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Boundedness of Certain Unitarizable

Harish-Chandra Modules

Mogens Flensted-Jensen, Toshio Oshima and Henrik Schlichtkrull

§ 0. Introduction

Let G be a connected real semisimple Lie group, Z be the center of
G, K be a maximal compact subgroup of G modulo Z, U(g) be the universal
enveloping algebra of the complexification g, of the Lie algebra g of G and
Z(g) be the center of U(g). An element X of g defines vector fields =(X)
and D;(X) on G by

(w(X)¢>(g)=%¢<e-th)|t=o
and
(DR<X)¢)(g)=§t—¢(getX) lozo

for ¢ e C=(G). Then = and D, extend to algebra homomorphisms of U(g)
to the algebra of differential operators on G. For an element x of G we
also define an endomorphism z(x) of C=(G) by (z(x)¢)(g)=g¢(x"'g) for
¢ e C=(G).

Let f be an element of C=(G) or a column vector of elements of
C=(G). Suppose f is left K-finite and Z(g)-finite (i.e. dim > ;. x Cr(k)f<
oo and dim #(Z(g))f< o). Put V,==(U(g))f. Then ¥, is a (g, K)-module
under n. Moreover we say that V, is a unitarizable Harish-Chandra
module if there exists a unitary representation (z, E) of G with finite length
(i.e. (z, E) is isomorphic to a finite direct sum of irreducible unitary repre-
sentations) such that ¥, is isomorphic to the Harish-Chandra module of
(z, E). In this paper we consider the following problem:

Suppose ¥V, is a unitarizable Harish-Chandra module. Then is the
function f(g) bounded when g tends to a certain infinite point?

Of course if we do not impose any other assumption on f, we have
nothing to conclude. We have in mind that fsatisfies some more condi-
tions, such as, f corresponds to a section of the G-homogeneous vector
bundle associated to a representation of a certain subgroup of G and/or f
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satisfies certain differential equations etc. For example, if f is a zonal
spherical function, then we can conclude that f is bounded because f
coincides with the matrix coefficient with respect to a normalized K-fixed
vector of the corresponding irreducible unitary representation of G.

Let ¢ be an involutive automorphism of G and H be the fixed point
group of ¢. In the case when f is right H-fixed, that is, f is (identified
with) a function on the semisimple symmetric space G/H, then we can
conclude that f is also bounded (Corollary 2.2). This follows from our
general theorem (Theorem 1.1). If we apply Theorem 1.1 to the case when
fis a section of a representation space belonging to the principal series of
G, then we have some restriction for the representation (Corollary 2.4).
More generally, in this paper, we apply Theorem 1.1 to the case when f'is
a section of a vector bundle over G/Q induced from a certain representa-
tion of Q where Q is a fixed point group of an involution of G or Q is a
nilpotent subgroup of G.

The result in this paper was obtained when the second author was
visiting university of Copenhagen in the summer of 1984. The second
author expresses his sincere gratitude to University of Copenhagen and
Danish Mathematical Society for their hospitality during the visit.

The first author should like to thank the Taniguchi Foundation for
the invitation to visit Japan in the fall of 1986. He also wants to thank
Mathematical Society of Japan and the Universities of Hiroshima, Kyoto
and Tokyo for their hospitality.

§1. Main Theorem

Retain the notation in Section 0. To state our result we prepare
some more notation. Let G=KA4,N be an Iwasawa decomposition of G,
g=I+a,+n be the corresponding decomposition of g,# be the Cartan
involution of both G and g with respect to K, X' be the root system defined
for the pair (g, a,), 2* be the positive root system corresponding to n and
¥={a, - - -, a;} be the fundamental system. Let {H,, - - -, H;} be the dual
basis of {e;, - - -, a;}, that is, H; e a, and «,(H;)=45,;, The number / is
called the rank of G/K. Let S(g) be the symmetric algebra of g, and
S(8)m, be the totality of the homogeneous elements of S(g) with degree
m. Put S(@™=3,.,5(8)- By the symmetrization 4: S(g)— U(g) we
define U(g)™ = A(S(g)*™). Thus we have

U@™ /U@ " =S(@™/S@™ " =S(®m-

Using this isomorphism we can define pe S(g),, for any p ¢ U(g)™ —
U(g)™-". If p=0, then we put p=0.
By the map
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R’ — A
W

t=(t, -, 1) —> a(t)=exp (—itﬁeo H,loglt,))

»

we can identify (0, co)* and 4,. For any r=(t,, - - -, #,) e R', we put 3, =
220 Ra;N 2 and define a parabolic subalgebra p, with the Langlands
decomposition p,=m,+a,-+n,, where a,Ca, N,=2 ,cz+ 5, ¢* and g* is
the root space corresponding to the root « € 3. Let P,=M,A,N, be the
corresponding parabolic subgroup and its Langlands decomposition. We
will identify g with its dual space g* by the Killing form { , > of g.

