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Lefschetz Principle in the Theory of 
Prehomogeneous Vector Spaces 

Akihiko Gyoja 

§0. Introduction 

The theory of prehomogeneous vector spaces is originated by M. Sato 
in 1961 in order to give a testing ground for a general theory of linear 
differential equations [11]. A polynomial f, such as the quadratic form 
or the determinant, has an invariance with respect to a very large group 
and it is characterized up to constant by this invariance. This distinctive 
property inherits to a complex power of f and its Fourier transform. 
Using this fact, we can show that 

Fourier transform of J8 = f-sx (some factors). 

Starting from this equality, we get linear differential equations whose 
fundamental solutions can be written explicitly, and also we get appli­
cations for the theory of zeta functions [13], [14]. 

This is an outline of the Sato's original theory of prehomogeneous 
vector spaces. Thus we can say that the Sato's original theory is based 
on the invariance with respect to a very large group. Invariance with 
respect to a Lie group is nothing but invariance with respect to its Lie 
algebra, which can also be expressed as a system of linear differential 
equations of first order. Thus we can also say that the Sato's original 
theory is based on this system of differential equations. But it seems 
that this system of differential equations is not good. For instance, 
it may not be holonomic unless the prehomogeneous vector space has 
a finite number of orbits. This fact often imposes the so-called finite 
orbit condition, which does not seem to be natural or necessary in many 
cases. Thus in order to get a more natural theory, it seems necessary 
to consider linear differential equations of general order together with 
these first order equations. 
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The purpose of this note is to give a brief account of an attempt to 
get such a natural theory of prehomogeneous vector spaces, based on a 
system of differential equations which are not necessarily of first order. 

One of the advantages of our theory is that it explains to some extent 
the following principle which we call the Lefschetz principle. Whatever 
is true for prehomogeneous vector spaces over the real, complex, p-adic 
or finite field is also true for the other fields. This principle seems to 
hold with a surprising accuracy. See §8. What we can explain at present 
is, without doubt, only a small portion of it. 

§ 1. Invariant theory 

Let G be a connected reductive group over the complex number 
field <C, V = en and p : G -+ G L(V) an algebraic homomorphism. 
Let ( Gz, pz, Vz) be a triple of a reductive group scheme Gz over Z, 
an affine space Vz over Z, and a homomorphism pz : Gz -+ G L(Vz). 
We call (Gz,pz, Vz) a Z-form of (G,p, V) if (G,p, V) is obtained from 
(Gz, pz, Vz) by tensoring <C, that is, 

V = Vz Xspec(Z) spec(<C), etc. 

(We will denote the set of rational points by V(Z) etc. Do not confuse 
Vz with V(Z).) We know that a Z-form always exists. We fix a Z-form. 

In this note, we understand the objects of invariant theory as follows: 

Geometric case. Let ¢ : G -+ GL(M) be a rational represen­
tation. The first object of the invariant theory is an M-valued regular 
function on V such that f(gv) = cp(g)f(v) (g E G,v E V), which is 
called a (vector valued) relative invariant. (Here, we do not go into the 
geometric study of the positive characteristic case.) 

Arithmetic case. Let k be any commutative ring, and R: G(k)-+ 
GL(M) a finite or infinite dimensional 'representation'. The second ob­
ject of the invariant theory is an M-valued 'function' on V(k) such that 
f(gv) = R(g)f(v) (g E G(k),v E V(k)). Here we use the words 'rep­
resentations' and 'functions' quite vaguely. We include hyperfunctions, 
D-modules, mixed Hodge modules, l-adic etale perverse sheaves, crystals 
and so on, in the word 'functions'. 

