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Given a continuous absolutely irreducible representation
p: Go——>GLy(F,)

and a finite set of primes S which contains the primes of ramification. for
7 and the prime number p, the notion of universal deformation for (g, S)
was discussed in [M]. It was shown in [M] that there exists a complete
noetherian local ring R with residue field F,, uniquely determined up to
canonical isomorphism, and a lifting

p: Gg——>GL(R)

of g (unique up to strict equivalence—see § 3.1 below) which is unramified
outside S, and satisfies a universal property vis a vis all liftings of p to
GL,(s/) which are unramified outside S, where of ranges through the
category of complete local noetherian rings with residue field F,.

For S={p} and a class of representations p (“special dihedral repre-
sentations’’) the universal deformation ring R was shown to be a power
series ring in 3 variables over Z,. If X is the “universal deformation
space”, i.e., the space of continuous homomorphisms from R to Z,, then
X is a 3-dimensional analytic manifold over @, and for each x e X special-
ization of p yields a Galois representation

0s: Go—>GL(Z))

(determined up to strict equivalence) which is a lifting of p and is un-
ramified outside .S. One of the aims of [M] was to embark on a systematic
study of certain “natural subspaces” in X: loci of points x € X such that
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p. satisfies some “natural” condition (e.g., the image of an inertia group
at p under p, contains an open subgroup of finite index in SL,(Z,) etc.—
see §3.3 below). The objective of this study was to get a detailed view of
the structure of these ‘“natural subspaces” in the universal deformation
space for a particular class of representations p in order to have some idea
what to expect in more general contexts.

In [B] a different view of the problem of universal deformations was
taken, where group-theoretic tools were developed with the aim of making
the universal deformations more explicit. A number of applications were
given there to universal deformation problems related to local and global
Galois groups.

The object of the present paper is to take again a particular class of
representations (‘“‘admissible S,-representations”—see Chapter 2) and to
apply the techniques of [B] to study the universal deformation space and
the structure of its “‘natural subspaces”. Thanks to these techniques the
arguments employed here are much more direct than in [M] and the re-
sults are more explicit. A distinction between two types of admissible
Sy-representations emerges (“generic” vs. “degenerate)” as relevant to the
structure of “natural subspaces”. In the “generic” case, we completely
determine this structure (Proposition 13 below). We also produce nu-
merical conditions which, in the case of special S,-representations, are
equivalent to the condition of “genericity”. We make computations
which assure us that these numerical conditions indeed hold in a large
number of instances.
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Chapter 1. The General Set-Up

1.1. Relative p-completions

If Fis a field, let G, denote the Galois group Gal (F/F) for F a choice
of separable algebraic closure. In this article we fix a prime number p, and
an algebraic closure @, of Q,. We let Q denote the algebraic closure of
Q contained in @,, which gives us a continuous injective homomorphism,

(L.1) Go,=—>Go.
If
p: Go——>GLy(F,)
is a continous homomorphism, let
0ot Go,—>GL,(F,)

denote its composition with (1.1). Let N (resp. N,) denote the kernel of
p (resp., of p,). Let LCQ denote the splitting field of p, i.e., the fixed
subfield of @ under the action of N, and let L,CQ, denote the splitting
field of g,.

Now fix S a (finite) set of nonarchimedean places of L consisting of
all places lying above some finite set of rational primes, including the
prime p. Let L, denote the completion of L at any place v. By our set-
up, we have singled out a “chosen” place (call it v;) in .S defined by the
property that L, =L, _

Let H C N denote the closed characteristic subgroup such that the
Galois group P:= N/H is the Galois group of the maximal pro-p extension
field of L in @ which is unramified outside S (ramification at the archime-
dean primes being allowed). Let H,C N, denote the closed characteristic
subgroup such that P, :=N,/H, is the maximal pro-p quotient group of
N,. Then the subgroup HC G (resp. H,CG,)) is normal.

Definition 1. The group G :=Gy/H is called the p-completion of G,
relative to g and S. The group G, :=G,,/H, is called the p-completion
of Gy, relative to p,,.

Remark. The deformation-theoretic motivation for relative p-com-
pletions comes from the fact that ker (GL,(&/)—GL,(F,)) is a pro-p-group
(see [B], [M]) and so, for example, every lift p: Gy, —~GLy() of p,, where
& is a complete noetherian local ring with residue field F,, factors through
the quotient group G,.
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By construction, we have the following diagram of pro-finite groups,
where the horizontal lines are exact:

|——P >G >A >1.

11 ]

l—>P,—>G,——>A,—>1.