Theorem 1.1. Let f be a non-zero left K-finite and Z(g)-finite function
(or column vector of functions) on G. Fix any g, G and t e [0, co).
Suppose V,=a(U(Q))f is a unitarizable Harish-Chandra module. Moreover
suppose f satisfies the following condition.
(A.1) There exist a subset J of U(g) such that fis right J-finite (i.e. there
exists a finite dimensional subspace F of C=(G) satisfying F > (each
component of ) f and Dz(p)FC F for any p e J) and moreover

N()NAd (g,)0(n)=0
by denoting
N()={Xeg; p(X)=0 for any p e J}.

Then for any g, € G there exist neighborhoods U(g)) of g, in G, U(g,) of g,
in G and a neighborhood U(t) of t in R* such that f(g) is bounded on the set

{xa(s)y~*;x e U(g), y € U(g,) and s e U(t) N (0, o0)'}.

Remark 1.2. 1) Itis clear that the following condition implies (A.1).
(A.2) There exists a R-subalgebra b of g, such that fis right b-finite and

b+ N Ad(g,)0(n,)=0.

ii) In Section 3 we give a stronger result than the above theorem, which
is valid without the assumption of the unitarizability of V7, (cf. Theorem
3.3).

Example 1.3 (cf. Lemma 3.1.). Suppose fis a left and right K-finite
and Z(g)-finite function on G and moreover suppose ¥V, is a unitarizable
Harish-Chandra module. To show that fis bounded by using Theorem
1.2, we may assume V', is irreducible. Then there exists a character X: Z
—{z e C;|z|=1} such that #(z)f=X(z)f for ze Z. Put b=¥ in (A.2).
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Then the elements of b+ N g being semisimple, we have always (A.2) for any
g, € G and any te [0, o0)'. Since G=K{a(t); t e (0, 1]'}K and (K/Z)X
[0, 11X (K/Z) is compact, Theorem 1.1 and Remark 1.2 imply that f is
bounded.

§2. Applications

In this section we will apply Theorem 1.1 to a section of the G-
homogeneous vector bundle associated to a representation of a closed
subgroup of G. Let Q be a closed subgroup of G and & be a matrix
representation of Q. This means there exist a non-negative integer m such
that the map Q > x+—&(x) e GL (m, C) is a Lie group homomorphism. A
C=-section of the vector bundle over G/Q associated to the representation
& of Q is identified with a column vector f of m components in C*(G)
which satisfies

f(gx)=&(x)""f(g) forgeGandxeQ.

Theorem 2.1. Let ¢ be an involutive automorphism of g which com-
mutes with 6, ) be the fixed point subalgebra of ¢ and H be the analytic sub-
group of G with the Lie algebra §. Let g=%+p (resp. g=9-+q) be the
decompositions of g into +1 and —1 eigenspaces for 6 (resp. o). Fix a
maximal abelian subspace a of pNq and put A=expa. Let f be a C>-
section of the vector bundle over G|H associated with a finite dimensional
matrix representation &€ of H. Assume that [ is left K-finite and Z(g)-finite
and moreover V ,=n(U(Q))f is a unitarizable Harish-Chandra module. Then
each component of f is bounded on the subset KA of G.

Corollary 2.2. In Theorem 2.1, if & is a unitary representation, then f
is bounded on G. Especially, if & is trivial (i.e. fe C~(G/H)) in Theorem
2.1, then fis bounded.

Proof. Note that G= KAH. Then the corollary follows from
Theorem 2.1 because each component of &(x) (x € H) is bounded on H if
& is unitary.

Proof of Theorem 2.1. Let 2(a) be the root system corresponding to
the pair (g, a), g(a, @) be the root space corresponding to « € X(a) and
2(a)* be a positive system of J(a). We may assume a,Da and X* is
compatible with X(a)*. Put d,={X e a; «(X)>0 for any « € X(0)*}, A=
expaand A, =expd,. Let Z.(a) and Nx(a) be the centralizer and the
normalizer of a in K, respectively. Then the quotient group W(a)=
N (0)/Zx(a) is identified with the Weyl group of X(a). For any element
we W(a) we fix a representative w of - w in Ng(a). Then KA =
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Uwewe KA. W. Let B be the closure of the set {te R*;a(t) e 4,} in R".
Fixwe W(a)and e B. Weremark that BC[0, 1T, 0(n,)C > . e =+ 8(a, — )
and o(g(a, @))=g(a, —a). Hence - N Ad (W0(n)TaN D ee 5w+ 8(a, —war)
=0. Applying Theorem 1.1 and Remark 1.2 with b=} and g,=w, we
have Theorem 2.1 because (K/Z) X B is compact. Q.E.D.