In this note, we restrict ourselves to the case where M is one dimen­
sional. First, we consider the geometric case, and next, we go into the 
arithmetic case where k is the complex, real or finite field. 
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§2. Prehomogeneous vector spaces (geometric case) 

Let ( G, p, V) be a triple as in §1. Such a triple is called a prehomo­
geneous vector space, or PV in short, if there is a Zariski dense G-orbit 
in V. Let¢ be a character of G, and fa polynomial function on V such 
that f(gv) = cp(g)f(v) (g E G,v EV). Let vv be the dual space of V, 
and p v the contragradient representation of p. Then ( G, p v, vv) is also 
a prehomogeneous vector space, and there exists a polynomial function 
r on vv such that r(gvv) = cp(g)- 1r(vv) (g E G,vv E Vv). Let 
n = f- 1 (Cx). Then there exists a unique G-orbit 0 0 which is Zariski 
open inn, and a unique G-orbit 0 1 which is Zariski closed inn. Define 
nv, O;{ and Oi' in the same way for the dual space. 

Theorem 1 [3, 1.18]. (1) Let F = grad log f and pv = grad log r. 
Then F(O) = Oi' and Fv(nv) = 0 1 . 

(2) The morphisms F and pv induce isomorphisms 0 1 ---+ Oi' and 
Oi' ---+ 0 1 , which are inverse of each other. 

(3) Let (Ton..L be the conormal bundle of Oi', i.e., 

Then the following diagram is commutative. 

Remark. In the original theory of M. Sato, a prehomogeneous vec­
tor space is called regular if F is generically surjective. In the regular 
case, it is known that n = 0 0 = 0 1 and nv = o-;_; = Oi'. Hence 
F(O) = nv, and n is a single G-orbit. These are the most impor­
tant facts in the geometric part of the Sato's original theory. But even 
without the regularity condition, the above theorem says that n can be 
identified with a vector bundle on the single affine orbit Oi'. Thus the 
above theorem enables us to do without the regularity condition. 
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§3. D-modules on V((C) 

We use the following conventions; 

n = dim V = dim yv; 

(x1, ... , Xn) be a coordinate of V; 

(Y1, ... , Yn) the dual coordinate of yv; 

8 8 
D=D(V)=CC[x1,••·,Xn,-, ... ,-8 ]; 

8x1 Xn 

v 8 8 
D = D (V ) = CC[y1, ... , Yn, 8Yl , . • . , 8Yn]. 

The algebra isomorphism F: D(V) ------> D(Vv) given by xi ------> A a~; 

and a~; ------> A Yi, formally defines the concept of Fourier transforma­
tion of D-modules. 

Let Ube a simply connected open subset of 1- 1 (rCx) (with respect 
to the classical topology) and f(x) 8 a single valued branch on {(s,x) E 
C x U}. Then 

r (8
8 , ... , 8

8 )f(x)8+1 = b(s)f(x)8 
XI Xn 

with a polynomial b(s) E CC[s], which is called the b-function. Let f°' be 
the natural generator of the D-module N(a) = D[s]/8 /(s-a)D[s]/ 8 for 
a fixed complex number a. Then N(a) is generated by fa; N(a) = D f°'. 
Note that fa is an element of an abstract D-module. 

Theorem 2 [3, 3.11]. Let 

A+= {a EC I b(a + j) IO for j = O, 1, 2, ... } and 

A_= {a EC I b(a - j) IO for j = 1, 2, ... }. 

(1) The Fourier transform of Dfa is given by 

FD a _ { F(DJ°')[JV-l], if O'. EA+, 
( f )- (F(DJ-a)[JY-1])*, ifaEA_. 

Here* denotes the dual D-module; (-)* = Ext1(-, D) ®ic C(dx1 I\··· I\ 

dxn). 
(2) Let Dua be the D(Vv)-module defined by 

(A) (t, (-a;iYj ;, ) - (a¢+ ¢o)(A)) ua ~ 0 for A E Lie( G) 
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and 

(B) a(y)ua = 0 for any polynomial a(y) vanishing 

identically on O';_. 

Then 

Here p(A) = (ai1), <Po(A) = trace(p(A)), and we have written the char­
acter of Lie( G) corresponding to the character 4> of G by the same letter. 

