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Introduction 

Zeta Functions Associated to Cones 
and their Special Values 

I. Satake and S. Ogata 

The purpose of this paper is to give a survey on zeta functions associ­
ated to (self-dual homogeneous) cones and their spedal values, including 
some recent results of ours on this subject. 

In § 1 we summarize basic facts on self-dual homogeneous cones and 
the associated I'-functions. § 2 is concerned with the zeta functions. Let 
V be a real vector space, C(i' a self-dual homogeneous cone in V, and let G 
be the automorphism group Aut(V, C(?)0 • We fix a Q-simple Q-structure 
on (V, C(?). As is well-known, the pair (G, V) is a "prehomogeneous vector 
space" in the sense of Sato-Shintani [SS]. Following the general idea in 
[SS], we define a set of zeta functions {~r}, each one of which is assodated 
to a connected component Vz o: vx = V - S, S denoting the singular set; 
in particular, ~(O)=Z"' is the zeta function associated to the cone VioJ=C(i'. 
Then we give an explicit expression for the system of functional equations 
(Theorems 2.2.2, 2.3.3). Under the assumption that d is even, taking 
suitable linear combinations of these zeta functions, we define a new kind 
of L-functions Lr, which are shown to satisfy individually (or two in a 
pair, according to the cases) a functional equation of ordinary type (see 
(2.3.5)). We give some (new) results (Theorems 2.3.9, 2.4.1) on the residues 
and special values of these zeta and L-functions, where two extreme L­
functions L<o) and L<r,i play an essential role. These extreme L-functions, 
which generalize the (partial) Dedekind zeta function and the Shimizu L­
function in the Hilbert modular case, seem to be of particular importance 
from the number-theoretic view point. 

In § 3, we consider the corresponding (rational) symmetric tube do­
main I»= V +-1=-f C(? and, under an additional assumption that the Q-rank 
of G is one, study the geometric invariants (X00 , r 00 , etc.) associated to the 
cusp singularities appearing in the (standard) compactification of the 
arithmetic quotient space I'\:» ([S3, 4]). A typical example is the Hilbert 
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modular singularities, which were studied extensively by Hirzebruch and 
others ([H2J, [HGJ). In [H2J Hirzebruch gave a conjecture relating the 
"signature defects" of the cusps with the zero-values of the corresponding 
Shimizu L-functions, which was later proved by Atiyah-Donnelly-Singer 
and Muller ([ADS 1, 2J, [M 4, 51). In view of our results on these invariants 
and special values, we state in 3.3 some conjectures ((Cl), (C2), (C3)) which 
may be regarded as a natural generalization of the Hirzebruch conjecture. 

In § 4, we define a more general zeta function Zw associated to a 
"Tsuchihashi singularity" and give a formula for the zero-value Zw(O) 
(Theorem 4.2.5) by modifying a method due to Zagier [ZJ. Recently, using 
this formula, Ishida [131 proved the rationality of Zw(O) in general. It is 
hoped that our approach might suggest a new possibility of attacking the 
generalized Hirzebruch conjecture. 

Our study on this subject has been largely inspired by the funda­
mental works of Professor F. Hirzebruch, to whom this paper is respect­
fully dedicated. The paper was prepared during a stay at the MSRI, 
Berkeley in 1986-87, of the first-named author, who would like to thank 
the staffs of the Institute for superb service and hospitalities. 

Notations. The symbols Z, Q, R, Care used in the usual sense, e.g. 
Q is the field of rational numbers. H is the Hamilton quaternion algebra. 
We use the symbol like R.,0 ={2 e RJ).>O}, and write R+ for R>o· For 
~EC, e(~) stands for exp(2n-,/=t~). Let Vbe a real vector space, v,, ... , 
v, EV and let S be a subset of R. Then we write {v1, • • ·, vr}s for 
{I:T=1 Aivi J).i E S}; e.g. { V1, • • ·, v, k,,o is a cbsed polyhedral cone gener­
ated by v1, • • ·, Vr. For a cone crl and a lattice M in V, Cft* and M* 
denote, respectively, the dual cone and the dual lattice in the dual space 
V*. For a topological group G, G0 denotes the identity connected 
component of G. For a finite set S, ISi denotes the cardinality of S. 

Let F be a subfield of R, '!l a (connected) algebraic group defined 
over F, and G = '!l (R) 0 • By an abuse of notations, we write G F for q; (F) 
n G and F-rk G for F-rk '!l (i.e. the dimension of maximal F-split tori in 
'!/). If a is an imbedding, F~R, then Ga stands for '!l"(R) 0 and, if F0 

is a subfield of Fwith [F: F0J<oo, then RF1F0(G) stands for RF!Fo('!l)(R) 0 • 

When '!/ is reductive, G= '!l(R) 0 is called "reductive", and we write G• for 
'!l'(R) 0 , q;• denoting the semisimple part of'§. 

§ 1. Self-dual homogeneous cones ([BKJ, [SlJ, [VJ) 

1.1. Let V be a real vector space of dimension n > 0. By a convex 
cone in V, we mean a subset crt of V with the following property: 

x, ye crt, A, µ>O===}Ax+µy e crt. 
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The dual of <fl is defined by 

<fl*={x* e V* I <x, x*)>O for all x e <l-{O}}. 

Then <fl* is an open convex cone in the dual space V*. It is clear that 
for a (non-empty) convex cone <fl the following three conditions are equi­
valent: 

( i) <fl does not contain a line in V; 
(ii) <ln(-<l)={O}; 
(iii) <fl* is non-empty. 

When these conditions are satisfied, <fl is called non-degenerate. In what 
follows, a non-degenerate open convex cone will simply be called a "cone". 
For a cone <fl, one has <fl**=<fl. 

A cone <fl is called self-dual if there exists a linear isomorphism 
S: (V, <fl)=;(V*, <fl*), which is symmetric and positive definite. A cone <fl 
is called homogeneous if the automorphism group 

G=Aut(V, <fl)0 ={g E GL(V) I g<fl=<fl} 0 • 

( 0 denoting the identity connected component) is transitive on <fl. 
In §§ 1-3, unless otherwise specified, we always assume that <fl is self­

dual and homogeneous, and fix a positive definite inner product < ) on 
V defining an isomorphism S mentioned above. Then (V, <fl) is identi­
fied with its dual ( V*, <fl*). In this case, the automorphism group G is 
the identity connected component of a reductive algebraic group and for 
any c0 e <fl the isotropy subgroup 

is a maximal compact subgroup of G. Thus <fl:=::;:;G/K has a structure of 
Riemannian symmetric space (with a flat part). 

