 
geodesic 3-spheres 8!c and 8fc that satisfy 8~, 8';, C 8!c and 8~, 8';, C 

8fc• We denote by fr (r = a, b, or c) the even functions on 8; with the 
property that the image of the Radon transform on 8; of fr is equal to 
the restriction of F to Geod 8;. By the last lemma, the restriction of F 
to Geod 8!c is in the image of the Radon transform on 8!c of a function 
on 8!c, say, fac· Taking the even part of lac if needed, we may assume 
that fac is an even function. Since the Radon transform is injective on 
the even functions, the restriction of lac to 8~ is equal to fa and that 
to 8';, is equal to fc. Therefore we have fa(x) = fc(x) and, by the same 
reasoning, fc(x) = fb(x), which assures our claim. 

We see easily that the function f on 3n thus constructed is contin­
uous and has the property R(f) = F. By the inversion formula, f is 
shown to be smooth. Q.E.D. 

§5. The case of the complex projective space 

In the case of the complex projective space pn(C), we consider the 
projective line as its counter part of the oriented geodesic in the sphere. 
Since a projective line Cc pn(c) corresponds to a 2-dimentional com­
plex vector subspace of cn+i, the set of projective lines is the complex 
Grassmann manifold Gn+1,2 (C). We define the Radon transform R(f) 
of a function f on the complex projective space pn(c) by assigning to 
each point C of Gn+1,2 (C) the averaged value off over C. 

By the same argument as in Theorem 1.2, we have the following 
theorem. 
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Theorem 5.1. The Radon transform R on pn(C) is an injective 
mapping from F(Pn(C)) to F(Gn+1,2(C)). The image lmR is closed 
in the C 00 -topology. 

For n = 2, the complex Grassmann manifold G3 ,2(C) is isomorphic 
to the complex projective space P 2(C) and the Radon transform on 
P2 (C) is an isomorphism. For n ~ 3, the dimension of Gn+I,2(C) is 
greater than that of pn(C) and the Radon transform is not surjective. 

We fix an orthonomal basis { e1 , e2, ... , en+l} of cn+l. The unitary 
group U(n + 1) acts on pn(C) transitively and isometrically. We here 
set G = U(n+l), and denote the isotropy group at [e1] E pn(C) by H ~ 
U(l) x U(n). The group G acts transitively on the complex Grassmann 
manifold Gn+1,2(C), too. We take the vector subspace spanned by e1 
and e2 as the origin Co of Gn+i,2(C) and denote the isotropy group at 
C0 by K = U(2) x U(n - 1). We consider Gn+i,2(C) as a symmetric 
space G / K with the standard invariant metric. 

We denote by g, £, and fJ the Lie algebras of G, K, and H, respec­
tively. The orthogonal complement m of .£ in g is the subspace given 
by 

m = { Z(z1, z2) E M(n + 1; C) I z1, Z2 E cn-l }, 

where, for each two elements z1 = (za1) E cn-l (3 s as n + 1, l = 1 or 
2), the (i,j)-element (Z)ij of an (n + 1) x (n + 1)-matrix Z = Z(z1, z2) 
is given by 

{ 

Zij, for 3 sis n + 1, j = 1 or 2, 

(Z)ij = -Zji, for i = 1 or 2, 3 S j S n + 1, 

0, otherwise. 

In the following we always treat the C-valued functions and denote 
by F(G) the space of C-valued smooth functions on G. For each pair 
( a, l) of indices with 3 s a :S n + 1 and l = 1 or 2, we define differential 
operators Zal and Zal on F(G) by 

(Za1F)(g) = &:al F(gexpz{1=ZFO, 

- & I (Za1F)(g) = &zal F(gexpZ) z1=z2=0' 

(FE F(G), g E G). 

The formal adjoint operator (Zaz)*, with respect to the invariant hermi­
tian inner product on F(G) induced by the invariant measure on G, is 
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equal to - Z al. For 3 ::; a < b ::; n + 1, we define differential operators 
Lab and L:b on F(G) by 

( 82 82 
) I (LabF)(g) = a a - a a F(gexp Z) 

Zal Zb2 Zaz Zbl z 1 =z2 =0 

= (Za1(Zb2F))(g) - (Za2(Zb1F))(g), 

(L:bF)(g) = (az a~z - 82 a:z ) F(gexpZ)I 
al b2 a2 bl zi=z2 =0 

= (Za1(Zb2F))(g) - (Za2(Zb1F))(g), 

(FE F(G), g E G). 

Let F be a smooth function on G / K, that is, a function F E F( G) 
statisfying F(gk) = F(g) (k EK). For an element k = (kij) of K, we 
have 

Now we consider a complex vector space V of dimension ( n - 1) ( n -
2)/2, with a fixed basis {ua I\ ub} (3::; a< b::; n + 1) and an action p 
of K given by 

For a function F E F( G / K), a V-valued function ,CF on G defined by 
.CF= I: 3 ::;a<b::;n+l (LabF) Ua I\ Ub satisfies 

(.CF)(gk) 

= I:,(LabF)(gk) Ua I\ Ub 

= (k11k22 - k12k21) I:,(kcakdb - kdakcb)(LcdF)(g) Ua I\ Ub 

= w;}kz/ - kz/k-;z1) L (k-;;}k,;J - k-;;}k,;/)(LcdF)(g) Ua I\ Ub 

= I:,(LcdF)(g) p(k-l )(uc I\ ud), 

= p(k-1)((.CF)(g)). 