Here A (resp., A,) is a finite group isomorphic to the image of p
(resp., of g,) in GL,(F,).

If W is any topological group, we denote by W its p-Frattini quotient,
i.e., W is the maximal elementary p-abelian topological quotient group of

w.
By Local and Global Class Field Theory, the p-Frattini quotients P,

and P are finite. Since P, and P are pro-p-groups, it then follows by
Burnside’s lemma ([K] Satz 4.10) that they are topologically finitely
generated.

1.2. The p-Frattini quotients of P, and of P

Suppose that 4, has order prime to p. Using the isomorphism pro-
vided by Local Class Field Theory we may induce an isomorphism of p-
Frattini quotients

L¥*—>P,
viewed as F,[4,]-modules. Let P} P, denote the image of inertia; it is
a sub F,[4,]-module.

Proposition 1 ([T], [P]). There are isomorphisms as F,[A,|-modules:

P_I(;EFP[AP]@/"P(LP)
P,=P®F,

where the second summand in the second line is given an F,[A,] structure via
the trivial action of A,

Let E denote the group of (“global”) units in the ring of integers of
L and, if v is any nonarchimedean place, let E, denote the group of
(“local”) units in the ring of integers of L,. The natural mapping (provided
by Global Class Field Theory) of the idéle class group of L to the Galois
group of the maximal abelian extension of L induces a mapping on p-
Frattini quotients @, .,E,—P which is equivariant for the action of 4 and
whose kernel contains the image of E, the p-Frattini quotient of the group
of global units.
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Definition 2. The pair (Z, S) is called neat for p if

(a) The mapping E—®,.FE, is injective i.e., any global unit which
is locally, for all v e S, a p-th power, is globally a p-th power,

(b) The class number of L is prime to p (or equivalently, the map-
ping ®,.E,—P is surjective), and

(©) The mapping p,(L)—>®,csp,(L,) is surjective (and hence is an
isomorphism).

Remark. If conditions (a) and (b) hold (e.g., if (L, S) is neat for p)
then the sequence

(1.3) 0—E—>®D, . E,—>P—>0

is exact.

For the remainder of this section we suppose that the pair (L, S) is
neat for p, and the cardinality of A is prime to p.

Let Cc 4 denote the subgroup generated by the image of a complex
conjugation involution (so that C is either trivial or of order 2, according
to whether L is totally real or totally complex). In the statement and
proof of the proposition below, we shall refer to the following F,[4]-
modules: F, (given trivial 4-action), p,(L) and p,(L,) (given their natural
Galois actions), Ind4F, (the F,[4]-module obtained by inducing the trivial
F,[Cl-module F, to A4), and F,[A] (the free module of rank 1).

Proposition 2. We have isomorphisms of F[A]-modules
P® Ind{ F,=F,[A]®F,.

Proof. We use the exact sequence (1.3) of F,[4]-modules and com-
pute the F,[4]-module structure of the first two nonzero terms in (i) and
(ii) below. The proposition then follows.

(1) E®F,=1Ind4 F,®pu,(L)

(Proof. The fact that the representation of Q[A4] on QR(EPZ) is
isomorphic to the permutation representation of 4 on cosets mod Cis due
originally to Herbrand. Here the A4-action on Z is meant to be the trivial
action. See [T] I §4 for a proof of Herbrand’s theorem and for historical
discussion. Statement (i) can then be obtained from this as an easy exer-
cise, using that the cardinality of 4 is prime to p.)

(ii ) @D, 13 sEv = Fp[A] ® {G')v es/lp(Lv)}-

(Proof. Use the p-adic logarithm to induce an A-equivariant iso-
morphism between an open subgroup of finite index in the p-adic Lie
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group @, sE, and 0,QZ,. Then an easy exercise, similar to the one for

(i), gives the assertion.)
If L is totally complex, i.e., if C is of order 2, let F, denote the one-

dimensional F,[C|-representation with nontrivial C-action. Then:
Corollary 1. If L is totally real, we have
P=F,
while if L is totally complex, we have

P=Ind4 F,®F,

1.3. Generators and relations for P, and P

If H is any pro-p-group, then its generator and relation ranks (cf. [K],

§6) will be denoted d(H) and r(H) respectively.
If Fis a field, let 8(F)=1 if F contains a nontrivial p-th root of 1,

d0(F)=0 otherwise.

Proposition 3 [K] Sitze 10.3, 10.5.
(@ r(P)=0(L,)
(d) d(P)=[L,: @]+ 1+46(Ly).

