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Abstract. We define a zeta function associated with the exceptional Lie
group of type Eg and compute their functional equations and residues as
an application of microlocal analysis.
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Introduction

In 1974, Sato and Shintani [Sm-Sh] proposed a method to construct
a new type of zeta functions associated with a “prehomogeneous” action
of a linear algebraic group on a finite dimensional vector space. Such zeta
functions are called zeta functions associated with prehomogeneous vector
spaces and some interesting examples have been calculated by Sato-Shintani
[Sm-Sh] and by Shintani [Sh].

In particular, Shintani [Sh] analyzed precisely the zeta functions as-
sociated with the vector space of symmetric matrices as a typical example
of such zeta functions. They are called Shintani’s zeta function. The
reason why Shintani’s zeta function has called attention is that some special
values of the zeta function defined for positive definite symmetric matrices
has close connection with the dimension of Siegel cusp forms through
Selberg’s trace formula. Though Shintani did not give the special values
of his zeta functions explicitly, he calculated the functional equations com-
pletely and computed some residues in terms of some special values of the
zeta functions of low rank. Similar zeta functions may be defined for
other spaces of the same type, for example, zeta functions associated with
complex Hermitian matrices or quaternion Hermitian matrices. See [Sm-Sh].

In our paper we shall construct a zeta function of the same type for
modular forms on an exceptional symmetric domain. It is a zeta function
associated with the prehomogeneous vector space (G¢, X:). In our case,
the reductive group G :=GL, X E; acts on the space X of 3 X3 Hermitian
matrices over the complex Cayley algebra €.. Our purpose of this paper
is to analyze invariant tempered distributions on X by microlocal analysis.
As its consequence, we shall calculate the functional equations and residues
of the zeta functions explicitly. The calculation of functional equations is
reduced to the computations of the Fourier transforms of tempered distri-
butions obtained as a complex power of a relatively invariant polynomial
and the calculation of the residues are reduced to the computation of
Fourier transforms of tempered distributions which are given as invariant
measures on low dimensional orbits. These facts have already been pointed
outin [Sm-Sh]. After all, the key problem is explicit calculations of Fourier
transforms of relatively invariant distributions. Microlocal analysis pre-
sents us a strong tool to solve this problem.

In Chapter I, we will sketch the procedure of the calculations, which
we explained in [Mrl1] precisely. In Chapter II, the reader will find how
to reduce the calculations of functional equations and residues to the ex-
plicit computations of Fourier transforms under suitable convergence con-
ditions. More precise calculations for some specific examples will appear
in a future paper.
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We close the introduction by giving some comments to relevant
papers. Satake and Faraut [Sk-Fa] carried out the Fourier transform of
the complex powers of relative invariants on some prehomogeneous vector
spaces including our case by making use of the analysis on Jordan algebra.
In [Mr 1] the author did similar calculations by using microlocal analysis
in the cases of the space of symmetric matrices, complex Hermitian matrices
and quaternion Hermitian matrices. On the other hand, F. Sato [Sf 1-3]
has obtained a generalization of Sato-Shintani’s construction of zeta func-
tions, but it is unknown that microlocal analysis works well for F. Sato’s
examples.

Notations. We denote by IN, Z, Q, R and C, the set of natural num-
bers, the ring of rational integers, the rational number field, the real num-
ber field and the complex number field, respectively. For a vector space
X, GL(X) means the group of invertible linear endomorphisms of X.

Chapter I. Microlocal Analysis of Invariant Hyperfunctions
with respect to the Group E,

In order to introduce zeta functions associated with the exceptional
Lie group of type E, and to carry out calculations of their functional equa-
tions and residues, we need to analyze invariant hyperfunctions under the
group action of the exceptional Lie group of type E,. In particular, com-
puting Fourier transforms of invariant distributions is the most important.
Our final goal of this chapter is to give explicit formulas of Fourier trans-
forms of some type of invariant distributions with respect to the group of
type E,, which are given in § 7 and §8. Our tool is microlocal analysis
mainly developed by Sato and Kashiwara.

§1. A realization of the exceptional Lie group of type E,

We begin with the definition of complex Cayley algebra. Let H be
the complex quaternion algebra, which is uniquely determined up to iso-
morphisms. We define the complex Cayley algebra € to be an Hc-free
module of rank two whose basis is {1, ¢}; the multiplication low of the
algebra € is given by:

(1.1 (g-+re)-(s+1e) :=(gs—ir)+(tg+r5)e,

where ¢, r, s and ¢ are elements in H and 7 and § stand for the conjugate
quaternions of ¢ and s, respectively. Then €. is an 8-dimensional non-
associative algebra defined over C. For an element a :=q-+ree €., we
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define the conjugate Cayley number a by a :=g—re. We may easily prove
that a-b=>b-a for any a, b ¢ €.. We put:

(1.2) N(a) :=a-a and T(a):=a+a,

and call them the norm and the trace of a e €, respectively. The norm
and the trace of ¢ are complex numbers.

We put X, :=Her,(€.), where Her,(C.) is the set of 3 X3 Cayley
Hermitian matrices, i.e., the set of 3 X 3 matrices x whose entries are in €
and which satisfy ‘x=x. Then X, is a 27-dimensional complex vector
space. For an element

El} X35 XZ
X = xaa ‘529 X1 mn XC7

Xo5 X35 &5
we put:

det (x) :=£,6,6,— &N (x) — &N (X,) — &N (x) + T (x5 ;) - X,),
tr(x) :=&+&+&,

and call them the determinant and the trace of x, respectively. Let G¢ be
the subgroup of the complex general linear group GL(X.) consisting of
elements which keep the polynomial det(x) invariant. Then G¢ is a
closed linear algebraic subgroup of GL(X.), which is isomorphic to the
complex exceptional Lie group of type E,. We denote it by E,.. The
group Gt is a 78-dimensional complex Lie group.

We put G :=GL,(C) X E,.. We define a representation p of G into
GL(X,) by:

(1.3)

(1.4) 0(8): x—g:(g:- %),

with g :=(g., g,) € G¢ and x ¢ X,. We may naturally regard G as a sub-
group of GL(X.) by the inclusion map p. On the other hand, when we
put:

(1.5) e yy i=tr(x-p),

it gives a non-degenerate complex bilinear form on X and hence it is an
inner product on X;. We may identify X with its dual vector space Xg
through the inner product (1.5). The contragredient representation p* on
X, with respect to (1.5) is defined naturally and G is embedded in GL(X,)
by p*. The images of Gg by p and p* are the same. The orbit structure
of X, with respect to the group action of p(G;) and p*(Gg) is the same,
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that is to say, the orbital decompositions of X by the group p(G.) and
0*(G;) are the same.

We put P(X) :=det(x). Then P(X) is an irreducible polynomial of
degree 3 on X.. Apparently we have:

P(p(g)x)=1(g)P (%),

for all g :=(g,, g,) € G where X(g)=g3. Namely P(x) is an irreducible
relatively invariant polynomial corresponding to the character %(g) on X,
under the action p(g). For the contragredient action p*, we have
P(p*(g)-x)=12(g) ' P(x), which means that P(x) is a relatively invariant
polynomial corresponding to the character %(g)~' under the contragredient
action p*(g). We put:

(1.6) 8. :={xe X; P(x)=0},
and call it the singular set of X.

Proposition 1.1. 1) The triplets (G¢, p, Xo) and (G, p*, Xc) are
regular irreducible prehomogeneous vector spaces with an irreducible relatively
invariant polynomial P(x)=det (x).

2) The vector space X decomposes into four orbits; the open orbit is
unique and it is X.— S¢; the singular set S decomposes into the following

three orbits:
1 1
Sic 3=P(Gc)' 1 :P*(Gc)‘ 11,
0 0

(1.7) 1 1
Shc :=p(Gc)-[ 0 ]=p*(Gc)'| 0 ]
0 0

S3C L= {0}.
3) The orbits in (1.7) are not only Gc-orbits but also Gg-orbits.