It means that ,CF can be considered as a section of the vector bundle 
E = G x V over G / K. 

K 
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We define a differential operator V on F( G / K) by V = £* £, where 
£* is the formal adjoint operator of £. It can be explicitly written as 
follows. 

(VF)(g) = 
3$a<b$n+l 

By construction, it is obvious that both £ and V are invariant dif­
ferential operators. In fact, it can be shown that the ring of invariant 
differential operators on the rank 2 symmetric space G / K is generated 
by the differential operator V and the Laplacian ~-

Theorem 5.2. The image of the Radon transform R on the com­
plex projective space pn(C) is equal to the kernel of the differential op­
erator Von the complex Grassmann manifold Gn+i,2(C). 

We prove this theorem in the next section following the same steps 
as the sphere case. 

§6. The proof of Theorem 5.2 

We first fix a maximal abelian subalgebra t of g, which is included 
in both t and !J, by 

t = { diag(µ1, ... , µn+i) I µi EHR, for 1 Si Sn+ l }, 

where diag(µ1, ... , µn+i) is a diagonal matrix with the diagonal elements 
µ 1, ... , µn+l· We take as the basis of the complexified dual vector space 
tc of { the following elements A1, ... , An+l· 

for 1 S i S n + l. 
We introduce an order on the real vector subspace of tc spanned by ,\1, 
... , An+l such as A1 > · · · > An+l· 

An irreducible G-module is specified by the highest weight, which 
has the form {i,\1 + · · · + ln+1An+1, where li, ... , ln+l are integers 
satisfying li 2: · · · 2: ln+l· The same is true for an irreducible H­
module or an irreducible K-module, and its highest weight has the form 
h1A1 + · · · + hn+1An+1, where h1, ... , hn+l are integers satisfying h2 2: 
· · · 2: hn+l, for the former, or the form k1A1 +· · ·+hn+1An+1, where k1, 
... , kn+l are integers satisfying k1 2: k2 and k3 2: · · · 2: kn+l, for the 
latter. We shall denote an irreducible module with the highest weight A 
by V(A). 

When an irreducible G-module is considered as an H-module (resp. a 
K-module) by restricting the action, it decomposes into the sum of ir­
reducible H-modules (resp. K-modules). The following two branching 
laws specify which irreducible module appears in the decomposition. 
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Theorem 6.1. In the decomposition of the irreducible G-module 
with the highest weight liA1 + · · · + ln+iAn+l, an irreducible H-module 
with the highest weight h1A1 + · · · + hn+1An+1 appears if and only if 

l1 2'. h2 2'. l2 2'. · · · 2'. hn+l 2'. ln+l and L~:11 li = L~:/ hi. And then it 
appears only once. 

Theorem 6.2. In the decomposition of the irreducible G-module 
with the highest weight liA1 + · · · + ln+iAn+l, an irreducible K-module 
with the highest weight k1A1 + · · · + kn+lAn+l appears if and only if 

li 2'. ki+2 2'. li+2 for l ::::; i ::::; n - l, L~:/ li = L~:11 ki (= p), and 
the following condition is satisfied: Let the integers m 1 , ... , m 2n be the 
descending reordering of l1, ... , ln+l and k3, ... , kn+l· The irreducible 
U(2)-module V((p-k2)A1 +(p-k1)A2) appears in the decomposition of 
the tensor product of irreducible U(2)-modules V(m1A1 + m2A2) 0 · · · 0 
V(m2n-1A1 + m2nA2)-

A n irreducible K -module appears in the same times as the corre­
sponding irreducible U(2)-module. 

For their proofs, see H. Boerner [1] and J. Mikelsson [7]. 
Frobenius' reciprocity law enables us to determine the irreducible de­

composition of the spaces :F(G/ H), :F(G/ K), and C 00 (E) as G-modules. 
For example, a G-module appears in the decomposition of :F(G/H) if 
and only if its irreducible decomposition as an H-module includes a 
trivial H-module. An easy calculation shows the following proposition. 

Proposition 6.3. For n 2'. 3, we have the direct sum decomposi­
tions 

00 

l=O 
00 

:F(G/ K) ~ L V((l + m)A1 + mA2 - mAn - (l + m)An+i)-
l,m=O 

In the same way, we can compute the decomposition of C 00 (E). 
A G-module appears in the decomposition of C 00 (E) if and only if its 
irreducible decomposition as a K-module includes a K-module isomor­
phic to (V, p), which is an irreducible K-module with the highest weight 
A1 + A2 - An - An+l• The result varies depending on n and is somewhat 
cumbersome. Anyway, what we need is the following proposition, which 
can be shown easily. 
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Proposition 6.4. An irreducible G-module with the highest weight 
l>..1 - l>..n+l (l 2: 0) never appears in the decomposition of C 00 (E). 