1.2. In 1957-58, M. Koecher made an observation that the category 
of self-dual homogeneous cones (V, <fl) with a base point c0 e <fl is equi­
valent to that of "formally real" Jordan algebras by the correspondence 
given as follows ([BK], [Sl]). Let <fl be a self-dual homogeneous cone in 
Vwith a base point c0 and let G, Kbe as above. Let g=Lie G, f=Lie K 
and let g = f + +J be the corresponding Cartan decomposition. Then by the 
homogeneity assumption there exists a unique linear isomorphism 

V 3 X ~ TX E +J 

such that X= Txc0• The Jordan product in Vis then defined by 

Xo y=TxY (x, y E V). 
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In particular, one has Tc0 =idv, i.e. c0 is the unit element of the Jordan 
algebra. 

By virtue of this equivalence, the classification of self-dual homo­
geneous cones is reduced to that of formally real Jordan algebras, which 
was given (by a collaboration of phisicists) as early as in 1934 ([JNW]). 
A self-dual homogeneous cone <ef is decomposed uniquely into the direct 
product of the "irreducible" ones, for which one has G = R + X G• with G• 
R-simple ( or = { 1 }). The irreducible self-dual homogeneous cones are 
classified into the following five types: 

{

{!J1(R)=R+, {!Jr(F) (r>2, F=R, C, H), 

{!Ja(O) (O denotes the Cayley octonion algebra), 

{!J(l, n-l)={(~i) E Rn I ~1>0, ~~-~1- 2~~>0} (n>3), 

where {!J,(F) denotes the cone of positive definite hermitian matrices of 
size r with entries in F. {!Jz(R), {!Jz(C), {!Jz(H) are isomorphic to the 
"quadratic cones" {!J(l, n-1) with n=3, 4, 6, respectively. For <ef= 
{!Ja(O), G• is an excetional group of type (E6). 

A more general study on "homogeneous cones" was done by Vinberg 
[VJ in the early 60's. In the study of general cones, the characteristic 
function plays an essential role. For any (non-degenerate, open convex) 
cone <ef, the characteristic function <j>(x)=<j>,ix) is defined by 

<j>,ix)=f e-<x,x*>dx* . 
.r• 

Clearly one has 

for x e <ef, g e G, 

and log <j>.(x) is a convex function, which tends to infinity when x e <ef 
converges to a boundary point of <ef. The characteristic function will be 
used later in § 4. 

1.3. Quasi-irreducible cones. Let <ef be a self-dual homogeneous 
cone in V. <ef is called quasi-irreducible if in its irreducible decomposition 
all irreducible components are isomorphic. 

Lemma 1.3.1. Suppose ( V, <ef) has a Q-simple Q-structure; this means 
that there is a Q-vector space VQ such that V= VQ®QR,for which G is (the 
identity connected component of) an algebraic group defined over Q and 
that, if ( V, <ef) = IT ;-_1 ( VP, <ef p) is the irreducible decomposition, no partial 
product of V,,'s is defined over Q, or equivalently, that the center of G is 
of Q-rank one. Then <ef is quasi-irreducible. 
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In fact, under this assumption, there exists a totally real number field 
F, of degree m such that 

where G1 =R+ X Gf with Gf R-simple (which may reduce to {l}), defined 
over F;_, and {a,. (I<µ<m)} is the totality of the imbeddings F1~R. 
Then the G~'s are all C-isomorphic and hence, by the classification theory, 
are also R-isomorphic except for the case when there exists an even integer 
r1 such that every G~ is isogeneous either to SL(r 1, R) or to SL(r 1/2, H) 
and when both types SL(r 1, R) and SL(r 1/2, H) occur in the G~'s. But 
actually such a "mixed type" can not occur for the following reason. 
Since the Q-rational points are dense in rt', one may take c0 to be Q­
rational; then the maximal compact subgroup K is also defined over Q. 
One then has the corresponding decomposition 

m 

K=RF,,iK,)= n Kµ, Kµ=Kr µ 
µ=1 

and hence all K,.'s are also C-isomorphic. But the dimension of the 
maximal compact subgroups of SL(r 1, R) and SL(r 1/2, H) is equal to 
fri(r, - 1), fri(r, + 1), respectively. Therefore no mixture of these two 
types can occur, which proves our assertion. 

1.4. The norm and trace. The rank of a self-dual homogeneous 
cone rt' is by definition the R-rank of the Lie algebra g, which also coin­
cides with the (absolute) rank of the formally real Jordan algebra (V, c0). 

Let n=dim Vand r=rank rt'. If rt' is irreducible, one has (from the Peirce 
decomposition of (V, c0)) 

(1.4.1) d n=r+-r(r-l), 
2 

where dis a non-negative integer. For <'&'=R+, one puts d=O. For rt'= 
fJJ,(F) (r>2), one has actually rank <'&'=rand d=dimRF=l, 2, 4, 8 ac­
cording as F=R, C, H, O. For a quadratic cone rt', one has rank <'&'=2 
and d=n-2. Thus the pair (r, d) is a complete invariant for an 
isomorphism class of irreducible self-dual homogeneous cones. 

In the Jordan algebra (V, c0), one can define the (reduced) norm N: V 
-+Ras the (unique) homogeneous polynomial function of degree r on V 
such that, for a "general element" x in V, N(tc 0 -x)( E R[t]) is the minimal 
polynomial for x in the usual sense. When rt' is irreducible, the norm is 
uniquely characterized by the property 
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N(c0)=1, N(gx)=det(g)'fnN(x) 

for g e G, x e V. 

(Note that X(g)=det(g)'tn is a rational character on G.) Hence one has 
the relation 

(1.4.3) 

The (reduced) trace tr(x) is defined by 

N(tc 0 -x)=t' -tr(x)t•- 1 + · · · +(-I)'N(x). 

The trace is K-invariant. It follows that, when 't&' is irreducible, one has 

r (1.4.4) tr x=-tr(T.,,), 
n 

where T.,, : y>--+xy is the multiplication in the Jordan algebra (V, c0). (Note 
also, putting P(x)=2T;-T.,,., one has the relations P(gx)=gP(x)Cg, 
det(P(x))=N(x) 2ntr.) 

In what follows, we assume that 't&' is quasi-irreducible. Let (V, 't&') 
= Il::"=1 (Vµ, 't&'µ) be the irreducible decomposition, 

m 

G= Il Gµ, Gµ=Aut(Vµ, '1&'µ)0 , 

µ=l 

and put n1=dim V1, r1=rank't&'1=R-rkG 1• Then one has n=mn 1, r= 
mr1 and 

Hence the formulae (1.4.2-4) remain valid. We normalize the inner 
product on Vin such a way that (co,µ, c0,µ)=r 1 (l<µ<m), where c0 =(c 0,µ). 
Then one has 

(1.4.5) (x, y)=tr(xy). 

