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Introduction

The purpose of this paper is to give a survey on zeta functions associ-
ated to (self-dual homogeneous) cones and their special values, including
some recent results of ours on this subject.

In §1 we summarize basic facts on self-dual homogeneous cones and
the associated I'-functions. §2 is concerned with the zeta functions. Let
V be a real vector space, ¢ a self-dual homogeneous cone in ¥, and let G
be the automorphism group Aut(V, ¥)°. We fix a Q-simple Q-structure
on (V, €). Asis well-known, the pair (G, V) is a “prehomogeneous vector
space” in the sense of Sato-Shintani [SS]. Following the general idea in
[SS], we define a set of zeta functions {£,;}, each one of which is associated
to a connected component V; of V*=V S, S denoting the singular set;
in particular, &, =Z, is the zeta function associated to the cone V;,=¢%.
Then we give an explicit expression for the system of functional equations
(Theorems 2.2.2, 2.3.3). Under the assumption that d is even, taking
suitable linear combinations of these zeta functions, we define a new kind
of L-functions L;, which are shown to satisfy individually (or two in a
pair, according to the cases) a functional equation of ordinary type (see
(2.3.5)). We give some (new) resuits (Theorems 2.3.9, 2.4.1) on the residues
and special values of these zeta and L-functions, where two extreme L-
functions L, and L, play an essential role. These extreme L-functions,
which generalize the (partial) Dedekind zeta function and the Shimizu L-
function in the Hilbert modular case, seem to be of particular importance
from the number-theoretic view point.

In § 3, we consider the corresponding (rational) symmetric tube do-
- main @=V-+4/— 1% and, under an additional assumption that the Q-rank
of G is one, study the geometric invariants (X.., z.., etc.) associated to the
cusp singularities appearing in the (standard) compactification of the
arithmetic quotient space I"\@ ([S3, 4]). A typical example is the Hilbert
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modular singularities, which were studied extensively by Hirzebruch and
others ([H2], [HG]). In [H2] Hirzebruch gave a conjecture relating the
“signature defects” of the cusps with the zero-values of the corresponding
Shimizu L-functions, which was later proved by Atiyah-Donnelly-Singer
and Miiller ([ADS 1, 2], [M 4, 5]). In view of our results on these invariants
and special values, we state in 3.3 some conjectures ((C1), (C2), (C3)) which
may be regarded as a natural generalization of the Hirzebruch conjecture.

In §4, we define a more general zeta function Z, associated to a
“Tsuchihashi singularity”” and give a formula for the zero-value Z,(0)
(Theorem 4.2.5) by modifying a method due to Zagier [Z]. Recently, using
this formula, Ishida [I3] proved the rationality of Z,(0) in general. It is
hoped that our approach might suggest a new possibility of attacking the
generalized Hirzebruch conjecture.

Our study on this subject has been largely inspired by the funda-
mental works of Professor F. Hirzebruch, to whom this paper is respect-
fully dedicated. The paper was prepared during a stay at the MSRI,
Berkeley in 1986-87, of the first-named author, who would like to thank
the staffs of the Institute for superb service and hospitalities.

Notations. The symbols Z, Q, R, C are used in the usual sense, e.g.
Q is the field of rational numbers. H is the Hamilton quaternion algebra.
We use the symbol like R,,={2e R|2>0}, and write R, for R,,. For
£ e C, e(£) stands for exp(2ry/ — 1£). Let V be a real vector space, v;, - - -,
v,eV and let S be a subset of R. Then we write {v,, ---, v,}s for
{2021 Av:| 2, € S}; e {vy, -+, U,}gy, Is a closed polyhedral cone gener-
ated by v, ---,v,. For a cone ¥ and a lattice M in V, €* and M*
denote, respectively, the dual cone and the dual lattice in the dual space
V*. For a topological group G, G° denotes the identity connected
component of G. For a finite set S, | S| denotes the cardinality of S.

Let F be a subfield of R, ¢ a (connected) algebraic group defined
over F, and G=%(R)°. By an abuse of notations, we write G, for Z(F)
N G and F-rk G for F-rk ¢ (i.e. the dimension of maximal F-split tori in
9). If g is an imbedding, F=—R, then G° stands for %°(R)° and, if F,
is a subfield of F with [F : F]<co, then Ry, z,(G) stands for Ry, (%)(R)°.
When ¢ is reductive, G=%(R)° is called “reductive”’, and we write G* for
%*(R)°, ¢° denoting the semisimple part of Z.

§ 1. Self-dual homogeneous cones ([BK], [S1], [V])

1.1. Let V be a real vector space of dimension n>0. By a convex
cone in V, we mean a subset ¢ of ¥ with the following property:

X, ye%, 2 p>0=—ix+pye .
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The dual of % is defined by
@*={x* e V*|{x,x*»>0 for all xe % —{0}}.

Then €* is an open convex cone in the dual space V*. It is clear that
for a (non-empty) convex cone ¢ the following three conditions are equi-
valent:

(i) ¢ does not contain a line in ¥V

(i) ZN(=%)={0};

(iii) &* is non-empty.
When these conditions are satisfied, € is called non-degenerate. In what
follows, a non-degenerate open convex cone will simply be called a ““cone”.
For a cone &, one has ¥**=¢.

A cone ¥ is called self-dual if there exists a linear isomorphism
S (V, €)= (V*, €*), which is symmetric and positive definite. A cone ¥
is called homogeneous if the automorphism group

G=Auwt(V, ¥)°={ge GL(V)|g¥=%}".

(o denoting the identity connected component) is transitive on %.

In §8§ 1-3, unless otherwise specified, we always assume that & is self-
dual and homogeneous, and fix a positive definite inner product { > on
V defining an isomorphism S mentioned above. Then (V, ¥) is identi-
fied with its dual (V'*, €*). In this case, the automorphism group G is
the identity connected component of a reductive algebraic group and for
any ¢, € € the isotropy subgroup

K=G,={geGlgc,=cy}

is a maximal compact subgroup of G. Thus ¥~=G/K has a structure of
Riemannian symmetric space (with a flat part).