Let r, be the number of complex places of L. Let W C L* denote the
subgroup of elements x e L* satisfying the condition that the fractional
ideal (x) is a p-th power and the image of x in L¥ is a p-th power for all
ve S. Then W contains L*?., Put B:=W/L*?, viewed as an F,-vector
space. Note that if (L, S) is neat for p, then B=0.

Proposition 4 [K] Satz 11.8, [N].
(@ r(P) =(v§ o(L,))—o(L)+dim B

) dP)=r,+1+rP).

Corollary 2. P is a free pro-p-group if and only if

(i) B=0

(i) the mapping p,(L)—>®,csp,(Ly,) is surjective.

Corollary 3. If (L, S) is neat for p, then P is a free pro-p-group.

Remark. Parts (b) of Propositions 3 and 4 also follow from Proposi-
tions 1 and 2 of §1.2, respectively.
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Chapter 2. The Particular Set-up

Let K/Q be a cubic field extension satisfying these properties:
(a) The field K is not totally real, and
(b) The rational prime p splits in the ring of integers of K as follows:

(=2, 2,

where £, is of degree 1, and &, is ramified, of ramification index 2. We
may view K as a subfield of Q, by completing K with respect to Z,.

Either of the two properties (a), (b) insure that K is nonGalois over
Q. Let L/Q denote the Galois closure of K in Q, and let v,, v,, v, denote
the three places of L above, p, where v, is the unique place lying above the
prime p, of X, i.e., L, =L, and the decomposition group at v, is G,. Let
g ¢ Gal(L/Q) denote the involution fixing K (equivalently: fixing v,) and
let 7 e Gal (L/Q) denote the element of order 3 which cyclically permutes
Uy, Uy, Us (71 U1, etC).

Definition 3. A cubic field extension K/Q is admissible if it satisfies
(a), (b) above, and if in addition (L, S) is neat for p, where S={v,, v,, v,}.

Examples. Recall the notion of special S;-extension [M]: For prime
numbers p of the form p=2744a® with a e Z, let K be the cubic field
Q(x) where x is a root of x*t-ax-41. We refer to K as a special cubic field
(of discriminant —p); its Galois closure L/Q is called a special S;-exten-
sion. It is shown in [M] that special cubic fields are admissible. The
primes p < 1,000,000 of the form 274-4a® are: 23, 31, 59, 283, 1399, 4027,
5351, 11003, 16411, 32,027, 97,583, 119,191, 157,243, 202,639, 275,711,
415,319, 562,459, and 665,527.

Now fix an admissible cubic extension K/Q, and let 4 :=Gal (L/Q)
denote the Galois group, isomorphic to the symmetric group on three
letters, with generators ¢, ¢ as described above. Let 4, :={1, ¢}=4. Let
p: Gal (L/Q)=—>GLy(F,) be a choice of imbedding, and denote by the
same letter the homomorphism from G, to GL,(F,) obtained by composi-
tion with the natural projection Go—»Gal (L/Q). As above, let G denote
the p-completion of G, relative to g and S. Then p factors through G to
give a continuous homomorphism (denoted by the same letter)

1 G——>GLy(F,).

Let E denote the group of global units in L, and E, ({=1, 2, 3) denote the
groups of local units in the completions L, of L with respect to the places
v, ({=1,2,3). Let
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I 3P — G —>d — 1
Q.1 T T T
| P G >d, ]

be the diagram (1.2) of § 1.1 coming from our fixed admissible cubic ex-
tension K/Q, with S={v,, vy, v;}.
Let

2.2) 0—E—>E®PEPE—>P—>0

be the exact sequence of p-Frattini quotients (1.3) of §1.2, which we view
as F,[A]-modules. By our conventions, the image of E, in P is equal to
the image of PJ in P.

2.1. The action of A4 on the p-Frattini quotients

We now suppose that p is greater than 3. Up to equivalence, there
are three irreducible representations of 4 over the field F,:
1 =the trivial representation
¢ =the sign representation
A =the irreducible 2-dimensional representation.
Proposition 5.  There is an F,-basis of P, consisting of three elements

&, 7, @ such that & and 7} generate P} and the action of the involution ¢ in
A, is given by the rule: o(§)=§; o())= —7; o(p)=0.

Proof. This is just Proposition 1 applied to our particular set-up.

Proposition 6.  The p-Frattini quotient P is 4-dimensionul. The natural
action of A on P is equivalent to 1PeD.

Proof. This is just Proposition 2 applied to our particular set-up.