The Euclidean (i.e. self-dual) measure on V for this ( ) will be denoted as 
dx. A G-invariant measure on 't&' is then given by N(x)-nfrdx. 

1.5. The I'-function. Let 't&' be a quasi-irreducible self-dual homo­
geneous cone in V. The "I'-function" of 't&' (introduced by Koecher) is 
defined by the integral 

(1.5.1) r w(s)= L e-tr(x)N(x)•-(n/r)dx (s e C), 
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which converges absolutely for Res> n/r -1. By a change of variable, 
one gets 

(1.5.2) N(x)-s I' ,is)= L e-<x,y) N(y)'-n/rdy (x E ~). 

On V one can define a (unique) differential operator of degree r, de­
noted as N(P .,,), with the property 

N(l7 .,,)e<x,y> = N(y) e<x,y> 

( cf. [R], [SS]). Then N(l7 .,,) is relatively invariant in the sense that one has 

L;1N(l7 .,,)Lg= det(g)-r/n N(J1,") (g e G, x e V), 

where (Lg/)(x)=f(g- 1x) for any function f on V. The associated "b­
function" is defined by 

N(V,,)N(x)'=b(s)N(x)'- 1 (x e ~, s e C) 

(cf. [SS]). *l Then, applying N(f7 ,,) on the both sides of (1.5.2), one gets 

b(s)=(- l)' I' .,(l -s). 
I'.,(-s) 

By a direct computation from (1.5.1) (see e.g. [S2]), one obtains 

(1.5.3) 

(1.5.4) 

I'.,(s)=(2,r)<n-r)/2Cttr(s-i (i-l))r, 

b(s)=O1 (s+ i (i-l))r-
(For the I'-function of a more general cone, see [G].) 

§ 2. Zeta functions associated to a self-dual homogeneous cone 

2.1. We assume in this section that (V, ~) is endowed with a Q­
simple Q-structure in the sense stated in Lemma 1.3.1. Then G• is Q­
simple ( or reduces to {1 }), the center of G is of Q-rank one and~ is quasi­
irreducible. The Q-rank of G, which we denote by r0, is a divisor of r1 = 
R-rk G1 : hence we set o=r1/r0• We fix a base point c0 in ~n VQ; then the 
norm, trace and the (normalized) inner product < ) are all defined over Q. 
We choose a lattice Min VQ and an arithmetic subgroup I' of G such 

*i Note that in some recent literature (e.g. [11]) it has become more customary 
to denote our b(s) by b(s-l). 
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that I'M=M. We define a zeta function by 

(2.1.1) 

where I',,={r e I' 1rx ex} (which is finite) and the summation is taken 
over a complete set of representatives of the I'-orbits in ~ n M. When c0 

is kept fixed, we write Z'lf for Z'lf,co It is known that the series on the 
right hand side of (2.1.1) is absolutely convergent for Res>nfr and has 
an analytic continuation to a meromorphic function on the whole plane C. 
It is clear that, if I'' is a subgroup of I' of finite index, then one has 

ZiI'', M; s)=[I' : I'']ZiI', M; s). 

Hence it suffices to consider the zeta function for the full stabilizer I'M= 
{re GlrM=M}. In that case, we write ZiM; s) for ZiI'M, M; s). 

In the simplest case where G• reduces to {1 }, one obtains essentially 
the (partial) Dedekind zeta function of the totally real number field F1 (see 
the Example 2.1.2 below). The case where ~ is a quadratic cone was 
studied by Siegel [S9]. Our zeta function is a special case of the zeta 
function associated to a (real) "prehomogeneous vector space" in the sense 
of Sato-Shintani [SS], who treated as examples the cases of 9,(R), 9,(C) 
and the quadratic cones (see [S7], [SS], pp. 160-168, pp. 155-157). For 
other cases, see [M3] (cf. also [SF]). 

Example 2.1.2. Let F1 be a totally real number field of degree m and 
let V=F.®aR~R"". Then the "angular domain" ~=R':: is a self-dual 
homogeneous cone with respect to the standard inner product in Rm. G is 
identified with the multiplicative group R':: and G• and K reduce to the 
identity. If one takes c0 to be 1 (the unit element of F.), then the norm 
and the trace are given by 

N(x)= CT ~µ, tr(x)= I;~µ for x=(~µ) e V, 

and the standard inner product in R"' is normalized. V has a natural 
Q-structure for which Va=F 1, G is defined over Q, of Q-rank 1, and Ga 
={a e F{ I aqP>O(l <µ<m)}. Hence the above assumptions are all satis­
fied and one has n1 = r1 = r0 = 1, n = r = m. Let 0 Fi be the ring of integers 
in F. and choose M to be an ideal a1 in 0 Fc Then I'M is the group of 
totally positive units of 0F, and one has 

ZiM; s)= I; N(x)-•=N(a 1)-• I; N(a)-•, 
x:I'M\WnM 

where the summation in the last expression is taken over all integral ideals 
a "equivalent" to a11 in the narrow sense. Thus essentially ZiM; s) is 
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nothing but a "parital" Dedekind zeta function of F1 corresponding to the 
"ray class' of a11• 

2.2. Functional equations. According to the general theory of Sato­
Shintani, the functional equations for Z,(M; s) are obtained as follows. 
Let 

m 

vx={x e VIN(x):;t:0}= I1 V; 
µ=l 

and let 

,., 
VJ;= LJ Vµ,t 

i=O 

be the decomposition of V; into the disjoint union of the connected com­
ponents, or what amounts to the same thing, into that of the GP-orbits. 
(If c0=(c 0,µ) and if c0,µ= I;[!.1 eiPl is primitive decomposition, then Vµ,i is 
defined to be the G µ-orbit of - I;t= 1 e;tl + I:r~i+1 e;tl .) Thus one has 

where .Jf~ denotes the set of all m-tuples l=(ii, · · ·, im) with O<iµ<r 1 

(l<µ<m) and for l=(iµ), one sets VI= IT::'=1 Vµ,iµ· Hence vx consists 
of (r1 + l)m connected components. We write (k) for (k, · · ·, k) e .Jf~; 
then V(O) = '?f and Vc,,i = - '?f. 