Proof. The claims 1) and 2) were proved in Sato-Kimura [Sm-Ki]
Proposition 47 and Kimura [Ki] Proposition 6-2, respectively. For 3), we
may easily check the validity by computing the dimension of the Gt-orbits

generated by
1 1 0
11,10 and 0 [
0 0 0
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§2. An invariant holonomic system %, and its holonomy diagram

In this section we shall give a holonomic system I, having the solu-
tion P(x)* and give the complex holonomy diagram of it. For the details
about theoretical aspect of microlocal analysis, see [Sm-Ka-Ki-Os], and for
the technical aspect of it, see [Ki] Proposition 6-2.

Let & be the Lie algebra of G and let dp and dX be infinitesimal
representations of p and X, respectively. Consider the following system
of linear differential equations with one unknown function u(x):

b
ox

Q1 M, <<dp(A)x, >—s6X(A))u(x)=O, for all A e .

on X;. Here, sis a complex number, { , > is the canonical bilinear form
on X X X¥, and 6/0x is the first order homogeneous differential operator
corresponding to the dual basis.

We see that IR, is a holonomic system, i.e., the characteristic variety
ch (IN,) is a Lagrangian subvariety in 7%*X_, as a consequence of the fol-
lowing proposition:

Proposition 2.1. The characteristic variety ch (IN,) is contained in
71 T8 Xc where T X is the conormal bundle of S;c in X;. Here the
upper bar means the Zariski closure of the variety.

For the proof, see the argument in Kashiwara [Ka 1] p. 116 Example
1 or Muro [Mr 1].

From the definition, each conormal bundles T'§, X is an irreducible
Lagrangian subvariety in T*X,.. Therefore I, is a holonomic system on
Xc. We denote by A, the Zariski closure T3, Xc. From the argument
in Kimura [Ki] § 6, Ik, is a simple holonomic system on each A, and the
order of M, on A,; is —is—i(4i—3)/2. We may look upon the complex
cotangent bundle 7*X; of X as the product X, XX¥. The group G.
acts on T*X =X - XXZ:g-(x, »)=(o(g)-x, p*(g)-y) with ge G, and
(x,y) e Xo X X¥. Tt is easily proved that T§,.Xc is a G-stable subset and
so is the closure 4,c=T%, _X.. Each /4, decomposes into finitely many

G-orbits. Namely:

Proposition 2.2. The Gc-stable Lagrangian subvariety A;. has the G-
orbital decomposition:

@2) plg[i GC'([A-p 0],[04 I ])ZA“’

g>3—-1 ? 3-q

Here I, means i X1i identity matrix.
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This proposition can be easily proved by the direct calculation so we
omit the proof. We denote by 3, ¢ the G-orbit

GC.([IH O],[Oq . ]) for each 0< p, g<3.

P 3-q
Finally we give the complex holonomy diagram of I1,.
Proposition 2.3. 1) The Lagrangian subvarieties A,c and A;c have an
intersection of codimension one if |i—j|=1. Otherwise there are no inter-
sections of codimension one. The Gg-orbit X, s_;c is an open dense orbit

if'l AiC ﬂ Ai-rlC (i=09 1’ 2)'
2) Foreachpel,, ;, we have

(T(Az'c N Ai+10))p=(TAi'C)p N (TAi+IC)p

where (T A), means the tangent space of A at p. Namely A,c and A, c have
a regular intersection at eachp e X, 5 sc.
3) The complex holonomy diagram of I, is

—5—3 —2s—5 —3s—237

O O —0
Ao G+ Ay +5) Ay (549) Ay

2.3)

Each o stands for an irreducible Lagrangian subvariety and the line ——
means an intersection of codimension one. This implies that the b-function
is:

(2:4) b(s) :=(s+1(s+5)(s+9).
Namely we have P(3/0x)P(x)**' =const. b(s) - P(x)°.

For the proof see [Ki].

§3. Real forms of the prehomogeneous vector spaces and real holonomy
diagrams of I,

In this section, we shall determine all the real forms of the prehomo-
geneous vector space (G, p, X¢) :=(GL,(C) X Eq, p, Her, (C.)) and give
their orbit structure. Let (G, p, Xc) be a given complex prehomogeneous
vector space. For a real form Gy of the complex Lie group G and a real
form Xy of the complex vector space X, we say that (Gg, p, Xz) is a real
Sform of the complex prehomogeneous vector space (G, p, Xc) if plGr)C
GL(XR) N p(Ge).
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We begin with determining all the possible real forms of the complex
quaternion algebra. As well known, there are following two real forms
of the complex quaternion algebras H. and they are all:

(3.1) 1) (quaternion division algebra)

£ :=a four dimensional real vector space generated by {1, u, v, w}
endowed with the structure of algebra defined over R; the multiplication
low is given by w=wuv= —vu and *=v'= —1.

2) (quaternion split algebra)

Hs, :=a four dimensional real vector space generated by {I, u, v, w}

endowed with the structure of algebra defined over R; the multiplication
low is given by w=uv= —vu and ! =v*= + 1.

For any element p=a+ pu+7v-+4dw in HE or in HE, the quaternion
conjugate pis defined to be p=w—pu—7v—dw. The complexifications
of H¢ and HE are naturally isomorphic to He.

According to the real form of H, there are two types of real forms
of the complex Cayley algebra: one is the division Cayley algebra €% and
the other is the split Cayley algebra €%, which are defined to be a H%- and
H3- free modules of rank two generated by {l, e}, respectively. The mul-
tiplication law is given by (g-re)(s—+te) :=(gs—fr)+(tg+r3)e for two
elements g+re and s+te in €% or €%. The trace T(@) and the norm N(a)
of a e €% or € are defined in the same manner as in the case of the com-
plex Cayley algebra €.. The complexifications €4®y C and €55 C are
naturally isomorphic to €.

According to the real forms of €., there are two real forms of the
complex vector space X.=Her,(€.). They are

(3.2) 1) the division case: X :=Her, (%)
and
2) the split case: X5 :=Her, (C%).

The determinant det(x) and the trace tr(x) of an element x in Xy are
defined in the same way as the complex case. By definition, they coincide
with the restrictions of the polynomials det (x) and tr (x) on X to Xg.
Putting G% : =G+ NGL(XR), Gk is a real form of the complex Lie group
G from the definition. Then G5 :=GL,(R)* X Gx is a real form of G
and (G4, p, Xz) is a real form of the complex prehomogeneous vector
space (G¢, p, X¢). Here GL,(IR)* is the connected component of GL,(R)
containing the identity. Thus we have two real forms of (G, p, Xo).

Proposition 3.1. Al possible real forms of (G¢, p. X¢) are the above
two.
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Proof. As proved in Rubenthaler [Ru], there are only two possible
real forms of the complex prehomogeneous vector space (G, p, X;). The
two real forms given in (3.2) are actually real forms. When Xp=
Her, (€%), the group G, is the real exceptional Lie group of type E, whose
signature of the killing form is —26, which is denoted by E{*. When
X =Her, (&%), G} is the real form of signature 6, which is denoted by E{®.
Thus the above two real forms in (3.2) are different to each other and they
are all possible real forms. g.e.d.

After all, the following two real forms are obtained.

(3.3) 1) The division case:
Gt :=GL(R)* XE{™ and Xy :=Her, (C%).

2) The split case:
G :=GL(R)*XE® and Xy :=Her, (€%).

The restriction of the inner product in (1.5) to Xy is a real valued inner
product on the real vector space Xz. The contragredient representation
o* of Gy gives a real form (Gx, p*, Xg) of (G¢, p*, X). We denote by
Gy the connected component of G containing the identity element. The
character X(g) is real-valued and positive on G'§ because we see by a direct
computation that the restriction of P(x) on Xy is a polynomial with real
coeflicients in each real form.