2.2. Generators and relations

The pro-p group P is free by Corollary 3 in § 1.3; the pro-p-group P,
is free by Proposition 3 of §1.3. The group G is a semi-direct product of
A by P via an action of 4 on P which is uniquely determined up to
(noncanonical) isomorphism by the isomorphism class of the 4 module P
(see [B]).

Proposition 7. Let II be the free pro-p group on 4 generators labelled
u, (), 7(u), v. Define an A-action on I by the following prescription:
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(@) <(v)=v, and ¢ cyclically permutes the three generators u, z(u),
7X(u) in the evident manner.

by o(w)=u and o(v)y=v-".

Let A IT denote the semi-direct product of II by A, with the above
action of A on I1.

Then there are isomorphisms as indicated, making the diagram below
commutative .

l—s s> AX I —>A4—>1

;lj Eli =l(identity)

l|—>P—> G —>A—>1

Proof. The prescription (a), (b) extends to an A-action on I7 as is
easily seen. This 4-action induces an 4-module structure on the p-Frat-
tini quotient group /I which is equivalent to the 4-module structure of P.
The proposition then follows from [B] Proposition 2.7.

How much freedom do we have in choosing the isomorphism i? A
partial answer is given by the following

Addendum (to Proposition 7). Choose an A-action on P that lifts the
natural 4-action on P. Let o denote this 4-action. Let w ¢ P be any ele-
ment such that ¢ o w=w, and the three elements

W, ToW, rloW
are linearly independent in P. Then there is an isomorphism 7 as in Pro-
position 7 such that

(i) forallae 4 and z e P, aoz is the conjugate of z by i(a),

(ii) i(W=w.

Proof. Let a complement in P of {w, z o W, * o W) (as F,[A]-modules)
be generated by 7. Then goi=i"', coi=".

By [B], Theorem 2.8, there exists ¢ € P mapping to 7 with got=1¢"",
rot=t. Define a mapping i: II—P by setting i(u)=w, i(v)="t and insist-
ing (as is possible because of the compatibility of A-actions) that i/ com-
mute with the action of 4. The homomorphism i extends to a homo-
morphism A X II—AX P (setting i to be the identity on 4) and it is an
isomorphism since there is the obvious inverse j defined by j(w)=u, j(¢)
=v. (By Burnside’s lemma, P is generated by w, zow, z2ow, £.)

Proposition 8. Let I, be the free pro-p group on 3 generators labelled
&, 9, ¢. Define an action of the cyclic group A,={1, o} on II, by letting o
fix & and ¢ and a(p)=y"'. Then there is a commutative diagram where the
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vertical maps are isomorphisms:

l— Il ,—— A, X I ,—>A,—>1

A

I—>P,—> G, —>A,——1

and where the semi-direct product is with the action described above.
Moreover, the generators &, y of II, are mapped, under the vertical isomor-
phism, to the image of the inertia group.

Proof. The given A,-action on II,induces an 4,-module structure on
the p-Frattini quotient group I/, which is equivalent to the 4,-module
structure of P,. The first part of the Proposition follows then from [B|
Proposition 2.7. The second part follows similarly, using Proposition 5
and [B] Proposition 2.7.

Remark. So far we have not made any connection between the pre-
sentation of G, and the presentation of G.

2.3. Generic vs. degenerate cases

Returning to the exact sequence (2.2) of F,[4]-modules, let P,CP
denote the image of E, for i=1,2,3. Thus P, is the image of P} in P.
Denote by d the dimension (over F,) of the image of the projection
mapping

— Iy
E—>E,.

Since the projections I, (i=1, 2, 3) are permuted transitively under
the action of A, this dimension is independent of 7. Note that, by exact-
ness of (5), d is greater than 0. We therefore have only two possible cases:

(I) The generic case: d=2

If d=2, i.e., the projections are isomorphisms, then the images P, are
pairwise transversal, i.e., P, P,=0 for i j. To see this, just note that if
there were elements y, € E;, y, € E, such that the image of y, in P, were
equal to the image of —y, in P,, then the element y,®y,P0 e E; X E, X E,
would be in the image of E, i.e., there would be an element y ¢ E such
that I1,(y)=y,, Il (y)=y;, and II,(»)=0. But II, is an isomorphism,
giving that y,=y,=0. Here k is the index such that {3, j, k}={1, 2, 3}.