1.2. In 1957-58, M. Koecher made an observation that the category
of self-dual homogeneous cones (V, %) with a base point ¢, ¢ ¥ is equi-
valent to that of “formally real” Jordan algebras by the correspondence
given as follows ([BK], [S1]). Let & be a self-dual homogeneous cone in
V with a base point ¢, and let G, K be as above. Let g=Lie G, {=Lie K
and let g=¥-+p be the corresponding Cartan decomposition. Then by the
homogeneity assumption there exists a unique linear isomorphism

Vaxr——T,ep
such that x=7T,c,. The Jordan product in V is then defined by

xoy=T,y (x,yeV).
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In particular, one has 7, =id,, i.e. ¢, is the unit element of the Jordan
algebra.

By virtue of this equivalence, the classification of self-dual homo-
geneous cones is reduced to that of formally real Jordan algebras, which
was given (by a collaboration of phisicists) as early as in 1934 ([JNW]).
A self-dual homogeneous cone ¥ is decomposed uniquely into the direct
product of the “irreducible” ones, for which one has G=R, X G* with G*
R-simple (or ={1}). The irreducible self-dual homogeneous cones are
classified into the following five types:

0

QI(R)ZR-M gr(F) (I’_>_2, F=Ra C’ H):
Z,0) (O denotes the Cayley octonion algebra),
P(1, n—=1)={(&,) e R"|£,>0, 51— 2 7..£1>0F (n=>3),

where Z,.(F) denotes the cone of positive definite hermitian matrices of
size r with entries in F. Zy(R), #,(C), #,(H) are isomorphic to the
“quadratic cones” £(1, n—1) with n=3,4, 6, respectively. For ¥=
Z,0), G* is an excetional group of type (Ej).

A more general study on “homogeneous cones” was done by Vinberg
[V] in the early 60°s. In the study of general cones, the characteristic
function plays an essential role. For any (non-degenerate, open convex)
cone ¥, the characteristic function ¢(x)=¢.(x) is defined by

Ba(¥)= j e~
Clearly one has

$()>0, g.(gx)=det(g)'g,(x) forxe?,geg,

and log ¢,(x) is a convex function, which tends to infinity when x e &
converges to a boundary point of ¢. The characteristic function will be
used later in §4.

1.3. Quasi-irreducible cones. Let ¥ be a self-dual homogeneous
cone in V. % is called quasi-irreducible if in its irreducible decomposition
all irreducible components are isomorphic.

Lemma 1.3.1. Suppose (V, €) has a Q-simple Q-structure; this means
that there is a Q-vector space V, such that V="V,Q4R, for which G is (the
identity connected component of) an algebraic group defined over Q and
that, if (V, €)=]1]m1 (V. %) is the irreducible decomposition, no partial
product of Vs is defined over Q, or equivalently, that the center of G is
of Q-rank one. Then € is quasi-irreducible.
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In fact, under this assumption, there exists a totally real number field
F, of degree m such that

G=Gr,o(G)= ﬂl G, G,=Gi,
e

where G,=R_, X G} with G R-simple (which may reduce to {1}), defined
over F,, and {o, (1< u<m)} is the totality of the imbeddings F,=>R.
Then the G3s are all C-isomorphic and hence, by the classification theory,
are also R-isomorphic except for the case when there exists an even integer
r, such that every G is isogeneous either to SL(r,, R) or to SL(r,/2, H)
and when both types SL(r,, R) and SL(r,/2, H) occur in the G%’s. But
actually such a “mixed type” can not occur for the following reason.
Since the Q-rational points are dense in %, one may take ¢, to be Q-
rational; then the maximal compact subgroup K is also defined over Q.
One then has the corresponding decomposition

K=R; oK)= HlK”’ K, =K+
4=

and hence all K,’s are also C-isomorphic. But the dimension of the
maximal compact subgroups of SL(r, R) and SL(r,/2, H) is equal to
3r(r,—1), ir(r,+1), respectively. Therefore no mixture of these two
types can occur, which proves our assertion.

1.4. The norm and trace., The rank of a self-dual homogeneous
cone % is by definition the R-rank of the Lie algebra g, which also coin-
cides with the (absolute) rank of the formally real Jordan algebra (V, c,).
Let n=dim ¥V and r=rank ¥. If ¥ is irreducible, one has (from the Peirce

decomposition of (¥ ¢,))
. d
(1.4.1) n=r4—r(r—1),

where d is a non-negative integer. For ¥=R,, one puts d=0. For ¥=
2.(F) (r=2), one has actually rank ¥=r and d=dim, F=1, 2, 4, 8 ac-
cording as F=R, C, H, 0. For a quadratic cone %, one has rank ¥=2
and d=n—2. Thus the pair (r,d) is a complete invariant for an
isomorphism class of irreducible self-dual homogeneous cones.

In the Jordan algebra (V, ¢,), one can define the (reduced) norm N : V
—R as the (unique) homogeneous polynomial function of degree » on V
such that, for a “general element” x in ¥, N(fc,—x) (e R[t]) is the minimal
polynomial for x in the usual sense. When % is irreducible, the norm is
uniquely characterized by the property
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(1.4.2) N(c,)=1, N(gx)=det(g)"/"N(x)
forgeG,xe V.

(Note that X(g)=det(g)"/" is a rational character on G.) Hence one has
the relation

(1.4.3) N@)=(go(c) "N (x ).
The (reduced) trace tr(x) is defined by
N(tc,—x)=t"—tr(x)t" '+ . - - F+(—=1)'N(x).

The trace is K-invariant. It follows that, when & is irreducible, one has
(1.4.9) tr x="1_tr(T,),
n

where T, : y~>xy is the multiplication in the Jordan algebra (7, ¢,). (Note
also, putting P(x)=27%—T,,, one has the relations P(gx)=gP(x)g,
det(P(x))=N(x)*"'".)

In what follows, we assume that % is quasi-irreducible. Let (V, %)
=[]m,(V, €,) be the irreducible decomposition,

G=[] G, G,=Aut(V, %,)°,
r=1

and put n,=dim V,, r,=rank ¥,=R-rk G,. Then one has n=mn,, r=
mr, and

r 2

r
Hence the formulae (1.4.2-4) remain valid. We normalize the inner
product on ¥'in such a way that {¢, ,, ¢, ,>=r, (1< p<m), where ¢,=(c,,,).
Then one has

(1.4.5) {x, yy=tr(xy).