For a fixed real form (G, p, Xz), we denote Sy :=.S:N Xy and call
it the real singular set. The set Xy has the same orbital decomposition
under the action p(G'3) and p*(G5). Namely:

Proposition 3.2. 1) (The division case): When Xg=Her,(€%), each
real locus of the Ge-orbits in X decomposes into the following connected
components which are Gg-orbits:

D Xex—Sr=11%,0,; (disjoint union), where O,:=p(G3) -I{"=
oX(GE)- IS with I :=["i ./ ](i:O, 1,2, 3).
3-1

i) Sig:=S8SicNXg=S 1 811 8% (disjoint union), where S}:=
—1,
o(GR)- I =p*(G3) - I with ISP I=[ L, ] (i=0,1, 2).
0
i) S i=8eNXg =S84 8} (disjoint union), where S%:=

k3
o(G3)- 10 =p4(G)- 1 with 10 =D | =0, 1),

vi) Sig :=8ic N Xg=S8) :={0} (the origin).
2) The split case: When X.=Her, (C%), each real locus of the Gg-
orbits in X decomposes into the following connected components which are

G -orbits.
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) Xg—S8Sx=0,.10_ with0, :={x¢e Xg;det(x)>0} and O_ :=
{x e Xg; det (x)<0}.

i) S :=8,cNXz(@{=1,2,3)is asingle Gi-orbit. We denoteitbyS".

3) In both of the cases 1) and 2), the G+ -orbits in the real singular set
Sk : =8N Xy are Gy-orbits.

For the proof of this proposition we have only to carry out similar
computation as we did in the complex case (see [Ki]). We omit the proof
because it is complicated.

We conclude this section by calculating the real holonomy diagrams
of IN,, which indicates the configuration of the real Lagrangian subvarieties
appearing in ch (M,)g :=ch (M,)N T*X;. For the precise definition of a
real holonomy diagram, see [Ka-Mi], [Mr 1], p. 414 or [Mr 3]. Each real
locus Az :=A,c N T*X; of A,c is a real Lagrangian subvariety. Indeed,
we may easily check that A :=T% X; Xz Where 8z : =8, N X;. Forcach
irreducible component A, of ch (zms) we denote by A the subset of 4,
consisting of points at which ch (3R,) is non-singular, i.e., if £ € 4,¢, then
there exists a neighborhood U of & such that UNch(M,)=UN A4, and
it is a non-singular variety. Then A; is an open dense non-singular subset
of A,c. In our case, we see that A;;=2,; ,. The real locus A :=A7%
N T*Xy decomposes into finitely many connected components, each of
which is a Gg-orbit. Explicit calculation is easy and the result is the
following.

(3.5) 1) The division case: Xy =Her, (€%).
AiOR = U Ag’q (l:07 1: 29 3)

0<p<d3—1
0<g<d

I® y
where AP¢ ::Gg-([ - Oi]’ [03 115‘1)])’
with % = [Ik ] e M,(R).
I,

2) The split case: Xg=Her, (€%).
A% 1= H A5 (i=0,1,2,3)

where /15::6',;*-([12 E],[Og]) (i=0) or
A:::Gg.([l‘”“ioi],[oa'i . D (i>1).

Next we consider the real locus of the codimension one intersection
2ii1,5-4c between Ao and A,,ict ¥, NT*X, ((=0,1,2). Itis a
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regular intersection of real codimension one between A,z and /4,,,x. Each
connected component of X, ., ; ., is a GF-orbit. We have the following
decomposition of X, ;_;x into Gg-orbits in each case.

(3.6) 1) The division case: Xg=Her, (€%)
Zi+1,3—iR: [ 2w (i=0,1,2)

0<p=2-1
0<g<it

where 2% is a Gg-orbit generated by

s 0;-;
(I, Ll

2) The split case: Xg=Her, (€%).

2i.1,3-4= 18 @ single G -orbit generated by

(1o, 1)

which is denoted by X; (i=0, 1, 2).

Let X' be a connected component of ¥,,,, x. Take a point (x, )
in 2. Then there exist two connected components A¢ and A7 in A, and,
A%, and A%, in A2, such that Agx—2Y=A°14] and A, g—2=
Ag A2, Such A¢, AL, A2, and A%, do not depend on the choice of
the point (x, &) in X. In other words, AU A{UZ% and A¢,U A%, UZX
coincide with 4, and 4,, x in a neighborhood of (x, y), respectively and
they have the intersection 2. We denote this situation by the following
diagram.

—0 A1

A,
Az o TZ’ :

R
T+1

The real holonomy diagram between A,z and 4, 5 is a diagram obtained
by drawing all the intersections of codimension one between A;x and 4, ;5.
In our case we have the following real holonomy diagrams.

(3.7) The division case: Xz = Her, (€%),
1) The intersection of A and 4.

Ai,l A%,l Ag,l

TZZ,O ~ jzl,o . TE‘0,0
ya | 0/13’0 1 0/13,7) | 0/13?0

A%O A}yo Ag,o
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2) The intersection of A,z and Ayy.

Ab? 02
1,1 1,1 0,1 |2
Tzl’ A}: 2 T 01
1

APt

T
Az,o : é /l‘}*“
1 Aé’“lzi” Ab0 Zg‘OLAg,o

3) The intersection of A,z and Ag.

YIS Y
e o o

< ). 10 | 0,0
1 »2 f )
0,3 l 1

Ag,2 /12’1 g,O

(3.8) The split case: Xz =Her, (C}),
The intersection of A,z and 4, z:

A o= T ;1 —0 A7

i+1

§4. Local zeta functions as a solution of the holonomic system I,

Let 9%, be the holonomic system defined in (2.1) and let (Gg, p, Xg)
be a real form of the complex prehomogeneous vector space (G, p, X¢).
For a hyperfunction f(x) on Xy, we say that f(x) is a X*-invariant hyper-
function if it satisfies f(o(g)-x)=X(g)’-f(x) for all g e G¢. Note the fol-
lowing proposition.

Proposition 4.1.  If f(x) is a hyperfunction solution of M, then it is a
X*-invariant tempered distribution. Conversely, if f(x) is a Z*-invariant
hyperfunction, it is a tempered distribution and is a solution to IN.

Proof. Since I, is a simple holonomic system, I, is a completely
regular holonomic system, hence any solution of IR, is a tempered distri-



Zeta Functions of the Group E; 441

bution on Xg. It is easily checked that a solution f(x) of M, is X*-invariant
if it is a solution to MM, in a more general situation. See for example
Proposition 2.3 in [Mr 2]. g.e.d.

This proposition enables us to treat any X°-invariant hyperfunction as
a solution of the holonomic system It,.

Let [{;c;,0,=Xg—S8x be the connected component decomposition
of Xr—Sy obtained in Proposition 3.2. Here the index set I, is {0, 1, 2, 3}
in the division case and {+, —} in the split case. We put:

|[P(x)[ x € 0,

@1 PO :={ o

with s e C. When the real part of s is sufficiently large, |P(x)[; is a con-
tinuous function. It can be continued with respect to s to the whole
complex plane C as a tempered distribution with a meromorphic parameter
se C. The function defined by (4.1) stands for the extended one as a
distribution with a meromorphic parameter in the whole complex plane.
The possible poles of |P(x)[; is contained in the set of critical points:
Cri (P(x)*) :={s & ; b(s+k)=0with k ¢ N U {0}}. Following Sato-Shintani
[Sm-Sh], we call |P(x)[; a local zeta function. For a fixed complex number
Ae C, |P(x)|; is a X*invariant tempered distribution if 2 ¢ Cri(P(x)%).
Moreover let 2 be a point in C and let a,(s) (i € I,) be holomorphic func-
tions defined near s=21 such that > ., a,(s)-|P(x)]; is holomorphic at
s=2. Then

(4.2) ; a(s)-|P(®)[ils-»

is a X*-invariant tempered distribution. Conversely we have the following
proposition.