For each/ e .Jf~, we define a zeta function 

(2.2.1) ~r(M; s)= I; µ(x) , 
:c:I'x\VznM \N(x)I' 

where the summation is taken over a complete set of representatives of 
I'M-orbits in VI n Mand µ(x) is a "density" defined as follows. For x e 
Vr, let U:r be a relatively compact neighbourhood of x in VI and let 

Then one has 

W:r={g e G\gx EU,,}, 

G.,,={ge Glgx=x}, I'.,,=G,,nr. 

µ(x)=f dg/f \N(x)\-n 1'dx, 
I',,\W,, U,, 

where dg is a Haar measure on G normalized in such a way that for any 
non-negative continuous function f on '?f one has 
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L/(gc 0)dg= f.J(x)N(x)-nfr dx. 

Then, except for the case r, =r 0 =2, d= 1 (treated in [S7], [S9]), µ(x) is 
finite and coincides with the volume of I' x \ G x with respect to a suitably 
normalized Haar measure on G x ([SS], Lemma 2.4) and hence depends only 
on the I'-equivalence class of x. In what follows, we omit the above­
mentioned exceptional case. Then the series (2.2.1) is absolutely con­
vergent for Res>n/r and has an analytic continuation to a meromorphic 
function on C ([SS], [S7]). Clearly one has ~co)=~cr,)=Z'<'. For l=(iµ) E 

.f~, we set l*=(r, -iµ). Then it is clear that 

Thus essentially we get [(r1 + l)m/2] zeta functions. 

Theorem 2.2.2. The functions ~z(M; s) satisfy the functional equations 
of the following form: 

~J(M*; !!_ -s) =v(M)(2rr)-rs I' is)e(_!!_) I:; ~lM; s)uIJ(s), 
Y 4 IEJm r, 

where M* is the dual lattice of M, v(M)=vol(V/M) and, for l=(i,,), 
J=(j,,), u1;(s)=I1::'-iui,,,j,,(s), uiJ (O<i,j<r 1) being integral polynomials 
in e(-s/2) of degree <rl' 

For an explicit expression of uiJ• see [SF]*>. 

2.3. To obtain more precise results, we assume in the rest of this 
section that r> 2 and dis even. (Note that, if r= 1, Z'<' is essentially the 
Riemann zeta function. If d is odd, then one has either r 1 = 2 ( quadratic 
cones) or d= 1 (.?l\1(Rr(r 1>2)).) 

Under this assumption, n/r is an integer and there are two cases: 
(a) d-=O (mod 4), or d-=2 (mod 4) and r1 is odd. In this case, n/r 

is odd. 
( a') d-= 2 (mod 4) and r, is even. In this case, n/r is even. 
Applying the methods in [SS] and [SF], one obtains 

Theorem 2.3.1. Under the above assumption, the function ~z(M; s) has 
at most r0 simple poles at s=n/r-(d/2)p for O<p:'.:::;:r1-l, alp (o=r 1/r0) 

and one has 

,:<> Note that Uij(s) in [SS] is in our notation (and in [SF]) given by c(2ir)<n-ri12 

Ur-i,r-j(s), if the measure on V in [SS] is equal to cdx with dx self-dual. For 
instance, in the case V=Herr(C) ([SS], pp. 160-168), one has c=2-<n-rJ/ 2, 
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Res ~ (M· s)-v(M*)((2rr)-(d/Z)(p(p+l)/Z) ITP r( d k))m S=n/r-(d/2)P I ' - k=l 2 

where M* is the dual lattic(of M and,for J=(jµ) e ./';, we set 

1J 1=tJµ, en= Jt (t), 
K',/l(M*)= ~ f dv.,,. 

_,,,tI'\S'j'nM* Gx/<I':, 

SJl is the G-orbit in S = V - vx containing ~;:'=1 ( - ~fr.1 e/!" + ~L 1 µ+i eftl) 
and,for x e S:fl, dv.,, is a suitably normalized Haar measure on G.,,. 

In the special cases, this result is due to [S9], [SS], [S7] and [M3]. It 
is possible to give a unified proof along the line of [SF] (see [S5a]). 

Corollary 2.3.2. Put v=n/r-(d/2)p with O<p<r,-I, ojp. For 
a fixed v, the (r1 + I)m-tuple (Res•=•~r(M; s))1 e.,f is proportional to 
((- l)'d/Z)plll)IE.,m. For l-1= 1 (mod 2), one has I ,, 

Also,for v=n/r, one has 

Ress=n/r~r(M; s)=v(M*) f dx1 >0, 
I'\'<'' 

where <i&'1 ={x e <i&' j N(x)= I} and dx' is the invariant measure on <i&'1 induced 
from N(x)-nfrdx. 

Let Pr, denote the symmetric tensor representation of GL(2, C) de­
fined by 

(1, y, · · ·, yr1)Pr,( e !) )=((a+cy)"', (a+cyY,-'(b+dy), 

... '(b+dyY,). 

For C=(ci 1)o,;;i,Jsr, e GL(r, + I, C), we write 

In these notations, we have 

m 

C1J= ITC-.. tµ,Jµ 
µ=l 
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Theorem 2.3.3. The polynomials u1is) in Theorem 2.2.2 are given as 
follows: 

in Case (a), 

in Case (a'), 

where x=e(-s/2). 
This follows from [SF], Theorem 2. We put 

((1 -1 l))QS)m• uc,,,m>(x)=(ulJ(s)), Ac,,,m>=(alJ)=P,, l 

Then the matrix ucr.,m>(x) can be diagonalized as follows: 

in Case (a), A(r,,m)-lu<r,,ml(x)A<r,,m)= - - IJ 
{((1 1-x)r-lil(l x)lllo ) 

((1 +xy-1 1*1(1-x) 11*1o1,,J in Case (a'). 

Hence, putting 

(2.3.4) 

one has 

LiM; s)= I;· ~1(M; s)au, 
IEJ'~ 

L 1 (M*;; -s)=v(M)(2n-)-"I',is) 

(2.3.5) 

according to the case (a) and (a').*' 
It is easy to see that the matrix A<r,,m>=(aIJ) has the following pro­

perties: 

(2.3.6) 

al,(O) = (z'), 

ar,J•= (- l)IIlaIJ, 

I:re.,:;(- l)IIlaIJ=oc,,J,J2'. 

*> This corresponds to the formula (30) in [SF], which was printed errone­
ously. It should read 

<N(J, s-n/r) (resp. (J)',-i(J, s-n/r)) 
=(2ir)-"I' n0(s)(e(s/4)+e(-s/4))H(e(s/4)-e(-s/4))'(J)/(f. -s) 

in Case (a) (resp. (a')). 
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We use the last relations in the following form. 