Theorem 2.3. Retain the notation in Section 0 and Section 1. Fix
t=(t, -+, 1) e {0, 1}'. Let fbe a C-section of the vector bundle associated
to a finite dimensional matrix representation of N,. Assume that f is left K-
Sinite, Z(g)-finite and V; is a unitarizable Harish-Chandra module. Then
Jfor any compact subset V of G and any real number C, f is bounded on the
set

B={gaeG;geV,ae A, a(loga)>C for any o € 2*}.

Proof. Suppose t'=(t],---,1]) e (0, oo) satisfies a(t’) e 4, and
a(log (a(t)))>C for any « € X*. Then for each j, if #;5~1, then #,=0
and ¢t7<e~°. Hence Theorem 2.3 is a direct consequence of Theorem 1.1
and Remark 1.2 because n NA(n,.)CntNH(n,)=0. Q.E.D.

Corollary 2.4. Use the notation 2.3. Let v be a column vector of finite
elements of C~(G). Let 2 and p be elements of the dual space of «,. Assume

v(gan)=uv(g)a**** forgeG,ae A, andn e N,.

Suppose moreover v is left K-finite, Z(g)-finite and z(U(g))v is a unitarizable
Harish-Chandra module. Then we have

NH)<O  if t,=0.

Proof. Fix j with ¢t,=0. Since H, € a,, Theorem 2.3 assures that
the function [0, co) 3 s+—>v(g exp sH) is bounded. Then the corollary is
clear. Q.E.D.

Remark 2.5. Use the notation in Theorem 2.1. Let {X,, .-, X;}
and {Y,, -- -, ¥,} be the basis of N { and HNp, respectively, such that
Xy X>=—08,;, <Y, Y;>=0,;. Here {, ) denotes the Killing form of g.
Put A=—3% X743 Y7 and 4/'=—3  X;. Letf’ be a column vector of
C~-functions on G. Suppose f’ is left K-finite and Z(g)-finite and that
V, is a unitarizable Harish-Chandra module. Moreover suppose that
there exist non-trivial polynomials P(d) of 4 and P’(4’) of A’ such that
Dg(P(A)f'=Dg(P'(4))f’=0. Then each component of f’ is bounded
on KA.

The proof of the above statement is similar to that of Theorem 2.1 by
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using (A.1) in place of (A.2). We note that the system of the equations
Dp(P(D)u=Dp(P'(4))u=0 on H is elliptic. A similar generalization is
possible for Theorem 2.3.

§3. Proof of Theorem 1.1.

In Theorem 1.1, the assumption implies that ¥ is a finite direct sum
of irreducible unitarizable Harish-Chandra modules and therefore to prove
the theorem we may assume that ¥, is irreducible and that f is a scalar
valued function on G. Then Theorem 1.1 clearly follows from the fol-
lowing two lemmas. We remark that Lemma 3.2 does not require the
unitarizability of 7, and Lemma 3.1 is known. For completeness we
also give its proof.

Lemma 3.1. Use the notation in Theorem 1.1. Suppose that a func-
tion f on G satisfies all the assumptions in the theorem and moreover suppose
[ is right K-finite, then f is bounded on G.

Lemma 3.2. Let X be a unitary character of the center Z of G and f
be a left K-finite element of C=(G) with f(zg)=1(2)f(g) for ge G and z ¢
Z. Giveng,e G andtel0, co) satisfying (A.1). Let K be the set of equi-
valence classes of the irreducible unitary representations of K and for & e K,
let X; be the character corresponding to 3. Suppose fis Z(g)-finite and V,
defines (g, K)-module with finite length and moreover suppose that

Fo=10 [ fehmth)de

is a bounded function on G for any 6 e K satisfying %,(2) =X(2),(e) for z ¢ Z.
Then we have the same conclusion for f as in Theorem 1.2.