Proposition 4.2.  Every X*-invariant tempered distribution is written in
the form in (4.2).

The proof of this proposition has been given as a special case of the
main theorem in [Mr 3]. A more general result related to Proposition 4.2
is announced in [Mr 5].

§5. Real principal symbols of the solutions of {t, and their explicit
expressions

Let Py, be the sheaf of hyperfunctions on Xy and let €4, be the
sheaf of microfunctions on T*Xy (and not on T*Xy :=T*X;—X; as
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usually used). Then there is an isomorphism:
(5. l) sp: '%XR—:l)ﬂ*(gXR)’

where « is the projection map from T*Xy to Xg. Especially, for the
restriction sheaf of €y, to T%X; — Xy, we have Sato’s fundamental exact
sequence:

(5.2) 0—> L g y—> B x> T3(C xg lrxn-x) —>0s

where &/, is the sheaf of real analytic functions on Xx.

Let f(x) be a hyperfunction solution to I, on X;. Itis a section of
HBx, on Xz Through the map sp in (5.1), f(x) is regarded as a section of
% xr on T*Xg, which is denoted by sp(f(x)). From Sato’s fundamental
theorem (Theorem 3.4.3 in [Ka-Kw-Ki]), we see that:

(5.3) SS(f(x)) :=supp (sp(f(x))) Cch (M) N T* X

Let A,. be an irreducible component of ch(MM,) and A;x :=A;,c N T*Xz.
The open dense subset A in 4,z defined in § 3 decomposes into a finite
number of connected components. We denote it by Ax 1= ][4, 4{: the
connected component decomposition of A;z. We see that two solutions
which coincide with each other on every A7 are the same. Namely:

Proposition 5.1. Let f(x) and g(x) be two hyperfunction solutions of
the holonomic system MM, on Xg. If sp(f(x)) and sp(g(x)) coincide on every
A7 (i=0,1,2,3 and j=1, - - -,},), then f(x)=g(x) as hyperfunctions on Xx.

Proof. The proof of this proposition is almost the same as the proof
of Lemma 2.15 and Corollary 2.16 in [Mr 1]. A generalization of this
theorem has been given in [Mr 4]. We shall give an outline of the proof.

We may show this proposition by applying an induction on the orbits
and the Holmgren’s uniqueness theorem. We have seen that f(x)—g(x)
is zero on Xz —Sg. Let x € .S,. There exists a neighborhood U of x such
that UNSg=UNSg. From the Holmgren’s uniqueness theorem, we see
that (f—g)(x)=0 on U by estimating the singular spectrum of (f—g) on
T*U. Next we assume that f— g is zero on Xg—(SirU - USi)
(2<k<3). Then, for any x e S,z, there exists a neighborhood U of x
such that UN(SzrU - - - USx)=UNSiz. By applying Holmgren’s uni-
queness theorem, f—g is 0 on U, which means f—g=0 on Xz—(S;.rU
-+ - USsg). Therefore by induction we obtain that f—g is zero on Xy.

q.e.d.

With a microfunction solution u«(x) on AJ, we may associate a real
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analytic section of |02, |2 ®|2x,[®~* on A{. Here |2,,.| and | Qx|
are the sheaf of volume forms on 4,z and X5, respectively. It is called the
real principal symbol of the solution u(x) and is denoted by ¢,(u). For
the precise definition of real principal symbols, see [Ka-Mi] or [Mr 1], pp.
416-419. Since the holonomic system I, is simple on each A,., the
dimension of the microfunction solution on each A7 is one. Any micro-
function solution on /4 is written as a constant multiple of a non-trivial
section of the solution space on A{. When we denote by Lol (M, )}4))
(resp. Fymbol (M, )(AD)) the space of microfunction solutions of M, on A
(resp. the space of real principal symbols of the solutions on 4f), ¢ gives
a linear isomorphism:

042 Lol (MY AD—>F ymbol (M ,)(4])
5.4 w w
G9 u(x) > 0 (1)

Thus we may consider real principal symbols on 47 instead of microfunc-
tion solutions on 4. Proposition 5.1 means that two hyperfunction solu-

tions whose real principal symbols on each 4] coincide with each other
are the same.

Next we will see that we may take a canonical basis for the space
Pymbol (M, )(A7). Namely, for a microfunction solution u(x) on A, we
may express its principal symbol as:

.5 0 () = )| Pase |-V [0 |/ [ ]
with a constant c,i(u) depending only on u. Here:

(5.6) 1) Puy:=Poxjo™s|,
7~ (dx) N\do /d

E
gl

o)
AZR

2) wAiR = —

and; 1) = is the projection map from W to Xy where W is the Zariski
closure of the set {(x, y) € Xz X X¥; x=s-grad(log P(»)), y € X —Sg, s C};
2) o :=<x, ¥)/3, (a function on W); 3) dx :=d& Nd&,Nd& Ndx, Ndx,/\
dx, where dx,= A\S.,dx] with x; 1=(xj+xju+xv+xiw) 4+ x4+ xfu+xv
+xtw)e e €% or € (x{ e R and {1, u, v, w} is the basis of H? or H* defined
in (3.1)); 4) the numbers m,, and p,, are constants appearing in the expres-
sion of the order —m,,s—(p,,/2) on A, namely m,, =i and p,,=4i"—3i.
As proved in [Sm-Ka-Ki-Os], P, (x, y) (resp. o,,.(x, »)) is a real analytic
function (resp. a real analytic volume form) on A which does not vanish
on A%. The above argument is a consequence of fundamental calcula-
tions developed in [Sm-Ka-Ki-Os]. For details see [Sm-Ka-Ki-Os].

Let f(x) be a hyperfunction solution of #%, on Xg. Then the real
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principal symbol of sp(f(x)) on A is written as:

6.7 0PN =c1(f) | Paig|' -V 01,5 l/¥ 1],

with a constant ¢/(f) depending on f. We call the constant ¢/(f) the
coefficient of f(x) on Ai. Proposition 5.1 is rewritten in terms of the
coefficients of microfunctions.

Proposition 5.2.  For two hyperfunction solutions f(x) and g(x), if the
coefficient cj(sp(f)) coincides with c](sp(g)) for each A} in ch (Mg, then
f(x)=g(x) as hyperfunctions on Xx.

As a result of this section, a hyperfunction solution f of I, is com-
pletely determined by its coefficients {c/(f)} over all the connected com-
ponents of ch (IM,),,, : =the regular locus of ch (I¢M,). In other words, a
hyperfunction solution with a given set of coefficients is unique. However
there may exist sets of coefficients to which no hyperfunction solutions
correspond. For a given set of coefficients, there are some linear relations
between the coefficients in order that it is a set of coefficients of a hyper-
function solution of I,. In the next section we shall give their relations.

§6. A relation between real principal symbols on two Lagrangian varieties
having an intersection of codimension one

We assume the same situation as in § 5. Let f(x) be a hyperfunction
solution. Since A,c and /,,,c have an intersection of codimension one,
the microfunction solutions on /A5 and A; .z have linear relations. It was
one of the main results in [Ka-Mi]. In [Mr 1], the author has given such
solutions for relatively invariant microfunctions on other prehomogeneous
vector spaces closely related to our case. It was presented as linear rela-
tion between the coefficients on Aj; and A;,,z. In our case, we have the
following relations of the coefficients.

