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Gauss Maps of Complete Minimal Surfaces 

Hirotaka Fujimoto 

§1. Introduction 

In 1961, R. Osserman showed that the Gauss map of a complete 
nonflat minimal surface immersed in R 3 cannot omit a set of positive 
logarithmic capacity ([16]). Afterwards, F. Xavier proved that the Gauss 
map of such a surface can omit at most six points ([25]). In 1988, the 
author has shown that the number of exceptional values of the Gauss 
map of such a surface is at most four ([6]). Here, the number four 
is best-possible. Indeed, there are many examples of nonflat complete 
minimal surfaces in R3 whose Gauss maps omit four values. Moreover, 
he revealed some relations between these results and the defect relation 
in Nevanlinna theory on value distribution of meromorphic functions, 
and gave some modified defect relation for the Gauss map of such a 
surface in [8]. Recently, as an improvement of these results, X. Mo 
and R. Osserman showed that, if the Gauss map of a nonflat complete 
minimal surface M immersed in R3 takes on five distinct values only a 
finite number of times, then M has finite total curvature ([14]). 

The author gave also modified defect relations for the Gauss map 
G of a complete minimal surface immersed in Rm for the case where 
G is nondegenerate as a map into pm-1 (C) and, as its application, he 
showed that G can omit at most m(m + 1)/2 hyperplanes in general 
position ([9]). Here, the number m(m + 1)/2 is best-possible for arbi­
trary odd numbers and some small even numbers ([7]). Recently, M. Ru 
showed that the "nondegenerate" assumption of the above result can be 
dropped ([20]). In [10], the author introduced a new definition of mod­
ified defect and proved a refined modified defect relation for the Gauss 
map of complete minimal surfaces possibly with branch points and gave 
some improvements of the above-mentioned results in [9], [14] and [20]. 

The purpose of this lecture is to survey the above-mentioned results 
more precisely and to give the outline of their proofs. We first give 
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14 H. Fujimoto 

the definition of modified defect and some fundamental properties in §2. 
We next explain a modified defect relation for a holomorphic map of an 
open Riemann surface with a complete pseudo-metric into the complex 
projective space pn(C) and some consequences of it in §3. The outline 
of its proof is given in §4. After these expositions, we discuss the value 
distributions of the Gauss maps of complete minimal surfaces in Rm in 
the last two sections. 

§2. Modified defect for a holomorphic curve in pn(C) 

Let M be an open Riemann surface. We consider a function u on 
M possibly with singularities in a discrete subset of M. 

Definition 2.1. We call u to be a function with mild singularities 
on an open set D in M if u is a c= function on D except a discrete set 
and around each point a E D we can write 

(2.2) iul = lz - ai(Tl log lz - aWu* 

with a holomorphic local coordinate z, a positive continuous function ut 
and real numbers a- and T. 

For a function u with mild singularities on D, we define by 

vu(a) := the number a- in the expression (2.2) for some T and u* 

the divisor Vu : D -+ R. Here, a divisor on D means a map v : D -+ R 
such that the support !vi := {z;v(z) =I- 0} is discrete. For a nonzero 
meromorphic function 'lj;, v,;,(a) is nothing but the order of 'lj; at a. 

Let v be a divisor on M. We denote by [v] the (1, 1)-current corre­
sponding to v, namely, the map [v] : D-+ C defined by 

[v](<p) := 1 V<p = L v(z)<p(z) 
M zEM 

(<pED), 

where D denotes the space of all C 00 differentiable functions on M with 
compact supports. In some cases, a (1, 1)-form non Mis regarded as a 
current on M defined by D( cp) := J M <pD for each <p E D. 

For two (1, 1)-currents D1, 0 2 and a positive constant c, by 0 1 -<c 0 2 

we mean that there are a divisor v and a bounded continuous nonnega­
tive function k with mild singularities such that v 2'. con I vi and 
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A-
where de= --(8-8). We write n1-< n2 if n1 -<c n2 for some C > 0. 