Remark. The relative invariance off°' with respect to the group G 
can be expressed in terms of the corresponding Lie algebra. If we use a 
coordinate system, this invariance can be expressed as a system of linear 
differential equations of first order 

It is easy to see that (A) is the Fourier transform of (C). In the original 
theory of M. Sato, this fact was the keystone. But, as is explained 
in the introduction, the differential equation (C) is not enough, and it 
becomes necessary to consider equations of general order together with 
(C). In other words, instead of the D-module defined by (C), we need 
to consider its quotient. This quotient is the D-module D f°', whose 
Fourier transform is determined by the above theorem to some extent. 

§4. Perverse sheaves on V(C) 

There is a canonical two fold covering nv 6'{ -+ O'{, which is 
possibly disconnected. The direct image sheaf n:c is a direct sum of 
the constant sheaf (C and a certain locally constant sheaf Hv. Let oan be 
the sheaf of holomorphic functions and let Sol( - ) = RH om D ( - , oan). 

Theorem 3 [3, 3.23]. Let j : D-+ V, jv : nv -+ vv, i : 0 1 -+ D 
and iv : O'{ -+ nv be the inclusion mappings, n = dim V = dim vv and 
m = dimO1 = dimO'{. 
(1) The sheaf of holomorphic solutions of D f°' is given by 

if a EA+ 

if a EA_. 
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(2) The sheaf of holomorphic solutions of F(D J°') is given by 

if a EA+, 

if a EA_. 

Theorem 4. Let Fgeom be the Fourier-Sato transformation ( = 
the geometric Fourier transformation of Brylinski-Malgrange- Verdier) 
[I], [4], [6]. Then 

FgeomU1(!CJ°')) = Rj; i; (rcr-a 0 Hv)[m - n], and 

Fgeom(Rj*(!CJ°')) = j 1v i; (er-a 0 Hv)[m - n]. 

§5. Hyperfunctions on V(JR) 

Since 

RI'v(IR)RHomD(-, oan) = RHomD(-, RI'v(JR)(oan)), 

by applying RI'v(IR) to the first part of Theorem 3, we get the following 
result. 

Theorem 5. If a EA+, every hyperfunction solution of Dfa on 
O(JR) can be uniquely extended to a solution on V(JR). 

Since the hyperfunction solutions of D fa on O(JR) can be easily 
determined, the above theorem determines the hyperfunction solutions 
of Dfa on the whole space V(JR). In the same way, applying RI'vv(IR) to 
the second part of Theorem 3, we can also determine the hyperfunction 
solutions of F(D fa) on vv (JR) if a E A_. Comparing these two results, 
we can calculate the Fourier transforms of the hyperfunction solutions 
of D f°'. See [3, §4] for the details. 

§6. l-Adic etale perverse sheaves on V(lFq) 

In this section, we denote by lF q the finite field with q elements and 
assume that the characteristic p of the finite field lF q is sufficiently large. 
In order to consider 'reduction modulo p', we assume that f E Z[V] and 
jY EZ[Vv]. 

Let l be a prime number different from p, x E Hom(lF;, (Qz x ), and 

(Q1 denotes an algebraic closure of the l-adic number field. Let x(O) = 0 
by convention. Let L(x) be the corresponding Lang torsor [2,p.171] on 

lF q x, where lF q is an algebraic closure of lF q· Note that L(x) is also a 
Kummer torsor, and hence is obtained from the corresponding Kummer 
torsor over IC x by 'reduction modulo p'. 
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-x 
Theorem 6. Let 'lj; E Hom(IB' q, Q1 )-{ 1} and :F ,fJ be the geometric 

Fourier transformation of Deligne [7]. Then 

F,p(jif* L(x)) = Rj':: i; (r* L(x- 1 ) ® Hv)[m - n], and 

F,p(Rj*f* L(x)) = j 1v i; (r* L(x- 1 ) ® Hv)[m - n]. 