Proposition 6.1. Let f(x) be a hyperfunction solution of IM,. Then
there are following linear relations among the coefficients of f on Ay and

[}
i+1R*

i) In the division case:

[04411»“‘(1‘)] _ T(s+4i+1)
caizyH(f) V2r

6.1) ) exp(_%/?T (s+1)>, exp(g_ﬁ_l (s+1)) [%km ]
exp (%«/—j(ﬂ—l)), exp(——qu/—_l(s-q—l)) e (NI
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provided that s+ —(4i+1), —(4i+1)—1, - - -. Fors=—(4i+1), —(4i+1)
—1, - - -, the inverse matrix of

‘ exp (-—im (s+ 1)), exp (f—f;_l s+ 1))
[(s+4i+1) 2 2
V2r exp (%«/—:T (s+ 1)), exp (— lzr—J——l s+ 1))

is well defined and the relation is given by this inverse matrix.
i) In the split case:

[CA:H(/‘)] _ I'(s+4i+1)
Ch- (f) \/275

(6.2) HIX [exp <—- —;—m (s+ 1)), exp (%/TT (s+ 1)) [cA;(f)]
lexp <%~/:—1 (s+ 1)), exp (—er—«/——_l— (s+ ])) e (NI

provided that s+ —@i+1), —@i+1)—1,-... When s=-—4i+1),
—@4i+1)—1, - - -, the inverse matrix of

Perdith) exp(—%«/:—l(s—i—l)), exp(.’zr_JZ‘T(s+1))

V2 exp(ZVTT6+D), exp( SV =T+ )

is well defined and the relation of the cozfficients are given by this inverse
matrix.

Proof. As proved in [Ka-Mi], the relations between the coefficients
are obtained from the normal relation matrix corrected by the Maslov
indices of Lagrangian subvarieties and their intersections. See [Ka-Mi]
p. 139, formula 3.5. In our case there is no effect of correction by the
Maslov indices. Following the method presented by [Ka-Mi], we have:

i) In the division case.
[%ﬁ;:'“l(f)] _ I(s+4i-3)
CA{;?"(f) \/2‘75
exp (——-275—«/ —I(s+4i+ 1)), exp (lzr—«/ —1(s+4i+ l))]

63) % T . T .
exp (E—m (s+4i+ 1)), exp (— 7«/t_l_(s—{—4z+ 1))J
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exp Qry — 1(i—2k)), 0

X l 0 , exp(—2m/— 1@ ——2k))]
cAg"k(f ) ]

X [CAQ—“’”U) .

ii)  In the split case:
[%ﬂ(f >] _ I'(s+4i—3)
CA;H(f ) N/ 2z
exp (—— _;—«/fl_(s+4i+ l)), exp <—725-¢_——1(s+4i+ 1))

e (Zv=TG+4i+D), eoxp(— Zv=T(s+4i+1)

* exp (77:7“/_—1 0)’ 0 [c,,;r( f)]
0 exn(ZyT 0)| Lo '

These relations (6.3) and (6.4) imply (6.1) and (6.2), respectively. q.e.d.

Remark. Conversely for a given set of the coefficients {c,} satisfying
the relations (6.1) and (6.2), there exists a unique hyperfunction solution
to I, whose coefficients c(f) are the given ones. This fact is proved as
a consequence derived from the main theorem in [Mr 3].

§7. Real principal symbols on the zero section and on the conormal bundle
of the origin

In this section, we shall prove that the real principal symbol of a
hyperfunction solution of I, has a specific expression especially on the
zero-section and the conormal bundle of the origin. Moreover the real
principal symbol on the conormal bundle is expressed in terms of the
Fourier transform of f(x). This enables us to reduce the calculation of
the Fourier transform of f(x) to the computation of the coefficients of f(x)
on the conormal bundle of the origin.

For a hyperfunction solution f(x) of 9,, the real principal symbols
of f(x) on the zero section: AR :=(Xz—Sg) X {0}CXgXXF (resp. the
conormal bundle of the origin: Az :={0} X (XF —Sg) CXg X X¥) have
expression in terms of the coordinate system on Xy (resp. X&F). In fact,
let A7 (je {(p,0); p=0,1,2,3} in the division case and je {+, —} in the
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split case) be a connected component of Ay and let 4% (ke {(0, q); g=
0,1, 2,3} in the division case and ke {+, —} in the split case) be the
connected component decomposition of As;;. Then we have:

7D D eulp(fx)=ci(f)|Px)];
2) oalsp(f)=cd(N) | Kl | K[ 1P ]e*~* v |dy |/ | dx]
where c§(f) (resp. c¥(f)) are the coefficients of f(x) on 4j (resp. A%) with
respect t0 | Py |* V]wagl/V]dx| (tesp. | Pl #/[wsg)/+/|dx]) and the con-
stants | K;| and | K| are defined by:
|Ko| :=|P(y)- P(grad (log P(»))|=1,
|Ki| :=|P(3)|** |Hessian (log P(»))|=2".
The equalities (7.1) 1) and 2) are proved by a direct calculation applying
the equation (5.6). Namely substituting | P, (x, ¥)| :=|P(x)| and |w | :=
|dx|, we have (7.1), 1). For P, and w,,,, we see that
|Paar(X, ¥)|=|P(s- glad (log P(»)))/s*|
=|P(»)P(grad (log P(»))- P(») ' |=|K;|-| P(») ']
=PI
| @450, Y)|=d(s- grad (log P(»)))/s*
=|P(y)|"|Hessian (log P(»)|-|P(»)|**-|dy|
=|Ki|-|P(y)| 7 |dy|=2"-|P()| " |dy|.
Thus by using (5.6), we get (7.1), 1) and 2).
Next we shall see that the real principal symbols of a solution u(x)

on the conormal bundle of the origin are written in terms of the Fourier
transform of u(x). For a tempered distribution u(x) on Xy we put:

u(y) : =j u(x) -exp (—2zv/ — 1<{x, y)dx
(1.2)

uNx) :=I u(y)-exp Qav — 1{x, y))dy.
Then we have:
(7.3) @)NxX) = @)V (x)=2%-u(x).

We can write the real principal symbol on the conormal bundle of the
origin by using the Fourier transform. Namely we have:

Proposition 7.1. Let f(x) be a solution of a holonomic system I,
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Then the Fourier transform V() is a real analytic function on Xg — Sy
and the real principal symbol on the conormal bundle of the origin is given

by:
(1.4) 0. 4(sp() = 2a)™** .24 1V (3) | & Tyl [dx].
Here we regard A% as a subset of X¥.

Proof. By utilizing the same method as Proposition 3.5 in [Mr 3],
we see that fV(y) is a solution to the holonomic system P%_,_, when we
identify Xy and X#. Thus fV(p) is real analytic on Xg—.Sg. The distri-
bution f(x) is X*-invariant. As stated in Proposition 4.2, any X‘-invariant
hyperfunction is written as
7.9 = alr) PO, -,
where a,(r)’s are holomorphic functions in r ¢ C defined near r=s. For
the X*-invariant hyperfunction |P(x)[; (i € I,) with s ¢ Cri (P(x)*), we may
prove (7.4) in the same way as the proof of Proposition 3.6, Formula (3.35)
in [Mr 3]. Thus for any function f(x) written in the form (7.5), we may
prove by analytic continuation that the principal symbol of f(x) on A% is
expressed as (7.4). g.e.d.

Comparing (7.1), 2) and (7.4), we have:

Proposition 7.2. Let f(x) be a solution of the holonomic system IN,.
Then the Fourier transform is given by:

(7.6)  SYOxg-sp=@m) 7572277 3 1 eS () 1P

where k runs through the set {(0, q); g=0, 1, 2, 3} in the division case or the
set {4, —} in the split case.

§8. The Fourier transforms of local zeta functions

In this section, we shall give the formula of the Fourier transform of
the relatively invariant tempered distributions | P(x)[; explicitly. As proved
in the preceding section, we have to compute the real principal symbol on
the conormal bundle of the origin. More precisely, our problem is to
compute the coefficients of |P(x)|} on the conormal bundle of the origin
(Proposition 7.2).