4n 
Let f: M........, pn(C) be a holomorphic map which is nondegenerate, 

namely, whose image is not included in any hyperplane, and let 

H : aowo + · · · + anwn = 0 

be a hyperplane in pn(C). Take a representation f = (Jo : · · · : f n) on 
M which is reduced, namely, whose components Ji are holomorphic func­
tions without common zero. Set F(H) := aofo + · · · + anf n and define 
v(f,H) := VF(H)· Then-truncated pull-back f*(H)[n] of Has divisor is 

defined by f*(H)[n] := [min(v(f, H), n)]. We see easily J*(H)[n] -< nf, 
where n f denotes the pull-back of the Fubini-Study metric on pn ( C) 
by f, namely, nf = ddclog 111112 for 11111 := o=~=O lfil2)1/2_ 

Definition 2.3. We define the modified H -defect of H for f by 

Dt(H) := 1- inf{ry; f*(H)[n]-< ryDf on M - K for a compact set K}. 

For a not necessarily nondegenerate holomorphic map f of M into 
pn(C), if f(M) ~ H, we set Dt(H) = 0, and otherwise we define H­
defect for f by H-defect for the map f considered as a map into the 
smallest projective linear subspace of pn(C) including f(M). 

The modified H-defect has the following properties. 

Proposition 2.4. ( i) 0 :S Dt(H) :S l. 
( ii) If there exists a bounded nonzero holomorphic function g on 

M - K for a compact set K such that v9 2 min(v(f, H), n) on M - K, 
or particularly, if# 1-1 (H) .< oo, then Dt(H) = 1. 

(iii) If v(f, H) 2 mat every a E 1- 1 (H)-K for some compact set 
K, then Dt(H) 2 1- n/m. 

Proof. The assertion (i) is trivial and (ii) is also obvious because 

on M - K by Poincare-Lelong formula. Moreover, (iii) is true because 

f*(H)[n] + [:v(f,H) - min(v(f,H),n)] =: ddclog llfll 2 + ddclogk2 

on M - K for the bounded function k := (IF(H)l/llfllr/m. 

We recall the classical defect for a nondegenerate holomorphic map 
of (an open neighborhood) of f}.R,= := {z; R '.S lzl < +oo} into pn(C). 
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The order function of f and the counting function ( truncated by n) of 
a hyperplane H for f are defined by 

lr dt1 Tt(r) = - flt 
R t R.'.,lzi<t 

(R < r < +oo), 

Nt(r)lnl = r dt { f*(H)[nJ 
}R t }R.'.,lzi<t 

(R < r < +oo), 

respectively. The classical defect (truncated by n) is defined by 

N (r)[n] 
8t(H)[n] = 1 - limsup f . 

r-+= TJ ( r) 

We can prove the following relation. 

Proposition 2.5. Let f be a nondegenerate holomorphic map of 
an open Riemann surface M into pn(C). Assume that there is a bi­
holomorphic map <P of an open neighborhood of b..R,= onto an open set 

in M such that J := f • <P has an essential singularity at oo. Then, for 
every hyperplane H 

Proof. We take a nonnegative constant r, such that 

on M - K for a compact set K, a bounded continuous function k with 
mild singularities and a divisor v satisfying the condition that v 2 c on 
lvl for some c > 0. Then, by the monotonicity of integral, we see 

(R<r<+oo) 

and so 1 - r, ::::; 1 - N j(r) [n] /T1(r) + O(log r) /T1(r). This concludes the 
desired inequality. 

§3. Modified defect relation 

Let N 2 n and q > 2N-n+l and consider q hyperplanes H 1 , ... , Hq 
in pn(C). After W. Chen ([2]), we give the following: 
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Definition 3.1. We say that H 1 , ... , Hq are in N-subgeneral po­
sition if, for every 1 ~ Jo < · · · < JN ~ q, 

In [15], E. I. Nochka has given the following theorem : 

Theorem 3.2. For given hyperplanes H 1 , ... , Hq in N -subgenera[ 
position, there are some constants w ( 1), ... , w ( q) and 0 such that 

( i ) 0 < w(J') < 0 (l < 1· < q) and n + 1 < 0 < n + 1 , 
- - - 2N - n + l - - N + l 

q 

(ii) Lw(j) = n + l + 0(q - 2N + n - l), 
j=l 

(iii) if RC Q and O < #R ~ N + l, then L w(j) ~ d(R). 
jER 

For the proof, see [2]. 

Definition 3.3. We call constants w(j) and 0 with the properties 
(i) ~ (iii) Nochka weights and a Nochka constant for H/s respectively. 