Lemma 2.3.7. For (xr) e c<r,+l)m and be C, one has 

~ XraIJ=O(o),Jb (resp. O(r,),Jb) 
IEJ?J_ 

if and only if 

for I e ./~. 

As another consequence of (2.3.6), one has 

13 

Corollary 2.3.8. QVI is odd, one has Lr(M; s)=0. In particular, if 
r is odd, one has L<,,l(M; s)==::0. 

In fact, if Ill is odd, one has by (2.3.4), (2.3.6) 

Lis)=~ ~z(s)aIJ= ~ ~r.(s)ar•,J 
I I 

=(- l)IJI ~ ~z(s)aIJ= -Lis), 
I 

whence follows that Lis)=O. 

Theorem 2.3.9. Let J.J=n/r-(d/2)p with O~p<r 1 -1, o Ip. Then 

1
2' Res,=,Zw(M; s) if J.J= : (2) and I= (0), 

Res,=,Lr(M; s)= or if J.J= ~ -1(2) and I=(r 1), 

r 

0 otherwise. 

In particular, Lr(M; s) with I=/= (0), (r1) is entire. If (d/2)o is even, 
L<,,i(M; s) is also entire. 

This follows from Corollary 2.3.2 and Lemma 2.3.7. 

Corollary 2.3.10. If r is odd, one has 

n for J.J= _ -1(2). 
r 

This follows from Theorem 2.3.9 and Corollary 2.3.8. In view of the 
formula in Theorem 2.3.1, this implies that the residue of the zeta func­
tions ~r(M; s) is always real. 
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2.4. Special values of zeta and £-functions. We are interested in the 
special values of the functions ~i(M; s) and Li(M; s) at S=JJ e Z, JJ<O. 
For simplicity, we write Z,.,(s), ~r(s), Lr(s), ~t(s) and Lf(s) for Z,.,(M; s), 
~i(M; s), Li(M; s), ~i(M*, s) and Li(M*, s), respectively. Putting s= 
n/r-JJ and replacing M by M* in (2.3.5), one has for JJ=.n/r-1 (2) and 
<O 

{
ord,=n/r-,Lt (Case (a)), 

ord,=,L 1 =r-\I\+ * 
ord,=n/r-,LI. (Case (a')), 

whence follows (noting r> 2) that 

Similarly, for JJ=n/r (2) and <O, one has 

for I-=!=-(0). 

By Lemma 2.3.7, this implies the following 

Theorem 2.4.1. For JJ=n/r-1 (2) and <O, one has 

In particular, ifr is odd, one has Z,.,(M; JJ)=Ofor all JJ=O (2) and <O. 
For JJ=n/r (2) and <O, one has 

~z(M; JJ)=Z.iM; JJ), 

Lz(M;JJ)= {
2'Z,.,(M; JJ) for l=(O), 

0 for I-=!=-(0). 

It has been conjectured in general (including the cased odd) that the 
special values Z,..(M; JJ)=~<0i(M; JJ) (JJ e Z, JJ<O) are rational. There are 
a few evidences supporting this conjecture. 

(2.4.2) In the case explained in Example 2.1.2, where one has r0=r 1 

= 1, r=m and d=O, the zeta function Z,.,(M; s) and the £-function L<o>= 
~!.;1 are essentially the (partial) Dedekind zeta functions of the totally real 
number field F1, and the £-function L(I) = ~ (-1) 111,; 1 coincides with the 
"Shimizu £-function" (which is a special case of Hecke's zeta function 
with "Grossencharaktere"). The value L(!i(M; 1), which is related to 
L(li(M* ; 0) by the functional equation, appears in the dimension formula 
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for the space of Hilbert modular forms ( cf. [S6]). The relation in Theorem 
2.4.1 for l.1=0, L{l,(M; 0)=2'ZiM; 0), has been known*'· In this case, 
the rationality of the special values ZiM; l.l) (l.l e Z, l.1<0) is well-known 
(see e.g. [S8]). 

(2.4.3) In the case where rt'=f!J',(R) (Y>2), M=Sym,(Z) and I' is 
a congruence subgroup of Sp,(Z), the special value Z,,(M*; l.l) appears in 
the cusp contribution in the dimension formula for the space of Siegel 
cusp forms for the corresponding congruence subgroup of Sp,_.(Z) (cf. 
[Ml], [S7]). In this case, one has F1=Q, Y0=Y1=Y and d=l. (So this is 
a case excluded here.) For the case Y1=Y=2, Y0 =1 and d=l with a Q­
structure defined by an indefinite quaternion algebra over Q, a similar 
observation was made by Arakawa [A]. 

(2.4.4) In the case of quadratic cones with Y0 = 1, Y1 =Y=2, Kurihara 
[K] showed that the values Zil.l) (l.l e Z, l.l<O) are rational for n<3 and 
gave an example with n=4 for which the rationality holds. 

(2.4.5) For the case Y0= 1, m= 1, one of the authors ([S2]) has made 
the following observation, generalizing Shintani's method in [S8]. Suppose 
I' is torsion-free and let 

be a I'-invariant non-singular "r.p.p. decomposition" in the sense to be 
explained in 4.2. Here aa={vt', · · ·, vl:'}R~o is a simplicial cone generated 
by via) (1 < i ~ la) such that Ma' (1 < i< /J} can be extended to a Z-basis 
ofM. 

Following Ishida [I], we put 

la } 

f(u)= I; fl <v,<a> u> 1 (u E rt'), 
aEAj=l e ' -

where c0 = I:r=1 e, is a primitive decomposition of the unit element. Then, 
it was shown in [S2] that the special values Zil.l) (l.l e Z, l.l<O) are a Q­
linear combination of the Laurent coefficients of fK(ti, · · ·, t,) after a 
suitable change of variables and hence are a Q-linear combination of the 
integrals of the form 

*' We are grateful to R. Sczech for informing us of this relation along with a 
sketch of proof. 
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where a e A and, for a given v, (vlj') ranges over a certain finite set of 
TX la integral matrices. 

(2.4.6) In the case of T0 = 1, the zero-value Z.,(O), which coincides 
with 2-rL<o>{O) or 2-rLcr1i(O) according as n/r=O or 1 (mod2), seems to 
have a close connection with some geometric invariants of the correspond­
ing cusp singularity, as we shall explain in the next section. The rationality 
of Z.,(O) in a more general context of "Tsuchihashi singularities" was 
proved by Ishida [BJ (see 4.2), 

§ 3. Geometric invariants of cusp singularities 

3.1. Rational symmetric tube domains. Let V, <(f, G, · · . be as 
before. We consider the tube domain P)= V +,1=-I<(f in Vc~Cn and let 
G=(HolP)) 0 denote the identity connected component of the group of 
holomorphic automorphisms of P). As is well-known, P) is a symmetric 
domain (hermitian symmetric space of non-compact type) and G is a semi­
simple Lie group of hermitian type with center reduced to the identity, of 
R-rank equal to r=R-rk G. The group of affine automorphisms of P), 

P=(Aff P))0 , which may naturally be identified with the semi-direct 
product G · V, is a parabolic subgroup of G corresponding to a point 
boundary component of P), which we denote symbolically by ,f=-1 oo. 