(IT) The degenerate case: d=1

If d=1, the intersection P,(\ P, Py is a 1-dimensional F, vector space.
To see this, first note that the image II,(E)CE, is a 1-dimensional vector
space, stable under the action of ¢ =g¢,, the involution in 4 which fixes v,.
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There are only two such subspaces, the 4- or — eigenspace for the action
of ¢. Let e= =1 corresponding to the sign of the eigenvalue of ¢ on this
image. It then follows, by symmetry, that the image I7,(E)CE, is equal
to the e-eigenspace for the action of ¢,, the involution in 4 which fixes v,
(i=1,2,3). Now take an element ¢2c0 in E which is in the kernel of g,.
Let e,=1(e) for i=1,2,3. Then 0®e,Pe, maps to zero in P. Since e,
and e, cannot both be zero (exactness of (2.2)) neither can be zero. Their
images in P generate the same 1-dimensional F,-vector space. By con-
struction, e; (for i=2 or 3) is in the image of E under II,. Therefore e,
generates the e-eigenspace in E, for the involution ¢;. It therefore follows
that the e-eigenspaces for the involutions ¢, acting on the subspace P,C P
coincide, for i=2,3. Now, it cannot be the case that P, coincides with
P,. For then, by symmetry, all three subspaces P, (j=1, 2, 3) would
coincide, contradicting the fact that they generate P. It follows that
P,N P, is equal to the 1-dimensional space which can be described, alter-
natively, as the e-eigenspace for the involution ¢, in P, or the e-eigenspace
for the involution ¢, in P,. By symmetry, it is also the e-eigenspace for
the involution ¢, =g in P,, establishing our claim.

To justify the terminology “‘generic” and “degenerate” we shall give
a necessary and sufficient numerical condition for a special S;-extension to
be generic, and show that there are indeed lots of them. Let, then, as in
§4 and [M], p be of the form 27444* for ae Z, and suppose that
K=0(x) is the cubic field generated by the element x which is a root of
x*+ax-+1. As above, let L/Q be the Galois closure of Q.

Proposition 9. L/Q is a degenerate S;-extension if and only if

1—(a/3)-!
p

2.3) =4/3° mod p,

the equation being a congruence of p-units (say in Z,).

Proof. Denote by x, the unique root of x*+ax+1in Q,, and let x,,
x, denote the two other quadratic conjugate roots in Q,. Write:

2.4) x=0B4c-p)a mod p*

and solve for ¢ mod p, giving c=1/(27+4*) mod p.
Now define p-adic integers B, C by the factorization

XtaX+1=(X—x)X*+BX+C)

giving B=x, and C=a-+4x% The roots x, x; are then roots of
X*+BX+C.
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Lemma 1. Let F/Q, be the splitting field of X*+ BX+C. Then X,/x,
is not a p-th power in F.

Proof. Put D=B*—4C so that D= —3x}—4a. Using the determi-
nation of x; mod p* given above, one obtains

—1
D= <“____> . mod p*.
x,(2+a) P P
The p-adic integer D is a square in F, and since p2c2 and the expres-
sion in the large parenthesis above is a p-adic unit, there is a uniformizer
# in the ring of integers of F such that z*=D/4 and x,= —x,/24-7, x,=
—x,/2—z. To prove the lemma, we show that

xP~1xx2~! mod #*

or equivalently,
xBx, 3= xPx, mod 7.

But x?=x?=(—x,/2)? mod 7%, and, since 2720 mod #?, we have that
x,32x, mod 7. The displayed noncongruence above then follows, as does
our lemma.

Lemma 2. The — eigenspace for the involution g, in E, is in the image
of Il,: E-E, (i=1, 2, 3).

Proof. It suffices to prove Lemma 2 for i=1. But x,/x, is in the —
eigenspace of ¢, in E. Tt is visibly in the image of E. By Lemma 1, it
projects nontrivially to E,.

Lemma 3. The + eigenspace for the involution ¢, in E is in the kernel
of I, (for all or equivalently for any i=1, 2, 3) if and only if the congrence
(2.3) holds.

Proof. Again it suffices to prove our lemma for i=1. The element
x € Kis in E, and its image in E generates the 4 eigenspace for ¢. It
follows that the 4 eigenspace for ¢ in E projects to zero under [7, if and
only if x, is a p-th power in Q,. But x, is a p-th power if and only if x?—*
=1mod p>. A simple computation using the congruence (2.4) mod p*
together with the determination of ¢ establishes that x?~'=1 mod p* if and
only if the congruence (2.3) holds.

From Lemmas 2 and 3 we see that II,: E—~E,; is an isomorphism if
and only if congruence (2.3) doesn’t hold, whence our proposition.
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Computation. We verified that the congruence (2.3) does not hold
for all primes p<11,003 in the list given in Chapter 2. Thus for all
special S,-extensions corresponding to these prime numbers we are in the
“generic” case. We have no example of a “degenerate” case.