Now we will prove the above lemmas. Put G=GXG, a(g,, )=
(g2, 8) for (g, 8)e G and 4G = {(g,8) e G;ge G}. Then the group
manifold G is identified with the semisimple symmetric space X=G/4G by
the map induced from the map G5 (g, g,)—>g,2;'. The action of the
element of G on G is given by GX G 5 ((g,, £5), X)—> gxg;'e G. To prove
Lemma 3.2 we will use some results in [02]. In [02, § 1] we construct an
eqmvarlant open lmbeddmg of a semisimple symmetric space in a manifold
X. In our case, X is defined as follows:

We define an equivalence relation that the elements (g, #) and (g’, ¢/)
in GXR' are equivalent if and only if sgnz=sgn#’ and 2d(1)0,=
g a(t’)Q,, Here sgnt=(sgnt, - - -,sgnt,) e {—1,0, 1}, @) = (a(z), a(t)™?)

¢ G and Qt_{(man,man’) € G me Mt,ae A, deA,neN, and ' e
6(N,)}. Then X is the quotient space of G'X R* by this equivalence relation.
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Let o be the projection of GX R* onto X. The action of an element
of G on X is defined through the left translation on the first component
of GX R'. We can define a compatible real analytic structure on X. The
number of G-orbits in X is 3* and every open orbit is isomorphic to X.
We identify G with the open orbit G-w(e, (1, - - -, 1)).

First we want to prove Lemma 3.2. We may assume ¥V, is irreducible.
The assumption in Lemma 3.2 implies that there exists a column vector v
with components in C*(G) such that the first component of v equals f and
moreover v satisfies a system

n(Hyv=Agv (VYHel),
N {De(plv=Bv (VpelJ),
a(@v=Cp (Vg € Z(g)).
Here Ay, B, are constant square matrices and C, are constant scalar

matrices. Put z=w((g,, g,), ) With an element g, ¢ G and also put Y=
G-z. Here g, and ¢ are given in Lemma 3.2. We can choose a local co-

ordinate system (¢,, - - +, t,, X, - - -, X,,) of X in a neighborhood of z such
that G corresponds to the region defined by #,>0, -.-, t,>>0 and Y cor-
responds to the submanifold defined by ¢,= ... =¢,=0.

Let SSA” be the characteristic variety of .#°. The cotangent space
T*X is identified with R*X T#Y. Moreover, since Y ~G/Q,, we have

T¥Y ~Lie (0)* N (g®g)
={X+Y, —X+Z); Xem, Yen, and Z e (n,)}.

Let A=(X+Y, — X+ Z) be an element of TFY with the above notation.
Suppose SSA N T*XN (R” X {A}) 0. The equations n(H)v=Azv (H € )
imply that (Ad (g,)~'f, X+ Y)>=0. Let 4 be the Casimir operator of g.
By the imbedding g~ g®{0} Cg@®g, we extend 4 to an element of Z(gDg).
Then the equation z(d)v=—c,v implies 4(X+ ¥)=0. Since 4|(Ad (g)'H)*
is positive definite, we have X4 ¥Y=0 and therefore X=Y=0. Similarly
the equations Dg(p)v=B,v (p e J) imply Ad (g)"'N(J)> —X+ Z.
Combining this with the assumption N(J)N Ad (g,)0(1n,)=0, we can con-
clude X=Y=Z=0 and we have

SSHA NT*XCTEX.

Hence it follows from [O1, Theorem 5.2] that each component of v
is ideally analytic at z and v has the following expression in the intersec-
tion of G and a neighborhood of z in X:

G.1) Wt D=3 at, )p,(log 1y« - -, log 1,)tiw+ « - £,

y=1
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Here N is a positive number, p, are non-zero homogeneous polynomials,
a,(t, x) are (vectors of) real analytic functions and 2,=(4,,,, - - -, 4,,,) € C".
Each 2, is called a characteristic exponent and the condition 4,(0, x)=
0 (Vv) means v is identically zero.

Put S={ue C~(G); n(q)u=Cu(Vq € Z(g))}. We use the boundary
value maps B, - - -, 8, of S for the boundary ¥ which are defined in [O2,
§3]. The maps have the following properties (cf. [O1, Theorem 5.3] and
[02, Theorem 3.4]).

Each B, corresponds to a characteristic exponent 4,.,,. Put S§;,=
{ueS; B(u)=0for 1<i<j}. Then B, definesa G-equivariant map of S,
to the space of hyperfunction sections of a certain G-homogeneous line
bundle over Y. The condition Re 4, <Red,, (Vk) implies i<j. If
the infinitesimal character of v is generic, then we can assume p,=1, M=
N, v(j)=j and B,(v)(x)=a,(0, x). In general, we can choose an integer L
such that if 4 e S is ideally analytic at y e Y, then the following two con-
ditions are equivalent:

3.2 supp B,(u) 3 ¥ for'1<i<L.