The given Q-structure on V determines uniquely a Q-structure on G such 
that P and G{ cP) are subgroups defined over (2; then the Q-rank of G is 
equal to To= Q-rk G. rn = Lie G is the so-called "superstructure algebra" 
of the Jordan algebra (V, c0), see [Sl].) A symmetric tube domain P) with 
a Q-structure on G determined in this manner is called a "rational sym­
metric tube domain". 

Let f' be a neat arithmetic subgroup of G. Here f' being "neat" 
means that for r e f' if r is unipotent for some positive integer v then r 
itself is unipotent; in particular, f' is torsion-free. Then M =I' n Vis a 
lattice in V and I'= (f' n P)/(f' n V) may be regarded as a (torsion-free) 
arithmetic subgroup of G. We assume that our Mand I' (in § 2) are ob­
tained in this manner. Thus one has an exact sequence 

I~M~tnP~r~I. 

In general, this group extension may not split, but f' n P is a subgroup of 
finite index in the semi-direct product I'M· M. 

In what follows, we restrict ourselves to the case r0= I. Then it is 
well-known that the quotient space Y = I'\P) can be compactified to a 
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normal projective variety Y* by adding a finitely many points p, (1 < 11< h), 
called "cusps": 

Y* = (I'\!72) U {Pt, · · ·, p,.}. 

This is so-to-speak the minimal compactification. Each cusp corresponds 
to a f-equivalence class of (point) rational boundary components of !72, 
or equivalently to a f-conjugacy class of (proper) Q-parabolic subgroups 
of G. We assume that p, corresponds to the class of a Q-parabolic sub­
group P, and, in particular, Pi=P, i.e. Pi is the class of ./=100. 

By the classification theory, it can be seen that the rational symmetric 
tube domain with r0 = 1 occurs only in the following cases 

(Case 1) 
(Case 2) 
(Case 3) 

(IIIi)m 
(III 2)m 

(I •.• )m 

SL/Fi)/{±1} 
SU/D 1/Fi)/{± l} 

SU/DiJFi/Fi)/{±1} 

(Case 1) is usually referred to as the "Hilbert modular case". In this 
list, Fi is a totally real number field of degree m, D1 is a totally indefinite 
quaternion algebra over Fi, Fi is a totally imaginary quadratic extension 
of Fi, Di is a central division algebra over Fi with involution of the second 
kind relative to Fi/Fi, and SU2 denotes the special unitary group for an 
"isotropic" hermitian form of 2 variables (i.e. the hermitian form with 

matrix (~ 6)) in D1 or Di, 

3.2. Geometric invariants of cusps. In general, the cusp p, is a 
singular point on Y*. A neighborhood of p, in Y* is analytically iso­
morphic to a neighbourhood of p, in the local compactification 

(I' n P,\!72) U {p.}. 

(Note that the P, are all G Q-conjugate to Pi= G · V.) Resolving these cusp 
singularities by the method of toroidal embeddings [AMRT], one obtains 
a smooth compactification: 

X~Y*, 

X = (I'\!72) U D, D= L.~=1D<•>, 

where Dis a divisor with simple normal crossings and DM=1r- 1(p.) is a 
connected component of D. Let D= L.ieI Di be the irreducible decompo­
sition of D and put 
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then DM= I:;iEICVl Di. From the construction, DM is a "toric '.divisor" 
(see [E], [S4, 5]); in particular, each Di is a toric variety. 

We denote by rt, ii (I<i<n) the Chern roots of X and the "logari­
thmic Chern roots" of X relative to D, respectively (see [Hl], [S5]). Let 
oi (i E J) denotes the 2-cohomology class on X defined by Di. Then in the 
cohomology ring H*(X, Z) one has the relation 

n n 
(3.2.1) TI (l+ri)=TI (l+it) TI O+oi) 

i=l i=l iE/ 

and, since D is toric, 

(3.2.2) 

([S4], Lemma 2). The arithmetic genus of X and the "logarithmic arithme­
tic genus" of X relative to D are defined, respectively, by 

X(X)= (1'1 (1 _r;-r,) )}XJ, 

i(X, D)= (fr ii ) [X], 
i=l (1-e-i'') n 

(3.2.3) 

where ( · · · )n denotes the homogeneous part of degree 2n in H*(X, Z) and 
( · · · )n[X] is its evaluation on the fundamental 2n-cycle [X]. One defines 
the "cusp contribution" to X at p, by 

(3.2.4) X=(pJ= ( ff ot - . ) [X]. 
iEI<•> 1-e 0• n 

Then from (3.2.1)-(3.2.4) one obtains the relation 

h 

(3.2.5) X(X)=X(X, D)+ I:; X=(p,). 
1,1=1 

Note that, in our case, X(X, D) can easily be computed by the "proportion­
ality theorem" of Hirzebruch-Mumford ([M2]); in particular, it is inde­
pendent of the toroidal compactification. 

Let .JV"(DM) denote the nerve ( or "dual graph") of D<•l: 

(3.2.6) 

Then JV"(DM) is a simplicial complex of dimension n-1, which, for a toric 
divisor DM, is an "Euler complex" ([S4], Lemma 3). It follows that, if 
one puts 
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q<->(t)= I: 1n-lJI, 
JE.K'(D<•>) 

then q<->(t) is a polynomial of degree n-1 in Zlt] satisfying the functional 
equation 

(3.2.7) 

in particular, one has 

(3.2.8) 

It is easy to see that q<1>(- l) coincides with the Euler number e(I'\<t'), 
which vanishes for a self-dual homogeneous cone <t except for (Cases 1, 2) 
with m=l, 

Theorem 3.2.9. When n is odd, one has 

Xoo(Pt)= ~ q<1>(-1)( = ~ e(I'W 1)), 

where <t1 ={x e <t / N(x)= l}=<t/R+. 

(This is essentially due to Ehlers [E], who proved it in the Hilbert 
modular case. The general case is given in [S4].) 