The Euclidean (i.e. self-dual) measure on ¥ for this { ) will be denoted as
dx. A G-invariant measure on € is then given by N(x) "/ dx.

1.5. The I"-function. Let % be a quasi-irreducible self-dual homo-
geneous cone in V. The “I"-function” of ¢ (introduced by Koecher) is
defined by the integral

(1.5.1) I's5)= j e T ON-*Mdx (s e C),
4
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which converges absolutely for Res>n/r —1. By a change of variable,
one gets

(1.5.2) N(x)‘*’]'}(s):f e~ EONGY-dy  (x € D).

On V one can define a (unique) differential operator of degree r, de-
noted as N(F,), with the property

N )= =N(y)e=»
(cf. [R], [SS]). Then N(V,) is relatively invariant in the sense that one has
LNV )L,=det(g)"""N(V,) (geG,xeV),

where (L,f)(x)=f(g'x) for any function f on V. The associated “b-
function™ is defined by

N INx) =b(N(x)*"' (xe¥%,seC)

(cf. [SS]).*> Then, applying N(F,) on the both sides of (1.5.2), one gets

i __ TF@(I '—S)
b(s)=(—1) Ty

By a direct computation from (1.5.1) (see e.g. [S2]), one obtains

(1.5.3) rg(s)z(zﬂ)m—”ﬂ(iﬁl F(s—_g—(i— 1)))"1
(1.5.4) b(s)= (H1 <s 4 %(i—— 1)))"‘.

(For the '-function of a more general cone, see [G].)

§ 2. Zeta functions associated to a self-dual homogeneous cone

2.1. We assume in this section that (V, ¥) is endowed with a Q-
simple Q-structure in the sense stated in Lemma 1.3.1. Then G* is Q-
simple (or reduces to {1}), the center of G is of Q-rank one and ¥ is quasi-
irreducible. The Q-rank of G, which we denote by 7, is a divisor of r,=
R-rk G;: hence we set d=r,/r,, We fix a base point ¢, in € N Vy,; then the
norm, trace and the (normalized) inner product { » are all defined over Q.
We choose a lattice M in ¥, and an arithmetic subgroup I" of G such

* Note that in some recent literature (e.g. [I1]) it has become more customary
to denote our b(s) by b(s—1). :
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that 'M=M. We define a zeta function by
(21-1) Z?,CU(F’ M: S)’___Z;x:l‘\z’nlklll-'xl_,‘]v('x)mg (S € C)=

where I',={r e I'|Tx e x} (which is finite) and the summation is taken
over a complete set of representatives of the ['-orbits in ¥ N M. When ¢,
is kept fixed, we write Z, for Z, .. It is known that the series on the
right hand side of (2.1.1) is absolutely convergent for Res>n/r and has
an analytic continuation to a meromorphic function on the whole plane C.
It is clear that, if [/ is a subgroup of I" of finite index, then one has

ZI', M 5)=[I" : I"1Z{T", M 5).

Hence it suffices to consider the zeta function for the full stabilizer ", =
{re G|rM=M}. In that case, we write Z,(M;s) for Z (I"y, M; s).

In the simplest case where G* reduces to {1}, one obtains essentially
the (partial) Dedekind zeta function of the totally real number field F, (see
the Example 2.1.2 below). The case where % is a quadratic cone was
studied by Siegel [S9]. Our zeta function is a special case of the zeta
function associated to a (real) “prehomogeneous vector space’ in the sense
of Sato-Shintani [SS], who treated as examples the cases of Z(R), Z.(C)
and the quadratic cones (see [S7], [SS], pp. 160-168, pp. 155-157). For
other cases, see [M3] (cf. also [SF}).

Example 2.1.2. Let F, be a totally real number field of degree m and
let V=F,®yR=R™. Then the “angular domain” ¢=R™ is a self-dual
homogeneous cone with respect to the standard inner product in R™. G is
identified with the multiplicative group R? and G* and K reduce to the
identity. If one takes ¢, to be 1 (the unit element of F)), then the norm
and the trace are given by

N(X)Z H Sﬂ’ tr(x):Z S/l for xz(Sy) eV,

and the standard inner product in R™ is normalized. ¥ has a natural
Q-structure for which V,=F,, G is defined over Q, of Q-rank 1, and G,
={w e F{*|a’»>0(1 < p<m)}. Hence the above assumptions are all satis-
fied and one has n,=r,=r,=1, n=r=m. Let @, be the ring of integers
in F, and choose M to be an ideal o, in ¢,,. Then [, is the group of
totally positive units of ¢, and one has

ZM;5)= >, N@*=N(a)* > N(@)>,

o y\enM “~a1-1

where the summation in the last expression is taken over all integral ideals
a *“‘equivalent” to a;® in the narrow sense. Thus essentially Z (M s) is
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nothing but a “parital” Dedekind zeta function of F, corresponding to the
“ray class’ of a;™.

2.2. Functional equations. According to the general theory of Sato-
Shintani, the functional equations for Z (M s) are obtained as follows.
Let ‘

Vi=fxe VING)#0 =[] V;

and let

be the decomposition of ¥ into the disjoint union of the connected com-
ponents, or what amounts to the same thing, into that of the G,-orbits.
{df ¢,=(c,,,) and if ¢, ,= > 71, e is primitive decomposition, then V, , is
defined to be the G,-orbit of —> % e’ - > 7, ., ef?.) Thus one has

X _—
V*= HIGJ;’;VI’

where #7 denotes the set of all m-tuples I=(i, - - -, i,) with 0<i,<r,
(I1<p<m) and for I=(i,), one sets V; =[]/, V,,,. Hence V'* consists
of (r,--1)™ connected components. We write (k) for (k, ---, k) e #7;
then V=% and V,,,=—¢.

For each I e #™, we define a zeta function

712

N A
(2.2.1) EM9= 2 NI

where the summation is taken over a complete set of representatives of
I -orbits in ¥V, N M and p(x) is a “density”’ defined as follows. For x &
V,, let U, be a relatively compact neighbourhood of x in ¥, and let

W,={geGlgxe U},
G,={geG|gx=x}, I',=G,NT.