By definition, H1(l ~ j ~ q) are in general position if and only if 
they are in n-subgeneral position. If H 1 , ... , Hq are in general position, 
then we have necessarily w(l) = · · · = w(q) = 0 = l. 

We give here the classical defect relation improved by E. I. Nochka. 

Theorem 3.4. Let f : D..R,oo _, pn(C) be a nondegenerate holo­
morphic map with an essential singularity at oo. Then, for arbitrary 
hyperplanes H1(l ~ j ~ q) in N-subgeneral position with Nochka con­
stants w(j), it holds that 

q 

Lw(j)81(H1)[n] ~ n + l. 
j=l 

For the proof, see [15] or [2]. 

Definition 3.5. We call ds 2 a pseudo-metric on M if, for each 
holomorphic local coordinate z, it is written as ds2 = >.; JdzJ 2 with a 
nonnegative function Az which has mild singularities. A continuous 
pseudo-metric ds2 means a pseudo-metric such that >-z is continuous. 

We define the divisor of a pseudo-metric ds2 = >.;JdzJ 2 by Vds := V>,,z. 
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For a pseudo-metric ds2 = >.; I dzf 2 the Ricci form is defined by 

as a current, and the Gaussian curvature of ds 2 is given by Kd8 2 = 
~ log >-z/ >.; only on the set M 1 := { ds2 i- O}, which is called to be 
strictly negative if Kd8 2 ::;: -Cds2 on M1 for some C > 0. A Riemann 
surface M whose universal covering is biholomorphic with the unit disc 
has the unique complete conformal metric with constant curvature -1, 
which we call Poincare metric of M and denote by da},,1 in the following. 

To state the modified defect relation, we give two more definitions. 

Definition 3.6. We define the H -order of f by 

Pf:= inf{p; -Ricd8 2 -< pD,f on M - K for some compact set K}. 

Definition 3. 7. Let M be an open Riemann surface of finite type, 
namely, M is biholomorphic with a compact Riemann surface M with 
finitely many points removed. A holomorphic map f of Minto pn(C) 
is said to be transcendental if f has no holomorphic extension to M. 

The modified defect relation is stated as follows : 

Theorem 3.8. Let M be an open Riemann surface with a com­
plete continuous pseudo-metric ds2 and f a nondegenerate holomorphic 
map of M into pn(C). Take hyperplanes H 1 , ... , Hq in N-subgeneral 
position with Nochka constants w(j). If M is not of finite type or else f 
is transcendental, then 

(3.9) t w(j)Dt(H1) ::;: n + l + Ptn(~ + l). 
j=l 

The outline of the proof of Theorem 3.8 will be given in §4. We give 
here the following corollary to this theorem. 

Corollary 3.10. Let M be an open Riemann surface with a com­
plete pseudo-metric and f : M --+ pn(C) a nondegenerate holomorphic 
map. If M is not of finite type, then for arbitrary hyperplanes H1 , ... , Hq 
in N -subgenera[ position, 

(3.11) I:q D (H) ( N ) Ptn(2N - n + l) 
f · < 2 -n+l +------. 

J - 2 
j=l 
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Proof. Let A denote the right hand side of (3.11). According to 
Theorems 3.2 and 3.8, we have 

PJan l ( ~ ) A 2 2N - n + l + - 0 - 2 q + 0 n + l + PJan - {=:_w(j) 

q ( ') q q 

2 q + L w: (Dt(Hj) -1) 2 q + L(Dt(Hj) - 1) = L Dt(Hj), 
j=l j=l j=l. 

where an := n(n + 1)/2. This gives Corollary 3.10. 

§4. The proof of the modified defect relation 

In this section, we shall give the outline of the proof of Theorem 3.8. 
For this purpose, we first give the following theorem. 

Theorem 4.1. Let M be an open Riemann surface with a com­
plete continuous pseudo-metric ds 2 and let dT2 be a continuous pseudo­
metric on M - K with strictly negative curvature for some compact set 
K. Assume that there exists a constant p with O < p < l 

(4.2) 

on M - K. Then M is of finite type. 