When n is even, the signature !'(X), the logarithmic signature t(X, D) 
and the cusp contribution to the signature -r00 (p.) are defined similarly to 
the above; for instance, 

(3.2.10) 

Then from (3.2.1), (3.2.2) and from the fact that Dis toric one has 

(3.2.11) 

(3.2.12) 

( cf. [S4, 5]). 

h 

-r(X)=t(X, D)+ I: -roo(P.), 
11=1 

3.3. Generalized Hirzebruch conjecture. Here we assume that n is 
even. In the Hilbert modular case, the cusp Pt is "rationally pararelizable" 
in the sense that Pt has a compact neighbourhood U in Y* such that 
U -{Pt} does not contain any other singularities and is retractable to a U, 
and that all Chern classes of the tangent bundle T( U -{Pt}) /au (restricted 
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to oU) in H*(oU, Q) vanish. In that case, the "signature defect" o(Pi) 
was defined by Hirzebruch [H2], which in our notation is equal to r: 00 (Pi) 
-r:(-0), where -0-u is a desingularization of (U,Pi) and the signature 
r:(-0) is computed in H*(U, a-0, Q). In the general case, we define the 
signature defect by o(Pi)=r: 00 (Pi)-r:(U). (For a direct generalization of 
the definition, see Looijenga [L]). Then it seems likely that one has 

(Cl) 

or equivalently in view of (3.2.12), 

(Cl') r:(U)=qCll(-2). 

In the Hilbert modular case, Hirzebruch ([H2], p. 230) conjectured 
that 

which was proved by Atiyah-Donnelly-Singer [ADSI, 2] and Muller [M4, 
5]. (In the case n=2, this relation and (Cl) were already proved in [H2].) 
In general (at least for (Case 1, 3)), in view of Theorem 2.4.1 and (Cl), it 
seems natural to conjecture 

(C2) 

where / 1 = (0) or (r1) according as n/r= 0 or I (mod 2), and 

(C3) 

or equivalently 

(C3') 

The relation similar to (C3) or (C3') for n odd, where X00 (p 1) should be 
replaced by - X00 (Pi), was proved by Ogata [O], as we shall see in the 
next section (Theorem 4.2.3, note that, in (Cases 1, 3) with n odd> 1, one 
has Z.,(O)=X 00 (Pi)=O by Theorems 2.4.1 and 3.2.9). In the Hilbert 
modular case, the conjecture (C3'),,-i was mentioned in [E] and [HG] 
(p. 95). In this case, comparing the cusp contribution in the dimension 
formulae for the space of Hilbert cusp forms obtained by Selberg trace 
formula and by Riemann-Roch-Hirzebruch Theorem ([HI]), one obtains 
a "weaker form" of (C3'),,-i: 

h h 

I; Xoo(p.)=2-n I; L(ll(lI',, M;; 0) 
l.'=1 1,1=1 
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([S6], [F], [S3]; cf. also [A] for (Case 2)). 
The relation between these conjectures is shown in the following dia­

gram: 

(C3) 
Xoo(A) = Z,c(II', M*; 0) 

(Cl)II ~) ll(Th.2.4.1) 

2-na(p)=2-'L (1I' M*·O) 
I (C2) I1 ' ' . 

Since the proofs of (C2),,=1 given in [ADSl, 2] and [M4, 5] are both rather 
complicated, depending on differential geometry and hard analysis, it 
seems desirable to give more direct proofs for (Cl) and (C3) or (C3')*'· 

§ 4. Zeta functions associated to Tsuchihashi singularities 

4.1. Tsuchihashi singularities. We consider a normal isolated singu­
larity called "Tsuchihashi cusp" and define the cusp contribution X00 for 
this kind of singularities. 

As before, let V be a real vector space of dimension n and M a lattice 
(of rank n) in V. Consider a pair(~, I') consisting of a (non-degenerate, 
open convex) cone ~ in V, which may not be self-dual nor homogeneous, 
and a subgroup I' of GL(V) satisfying the following conditions: 

( i) I' leaves M invariant and is torsion-free; 
(ii) I' leaves ~ invariant; 
(iii) the quotient space I'\~ JR+ is compact. 
Let fl)= V +-1=1 ~ be the corresponding (not necessarily symmetric) 

tube domain. Tsuchihashi [T] constructed a normal isolated singularity 
associated to the pair (~, I'), which is the singularity at "infinity" p1 of 
(I'M\!?)) U {A}· Let Ube a suitable ( open) neighbourhood of A and tr: 
u-u a toroidal desingularization. Let rr- 1(A)=D' 1'= z=ter11> Di be the 
decomposition of the exceptional set into the union of irreducible compo­
nents, and let ot be the cohomology class determined by Di in H~(U, Z) 
(the integral 2-cohomology group with compact support) and [U] the 
fundamental class of U. We define X00 (A) by 

Xoo(Pt)= ( 0 1 °i J ) [U]. 
iEIW -e- < n 

*' Some statements in [S4] and [0] on Hirzebruch conjecture were incorrect 
or misleading. In [S4], p. 366, l. 18, "xoo" should read "4xoo" and the "Hirze­
bruch conjecture" there should be understood in a weaker sense that the sums 
of each side of (C2) over all cusps are equal. The "conjecture" on [0], p. 370, 
l. 14 is correct for n=2 but should be rectified by (C3) for n~4. Note also that 
our invariants iJ and Xoo are written in [E] as zn<J, and ,Jr. 
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Then, Theorem 3.2.9 and (3.2.12) remain true, -r00 (Pt) being defined simi­
larly to (3.2.10). We want to relate this cusp contribution to a special 
value of a zeta function associated to(~. I'). 

4.2. Zeta function associated to(~, I'). Let(~, I') be a pair satis­
fying (i)-(iii). Let ~* be the dual cone of ~ and M* the dual lattice of M 
inthe dual space V*. cf>,,{x) denotes the characteristic function of the cone 
~ defined in 1.2. We define the zeta function associated to(~, I') by 

(4.2.1) z,,<r, M;s)=I::u:I'WnMcf>,,{u)' (Res>l). 

Note that, when ~ is self-dual and homogeneous, we have by (1.4.3) 

Theorem 4.2.2. The function Z,,(I', M; s) admits a meromorphic con­
tinuation to the whole plane and is holomorphic at s=0. 

Theorem 4.2.3. When n is odd, one has 

1 
Z,,(I', M; 0)= --e(I'\~/RJ= -Xoo(Pt)-

2 

A sketch of proofs of these theorems will be given in 4.3. 
First, in order to describe the zero-value of Z,,,, we need the notion 

of "rational partial polyhedral decomposition" (r.p.p. decomposition, for 
short) of ~ U {O}. 