Then one has

where dg is a Haar measure on G normalized in such a way that for any
non-negative continuous function f on % one has
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[ rteerde=[ fooneo-ax

Then, except for the case r,=r,=2, d=1 (treated in [S7], [S9]), u(x) is
finite and coincides with the volume of I',\G, with respect to a suitably
normalized Haar measure on G, ([SS], Lemma 2.4) and hence depends only
on the [-equivalence class of x. In what follows, we omit the above-
mentioned exceptional case. Then the series (2.2.1) is absolutely con-
vergent for Re s>>n/r and has an analytic continuation to a meromorphic
function on C ([SS], [S7]). Clearly one has &, =§,,=2Z,. For I=(i,) e
F, we set I¥=(r;—i,). Then it is clear that

Vi=—V; and §&.=§&.
Thus essentially we get [(r, 4 1)™/2] zeta functions.

Theorem 2.2.2. The functions &,(M; s) satisfy the functional equations
of the following form:

&M% 2 —s) =00 QR T e(5-) T M3 91,00,
Ie;g
where M* is the dual lattice of M, v(M)=vol(V/M) and, for I=(i,),
J=0), urs(s)=[1pav,,;,(8), us; (0L, j<ry) being integral polynomials
in e(—s/2) of degree <r,.

For an explicit expression of u,;, see [SF]*.

2.3. To obtain more precise results, we assume in the rest of this
section that r>>2 and d is even. (Note that, if r=1, Z, is essentially the
Riemann zeta function. If d is odd, then one has either r, =2 (quadratic
cones) or d=1 (2, (R)"(r,>>2)).)

Under this assumption, »n/r is an integer and there are two cases:

(a) d=0 (mod4), or d=2 (mod 4) and r, is odd. In this case, n/r

is odd.

(a") d=2(mod4) and r, is even. In this case, n/r is even.

Applying the methods in [SS] and [SF], one obtains

Theorem 2.3.1. Under the above assumption, the function & ,(M; s) has
at most r, simple poles at s=njr —(d[2)p for 0<p<r,—1,8|p (§=r,/r)
and one has

* Note that u;;(s) in [SS] is in our notation (and in [SF]) given by c(2z)(n-n/2
Ur-1,7-5(s), if the measure on V in [SS] is equal to cdx with dx self-dual. For
instance, in the case V=Her,(C) ([SS], pp. 160-168), one has ¢=2-(""7/2,
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RS o -cerma (M ) =0 2)@a)-emee o ] (L))"
) k=1

X (— 1)@melnt [T @mer 57 (—1)“””‘“‘"‘“”'(g)xy)(M*),

Jesy

where M* is the dual lattice_of M and, for J=(j,) e A7, we set

=% (5)=11.(2)-
P (M*)= > dy,.

mer\swinys Y Go/tle
7

S is the G-orbit in S=V —V* containing 37, (— 3l e+ 38 11 68)
and, for x ¢ S, dy, is a suitably normalized Haar measure on G,.

In the special cases, this result is due to [S9], [SS], [S7] and [M3]. It
is possible to give a unified proof along the line of [SF] (see [S5a]).

Corollary 2.3.2. Put v=njr —(d[2)p with 0<p<r,—1, §|p. For
a fixed vy, the (ri+1)™tuple (Res,_,£;(M; ));c - is proportional to
(-~ 1)<d/2)"”')1e,¢;. For y=1 (mod 2), one has

Res, . ,£/(M; 5) 0.

Also, for y=n]r, one has
Res,.., (M3 )=v (M) [ dw>o0,
I'\#1

where €' ={x ¢ € |N(x)=1} and dx* is the invariant measure on " induced
from N(x)-"/"dx.

Let P,, denote the symmetric tensor representation of GL(2, C) de-
fined by

ab

la s %y Tan(
Ly ) (cd

))=(@+or, @ty erd)

o (0+dy)).
For C=(c;;)y<1,j<r, € GL(ri+1, C), we write

C®m=(cu)1,JeJ;n e GL((r,-+D", C), cyy= ﬂl%,f,,-
1 p=

In these notations, we have
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Theorem 2.3.3. The polynomials u;,(s) in Theorem 2.2.2 are given as

Jfollows:
Pn<(l )lc>>®"‘ in Case (a),
(ulJ(S))I,JEJ;'; = xl % \\&n . )
P, | in Case (a’),
—_X —

where x=e(—s5/2).
This follows from [SF], Theorem 2. We put

v =), A=) =P((1 1))

Then the matrix U“»™)(x) can be diagonalized as follows:

((I4+x)"(1-x)"'5,;)  in Case (a),

A(n,m)—lU(n,m(x)A(rl,M):{ i . ]
(1)1 (1 —x)'""5,, ,) in Case (a').

Hence, putting

(2.3.4 L,(M;s)= 3} &(M;s)ay,

IesT

one has

L,(M*; %-—s) =v(M)(2r)~"1"(s)

(o))
according to the case (a) and (a’).®

It is easy to see that the matrix A"+™=(q;,) has the following pro-
perties:

(2.3.5)

ag,.=1, ar, o=
(2.3.6) apy=(—D"a,,, aI,J*:(_'I)IIIaIJ’
ZIeJ;';au =00),72" Zze;;nl(— DYag;=08¢r,y,42"

* This corresponds to the formula (30) in [SF], which was printed errone-
ously. It should read

0{(F,s—n/r) @esp. ¥ f,5—n/r))
=Qa)"s I gy(s)e(s/ D+ e(— s /4" (e(s/4)—e(—s /D)@ (f, —5)
in Case (a) (resp. (a")).
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We use the last relations in the following form.
Lemma 2.3.7. For (x;) e CU"**Y™ and b e C, one has

> Xar;=0, ;b (resp. 5(r1),Jb)

Tesm
if and only if
x;=2""b (resp. (—1)\"12-7b) JorIe 77,
As another consequence of (2.3.6), one has

Corollary 2.3.8. If|1|is odd, one has LM;s)=0. In particular, if
v is odd, one has L,.,,(M; 5)=0.

In fact, if |J] is odd, one has by (2.3.4), (2.3.6)
L,(s)= A? &()ar,= ZI: &15) Qe g
=(—D! ; g(s8)ar, = —L(s),

whence follows that L,(s)=0.

