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Closure Relations for Orbits on Affine Symmetric Spaces
under the Action of Minimal Parabolic Subgroups

Toshihiko Matsuki

§ 1. Introduction

Let G be a connected Lie group, ¢ an involutive automorphism of G
and H a subgroup of G such that G;C HCG° where G°={x € G|ox=ux}
and G is the connected component of G° containing the identity. Then
the factor space H\G is called an affine symmetric space. We assume that
G is real semisimple throughout this paper.

Let P° be a minimal parabolic subgroup of G. Then a parametriza-
tion of the double coset decomposition H\G/P° is given in [1] and [2]. In
this paper we study the closure relations for the double coset decomposition.

The resvlt of this paper can be stated as follows. Let g be the Lie
algebra of G and ¢ the automorphism of g induced from the automorphism
o of G. Let @ be a Cartan involution of g such that ¢f=8c. Let g=9-+q
(resp. g={-+p) be the decomposition of g into the 4+ 1 and — 1 eigenspaces
for ¢ (resp. §).

Let x be an arbitrary element of G. By Theorem 1 in [1], there exists
an h e G§ such that P=hxP°x~'h~" can be written as

P=P(a, X")=Zsa)expn

where a is a g-stable maximal abelian subspace of p, 2'* is a positive system
of the root system X of the pair (g, a), Z;(a) is the centralizer of a in G
and n=> ,cz+08(a; a). (gla; a)={X e g|[Y, X]=a(Y)X for all Y e a}.)
Since (HxP°)**=(HP)* hx, we have only to study (HP)*.

Let K be the analytic subgroup of G for { and put H*=(KN H)-
exp(pNq). Then H*\G is called the affine symmetric space associated to
H\G ([1]). For a subset S of G, we put S?={y e G|(H*YP)*NS+o}.
Then it is clear that S°? is the minimal H®-P invariant open subset of G
containing S since the number of H*-P double cosets in G is finite. For
each root ¢ in 2, put a*={Y e a|a(Y)=0}, put L,=Z,(a") and choose an
element w, of N (a) such that Ad (w,)|, is the reflection with respect to .
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Theorem. Let C denote the a-stable convex closed cone in a defined
by C={Yea|la(Y)>0 forall « € 3* NoX*}. Fix an element Y, of CNY
such that o e X and (Y )=0 implies a|,ny=0. Let w be the element of W
defined by the condition

w3 ={x e 3" |a(¥) =0l U for € —3*|a¥) >0}

Let w=w,,- - -w,, be a minimal expression of w by the reflections with re-
spect to simple roots a, - - -, a, in 3. Put wP=w, .. .w,, ({=0, ---, n),
Li=Z,(anY), [,=3,aN) and I=[,, [,]. Let L be the analytic subgroup
of G for (. Then we have the followings.

(i) (Hw' =D P) = (HwOP)IL,,
and (H°w4DP)?=(H*w®P)rL,. fori=1, ... n
(i) (HP)**=(HwP){(Pw~'P)
and (H°P)?=(HwP)°?(Pw~'P)"
(iii) (HwP)*'= H((LN H)Y(LN P))"wP
and (H*wP)°*=H*(LN H*(LN P))°’’wP.

Here
(LNHYLAP)?={y e LI(LNHIWNLAP)'N LNHYLN P},

(@iv) (HP)*'=H((LN HYXLN P)'w(Pw'P)°

and (H*P)r=H*((LN H*)XLN P))?w(Pw-'P)".

) (LNHYLNP)isopenin L and (LN H*(LN P) is closed in L.

(vi) Let D (resp. D") be an arbitrary H-P double coset (resp. H*-P
double coset) contained in (HP)‘* (resp. (H*P)°?). Then there exist ele-
ments y, &€ (Hw® P) (resp. (H*w® P)°?) for i=0, - - -, n satisfying the fol-
lowing four conditions.

(@) a,=Ad(y)aiso-stable and y, e K for i=0, ---,n.