Definition 4.2.4. A (non-empty) collection 2 of closed rational poly­
hedral cones in Vis called an r.p.p. decomposition of~ U {O} if it satisfies 
the following conditions: 

( 1) If a e 2 and -r---<a (i.e. -r is a face of a), then -re 2. In par-
ticular, one has {O} e 2. We set 2x =2-{0}. 

( 2) If <J, -r E 2, then an -r---<a. 
( 3) One has~= U,exx Int(a). 
( 4) For any compact subset K contained in ~. the set {a e 2 [an 

K=t-0} is finite. 
In what follows, we further assume that 2 is "I'-invariant" and 

"non-singular", i.e. the following additional conditions are satisfied: 
( 5 ) I' leaves 2 invariant, and acts freely on 2x. 
( 6) For every a in 2, there exists a Z-basis {u1, • • • , un} of Mand r 

with 0<r~n such that a={u 1, • • ·, u,}R;;,o· 
We now assume that the toroidal desingularization re: 0--u is de-
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fined by a I'-invariant and non-singular r.p.p. decomposition J; of <{f U {0}. 
As before, let .,,V(D<1l) be the nerve of D<1l. Then there exists an injective 
map 

such that {aJ I J E .,,V(D<1l)} is a complete set of representatives of I'\J:x, 
dim aJ=lll, and that for any J, J' E f(D(!J) one has JcJ' if and only if 
r(aJ)CaJ, for some r Er. For a E J;X, we put 

a(l)={-r E J; I dim -r= 1 and -r-<a}. 

We denote by dx, the Lebesgue measure on the linear subspace a+(-a) 
of V normalized so that for a Z-basis {u1, • • ·, un} of M with a={u 1, • • ·, 

Ur} R>o the volume of the parallelotope spanned by { u1, • • ·, ur} is one. 
For p e J; with dim p= l, the symbol i\ denotes the derivation 

(apF)(x) = lim _!__ {F(x + tu)-F(x)} 
t-o t 

for any differentiable function F(x) on V, where u is the unique primitive 
element in p n M. 

In these notations, we have 

Theorem 4.2.5. For any integer v> 2, one has 

Z.,(I', M; 0)= l: f [ 0 ap ] G,(x)dx, 
,:I'\J:X , pE,(1) l-e- 0P dim, 

=(-lt2-nq< 1)(-2)+ l: (-2)-(n-lJl)z-(XJ) 
JE.J((DC1') 

where G,(x)=exp(-p.,(x)-•) and, for any rational function (f)(t) E Q(t), 
rn pE•(l) (f)(ap)]k is the differential operator of degree k on V obtained as the 
homogeneous part of total degree k in the formal power series expansion of 
n p E•(l) (f}(ap). 

Ishida's proof ([13]) of the rationality of Z.,(I', M; 0) is based on the 
above formula. We note a remarkable similarity of it to (3.2.4) and 
(3.2.12). 

4.3. Outline of proofs ([OJ). For a E 5:x let 

Z(a, M; s)= l: p.,(u)', Res> I. 
uEMnint(a) 
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We prove that Z(a, M; s) can be continued to a meromorphic function on 
C and calculate the value Z(a, M; 0). 

Let dim a=r> 1 and u1, • • ·, u, a part of a Z-basis of M with a= 
{ u1, • • ·, ur h;eo· Then we may write as 

Z(a, M; s)= I: cf>'ll(l1u1 + · · · +t,urY-
<li,···,lr) E (Z>o)' 

We employ the method of Zagier [Z] who calculated the values of the zeta 
functions of real quadratic fields. For simplicity we consider the case 
r=2. The following proposition is well-known. 

Proposition 4.3.1. Let t(s)= I:;:-0 akJ."i' with J.k>O be a Dirichlet 
series absolutely convergent for Re s > 1. Assume that the function h ( t) = 
I:;:-oakexp(-J.kt) has an asymptotic expansion of the form 

Then t(s) admits a meromorphic continuation to C and is holomorphic at 
s=O with the value "'1'(O)=b0• 

In order to apply this proposition we need an asymptotic expansion 
of h(t). It is easy to derive the following proposition from the Euler­
Maclaurin summation formula. 

Proposition 4.3.2. Let f(t) be a real-valued c=-function on [O, oo). 

Assume that [ f(t)dt is finite. Then g(t)= I:'f"-if(tl) has an asymptotic 

expansion of the form 

where (3i's are the coefficients in the expansion t/(I-e-t)=I:'f"-of3it 1• 

Applying this to a function to a function F(x, y) of two variables, we 
have under a certain condition 

I: F(mt, nt)-_!_(f=f= F(x, y)dxdy) 
m,nEZ>0 t 2 0 0 

+ t piti-1 [ p<i,o)(O, y)dy+ ti Pi'-1 .[ p<o,J)(x, O)dx 

+ I:i,jEZ>o (3i(3JF<i,Jl(O, O)ti+J (t-+O), 

where p<i,J)(x, y)= (ai+J /axiay 1)F(x, y). Unfortunately this can not be 
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applied directly to F(x, y)=exp(-¢.,(x- u1 + y-u 2)- 1), because the deriva­
tives of exp(-¢.,(x)- 1) behave badly near x=O. In order to surmount 
this difficulty, we need the following 

Lemma 4.3.3. For a positive integer II and an r-dimensional cone a= 
{u1, · · ·, ur}R20 contained in'??, the function 

and its partial derivatives of total order up to nv- l have limits at the origin 
and the partial derivatives of total order nv are bounded. 

Modifying Zagier's method and using this lemma, we can prove that 
the function Z(a, M; vs) can be continued to the half plane Res> -1 + 
l/11. Thus Z(a, M; s) can be continued to Res> -11+ I, and hence to 
the whole complex plane. And we get the value of Z(a, M; s) at s=O: 

Proposition 4.3.4. For any integer 11~2 we have 

Z(a, M; 0)= ~ f f3k(__?_)k G.,Jx)dx, 
!kl ~r (R;,,oJT ax 

where k=(k1, 0 0 0
, kr) (: (Z;,,oY, /3k=/3k, 0 0 

• /3kr' and (a/ax)k=(a/ax1)k 1 • • • 

(a/axr)kr_ 

We rewrite this as 

Z(a, M; O)=f [ f1 ap ] G,(x)dx., 
u pEu(l) l -e-op dim u 

where G.(x)=exp(-¢.,(x)-•). By summing this equality side by side over 
a e 1:x mod I' we get the first equality in Theorem 4.2.5. By a calculation 
similar to that leading to (3.2.12) we get the second expression in Theorem 
4.2.5, whence follows Theorem 4.2.3. 
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