Theorem 2.3.9. Let y=n/r—(d/2)p with 0<p<r,—1, 6|p. Then
27 Res, ., Z(M;s) ifv="1(2) and I=(0),
r

Res,.,.Li{(M; 5)= orifv= n_ 12) and I=(r),
r

0 otherwise.

In particular, L(M;s) with I+ (0), (r,) is entire. If (d/2) is even,
L.,(M; s) is also entire.

This follows from Corollary 2.3.2 and Lemma 2.3.7.

Corollary 2.3.10. If r is odd, one has
Res,_,Z (M; 5)=0 Jor v= n_ 1(2).
r

This follows from Theorem 2.3.9 and Corollary 2.3.8. In view of the
formula in Theorem 2.3.1, this implies that the residue of the zeta func-
tions &£,(M; s) is always real.
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2.4. Special values of zeta and L-functions. We are interested in the
special values of the functions &,(M;s) and L,(M;s) at s=ype Z, v<O0.
For simplicity, we write Z(s), &,(s), L,(s), £¥(s) and L¥(s) for Z (M s),
&(M;s), L(M;s), E(M*,s) and L, (M*,s), respectively. Putting s=
n/r—y and replacing M by M* in (2.3.5), one has for y=n/r—1 (2) and
<0

*
=G oo,
whence follows (noting r>2) that
L,(»)=0 for I#(r).
Similarly, for y=n/r (2) and <0, one has
L,(»)=0 for I+(0).
By Lemma 2.3.7, this implies the following
Theorem 2.4.1. For y=n/r —1 (2) and <0, one has

&,(M; v)=(—1)"Z(M; ),
272¢(M§ v) Jor I= (r1):
0 Jor Is£(r).

In particular, if r is odd, one has Z (M ; v)=0 for all v=0 (2) and <0.
For y=n/r (2) and <0, one has

L(M;v)= {

E(M;v)=Z(M;y),
2Z,(M;v)  for I=(0),

LM )= {o for I=(0).

It has been conjectured in general (including the case d odd) that the
special values Z,(M; v)=§,(M;v) (v e Z, v<0) are rational. There are
a few evidences supporting this conjecture.

(2.4.2) In the case explained in Example 2.1.2, where one has r,=r,
=1, r=m and d=0, the zeta function Z,(M; s) and the L-function L=
2 I&; are essentially the (partial) Dedekind zeta functions of the totally real
number field F,, and the L-function L,,=> (—1)'"'&, coincides with the
“Shimizu L-function” (which is a special case of Hecke’s zeta function
with “Grossencharaktere’”). The value L,(M; 1), which is related to
L, (M*; 0) by the functional equation, appears in the dimension formula
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for the space of Hilbert modular forms (cf. [S6]). The relation in Theorem
2.4.1 for y=0, L,,(M; 0)=2"Z,(M; 0), has been known*®. In this case,
the rationality of the special values Z (M) (v e Z, v<<0) is well-known
(see e.g. [S8]).

(2.4.3) In the case where =2 .(R) (r>2), M=Sym,(Z) and [ is
a congruence subgroup of Sp,(Z), the special value Z,(M*; v) appears in
the cusp contribution in the dimension formula for the space of Siegel
cusp forms for the corresponding congruence subgroup of Sp,_(Z) (cf.
[M1], [STD. In this case, one has Fi=Q, ry=r,=r and d=1. (So this is
a case excluded here.) For the case r,=r=2, r,=1 and d=1 with a Q-
structure defined by an indefinite quaternion algebra over @, a similar
observation was made by Arakawa [A].

(2.4.4) In the case of quadratic cones with r,=1, r,=r=2, Kurihara
[K] showed that the values Z,(v) (v e Z, v<<0) are rational for n<3 and
gave an example with n=4 for which the rationality holds.

(2.4.5) For the case r,=1, m=1, one of the authors ([S2]) has made
the following observation, generalizing Shintani’s method in [S8]. Suppose
I' is torsion-free and let

€= 1,er7 Int(s,)
acd

be a ['-invariant non-singular “r.p.p. decomposition” in the sense to be
explained in 4.2. Here g,={v{", - - -, U{”}gs, is a simplicial cone generated
by v{® (1<i</,) such that {v{® (1<i</,)} can be extended to a Z-basis
of M.

Following Ishida [I], we put

fw=2.

a€Adj

FE(ty - z,):jK f(k z tiei>dk (t <R,

12
ue®),
=1

1
e<vj(a),u>_ 1

where ¢,= 37, e, is a primitive decomposition of the unit element. Then,
it was shown in [S2] that the special values Z,(v) (v e Z,v<0) are a Q-
linear combination of the Laurent coefficients of f%(z, -- -, t,) after a
suitable change of variables and hence are a Q-linear combination of the
integrals of the form

* We are grateful to R. Sczech for informing us of this relation along with a
sketch of proof.
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[ I o, keyivar,
K i,

where « € A and, for a given v, (v{) ranges over a certain finite set of
rx 1, integral matrices.

(2.4.6) In the case of r,=—1, the zero-value Z,(0), which coincides
with 2-7L,,(0) or 2-"L,,(0) according as n/r=0 or 1 (mod 2), seems to
have a close connection with some geometric invariants of the correspond-
ing cusp singularity, as we shall explain in the next section. The rationality
of Z,(0) in a more general context of “Tsuchihashi singularities” was
proved by Ishida [13] (see 4.2),

§ 3. Geometric invariants of cusp singularities

3.1. Rational symmetric tube domains. Let V, ¥, G, --- be as
before. We consider the tube domain 9=V ++/— 1% in Vy=C" and let
G=(Hol 2)° denote the identity connected component of the group of
holomorphic automorphisms of @. As is well-known, 2 is a symmetric
domain (hermitian symmetric space of non-compact type) and G is a semi-
simple Lie group of hermitian type with center reduced to the identity, of
R-rank equal to r=R-rk G. The group of affine automorphisms of 2,
P=(Aff 2)°, which may naturally be identified with the semi-direct
product G-V, is a parabolic subgroup of G corresponding to a point
boundary component of @, which we denote symbolically by v/ — 1co.
The given Q-structure on ¥ determines uniquely a Q-structure on G such
that P and G(C P) are subgroups defined over @; then the Q-rank of G is
equal to r,=Q-rk G. (§=Lie G is the so-called “superstructure algebra”
of the Jordan algebra (V, ¢,), see [S1].) A symmetric tube domain & with
a Q-structure on G determined in this manner is called a “rational sym-
metric tube domain”.