(3.3) wuis bounded in the intersection of G and a sufficiently small neigh-
borhood of y in X.

We remark that a left and right K-finite element of S is ideally analytic
at any point of Y. Hence f; ¢ S, for any §e K. By the G-equivariance
of B,;18,-, we can conclude fe S;, which proves Lemma 3.2 also by the
above equivalence.

Next we will prove Lemma 3.1. We may still assume ¥, is an ir-
reducible (g, K)-module and use the identification G/4G~G. Decomposing
Dx(U(¥)) f into a direct sum of irreducible ({e} X K)-modules, we may
assume Dg(U(¥))f is an irreducible ({¢} X K)-module. Put U, =
o(U(@))Dx(U(Y))f. Then U, is an irreducible (g0, KX K)-module. Note
that for ¢ e U,, ¢ is bounded if and only if ¢ € S;. We choose p e U(g)
such that (z(p)f)(e)=1. Hence replacing f by z(p)f, we may assume f(e)
=1 because U,=U, with any non-zero ¢ e U, and B,|S,_, define G-
equivariant maps for any j. Moreover the non-zero function G 3 g—

f . S(kgk~")dk belongs to U,, we may assume both f(e¢)=1 and f(kgk™")
K,

=f(g) forge Gand ke K.

Suppose ¥, is isomorphic to the Harish-Chandra module of an
irreducible unitary representation (z, E) of G with an inner product (, ).
We identify ¥, with a subset of E by the isomorphism. Let U(g)¥ be the
totality of K-invariant elements of U(g). Fix a orthonormal basis
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{vs, - - -, v} of U(g)*f and put v=3] v,(e)v,. For any D e U(g) we also
put B:f Ad (k)Ddk and =(D)f=">" Chuv, with C%, e C. Then
K

=D XA =((DINE) =T Chv(e)=(5 Chvir 3 v,(0Ivy)

=(=(D)f, v)=L/Z (z(Ad (k)D)f, v)dk = (z(D)f")(e)
with

f ’(g)=fm (x(kg~"k~Vf, v)dk.

This proves f=f" because their Taylor expansions at the identity element

of G are equal. Since f” is clearly bounded on G, we have obtained
Lemma 3.1.

For 2 and 2" e C7, we define Rei=(Re 1,, --+, Rel,) and Rel<
Re 2’ if Re ;<Re 2} (Vj=1, -, r). In the expression (3.1) of v we put
A={(4,, degp,); a,#0} and

A={A, m)e 4; {(X,m) e 4; Re ¥ <Re 2 or (¥’=2 and m’ >m)}=0}.

We call A the set of leading exponents of v at z. Then the argument in
the proof of Lemma 3.2 gives the following result.

Theorem 3.3. i) Let f be a left K-finite and Z(g)-finite function on G.
Fixg,e Gandtel0, o). If f satzsﬁes the conditon (A.1), then f is ideally
analytic at the point o((g,, &), t) € X for any g, ¢ G.

il) Let X be a character of the center Z of G and f be a non-zero left
K-finite and Z(g)-finite function on G satisfying f(zg)=X(2)f(g) for ge G
and ze Z. Suppose V, is an irreducible (g, K)-module and f is ideally
analytic at a boundary point y of G in X. Choose & ¢ K such that X(z)=
X:(2)/x:(e) (Vz € Z) and moreover the function

f=1@ [ fekomted

is non-trivial. Then the set of leading exponents of f at y coincides with
that of f; at y.  Especially, if V, is a unitarizable Harish-Chandra module,
then the set of leading exponents of f at y coincides with that of a matrix
coefficient of the corresponding irreducible unitary representation of G.

Proof. We have only to prove Theorem 3.3. ii). Retain the notation
in the proof of Lemma 3.2. Let v € S which is ideally analytic at y. Then
we have the following (cf. [O1, § 5]):
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For a given (4, m) e C"X{0, 1,2, ---}, we can choose an integer L
by changing the indices of boundary value maps f, if necessary so that
B;1S;-, are still G-equivariant and moreover the condition that supp 8,(x)
$ y for 1<i<L and supp B.(u) 3 y is equivalent to the condition that
(4, m) is a leading exponent of v at y.

Thus Theorem 3.3. ii) follows from the argument in the proof of

Lemma 3.2.
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