2.4. Linking local and global presentations

We identify G with 41X /] and G, with 4, II, as in Propositions 7
and 8 of Section 2.2. Thus, the pro-p group has, as system of generators:
u, 7(u), 7*(u), v. The pro-p group I, has, as system of generators: x, y, z.

The mapping G,—G restricts to a mapping of 7, into I1.

Proposition 10. I the admissible cubic extension K/Q has Galois
closure L|Q which is generic, then we may take the local and global system
of generators so that under the mapping Il ,—II, the image of & is u, and if
~ denotes projection to p-Frattini quotient groups the image of 7 is
U+ 2(c(@) —*(w)).

Proof. Under the identification II=P, let /I, correspond to the
image of the i-th inertia group P, in [T, for i=1, 2, 3. Recall that, as A4-
module, /7 is isomorphic to 1Pe@%. Let r, s denote the images of the
generators x, y € I1,. Let R, Sc I denote the A-stable subspaces gener-
ated by F, 5 respectively.

Lemma 4. As A-modules, R=1®Y and S=:DX.

Proof. First we note that neither R nor S can be 1-dimensional over
F,. For, if they were, they would be contained in 11, (since they would
be generated by 7 or 3, respectively) and hence by symmetry they would
be in the intersection of /I, for i=1, 2,3 which is impossible, by our
genericity assumption. Also note that, by construction, R is a quotient
of the induced 4-module Indf (1) and S is a quotient of Indf (c). B

Since Indj (1)=1®%, and Indj,(s)=¢®X, and since R+S=II the
lemma follows.

From the lemma it follows that the elements 7, #(7), *(F) are linearly
independent in /7, and, of course, ¢(7)=F. From the addendum to Pro-
position 7 of Section 2.2, it follows that we may take u to be image of &,
and complete u, z(u), z*(1) to a basis as in Proposition 7, by the appro-
priate choice of v.

Since o(7)=—7, it follows that §=a-U+ b(c(@)—*(@)) for appro-
priate choice of @, b € F,. From the lemma it follows that neither a nor
b is zero. By appropriate modification of the choice of & (hence of u),
and v (replacing them by appropriate powers of themselves) we may
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arrange it so that a=1 and b=2.

Chapter 3. Universal Deformations

3.1. The explicit description

Let K/Q be an admissible cubic extension, which can be either generic
or degenerate. We keep to the notation of Chapter 2. In particular, we
have the continuous homomorphism

0: G—>GLy(F,)

given in Chapter 2.

Let o/ be a complete noetherian local ring with residue field F,. Two
liftings p, and p; of g are strictly equivalent if pj can be brought to p, by
conjugation
GLy(s7)

\

GL(F,)

(3.1) G

by an element in the kernel of the projection of GL,(&Z) to GL(F,). A
deformation of g to < is a strict equivalence class of liftings of g to . It
is shown in [M] (see also [B]) that a universal deformation of g exists. Let
R denote the universal deformation ring of g, and

p: G—>GL,(R)

the universal deformation (or more accurately: a representative lifting in
its strict equivalence class). We identify G with A I] and P with IT as
in Proposition 7.

Proposition 11. We may identify R with the power series ring in 3
variables Z [[Ty, T;, T;]] and we may give the following description of the
universal deformation p:

@) (%o _Y)
i o235 _ijp)

(iif) uH(l*(;Tl l'sz)-
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: 1—-372 1/2
(iv) v»—+<( _33753) (l_gsTg)l/z)

Proof. Consider any deformation p of p to a complete local
noetherian ring <7, with residue field F,. That is, we are given a strict
equivalence class of liftings

Ax T-25GL(s2)

A—" SGIL(F)

The ring o/ has a unique Z,-algebra structure, and there is a unique
representative lifting whose restriction to 4C A IT is prescribed by the
formula (i) and (ii) in the statement of our proposition, composed with
the natural homomorphism GL,(Z,)—~GL,(</) induced by the Z, -algebra
structure of 7. Let p refer to this unique representative lifting. By Pro-
position 7 (b) it follows that o(u) is a diagonal matrix in the kernel of
reduction to GL,(F,). As for p(v), it too is in the kernel of reduction to
GL,(F,). From Proposition 7 (a) one sees that p(v) is a matrix of the form

a b
—3b a
for elements a=1 mod m, and b € m,, where m,, is the maximal ideal of

/. From Proposition 7 (b) one also has that p(v) is of determinant 1.
It follows that there are elements ¢,, #,, #, € n,, such that

1+t O 1—3¢3)* t
p=(15" 10 e=("T5 o )
Our proposition follows immediately from this.