Let I” be a neat arithmetic subgroup of G. Here I being “‘neat”
means that for 7 e I" if 7 is unipotent for some positive integer v then 7
itself is unipotent; in particular, I* is torsion-free. Then M=7I"NVisa
lattice in ¥V and I'=(I"N P)/(I"N V) may be regarded as a (torsion-free)
arithmetic subgroup of G. We assume that our M and I" (in §2) are ob-
tained in this manner. Thus one has an exact sequence

1—>M—>'NP—>—>1.

In general, this group extension may not split, but 7' P is a subgroup of
finite index in the semi-direct product I, - M.

In what follows, we restrict ourselves to the case r,=1. Then it is
well-known that the quotient space Y=1"\2 can be compactified to a
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normal projective variety Y* by adding a finitely many points p, (1<<v<h),
called “cusps™:

Y¥=(I\D)U{ps, - - -, pu}-

This is so-to-speak the minimal compactification. Each cusp corresponds
to a ['-equivalence class of (point) rational boundary components of 9,
or equivalently to a I’-conjugacy class of (proper) Q-parabolic subgroups
of G. We assume that p, corresponds to the class of a Q-parabolic sub-
group P, and, in particular, P,= P, i.e. p, is the class of 4/ — 1 co.

By the classification theory, it can be seen that the rational symmetric
tube domain with r,=1 occurs only in the following cases

4 2 Gy

(Cascl) | RT () SLE){%1)
(Case 2) | ZR)™ L) SU(Dy/F)[{£1}
(Case 3) (o) @)™ SU(DyF/F)/{£1}

(Case 1) is usually referred to as the “Hilbert modular case”. In this
list, F, is a totally real number field of degree m, D, is a totally indefinite
quaternion algebra over F,, Fyis a totally imaginary quadratic extension
of F,, D; is a central division algebra over F; with involution of the second
kind relative to Fi/F,, and SU, denotes the special unitary group for an
“isotropic” hermitian form of 2 variables (i.e. the hermitian form with

matrix <(1) (1)>) in D, or Dj.
3.2. Geometric invariants of cusps. In general, the cusp p, is a

singular point on Y*. A neighborhood of p, in Y* is analytically iso-
morphic to a neighbourhood of p, in the local compactification

'NP\DYU{p,}.

(Note that the P, are all G,-conjugate to P,=G-V.) Resolving these cusp
singularities by the method of toroidal embeddings [AMRT], one obtains
a smooth compactification:

XS5y,
X=({"\2)UD, D=3>7,D%,

where D is a divisor with simple normal crossings and D®=z""(p,) is a
connected component of D. Let D=>,.; D, be the irreducible decompo-
sition of D and put
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I(V)z{i e I[ E(Di)'_:p»};

then D® =3, ;e D;. From the construction, D® is a “toric divisor”
(see [E], [S4, 5]); in particular, each D, is a toric variety.

We denote by 7,, 7; (1<<i<n) the Chern roots of X and the “logari-
thmic Chern roots” of X relative to D, respectively (see [H1], [S5]). Let
d; (i e I) denotes the 2-cohomology class on X defined by D,. Then in the
cohomology ring H*(X, Z) one has the relation

(3.2.1) [T A+7)=T] (1+7) IGTI(I +4,)
and, since D is toric,
(3.2.2) Y.-0,=0 (I<i<n,jel)

([S4], Lemma 2). The arithmetic genus of X and the “logarithmic arithme-
tic genus” of X relative to D are defined, respectively, by

100= (11 )
(3.2.3)

706 D=(11 =) 10

where (- - -), denotes the homogeneous part of degree 2n in H*(X, Z) and
(- - -).[X] is its evaluation on the fundamental 2n-cycle [X]. One defines
the ““cusp contribution” to X at p, by

(3.2.4) re)=( 1 0 )

1134 1

Then from (3.2.1)-(3.2.4) one obtains the relation
h
(3.2.5) 2(X)=2(X, D)+§ 2.(p.)-

Note that, in our case, X(X, D) can easily be computed by the “proportion-
ality theorem” of Hirzebruch-Mumford ([M2]); in particular, it is inde-
pendent of the toroidal compactification.

Let 47 (D®) denote the nerve (or “dual graph”) of D®:

(3.2.6) N (DN={JCI®|J£D, X,=icsD:i# D}

Then A"(D®) is a simplicial complex of dimension n— 1, which, for a toric
divisor D®, is an “Euler complex” ([S4], Lemma 3). It follows that, if
one puts
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W)= P!
TO= g

then g®(¢) is a polynomial of degree n—1 in Z|¢] satisfying the functional
equation

(3.27) g (<= 1) =g =D+ (= D(E—1)";

in particular, one has
(3.28) = D=(1—(~1"27"q(-2).

It is easy to see that ¢¥(—1) coincides with the Euler number e(I"\%"),
which vanishes for a self-dual homogeneous cone % except for (Cases 1, 2)
with m=1,

Theorem 3.2.9. When n is odd, one has
2(p) =5 4(= D=5 e\®),
2 2

where €'={xe ¢ | N(x)=1}=%/R,.

(This is essentially due to Ehlers [E], who proved it in the Hilbert
modular case. The general case is given in [S4].)

When # is even, the signature 7(X), the logarithmic signature z(X, D)
and the cusp contribution to the signature z.(p,) are defined similarly to
the above; for instance,

(3.2.10) Tw(vp,)=2"( i ﬂﬂ)nm.

ierom | —e=% 2

Then from (3.2.1), (3.2.2) and from the fact that D is toric one has

(3.2.11) (X)=7(X, D)+j§ z.(D.),
(3.2.12) z.(p)=2"1.(p.)+q*(—2)

(cf. [S4, 5.