Theorem 8.1. (The formula of the Fourier transform of | P(x)!5)
1) (In the division case): We have:
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flfojﬁ-exp(—_2ﬂ~/ZTT<x,y>)dx
(8.1) 3

=(2m) =¥~ '2’12-;) ¢y (8) | P77
A=Q27)" P . [(s+1)-T'(s+5)-T'(s+9) X (—v/ —1)

3z )
—exp| —=-+/ — 15},
p( 2

3 exp (,727"_«/ — ls),

exp(—-—- —1s>, ——exp(—?’zj«/st)—Z exp(%ﬂs),
. —exp(izr— —1s>, exp(32—7r«/—_ls>+2 exp(—%«/———ls)
@2 L 7P (5v=Ts)

-3 exp(—%«/—ls),

(1=0,1,2,3)
where ¢, (8) 1=A; 1 ;.1 with the 4 X4 matrix A :=(A, )i<p,q<: defined by

, exP(iztfms) ]
on (571} 20057, (571
() e/, (207
son(5) en( )
2) (In the split case); We have:
) [ 1P@l-exp (—22 =T,y
—QR TP 5 () PO =+, )
where

[cH(s), C*‘(S)] — Qo) I(s+1)-T(s+5)-T'(s4+9)X —/—T
c_.(s), c__(s)

—3exp <%st>—exp<—§zlrﬁTs),
8.4) X

3 exp(—%«/ - 1s)+exp (%ﬂv — 1s>,

449
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3 exp(-—%%js}—l—exp (%1[4/:—1-.9)-’
3 exp(%ms)—-exp(—%”«/—:fs)J-

Proof. 1) First we suppose that s is not a negative integer. As we
have seen in (7.1), the coefficients of |P(x)[ (i=0, 1, 2, 3) on Ay, are given
by:
if p=i,

1
cﬁg,o<iP(x)1z>={0 e

Applying the relation (6.1), we can compute the coefficients of |P(x)]; on
s Asg and A, explicitly. Especially the coefficient on 437 is the coef-
ficient ¢{>?(P(x)[}) appearing in (7.6). By Proposition 7.2, we get the
formula of the Fourier transform, namely the coefficient ¢{»?(|P(x)[) is
¢;;(s) in (8.1). Thus, by computing the coefficients on Ag, explicitly, we
have the Fourier transform (8.1) for every s e C except when it is a negative
integer. When s is a negative integer, we also get (8.1) by analytic con-

tinuation. After all we obtain (8.1) for all s ¢ C.
2) In the case of 2), we may prove (8.3) in the same way. g.e.d.

§9. Invariant measures on singular orbits and their Fourier transforms

As proved in Proposition 3.2, the singular set Sy consists of three real
loci Siz, S;r and Syz. Each Sz decomposes into a finite number of G-
orbits denoted by [[,c,, 8/ (i=1,2,3). Here, in the division case the index
setis I, :={0, 1, - - -, 3—i} and in the split case it is I, :={0}. We have
seen that each Gg-orbit §7 is a Gk-orbit in Proposition 3.2 3). By inves-
tigating the action of Lie algebra of G on S/, we see that each §/ admit
a non-trivial Gy-invariant measure, which is uniquely determined up to a
constant multiple. We denote it by dvi.

Proposition 9.1. Let F(Xy) be the space of rapidly decreasing functions
on Xy and let dvi (i=1,2,3, and j ¢ I,) be a non-trivial Gx-invariant measure

on Sj. For any element f(x) in S (Xy), the integral f J(x)dvi(x) is absolutely

convergent and the functional,

CR) e )

defines a tempered distribution on Xy supported on Sj.
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Proof. 1If i=3, dvl(x) is a measure supported on the origin {0}. Then
(9.1) is apparently defines a tempered distribution on X;. So we confine
ourselves to the cases i=1 and i=2. Note that dvi(x) is a Gk-invariant
measure on the orbit S/ and S§7 is stable under the multiplication opera-
tion of positive numbers. From the definition of dvi(x), we see that it is
homogeneous of degree 36 —12i, i.e., dvi(r-x)=r*"""dyi(x) for any r>0.

Thus the integral f S(x)dvi(x) is written in terms of the polar coordinate
(r,0) e R, X8 where R, :={r e R;r>0} and §* is a 26-dimensional
sphere. The integral [ f)dvi(x) is written as
9.2) f f(x)dyg(x)zf Fr-0)-r*=dr - d5i(w),

XRr R4 XS(20)

where di(w) is the restriction of dvi{x) on the unit sphere in Xy and dr is
an Euclidean measure on R,. When f(x) € #(Xy), the integral

[ .70

is a continuous bounded function on R, hence the left hand side is abso-
lutely integrable. It is a routine work to show that (9.1) is a continuous
linear functional on S (Xy). g.e.d.

As proved in Proposition 9.1, (9.1) defines a homogeneous distribu-
tion of degree 36 —12i supported on S/. We may denote it by T7(x), i.e.,
f f (x)dv{(x)zj T/ (x)f(x)dx for any f(x) ¢ S(XR)-

Since dvi(x) is GL-invariant and homogeneous of degree 36 —12/, we have

f Flo(g)-x)- TH(x)dx =1(g)"~™ jf(x):rg(xwx,
which means that

©.3) T{(p(g) - x)=21(g)"“" - T(x),

for all ge Gi. Thus the distribution defined by (9.1) is a %(g)~ * -
invariant tempered distribution 77(x) supported on S7.

The problem we want to solve in this section is to calculate explicitly
the image of the Fourier transform of T/(x) on X3 —Sz. We normalize
dv{ suitably and compute the Fourier transform on Xg —Sy in the same
manner as in § 8.



452 M. Muro

(In the division case)
Let dv! be a GL-invariant measure on S/. We shall normalize dy{ in
the following way. We put

=[]
T 0 I’

7

a point in §7. We identify the tangent space (7 Xr).! of Xy at x] with Xx.
We introduce a coordinate on Xi by

&1 X3 Xy
(94) X= Xy, &35 X1 |5

x2’ )_Cl, Ea
with &, e Rand x, :=(x,+ xju+x3v+xpw) + (x)+ xju+x,v+xgw)e € €3
Then the tangent space of §7 at x] is a subspace of (T'Xg)./, which is given

by:

9.5 1) (TS8).i={XeXz;&=0 (j=0,1,2),
2) (Tszj)r;={X€XR,$2=$3=0, X1=0} (]=09 1)’
3) (Tssj)xg—_—{Xe Xz 6=6,=8,=0, x;=x,=Xx,=0} (j=0).

Now we normalize dy] so that

|d&, NdE&y Ndx, N\dx, /\dx,) i=1
9.6) dvi|sr=1|d& Ndx,/\dx;| i=2
1 i=3

P 8 q
where dx, 1= A\%_, dxd.

Definition (In the division case). Let T7(x) be the tempered distribu-
tion defined by the linear functional (9.1) where dv} is normalized by (9.6).

Theorem 9.2 (In the division case). The Fourier transform of the
tempered distribution T(x) is given by:

[ 7109 exp (—22 =T 3xl st
9.8)

=3 bl | POy
=0

where bi.’s are:
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bl :=Q2m)"*-27"-T(AI®),
by :=Qm)7*- 27" L(AI(B),
bl :=Qm) 27" (DI (8),
by :=Q2m)*-27"-I'(4),

by, :=@2r)™*-27"-I'(4),

B, 1=27",

Proof. The coefficients of the solution 77(x) on Agk and on A5, are
from the definition

cp o (T{(x)=0 for all p=0, 1, 2, 3.
e o(T{(x) =Q2m)~ ¢ for all =0, 1.
e o(T{(x))=0 for k+j and for all g=0, 1.
By using the relation of the coefficients (6.1) for s= —1, we can easily

compute the coefficients of 77(x) on Az from the data of coefficients on
Ax. Namely we have

cu (T{())=Qa) " T@T®)2r)-»  for all k.