3.2. The generic case

From now on we make the assumption that the Galois closure L/Q
of our admissible cubic extension K/Q is generic. We also suppose that
we have chosen a system of generators for G, and for G which are linked
in the sense of Proposition 10 of Section 2.4.

Proposition 12.  Let m be the maximal ideal of Z [T}, T,, T,)l. There
are power series f, g € m such that
(]) f(Tvla T2a T;): T1_’ T2+ T;; mOd mz
g(T,, T,, T)=3T,—3T,—37,  mod m’
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and such that

o _(A+"  f

@ o= 1 gy

Proof. The existence of power series f, g satisfying (ii) is immediate
from the fact that o(y) =" (which gives that p(y») has determinant 1, and
diagonal entries equal).

To verify (i), first note that since the kernel of the natural projection
GLAZ [T\, T;, T,]/m*)—>»>GLF,)
is an elementary p-abelian group, the homomorphism
p: P—>GL(Z [T, T;, T3]
induces a homomorphism
P—>GL(Z [T, T, T,Ij/m?).

By Proposition 10 we have that the image of 7 under the natural
mapping 1,—1T is T+ 2(c()—*()) and by Proposition 11 we have the
explicit description of p(v) and p(u). A simple computation then gives (i).

3.3. Fine structure of the universal deformation space

Let X=Hom,,,,(Z[T}, T;, T;]l, Z,) which we view as a 3-dimensional
analytic manifold (over Q,). We make the identification

X=pZ, X pZ,X pZ,

by associating to x € X the triple (x(T}), x(T;), x(T;)). To each x e X we
have the image of the representation p under x, which we denote

0z G——>GL(Z ).

In [M] a glossary of properties of representations p, was given ([M]
Chap. IT §1). In the definition below we recall some of these properties,
giving somewhat briefer definitions, which are nevertheless equivalent to
the definitions given in [M] in the special context of the present paper.

Definition 4. The point x ¢ X is called

(a) inertially reducible if the image of an inertia subgroup at p
under p, is contained in a Borel subgroup of GL,(Q,).

(b) globally (resp. inertially) dihedral if the image of G (resp. an
inertia subgroup at p) under p, is contained in the normalizer of a
Cartan subgroup of GL,(Q,).
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(c) ordinary if an inertial subgroup at p, acting via p,, has a non-

trivial fixed vecter, and
(d) inertially ample if the Lie algebra of the image of an inertia

subgroup at p under p, contains 3{,(Q,).

In [M] information was given concerning the locus in the universal
deformation space of any special dihedral representation of points x
satisfying each of the properties listed above. In the context of this article
(i.e., for generic S,-representations) we can give a complete explicit de-
scription of each of these loci:

Proposition 13. (a) The inertially reducible locus consists in the union
of the two smooth (hyper) surfaces in X defined by the equations f=0 and

g=0.
(b) The globally dihedral locus in X is equal to the inertially dihedral
locus and consists in the smooth (hyper) surface defined by the equation

T,=T,.
(c) The ordinary locus in X consists in the smooth analytic curve
defined by the simultaneous equations
g=0
T,=0.
(d) The inertially ample locus in X is given by the complement of the
three (hyper) surfaces
f=0, g=0, and T,=T,.

Proof. We begin with a “transversality’’ lemma:

Lemma 5. - The following pairs of power series are transversal, i..e.,
their images in m/m® are linearly independent over F,,:

(i) fandg

(ii) gand T,

(iii)) fand T,

iv) fand T,—T,

(v) gand T,—T,.

Proof. Immediate from Proposition 12 (i).

Note in particular that =0 and g=0 are the equations of smooth hyper-
surfaces in X.
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Lemma 6. If g(x)=0 (resp., f(x)=0) then the image of the decom-
position group G, under p, lies in the subgroup of upper (resp., lower)
triangular matrices.

Proof. If g(x)=0, then the generator 7 is visibly sent to an upper
triangular matrix. But the generators § and ¢ are sent to diagonal ma-
trices. With an identical argument if f(x)=0, our lemma follows.

Lemma 7. If x is inertially reducible, then the image of inertia at p
under p, is contained in either the subgroup of upper or lower triangular
matrices.

Proof. The involution ¢ is sent to <+(1) _?) and normalizes the

image of the inertia subgroup.

Proof of (a). By Lemma 2 the hypersurfaces f =0 and g=0 comprise
inertially reducible points. By Lemma 3 any inertially reducible point x
must have either f(x)=0 or g(x)=0.