3.3. Generalized Hirzebruch conjecture. Here we assume that n is
even. In the Hilbert modular case, the cusp p, is “rationally pararelizable”
in the sense that p, has a compact neighbourhood U in Y* such that
U—{p,} does not contain any other singularities and is retractable to 9U,
and that all Chern classes of the tangent bundle T(U—{p,})|,, (restricted
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to 9U) in H*(@U, Q) vanish. In that case, the “‘signature defect” 5(p,)
was defined by Hirzebruch [H2], which in our notation is equal to z..(p,)
—z(0), where U —U is a desingularization of (U, p,) and the signature
z(0) is computed in H*(U, 30, Q). In the general case, we define the
signature defect by §(p;)=r.(p,) —(0). (For a direct generalization of
the definition, see Looijenga [L]). Then it seems likely that one has

(CD) d(p)=2"x.(py,

or equivalently in view of (3.2.12),
(C1) «(0)=¢"(-2).

In the Hilbert modular case, Hirzebruch ([H2], p. 230) conjectured
that

(C2)11=1 5(P1)=L(1)(tp, M*;0),

which was proved by Atiyah-Donnelly-Singer [ADS1, 2] and Miiller [M4,
5]- (In the case n=2, this relation and (Cl) were already proved in [H2].)
In general (at least for (Case 1, 3)), in view of Theorem 2.4.1 and (Cl), it
seems natural to conjecture

(C2) 0(p)=2"""L,('I", M*;0),

where I,=(0) or (r,) according as n/r=0 or 1 (mod 2), and
(C3) Xu(p)=Z(T', M*;0),

or equivalently

(C3) X (p)=2""L; (", M*;0).

The relation similar to (C3) or (C3’) for n odd, where X_(p,) should be
replaced by —X..(p,), was proved by Ogata [O], as we shall see in the
next section (Theorem 4.2.3, note that, in (Cases 1, 3) with n odd>1, one
has Z,(0)=X.(p)=0 by Theorems 2.4.1 and 3.2.9). In the Hilbert
modular case, the conjecture (C3’),,_, was mentioned in [E] and [HG]
(p- 95). In this case, comparing the cusp contribution in the dimension
formulae for the space of Hilbert cusp forms obtained by Selberg trace
formula and by Riemann-Roch-Hirzebruch Theorem ([H1]), one obtains
a “weaker form” of (C3),,_,:

n A
2, %a(p)=27" 2, Lo (T M5 0)
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([S6], [F], [S3]; cf. also [A] for (Case 2)).
The relation between these conjectures is shown in the following d1a-
gram:

(C3)

Xo(p) == Z (T, M*;0)

1 “ w') “(Th. 2.4.1)

2-n r t .
0(p) == T 2 LT M*; 0)
Since the proofs of (C2),,_, given in [ADSI, 2] and [M4, 5] are both rather
complicated, depending on differential geometry and hard analysis, it
seems desirable to give more direct proofs for (C1) and (C3) or (C3')*®.

§ 4. Zeta functions associated to Tsuchihashi singularities

4.1. Tsuchihashi singularities. We consider a normal isolated singu-
larity called “Tsuchihashi cusp” and define the cusp contribution X, for
this kind of singularities.

As before, let V be a real vector space of dimension n and M a lattice
(of rank n) in V. Consider a pair (¢, I") consisting of a (non-degenerate,
open convex) cone % in ¥, which may not be self-dual nor homogeneous,
and a subgroup I" of GL(V) satisfying the following conditions:

(1) I leaves M invariant and is torsion-free;

(ii) [ leaves % invariant;

(iii) the quotient space I"\¢/R, is compact.

Let 9= V-++/— 1% be the corresponding (not necessarily symmetric)
tube domain. Tsuchihashi [T] constructed a normal isolated singularity
associated to the pair (%, I"), which is the singularity at “infinity” p, of
(FM \2)U{p,}. Let U be a suitable (open) neighbourhood of p, and z:
U—U a toroidal desingularization. Let 7z~ '(p)=D®=3",.;m D, be the
decomposition of the exceptional set into the union of irreducible compo-
nents, and let §, be the cohomology class determined by D, in HXU, Z)
(the integral 2-cohomology group with compact support) and [{J] the
fundamental class of . We define %..(p,) by

rp)=( 1, 72 ) 100

ierw | —e=%

* Some statements in [S4] and [O] on Hirzebruch conjecture were incorrect
or misleading. In [S4], p.366, I.18, “z.” should read “4y..” and the “Hirze-
bruch conjecture” there should be understood in a weaker sense that the sums
of each side of (C2) over all cusps are equal. The “conjecture” on [O], p. 370,
1. 14 is correct for n=2 but should be rectified by (C3) for n>4. Note also that
our invariants ¢ and y. are written in [E] as 27¢ and +.



22 I. Satake and S. Ogata

Then, Theorem 3.2.9 and (3.2.12) remain true, z.(p,) being defined simi-
larly to (3.2.10). We want to relate this cusp contribution to a special
value of a zeta function associated to (¥, I).

4.2. Zeta function associated to (%, I"). Let (%, ") be a pair satis-
fying (i)-(iii). Let €* be the dual cone of ¥ and M* the dual lattice of M
inthe dual space V'*. ¢,(x) denotes the characteristic function of the cone
& defined in 1.2. We define the zeta function associated to (¢, I") by

@“.2.1) Z', M5 9)=2 u:rvenn p(@)*  (Res>1).

Note that, when & is self-dual and homogeneous, we have by (1.4.3)
Z@,co([’, M; s)=¢g(c°)—(r/n)szg<1-v’ M: LS)
n

Theorem 4.2.2.  The function Z,(I', M ; s) admits a meromorphic con-
tinuation to the whole plane and is holomorphic at s=0.

Theorem 4.2.3. When n is odd, one has
1
Z(I', M;0)= —'z“e(F\g/Rﬂ»): —X(Py)-

A sketch of proofs of these theorems will be given in 4.3.

First, in order to describe the zero-value of Z,, we need the notion
of “rational partial polyhedral decomposition” (r.p.p. decomposition, for
short) of ¥ U{0}.