Sketch of the proof. In principle, we want to obtain Theorem 6 
from Theorem 4 by 'reduction modulo p'. But, since the definition of 
Fgeom involves the half-space, we can not consider its 'reduction modulo 
p'. Also, since the definition of F,p involves the Artin-Schreier sheaf, we 
can not obtain it as a result of 'reduction modulo p'. We avoid these 
difficulties as follows. It is known that f is a homogeneous polynomial. 
Let d = deg f. Then 

( L x(x-d)'l/J(-x))( L x(f(v))'l/;((vv,v))) 

xEIF; ,v 

= L x(f(v))'l/;(x((vv,v)-1)) 

= L x(f(v))'l/J(x((vv,v) -1))- Ex(f(v)) 
xElF q ,v V 

=q L x(f(v)) - Ex(f(v)). 
V 

Thus we can eliminate the additive character 'lj; from the Fourier trans­
form of x(f(v)) by multiplying the classical Gauss sum, whose property 
is well understood. Imitating the above calculation, we can eliminate 
the half space and the Artin-Schreier sheaf from Fgeom(ji(C/a)) and 
F,p(J1f* L(x)), respectively. Hence we can move from C to IFq by 'reduc­
tion modulo p'. 

§7. C-valued functions on V(IB'q) 

7.1. Applying the trace formula of Grothendieck [2] to Theorem 6, 
we get the corresponding result concerning C-valued functions on V(IB' q)-

7.2. Although we have started the arithmetic study from 
D-modules, it is also possible to start it from mixed Hodge modules 
of M. Saito [9], [10]. We can consider the weight filtrations ( one half of 
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the mixed Hodge structure) in each step (except §5), and at this final 
step, we get a deeper information, i.e., the so-called Weil estimation. 

Before giving further explanation of these results, let us present a 
conjecture. 

7.3. We know that the b-function is of the form 

d 

b(s) = b0 IT (s + aj) 
j=l 

with positive rational numbers °'j· See §3 for b(s). Consider the poly­
nomial 

d 

bexp(t) = II (t - exp(21ry'=I aj)). 
j=l 

We can show that this polynomial is the minimal polynomial of the 
monodromy of the vanishing cycle sheaf R'l/Jt(C) = R'l/Jt(Q) ® \C. Hence 
bexp(t) E Q[t]. On the other hand, exp(21r✓-=Taj) are roots of unity. 
Hence bexp(t) is a product of cyclotomic polynomials, and is written as 

bexp(t) = II (tj - l)e(j) 

j2:1 

with some integers e(j), which are possibly negative. In order to state 
our conjecture, we need more notations. 

r = card{j I aj E Z} = L e(j). 
j2:1 

r(-) =rank= dimension of a maximal torus. 

s( - ) = split rank = dimension of a maximal split torus. 

Zc(vv) = isotropy group at vv E vv(Fq)-

r(vv) = r(G) - r(Zc(vv)). 

s(vv) = s(G) - s(Zc(vv)). 

ry(vv) = (-1r(vv)~s(vv)_ 

G(x, 'l/J) = L x(x)'l/J(x). 
xElF; 
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Conjecture A. If the characteristic of F q is sufficiently large, 

q-½dimV L x(f(v))'lj;((vv,v)) 
vEV(lFq) 

for vv E O{'(Fq)-

Remark 7.4. Our first result (cf. 7.1) says that 

left side of (*) = right side of (*) x C 

95 

with some constant C. At the same time, we can also show that the left 
side of(*) vanishes if vv (/. (Oi)(Fq)- The Weil estimation (cf. 7.2) says 
that the absolute value of this constant C at every archimedean place is 
equal to one. 