Theorem 6.5. The image of the Radon transform R on pn(C) 
is included in the kernel of the differential operator L. 

Proof. Let us denote by Wz the irreducible G-submodule of 
F(Pn(C)) = F(G/H) with the highest weight l>,.1 -lAn+1 (l 2: 0). Since 
the Radon transform R is an injective G-homomorphism, R(Wz) is an 
irreducible G-submodule of F(G/K) with the same highest weight, by 
Schur's lemma. The differential operator Lis also an G-homomorphism, 
and therefore L(R(W1)) is an irreducible G-submodule of C00 (E) with 
the same highest weight or vanishes totally. But, by Proposition 6.4, an 
irreducible G-module with the highest weight U 1 - Un+l (l 2: 0) cannot 
be a G-submodule of C 00 (E). Thus we have L(R(Wz)) = {0}. 

Since the direct sum I: R(Wz) is dense in Im R, the image Im R 
itself is included in the kernel Ker L. Q.E.D. 

To prove the other inclusion, it is enough to show Im R = Ker D 
for n = 3, because the same argument as in §4 holds for pn(C). In the 
case n = 3, we can explicitly compute how D acts on each irreducible 
G-sumodule of F(G/K). (G = U(4), K = U(2) x U(2).) 

AG-module Uzm with the highest weight (l + m))..1 + m)..2 -m)..3 -
(l + m)>..4 can be endowed with an invariant hermitian inner product, 
which is unique up to a constant factor. We fix one and denote it by 
( , ). By Theorem 6.2, the K-invariant elements in Uzm forms a 1-
dimensional subspace, and we fix a K-invariant element vx with unit 
norm. A G-isomorphism from Ulm into F( G / K) is given by 

Uzm 3 v f---7 fv(g) = (p(g)vx,v) E F(G/K), 

where p denotes the action of G on Uzm. 
The computation can be simplified by studying the relations in 

the universal enveloping algebra U(9c) of the complexification fie 
M(4, C) of the Lie algebra 9. Notice that the action p of G can be 
extended to the action of U(flc), denoted by the same letter p. 

The differential operator D corresponds to an element D in U(9c) 
by the following formula. 

(Dfv)(g) = (p(g)p(D)vx,v). 

We denote by Eij a matrix whose (k, l)-element is given by DikDjt• Then 
the element D in U(9c) is written explicitly as 

D = (E13Ez4 - E14Ez3)(E31E42 - E32E4i). 
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This element D commutes with the elements of tc in U(ff), but it does 
not belong to the center of U(gc). 

We introduce two elements D 1 and D 2 in the center of U(gc). 

4 

D1 = L EijEji, 
i,j=l 

D2 = L sgn( (TT )Ea(l)T(l)Ea(2)T(2)Ea(3)T(3)Ea(4)T(4) · 
O",TE64 

Then a straightforward computation yields 

24D = D2 + 2D1 mod U(gc)tc. 

Therefore we have (p(g)p(D)vK, v) = (l/24)(p(g)p(D2 + 2D1 )vK, v). 
Since D 2 + 2D1 is in the center of U (gc), its action on the irreducible 

G-module U1m is nothing but multiplication by a constant. The constant 
can be computed by its action on the maximal vector VA, i.e., the vector 
of the highest weight. Let us denote by b+ the subalgebra of gc spanned 
by { Eij }i<j · Then a straightforward computation yields 

D1 = Ef1 + E~2 + Ei3 + EJ4 

+ 3(E11 - E44) + E22 - E33 mod U(gc)b+, 

D2 = 24E11E22E33E44 

- 36E22E33(E11 - E44) - 12E11E44(E22 - E33) 

+ 28(E11E22 + E33E44) - 8(E11E33 + E22E44) 

+ 4E11E44 - 44E22E33 

- 6(E11 - E44) + 22(E22 - E33) mod U(gc)b+. 

Since we have p(E;j)VA = 0 for i < j and p(Eii)vA = A(E;i)vA, the 
following proposition can be easily deduced. 

Proposition 6.6. The action of the differential operator D on the 
irreducible G-submodule of F( G / K) isomorphic to U1m is multiplication 
by the constant m(m + l)(l + m + l)(l + m + 2). 

Therefore the irreducible G-submodule of F( G / K) isomorphic to 
U1m is in the kernel of D if and only if m vanishes. Since the irreducible 
G-submodule of F(G/K) with the highest weight V..1 - V..4 is unique, 
the module then coincides with the image of W1 by R. By the same 
argument as in §3, we can prove Ker D = Im R, and thus our proof of 
Theorem 5.2 is completed. 
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Remark 6. 7. The eigenvalue of the differential operator V can be 
computed also by using the formula that gives the radial part of V. The 
first author has exploited this approach and the further results will be 
shown in the forthcoming papers. 
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