Definition 4.2.4. A (non-empty) collection X of closed rational poly-
hedral cones in V is called an r.p. p. decomposition of € U {0} if it satisfies
the following conditions:

(1) Ifgel and r<g (ie. T is a face of ¢), then r ¢ 2. In par-

ticular, one has {0} ¢ 3. We set 3*=3—{0}.

(2) Ifg,ze 2, then oN7r<0.

(3) Onehas ¥=]],cs«Int(o).

(4) For any compact subset K contained in ¢, the set {7 e 2|oN

=@} is finite.

In what follows, we further assume that X is “I’-invariant” and
“non-singular”, i.e. the following additional conditions are satisfied:

(5) I leaves X invariant, and acts freely on X'*.

(6) For every ¢ in X, there exists a Z-basis {u,, - - -, u,} of M and r

with 0<r<n such that o={u,, - - -, u,} g,
We now assume that the toroidal desingularization z : U—U is de-
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fined by a ['-invariant and non-singular r.p.p. decomposition 2" of ¥ U {0}.
As before, let A (D™) be the nerve of D®. Then there exists an injective
map

N (D s J—>0,e 3%

such that {g,|J e A (D)} is a complete set of representatives of I'\Y*,
dim ¢,=|J|, and that for any J, J’ ¢ #(D®) one has JCJ’ if and only if
7(¢,)Co, for some ¥ e I'. For g e 2%, we put

o()={r e Z|dimz=1 and r<g}.

We denote by dx, the Lebesgue measure on the linear subspace ¢-+(—0)
of ¥ normalized so that for a Z-basis {u,, - - -, u,} of M with 6={u,, - - -,
U,}rs, the volume of the parallelotope spanned by {u;, - - -,u,} is one.
For p e 3 with dim p=1, the symbol 3, denotes the derivation

@) () =lim - (Fx-+ 1) — F(9)

for any differentiable function F(x) on ¥, where u is the unique primitive
element in p N M.
In these notations, we have

Theorem 4.2.5. For any integer v>2, one has

Z?(F’ M; 0)= Z J; Lell) l ap ]dimr Gy(x)dxr

T I\I % ___e_ap
=(=1Dm2-"g(=2)+ > (=2)~*-1r(X))
JesDW)
1+e
oy G(x)dx,,,
X.[UJ[pEUJ(l) 2 1— _ap]l"] u(x) xJ

where G,(x)=exp(—¢.(x)™*) and, for any rational function @(t)e Q(),
[T ,eo0y ©(9,)); is the differential operator of degree k on V obtained as the
homogeneous part of total degree k in the formal power series expansion of

H p€a(l) @(ap)'

Ishida’s proof ([I3]) of the rationality of Z,(I", M 0) is based on the
above formula. We note a remarkable similarity of it to (3.2.4) and
(3.2.12).

4.3. Outline of proofs ([O]). For ¢ e 3* let
Z(o, M;5)= >, ¢ (), Res>1.

u€MNInt(o)
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We prove that Z(g, M; s) can be continued to a meromorphic function on
C and calculate the value Z(g, M; 0).

Let dimg=r>1and u, - --,u, a part of a Z-basis of M with ¢=
{u, - - -, u,}g.,» Then we may write as

Z(09 M; S): ) Z ¢‘£’(llul+ st +lrur)s'

T1y2005lr) E(Z 5007

We employ the method of Zagier [Z] who calculated the values of the zeta
functions of real quadratic fields. For simplicity we consider the case
r=2. The following proposition is well-known.

Proposition 4.3.1. Let (s)=>2.7_,a.A;° with 2,>>0 be a Dirichlet
series absolutely convergent for Re s> 1. Assume that the function h(t)=
S e0 ap€Xp(— A1) has an asymptotic expansion of the form

B ~bo b (150
Then +r(s) admits a meromorphic continuation to C and is holomorphic at
s=0 with the value +(0)=2b,.

In order to apply this proposition we need an asymptotic expansion
of A(t). It is easy to derive the following proposition from the Euler-
Maclaurin summation formula.

Proposition 4.3.2. Let f(t) be a real-valued C=-function on [0, co).
Assume that f S(@)dt is finite. Then g(t)=>2 7, f(t]) has an asymptotic
0

expansion of the form
g0~ [ fdr+ 3 15./00) (1-0)

where B,’s are the coefficients in the expansion t/(1—e=")=3 7, Bt

Applying this to a function to a function F(x, y) of two variables, we
have under a certain condition

>3 F(mt, nt)~?1;<J:J: F(x, y)dxdy)

m,nE€Z>0
+; gttt J: F&0(0, y)dy+ji1 B! [: FO0(x, 0)dx
+ 20016250 BB F (0, 0) 2% (1-50),
where F%i(x, y)=(3""7/0x'0y?)F(x, y). Unfortunately this can not be
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applied directly to F(x, y)=exp(— g (x-u,+y-u,)~"), because the deriva-
tives of exp(—g,(x)~") behave badly near x=0. In order to surmount
this difficulty, we need the following

Lemma 4.3.3. For a positive integer v and an r-dimensional cone g=
{ws, - -+, w,} g, contained in €, the function

Ga,u(xla Tty xr)‘:exp(_sbe(xlul"*' ttt +xrur)_”)

and its partial derivatives of total order up to nv—1 have limits at the origin
and the partial derivatives of total order ny are bounded.

Modifying Zagier’s method and using this lemma, we can prove that
the function Z(s, M; vs) can be continued to the half plane Re s> —14
1/v. Thus Z(o, M;s) can be continued to Re s> —y-1, and hence to
the whole complex plane. And we get the value of Z(g, M; s) at s=0:

Proposition 4.3.4. For any integer v>2 we have
a k
2o ;0= 3 [ a2 ) G0
1kl=r J (R>0)" 0x

where k=(k,, -+ -, k,) e (Z50)", Bx=Ps." - *Br,» and (8/0x)* =(0/dx,)"- - -
©/ox,)kr.

‘We rewrite this as

2o m:0=[| 11 2] Gdx,

peo 1—e %

where G,(x)=exp(—¢.(x)"*). By summing this equality side by side over
g ¢ X% mod I" we get the first equality in Theorem 4.2.5. By a calculation
similar to that leading to (3.2.12) we get the second expression in Theorem
4.2.5, whence follows Theorem 4.2.3.
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