Proof. Taking a nowhere zero holomorphic 1-form w, we write 
ds 2 = A2lwl 2 and dT 2 = 772lwl2. By assumption, we can take a divi­
sor v and a continuous nonnegative bounded function k on M - K with 
mild singularities such that v(z) 2 1 - p for every z E lvl and 

ddc log ).2 + [v] = pddc log 772 + ddc log k 2 • 

Here, we may assume that v and k are defined on M and O :S k =S 1. 
Set u := kryP /A. Then, logu is harmonic outside KU lvl, Vu 2 1 - p on 
lvl - Kand A= kryP /u =S 17P /u. Define a new pseudo-metric 

dp2 := u-2/(1-p) lwl2 

on Mand set M 1 := { a EM; Vdp(a) = O}. Then, dp2 is a flat metric on 
M1 -Kand, since Vu 2 l-p on lvul-K, Vdp =S -1 on M -(KUM1). 

We recall here the following theorem of A. Huber ([13]). 

Theorem 4.3. For an open Riemann surface M, if there is a 
complete metric dp2 on M such that 

JM max( -Kdp2, o)ndp2 < +oo, 
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then M is of finite type, where ndp2 denotes the area form associated 

with dp2 • 

To prove Theorem 4.1, it suffices to show the following fact. 

( 4.4). The surface M 1 is complete with respect to the metric dp2 • 

In fact, by the aid of Theorem 4.3 we can conclude from ( 4.4) that 
M 1 , and so M, are of finite type because 

Assume that M1 is not complete, and so do := distdp(K, 8M1) 
is finite, where distdp(K, 8M1 ) denotes the distance between K and 
8M1 . Then we can find a continuous curve 1'o(t) (0 ~ t < 1) such that 
1'o(O) EK, r'o(t) tends to 8M1 as t---+ 1 and the length Ldpbo) of 1'0 is 
smaller than 2d0 and take a point p0 := 1'o(t0) (0 ~ t 0 < 1) such that 
distdp(K,po) > do/2 and Ldpbol[to, 1)) < do/2, where 1'1[a, ,6) denotes 
the part of 1' from t = a tot= ,6. 

Since dp2 is flat on M 1 - K, there is an isometry <I> of a disc AR := 

{ w EC; lwl < R} with the standard metric onto an open neighborhood 
of po in M 1 - K with the metric dp2 such that <I>(O) = Po- Take the 
largest R(~ +oo) such that there is a local isometry <I> of AR onto some 
open set in M1 - K with <I>(O) = Po- Then, R ~ Ldpbol[to, 1)) < do/2 
and there is a line segment r joining the origin and a point in 8AR such 
that 1' := <I>(r) tends to the boundary of M 1 - K. Then, if 1' tends 
to K or to the set M - (KU M 1 ), then we have an absurd conclusion 
R 2':: distdp(K,p0 ) > d0 /2 or R = Ldp(,') = +oo respectively, because 
Vdp ~ -1 on M - (KU M 1 ). Therefore, 1' tends to the boundary of M. 

Now, we shall estimate the length Ldsb) of 1'· To this end, we set 
iJ := dr/dp. Then, we have 7/ = iJu-I/(l-p)_ So, 

p 

Ldsb) ~ !, u-171Plwl ~ !, u- 1iJPu - l - P lwl 

~ !, iJPdp = l (iJ · <I>)P<I>*(dp) = l (iJ · <I>)Pldwl. 

On the other hand, the curvature of <I>* ( dT) is strictly negative on AR 
by assumption. By the generalized Schwarz lemma we obtain 
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for some constants C0 and C1 . Therefore, we have 

for some constants C2 and C3 . This contradicts the completeness of M 
with respect to ds2 . Thus, we conclude (4.4) and so Theorem 4.1. 

Now, we start to prove Theorem 3.8. To this end, we may assume 
PJ < +oo and M is not of finite type because Theorem 3.8 is obvious 
from Proposition 2.5 and Theorem 3.4 for the other cases. 

Take arbitrary constants p > 0 and T/j (1 :S j :S q) such that 

(4.5) -Ricd8 2 --< pOj, 

on M' := M - K for a compact set K. By definition, there are divisors Vj 
and bounded continuous nonnegative functions kj with mild singularities 
such that Vj 2 Cj on lvJI for some Cj > 0 and 

on M'. Set hj := kj llfll'}j. Then, log hj are harmonic on M' - lvhj I­
For our purpose, we have only to show that 

q 

(4.6) "( := 0(q - 2N + n - l) - L w(j)T/j '.Span, 
j=l 

In fact, if this is true, then we easily obtain (3.9) from the definitions of 
the modified defect and Pi because (4.6) can be rewritten 

q 

Lw(j)(l - T/j) :Sn+ 1 + pan 
j=l 

by the use of Theorem 3.2, (ii). 
Assume that 'Y > pan, We shall show that there exists a pseudo­

metric on M' with strictly negative curvature which satisfies (4.2) for a 
suitable constant p with O < p < l, which leads to a contradiction by 
Theorem 4.1 and concludes (4.6). To this end, we represent each Hj as 

(1 ::; j ::; q). 