Similarly, for T§(x) (j=0, 1), the coefficients of 7(x) on Ag and on
Az are zero, ¢, «(T{(x))=2x)~° (4=0, 1, 2) and cz«(T{(x))=0 for k=j
(¢=0, 1, 2). Calculating the coefficients by using the relation matrix of
the coefficients (6.1) for s= —5, we have

cg(T{(X)=Q2r)~ [ () (2r)~° for all k.

Thus, by Proposition 7.2, we have the above formula (9.8) of the Fourier

transform.
For TY(x), the coefficients of T9x) on Agg, on A and on Az are

zero. On Ag, we see that
g (T3(x)) = Q)& for all k.

Thus, by Proposition 7.2, we have the above formula (9.8) of the Fourier
transform of T9(x). q.e.d.

(In the split case)
Let dv! be a GL-invariant measure on §%. We shall normalize 4y} in

the following way. We put
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a point in §7. We identify the tangent space (T'Xy),? of Xz at x} with Xg.
We introduce a coordinate on Xy on by (9.4) where each x, is an element
in the split Cayley algebra €%. Then the tangent space of 87 at x} is a
subspace of (7Xg),s, which is given by
©9) D (TSDg={XeXy;&=0}

2) (TSDg={X € Xe; &=£,=0, x,=0}.

3) (TSg)zg={X€ Xr; §=6=§=0, x;=Xx,=x,=0}.

We normalize dv} so that

|d&, NdE; Ndx, Ndx, N\ dx,) i

=1
9.10) dvi|o=11d& Ndx, Ndx,) i=2
1 i=3

. . __ A8 q
where dx, 1= A5, dx}.

Definition (In the split case). Let T%x) be the tempered distribution
defined by the linear functional (9.1) where dv} is normalized by (9.10).

Theorem 9.3 (In the split case). The Fourier transform of the tem-
pered distribution T(x) is given by:

j Tx) exp (— 28/ = 14X, p))x|uk_sq
:s§: b, -]P(x)\““‘”\ok.

9.8)

where bS.’s are:

b :=Q2m)™ - 270 T'(AI'(B),
gk ::(277)_4'2—11'1—'(4)3
By, 1=2"",

The proof of this theorem is the same as that of Theorem 9.2.

Chapter II. Zeta functions associated with the exceptional
group of type E,

In this chapter we shall give a definition of zeta functions &,(I", L, s)
and EX(I", L*, 5) (i, j e 1,) which are defined for a given discrete subgroup
in G¢ and a Z-lattice in Xi. They are combined with one another through
a functional equation. They have a finite number of simple poles. Our
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purpose is to give them explicitly. After defining the zeta functions as
Dirichlet series, we will prove the possibility of their analytic continuation
and compute the functional equation explicitly in § 10. In §11, we will
show that computation of their residues is reduced to calculation of the
Fourier transforms of invariant measures on singular orbits and we will
give their values. ' 4

§10. Zeta functions and functional equations

Let (G%, p, Xg) be one of the real forms of the complex prehomo-
geneous vector space (G, p, Xc) =(GL,(C) X E,¢, p, Her; (€.)). Oneis 1)
the division case and the other is 2) the split case in (3.3). Let [[,c;, O,
be the connected component decomposition of Xy —.Sg, where the index
set I, :={0, 1, 2, 3} in the division case and I, :={+, —} in the split case
(Proposition 3.2). Let X, be a Q-vector space in Xy such that R®, X,
=Xr. Weput Gy :={ge Gg; p(g) € GL(Xy)}. Itis easily checked that
p*(Gy)=p(G}) where p* is the contragredient representation of p with
respect to the inner product (x, y)=tr(x-y).

Let L be a Z-lattice in X, and let L* be its dual lattice. Take a
subgroup I" in G§, such that L is ['-stable, i.e. p(I")-L=L. Then L* is
also a ['-stable lattice, i.e. p*(I")-L*=L*. For a function fe #(Xy) and
for a I'-stable subset M in L (resp. L*), we put: ‘

10 Z(Ms)i=[ KN T fo(e) -2,

(resp. Z*(f M5 1= (@I 35 flo¥(e)-2)ds.)

where dg is a non-trivial Haar measure on Gg. In particular, when we
put L,:=LN0O; and L} :=L*NO0,, they are [-stable subsets. We
suppose that:

- (10.2) If the real part Re(s) is sufficiently large, then Z(f, L;, s) and
Z*(f, L¥, s) are absolutely convergent for any fe F(Xg) and for
any ie I,

Then we may express Z(f, L;, s) and Z*(f, L¥, s) by:
(103)  Z(f Ly ) i=8(I's L) [ f09- [P,

(resp. ZH(f, L, 5) r= KT, L, 5)- [ 1)1 P03 )

with
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(104) &\ Ls):= 3. (j%“dux).lp(x)l—s.

[xle I'\L;

(resp. ST, L%,5) =5 (fahxw dy;!‘) -lp(x)l—s).

Here Gy, is the isotropy subgroup of Gy at x; I, is the isotropy subgroup
of I at x; dv, (resp. dv¥) is the left invariant measure on G, normalized
so that (10.3) is valid.

The absolute convergence of Z(f, L,, s) (resp, Z*(f, L}, s)) guarantees
that &,(I", L, s) (resp. &(", L*, 5)) is absolutely convergent when Re (s)
is sufficiently large. We call &(I", L, s) and &¥(I", L*, s) zeta functions
associated with the exceptional Lie group of type E,.

Under the convergence condition (10.2), we may prove that &,(I", L, s)
and £¥(I", L*, s) are continued to the whole complex plane as a mero-
morphic function with finitely many poles and they are combined with one
another by functional equations. We shall explain it briefly following
Sato-Shintani [Sm-Sh].

Recall Poisson’s summation formula:

(10.5) T/@=0D" 3 SO,
for any f(x) e #(Xy) with
v(l) 1= dx.
I\XR
Here

PY0=] ) exp (=203 =Ty,

We may put f(x) belonging to C(0;) : =the space of compactly supported
functions on @,. Then for g e G, f(p(g)-x) is also in C{(0;). Sub-
stituting f(p(g) - x) in (10.5), we have:

(10.6) 2 /(@) )=o) 2 f(*(8) ) X&)

Integrating the left hand side of (10.6) on G#/I" with respect to (g)*dg,
we see that the integral is absolutely convergent and coincides with
Z(f, L, s) if Re(s) is sufficiently large. In particular, since f(x) e C(0,),
Z(f, L, s) is actually

AT, L. s) I FO)-| PO dx.
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We divide the integral Z(f, L, s) into the sum of the two integrals -
Z*(f, L,s) and Z~(f, L, s), i.e., Z(f, L, s)=Z*(f, L, s)+Z~(f, L, s), with

Z(L=[, % fee)x)-He)de
and

Z(f,L,s):= 22 fo(g)-x)-%(g)*dg.

GR/T 1 (g)<1 z€L

Then Z*(f, L, s) is absolutely convergent for any s € C and defines an
entire function. The next part Z-(f, L,, s) is written by using (10.6) as

z-(4, L, )=o) 3 1 V(o()-2) He) g

Gf /T (8)<1 yEL¥

(10.7 —v0) OB EORT NG

GE/Ts1(@)<1 yeL*-SR

+o(@)- 25 SfY(e*(8)-»)-X(g) g (2)

G /T,1(8)<1 ye L* N SR

It is easily checked that the first term (1) is absolutely convergent for any
s € C and defines an entire function.