Lemma 8. If x is inertially dihedral, then x lies on the hyperplane
T,=T,, or else it lies on the smooth curve f—g=0.

Proof. If x is inertially dihedral, then the image of the generators
& and 7 under p, must commute. This gives us the equations:

gx)(t,—1)=0 and f(x)(t,—1,)=0.
Lemma 9. Ift ,—t¢,, then x is globally dihedral.

Proof. Under the above hypothesis, p(u) is a scalar, hence so is
o(z(u)) and p(z*(u)). These matrices must commute with p(v), and
therefore the image of I7 is abelian, and is centralized by z.

Proof of (b). We first show that the smooth curve
C:f=g=0

actually lies in the hyperplane T,==T,=0. Suppose not. Note that (Lemma
6) the points of C are inertially dihedral. Next, note that twisting by wild
1-dimensional characters ((M] Chap. I Section 2 (6.2)) preserves the iner-
tially dihedral locus. It follows, under our assumption, that the curve C
is preserved by such twisting as is the hyperplane T, —7,=0. But C and
T,—T,=0 have a nontrivial intersection. The orbit of this intersection
under twisting generates C and lies on the hyperplane 7, — T,=0, estab-
lishing our claim.
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Assertion (b) then follows from Lemmas 8 and 9.

Proof of (c). One easily sees (compare Lemma 7) that if x is ordi-
nary, then the image of inertia under p, is contained in the subgroup of
upper triangular matrices, and ¢, =0. The converse statement is immediate.

Proof of (d). Given that the image of p is isomorphic to S; there are
only three possibilities: x is inertially reducible, inertially dihedral, or
ample. Assertion (d) then follows from (a) and (b).

Remark. Let R°:=Z[[T,, T,, T,]1/(g, T}), which by (c) we have
shown to be the universal ordinary deformation ring for g ([M] Chap. II
§5). The determinant mapping ({(M] Chap. 1I, §4)

7 i)
A= Z [[T]—>R

may be taken to be T—image of T, (with appropriate choice of the iso-
morphism 7). One sees, using Proposition 9 (i) that § is an isomorphism.
Note that in the context of special dihedral extensions studied in [M] it
was also shown that R is isomorphic to a power series ring on one variable
over Z,, but its structure as 4-algebra was not completely determined. In
particular, its rank over A was not known. For representations g attached
to generic admissible S;-extensions we have just shown this rank to be 1.
We also obtain, in our context, as in [M] the result that every ordinary
lifting of p to Z, is pro-modular (i.e., comes from a p-adic, p-ordinary,
cuspidal eigenform).

3.4. The size of the image of Galois for the universal ordinary representation

Let p°: G— GL(Z,[[T]D) denote the universal ordinary representation
for p. Interms of T}, T,, T;, T, maps to T while g and 7; map to 0 in
Z [IT]l. The specialization T'—0 produces the lift of g with image S.
Call this lift g,.

Proposition 14. (ONSLAZJITN) is the full inverse image under
T —0 of the subgroup of order 3 of p(G).

Proof. The images under p° of u, z(u), z*(u), and v are respectively

1 0 (13T AT 3T —3TY L4
014T) 8T 144T) —5T 144T)°

A—3my b
—3K (1-3my

3.2)

where & is a power series in 7" such that 7, maps to A(T). Note that
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h(0)=0 implies that A(T)=cT (mod T?) (c e Z,) and by Proposition 10
c=—1modp.

Let the image of p°(G)N SLAZ,[[T]) in SLAZ,[[TI(T™)) be denoted
G,.

Lemma 10. The kernel of the mapping
SLAZ[[TINT™)—>SLAZ I[TTNT""))
is contained in G, (n>2).

Proof. The above-mentioned kernel is generated by the images of
the matrices

1471 0 1 17! 1 0
(3‘3) ( 0 ]__Tn—l)’ (0 1 )5 and <Tn-1 1>~

We prove the lemma inductively, as follows. For n=2 one notes that the
matrices of (3.3) can be obtained as suitable products of matrices in (3.2).
For n>>3, the image of

14771 0
0 1—-T"1

in SL(Z[[TT/(T™)) may be obtained, for example, as the commutator of

matrices
1 Tmod T* 1 0
<o 1 ) and (T”'zmod -1 1)

and the two other matrices in (3.3) may be obtained similarly.
Our proposition then follows.

Remark. This proposition might be contrasted with the results con-
cerning the “fullness of the image of Galois” under ordinary representa-
tions whose residual representations contain SL,(F,), as proved in [M-W].
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