Take a reduced representation f = (Jo : · · · fn) and set F(HJ) := 
aJofo + · · · + ajnfn• Moreover, for an arbitrarily fixed holomorphic local 
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coordinate z we consider the functions 

where W(go, ... , 9k) denotes the Wronskian of holomorphic functions 
go, ... , 9k· Now, choosing some c with 1 > cO-n+l, we set 

and define the pseudo-metric dT2 := 77;fdzf 2 , which is well-defined on 
M - K. Set r_p := [Fnf/ITJ=1 IF(Hj)fw(j)_ Then we can prove that 

v'P + ~J=1 w(j)min(v(f,Hj),n) 2:: 0 (cf., [10, §2]). This implies that 

v0 2:: c' on I v0 f for some c' > 0 and dT2 is a continuous pseudo-metric on 
M'. Moreover, we can prove that dT2 has strictly negative curvature on 
M'(cf., [10, §5]). 

For some holomorphic local coordinate z and each pair of indices 
j, k, we choose indices i 1 , ... , ik with 1::::; i 1 < · · · < ik ::::; q such that 

'1/JJk := L aJR_W(h,fii, ... ,k) to. 
£cpi1, ... ,ik 

For convenience' sake, we set 'l/JJ0 = F(Hj)- By the theorem of identity, 
'1/JJk t O for every holomorphic local coordinate z. We now define 

Then, k is bounded because 

['1/JJkfefqlogw(j)(a/r_pk(Hj)) < (1Fk(Hj)l)e/q lo w(j)(a/ (H·)) 
fA[e/q - fFkf g '-Pk J 

::::; sup xefq logw(j) (?:_) < +oo. 
O<xSl X 
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Set v := l'PI TIJ=l lhjlw(j) Tii_::;j_:Sq,O_:Sk:Sn-l 11/iJkl'/q_ Then logv 1s har­
monic outside lvvl- If we choose a constant E which is smaller than 
and sufficiently near to the number ('y - pun)/(un+l + PTn) and set 
p := p(un+ETn)/('y-wn+1), it holds that -Ricd8 2 -<1-p pflf, 0 < p < 1 
and Vv 2 ('y - Wn+1)(l - p)/ p. on lvvl- Moreover, we see easily 

This shows that ( 4.2) holds on M'. Thus, we have proved Theorem 3.8. 

§5. Gauss maps of complete minimal surfaces in Rm 

Let x : M --+ Rm be a (possibly branched) minimal surface. By 
defintion, Mis an open Riemann surface, x = (x 1 , ... , xm) is a noncon­
stant map whose components Xi are harmonic and satisfy the condition 

Ji + · · · + J;, = 0 

for holomorphic functions Ji := oxd oz locally defined with a holomor­
phic local coordinate z on M. The pseudo-metric ds 2 on M induced 
from Rm are locally written as ds 2 = 2llfll 2 ldzl 2 (cf., [18]). The set S of 
all branch points coincides with the set of common zeros of the functions 
/i ( 1 ::; i ::; m) and we have v ds = min { v f; ; 1 ::; i ::; m}. 

As is well-known, the set of all oriented 2-planes in Rm may be 
identified with the quadric Qm_2 (C) in pm- 1 (C). By definition, the 
Gauss map G of M maps each p E M - S to the point in Qm-2(C) 
corresponding to the oriented tangent plane of M at p and it is locally 
given by G = (!0 : • • • : fn) on M - S. Take a nonzero holomorphic 
function hon M with vh = vds· Ifwe set 9i := fdh(l::; i::; m), we have 
G = (g1 : 92 : · · · : 9m) outside S, which is holomorphically extended 
across S. So, we may consider the Gauss map Gas a holomorphic map 
of Minto pm-1(C). 