We substitute P(9/0x)f(x) for f(x). Then the Fourier transform
(P(9/ox) f(x))V=P(y)fV(y) vanishes on Sz. Thus the second term (2) in
the calculation of Z-(P(3/9x)-f(x), L,s) of (10.7) vanishes and hence
Z-(P(d/0x)-f(x), L, s) is an entire function. This yields that Z(P(3/dx)-
J(x), L, s) is continued to an entire function. Then

Z(P(2) 1. Los )= Los)-[ P(L) 19- 1 PGl
—&(1. L) [ (~ 17 f00)- P (-2 ) PGl
—const.-&,I", L, 5)-b(s—10)- j F00)- | PG d,

with b(s)=(s+1)(s+5)(s+9). Since f J(x)-|P(x)|;" dx is entire for any

f(x) e C3(0,y), &I, L, s) is continued to the whole complex plane as a
meromorphic function. Furthermore, for any s € C, we may choose f(x)

so that f SX)-|P(x)[;dx does not vanish. Thus &, L, s)-b(s—10) is

an entire function. For the integral Z*(f, L*, s), the same argument is
possible and we can prove that £F(I", L*, s)-b(s—10) is entire.
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-Next we shall compute the functional equation comblmng &I, L, 5)
with &¥(I", L*, s). For f(x) e C7(0)),

&, Ls)- [ P(-2) 09| PG d

(10.8) =Z<P(-a;>f, L,s>=z+<P(§;>ﬁ L,s)
2 (2)rn)

We have seen that both Z*(P(9/0x)f, L, s) and Z-(P(9/0x)f, L, s) are entire
functions. By using Poisson’s summation formula (10.6), we have:

10.9) 1) Z+(P<aix) 1. L,s>

—u(L)- j 3 (P V)(0*(8)-3) - 1(g)*~"dg

G /T, x(8)21 yEL

> 2(e(3)in)

—o) 3 (P Ne¥(®)9) H(g) .

GE/T,x(g)<1 y&L*

The integrals in the right hand sides of (10.9), 1) and 2) are not absolutely
convergent for Re (s)>0. However if Re (s) is sufficiently small, both of
them are absolutely convergent and the sum of the two is

o[ (P NeM(E) ) He) g
= (L) Z¥P-fY, L*, 9—s)

(10.10) —oD) S T L5 9 ) j(p S|P dx

—uD) 3 T, 1%,9-5)- [ P ( )10 0PIy,

jelo

By using the formula of the Fourier transform of | P(x)|;*:

(P = [ exp (=200 = Tx )1
= 3 A=) PO
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we have:
(1010)=uD)" 3} 50, 15, 9=5)-did=) [ P(-2) 10 1P *ay:
Comparing this formula with (10.8), we have

101 eI L)=u(l) " 3 EHT, L¥, 9—5) d;( ),

which is the functional equation we want to compute. The explicit form
of d;,(—s) is given in § 8, Theorem 8.1:

d;; ()= Q2z) ¥~ D .27 ¢, (s).
After all we have obtained the following theorem.

Theorem 10.1. For a lattice L in X, and for a subgroup I' in Gy
satisfying po(I")-LC L, we suppose the convergence condition (10.2). Then
the Dirichlet series £,(I", L, s) and £(I", L*, s) (i e I,) are absolutely con-
vergent if the real part Re (s) is sufficiently large. They are continued to
the whole complex plane as meromorphic functions with a finite number of
poles. They have the functional equation (10.11).

Remark. The convergence condition (10.2) is always satisfied in the
division case. In fact, Weil [We] gave a sufficient condition for absolute
convergence of integrals of the form Z(f, L,s) and Igusa [Ig] actually
proved the convergence of Z(f, L;, s) in the division case by checking the
Weil’s condition.

§11. Computations of residues
In this section we shall explain how we calculate the residues of
E(I", L, s). The residues of EX(I", L*, 5) are computed in the same way.
As proved in the preceding section,
&(T L, s)- [ 1) Pl dx
(1.1 =Z*(f,L,s) )
+u(@)" 2. SYp*(g)-y)-Ug) *dg @

GE/T,1(8)<1 ye LF*~ SR

+o) S K )

GE /T x(g)<1 ye L*nSR
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for f(x) ¢ C5(0,) and s e C with sufficiently large real part. We have
seen that the terms (1) and (2) in (11.1) are entire functions for any f(x) €
C(0,). Then the poles of &(I", L, s) appear in the third term (3) if they
exist.

We shall compute the term (3) more precisely. Since I” is a subgroup
of G, we may divide the integral on G7/I” into the product space GL(R)*
X(Gx/I"). Thus the term (3) in (11.1) is written as:

* e dX
112 @[ 2y [ 5 fers ) e

1 X(g) Jeryeifnsg
where g=g,-g, with (g,, g,) e GL,(R)* X G%/I" and dg, is a Haar measure
on G, satisfying dg=dX(g,)/%(g,) X dg,. In order to simplify the argument,
we suppose that:

(11.3) J > fY(p*(go) - »)dg, is absolutely convergent.

GR/T ye L*NSR

Let [],S;=8g be the Gi-orbital decomposition of Sg, which coincides
with the Gk-orbital decomposition. The integral in (11.3) is calculated as:

[ B et e

Gk/[' yE€L*NSR

[ 23 = e e

GL/I i=1 jel; yeL*nsJ

i

I
Mw

SY(0*(8.+7) - y)dg,

1 jel: leRi*ns] réFrry J ehr

SY(p*(g2) - ¥)dg,

i=

(11.4)

I
Mw

j€l: yle \L*ns] JG‘ /Ty

o) j
1 /€T; yle Mz+ns] 6k,/Ty

([y]a;vns’ (J e ”)) 'Jsgfv(x)d”zj(x),

where dv{(x) is a Gk-invariant measure on §; and dy, is a left invariant
measure on the isotropy group G%, of G% at y normalized according to
the normalization of dvi.

As we have seen in § 8, the integral

.
]
-

l
Mm

(3

I
'L\’J“

~

t=1j¢

Il

(11.5) h(x) ?~———>J‘S1 h(x)dvi(x), (h(x) e S (Xp)).

is absolutely convergent and defines a X~ “*-®-invariant tempered distribu-
tion T/(x) on Xi. Since fe C(0;), we have
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[ RAGIORIZC
= [ @) » T
=1(g)~ [ 0)- TV )y
=1 [ £0)-ble- | P dy,

where b}, are the constants calculated in § 9. See Theorem 9.2 and Theorem
9.3. Thus the value of the integral (11.2) is,

ity [ aggy- o HED

X z}; f§i ([y]el%*n 57 (.[G;Qy/r,, dvy)>
(11.6) 'L;f(x) b | P(x) |~ dx
=v(L)" - (—(—4+3)™)
X g‘; j?‘l’i ([y]er;;*nsg (j €k, /Ty dy”))
-Lgf(x) b | P(x) |1 dx.
Thus we have:
&I, L.3)- [ 00| Py v

—((1) in (11.1))+((2) in (11.1))
—3 (s—4i+3) " u(D)”

X 23 (e (g, @) [ 70001 P OO
J&Ts \lyle \1*nS; \J G} /Ty Si

Hence the residues of the pole of &.(I", L, s) at s=4i—3 (i=1, 2, 3) is

(%)) —v(L)"~Z< 2 (J dvy»b{k-
J€Is \[yle\L*nS] G;Q”/r,,

Thus the explicit computation is reduced to the computation of the sum
of the absolutely convergent series:
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(11.8) ( 5T (J duy>>,
[yle \L*N S} G;Qy/ry

and the computation of the Fourier transform:

[ 7109 exp (— 22 =T, pY)exlzy

(11.9)
= 23 bl | PO o
kelo>
Theorem 11.1 (Calculation of the residues). Under the convergence
condition (11.3), the residue of the simple pole of &I, L, s) at s=4i—3
(i=1, 2, 3) is given by (11.7). The values of bj’s have been computed in
Theorems 9.2 and 9.3.

Remark. The evaluation of the series (11.8) is another problem. It
highly depends on the choice of the lattice L. It may be expressed as a
special value of the Riemann’s zeta function or a zeta function of quad-
ratic forms (so-called Siegel’s zeta function), but we can say nothing about
it.
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