7.5. Assume that the characteristic of F q is not 2, and let x1; 2 

be the unique non-trivial character of F; of order 2, i.e., the Legen­
dre symbol. For v v E vv (F q), let h v ( v v) be the discriminant of the 

quadratic form Q determined by (a;~~~~v (vv)), i.e., the discriminant 

of the quadratic form on vv(Fq)/(radical of Q) induced by Q. Since 
hv(vv) is an element of F; /F; 2 , x1; 2 (hv(vv)) is well-defined. 

Lemma 7.6. 
m = r mod 2, 

1 
where m = dimO1 = dimO{' Especially, x1; 2 ((-1)2Cm+r)) is well-
defined. 

Proof. Applying the calculation in the 'proof' of Theorem 6 to the 
case where x is the trivial character Xo of F;, we get 

L xo(f(v))'lj;((vv,v)) E Z. 
vEV(lFq) 

On the other hand, 

q ? L xo(f(v))'lj;((vv,v)) = q½(n-m)-; 

vEV(lFq) 
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1 
(cf. 7.4). Hence q'i(m-r) E Zand m = r mod 2. 

(**) 

Conjecture B. If the characteristic of lF q is sufficiently large, 

ry(vv) = X1;2((-1)½(m+r) IlJe(j). hv(vv)) 

j~l 

Remark 7.7. We can show that 

left side of (**) = right side of (**) x E 

with E = ±1, independent of vv. 

Remark 7.8. The above conjectures are 
(1) compatible with the castling transformations. 
Actually, the author has come to these conjectures by studying quan­
tities which are invariant under the castling transformation. (See [12] 
for the definition of the castling transformation.) The author hopes to 
discuss such quantities elsewhere. The above conjectures are also 
(2) compatible with the transformation of the form f ---+ cfk, fv ---+ 

cv Jvk with c, cv E Z and a natural number k, 
(3) supported by the theory of generalized Gelfand-Graev representa­
tions of finite reductive groups due to N. Kawanaka [8], and 
( 4) supported by many examples. 

§8. Dictionary 

Assume the regularity condition for the prehomogeneous vector 
space (G,p, V) (cf. remark in §2). From the conjectures A and B, it 
follows that 

n 
q- 2 L x(f(x))?jJ((x,y)) 

xEV(IF0 ) 

(8.1) 

In this section, we shall give a heuristic argument which explains this 
equality as an analogy of the following theorem. 
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Theorem (M. Sato-T. Shintani [11], J. Igusa [5]). Assume the 
regularity condition. Then 

(8.2) 

A part of this expression is justified by (7.6). For the full justifica­
tion, see [11]. 

If we rely on the Lefschetz principle, it would be able to translate 
this theorem into a statement in the finite field case. Let us give a 
dictionary. 

js 
1 
2 

r(s) = fa°° t 8 e-trf:/-
27ri 

IB'q 
7/J E Hom(F q, ex) - {1} 

XE Hom(F;,cx) ~ c~1 z) /Z 

xj 
X1;2 Legendre symbol 

G(x) = LtEIFx x(t)1/;(t) 
q 

q 

Since the multiplicative characters of w; are parametrized by a subset 
of Q modulo Z, s and s + l should correspond to the same character of 
lF;. Hence we shall consider s and s + l equivalent and denote s ~ s + l. 

Now let us start with the translation of the first factor of the right 
hand side of (8.2). Since 
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and s ~ s + 1, we have 

d II f(s + a 1) 

j=l ~ 

~ II (rr r(s + t)) e(j) 

j?_l k=O ~ 

( f(js) .l 1 .l)e(j) 
= II -- -z2. -.- . 1 2 

·>l ,/2i1, (jJ)S 
]_ 

= f(Js) i~ 1 ·e(j) 
( ( . ) e(j)) ( ) 

8 

( ) ½ JJ ,j2ii IJj(ji)e(j) IJJ 
Hence by (8.2), 

~ (II (r(js~)e(j)). 
·>1 ,/2i1, ]_ 

Thus, using the above dictionary, we can translate (8.2) into the identity 
(8.1). 
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