A surface with a pseudo-metric is called to be flat if the Gaussian 
curvature identically vanishes. It is easily seen that a minimal surface is 
flat if and only if the Gauss map is a constant. 

Definition 5.1. The total curvature of Mis defined by - f MRicds2. 

Proposition 5.2. A complete minimal surface x : M --+ Rm has 
finite total curvature if and only if M is of finite type and the Gauss 
map of M is not transcendental. 

For the proof, see [3]. 
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Definition 5.3. We define the branching H-order of M by 

Pds := inf{p; [vds]--< pO.c on M - K for some compact set K}. 

Obviously, if x: M-----, Rm is an immersion, then Pds = 0. 

Theorem 5.4. Let x: M-----, Rm be a complete nonfiat minimal 
surface with infinite total curvature and G : M -----, pN (C) the Gauss 
map of M, where N = m - l. Consider the smallest linear subspace 
pn(C) of pN(C) which includes G(M). Then, for arbitrary hyperplanes 
H 1 , ... , Hq(l ::::; j ::::; q) in pN (C) located in general position, 

tDc(Hj) :s:; 2N -n + l + (1 + Pds)n(~N - n + 1). 
j=l 

Proof. By assumption, the Gauss map G is nondegenerate as the 
map into pn(C). On the other hand, the metric of Mis given by ds2 = 
2llfll 2 ldzl 2 = 2lhl 2 llgll 2 ldzl2 for a holomorphic function hand a reduced 
representation g = (g1 : · · · : gm). For each p 2:'. 0 such that [v ds] --< p O.c 
on M outside a compact set K, we have - Ricd8 2 -< (p + 1)0.c on 
K - M. Taking the infimum of the right hand side for various p, we 
obtain pc ::::; Pds + l. Since H1, ... , Hq considered as hyperplanes in 
pn(C) are located in N-subgeneral position, Theorem 5.4 is now an 
immediate consequence of Corollary 3.10. 

Theorem 5.5. Let G be the Gauss map of a nonfiat complete 
minimal surface immersed in Rm with infinite total curvature. Then, 
for arbitrary hyperplanes H 1 , ... , Hq in pm-l(C) located in general po­
sition, t Dc(Hj)::::; m(m2 + 1). 

j=l 

Proof. By assumption, Theorem 5.4 is valid for some n with 1 ::::; 
n ::::; N. Therefore, we have 

q ( ) 
'f:,Dc(Hj) :s:; 2N - n + l + n 2N ~ n + l 
j=l 

(N + l)(N + 2) - (N - n)(N - n - 1) m(m + 1) 
---------------<----. 2 - 2 
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This gives Theorem 5.5. 

In view of Proposition 2.4, Theorem 5.5 yields the following : 

Corollary 5.6. Let M be a nonfiat complete minimal surface im­
mersed in Rm with infinite total curvature, and let G be the Gauss map 
of M. If c-1 (Hj) are finite for q hyperplanes H1 , ... , Hq in pm- 1 (C) 
located in general position, then q s m(m + 1)/2. 

We have also the following result by Ru ((20]). 

Corollary 5. 7. The Gauss map of a nonfiat complete minimal 
surface immersed in Rm can omit at most m(m + 1)/2 hyperplanes in 
general position. 

Proof. If M has infinite total curvature, then this is a direct result 
of Corollary 5.6. Otherwise, take the smallest projective linear subspace 
pn ( C) of pm-l ( C). If given hyperplanes are in general position in 
pn(C), then by the result of Chern and Osserman ([3]) G can omit at 
most n(n+3)/2( < m(m+ 1)/2) hyperplanes in general position. By the 
use of Theorem 3.2, the arguments in [3] is available for the case where 
given hyperplanes are in general position in pm- 1 (C)(cf., [21]). 

Here, the number m(m + 1)/2 is best-possible for an arbitrary odd 
numbers and some small even numbers m. In fact, we can construct some 
complete minimal surfaces in Rm whose Gauss maps are non-degenerate 
and omit m( m + 1) /2 hyperplanes in general position for such numbers. 
For the details, see [7]. 

Now, we consider a holomorphic curve in cm given by a nonconstant 
holomorphic map W = (w1, W2, ... , Wm) : Af-'> cm. The space cm is 
identified with R 2m by associating (x1 +HY1, ... , Xm+HYm) E cm 
with (x1,Y1, ... ,xm,Ym)- The curve w: M-" cm is considered as a 
minimal surface w = (x1, Yl, ... , Xm, Ym) : M -" R 2m. By Cauchy­
Riemann's equations, Ji := 8xi/8z = H8yi/8z(l Si Sm). So, the 
Gauss map of Mis given by G = (!1 : -J=Ifi : · · ·: fm : -Hfm), 
and therefore the image G ( M) of G is included in the projective subspace 

pm-l(C) := {(u1 : V1 : ···:Um: Vm); Ui = -Hvi(l Si Sm)} 

of p 2m-1 (C). As a consequence of Theorem 3.8, we have the following: 

Corollary 5.8. Let w : M -" cm be a holomorphic curve in cm 
which is complete and not included in any affine hyperplane, and let G be 
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the Gauss map of M considered as a map of M into the above-mentioned 
space pm-l ( C). If M is not of finite type, then 

~D (H·)<m+(Pds+l)m(m-l) 
~ G J - 2 
j=l 

for arbitrary hyperplanes H1 , ... , Hq in pm-1 (C) in general position. 

For the proof, see [10, §6]. 

§6. The Gauss maps of minimal surfaces in R 3 or R 4 

We next consider a minimal surface x = (x 1 ,x2,x3 ): M----> R3 . In 
this case, the quadric Q1 ( C) is canonically biholomorphic with P 1 ( C). 
Instead of the Gauss map G: M----> Q1(C) we may study the classical 
Gauss map g : M ----> P 1 (C) defined by g = (h : Ji - Ah), where 
Ji := 8xi/8z(i = 1,2,3). Then, the metric of Mis given by ds2 = 

lhl 2 (lgol 2 + lg1/2 ) 2 ldzl2 for a reduced representation g = (go : 91) and 
a nonzero holomorphic function h with vh = min(vJP Vtz, VJJ- Since 
vds = vh, we have - Ricds :S p + 2 whenever [vds] -< p09 . This yields 
p9 :S Pds + 2. From Theorem 3.8, we can easily conclude the following: 

Theorem 6.1. Let x : M ----> R 3 be a non fiat complete minimal 
surface with infinite total curvature and let g be the classical Gauss map. 
Then, for arbitrary distinct points a 1 , ... , aq in P 1 ( C), 

q 

LD9 (a1) :S 4 + Pds• 
j=l 

Here, we can construct an example of a nonflat complete minimal 
surface in R 3 with Pds = 2 whose Gauss map omit six distinct points in 
P 1 (C) (cf., [10, §6]). 

Relating to Theorem 6.1, we can prove the following theorem for 
noncomplete minimal surfaces in R 3 . 

Theorem 6.2. Let x : M ----> R 3 be a nonfiat minimal surface 
and g : M ----> P 1 (C) the classical Gauss map. If there exist distinct 
points a1, ... , aq E P1 ( C) and positive integers m1, ... , mq satisfying 
the condition that each g - a 1 has no zeros with multiplicity < m1 and 
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then there is a constant C > 0 depending only on aj and mj such that 

IK(p)I :S distds2 i, 8M)2 
(p EM). 

For the proof, see [6] and [19]. 

We next consider a complete minimal surface x : M - R 4 • In this 
case, the Gauss map G of M is a map into Q2 ( C), which is canonically 
identified with P 1 ( C) x P 1 ( C). Instead of the Gauss map G : M -
Q2 (C)(c P3 (C)) we consider the map g: M - P 1 (C) x P 1 (C), which 
we call the classical Gauss map of M. 

We can prove the following defect relation. 

Theorem 6.3. Let x : M - R 4 be a complete minimal surface 
not of finite type and g = (g1, g2) : M - P 1 ( C) x P 1 ( C) the classical 
Gauss map of M. Take two systems of distinct points {a1 , ... , aq1 } and 
{(31, ... , (Jq2}-

( i) If g1 and g2 are nonconstant and, moreover, Ef,:,1 D91 (ai) > 2 
and EJ''=-1 D92 ((3j) > 2, then 

1 1 
"""q1 DH(a·) - 2 + """~2 DH(f3·) - 2 2: 1. L....i=-1 91 • L...3=-1 92 J 

( ii ) If g1 is nonconstant and g2 is a constant, then 

q1 

LD91 (aj) :S 3. 
j=-1 

The proof is omitted. For the details, see [8]. 
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