(®) Hy,P=D and y, e (LNH)Y(LNP))"w (resp. H*y,P=D' and
Vo € (LN HYLNP)w).

(¢) Let o be the root in 2(a,) defined by aj=c,o Ad (p,)" for i=1,

cone Ifgas a) N q={0}, then y,_,=y, or yw.,. If ala; ) Na+{0},

then Y, 1=, YiWa;» ViCa; OF i3t Here c,, is an element of L,, defined by
Cor=Y7Ch, Vs Coy=0Xp (a/2)(X+0X) with an X e g(a;; a) N q satisfying
Kal, aiyB(X, 0X)=—1. (B(, ) is the Killing form on g and { , > is the
inner product on o} induced from B( , ).)

(d) dim Hy,_ ,P >dim Hy,P (resp. dim H®y,_,P < dim H*y,P) for
i=1, ..., n. Moreover if y,_\=yc,, or y,c;} in (c), then dim Hy, ,P>
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dim Hy,P (resp. dim H%y,_, P<dim H®y,P).
(viii) Let D (resp. D’) be an arbitrary closed H-P double coset (open
H?®-P double coset) in G. Then

DC(HP)'<=>DCHRwWW, ---W,P
(resp. D'C(H*P)*é&—D'C H*R'WW,_--- W, P).

Here R (resp. R') is the union of all the closed L N\ H-L N P double cosets
(open LN H*-LN P double cosets) in L and W,,={1, w,,} fori=1, -- -, n.
Moreover let y be an element of K such that Ad(y)a is g-stable and that
HyP is closed in G. (Then H®yP is open in G by Corollary of [1] § 3.)
Then

HyPC(HP) &= H*yPC (H*P)°>.
(At the end of this section, we have
HyPC (HP)* &= HeyPC (H*P)°*

for any H-P double coset HyP in G as a corollary of Theorem. Herey e K
is chosen so that Ad (y)a is a-stable.)

Remark. (i) Since L is a connected semisimple Lie subgroup of G
such that ¢L=0L =L, we can apply Theorem to the double coset decom-
positions LNH\L/LN P and LN H*\L/LN P.

(i) If the number of the open LN H-LN P double cosets in L is one
(then the number of the closed LN H*-LN P double cosets in L is one by
Corollary of [1] § 3), for instance when G is a complex semisimple Lie
group and ¢ is a complex linear involution, then it is clear from Theorem
(v) that

(LN HYLN P =(LNHLNP))**=L.

In [3], T.A. Springer studied the double coset decomposition H\G/P
for algebraic groups G over algebraically closed fields. He also studied
closure relations in Section 6 of his paper. So the formula for (HP)® in
Theorem (iv) and the description of H-P double cosets contained in (HP)*
in Theorem (vi) are essentially the same as his results (except that y,_,=y,
or y,w,, when g(a;; &}) N q*+{0}) when G is a complex Lie group and ¢
is a complex linear involution.

(iii) When the number of the open LN H-LN P double cosets in L
is not one, we can find by Theorem (vii) all the LN H-LN P double
cosets (resp. LN H*-L (N P double cosets) contained in (LN H)(LN P))*
(resp. (LN H)(LN P))°?) in the following way. Let (LN H)W(LNP)
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(resp. (LN H*)Y(LN P)) be an arbitrary LN H-L N P double coset (resp.
LN H*-LN P double coset) in L. We may assume that Ad (y)a is g-stable
and that ye K by [1] Theorem 1. Then considering L, LN H and
YLNP)y " as G, H* and P in Theorem (vii), respectively, we can see
whether (LN H)(LNP)y~* (resp. (LN H*)(LNP)y~") is contained in
(LN HY(LNP)y=1yer (resp. (LN HYYY(LNP)y 1)) or not. So we can
see whether (LN H)Y(LNP) (resp. (LN H*Y(LNP)) is contained in
(LN H)YLNP)) (resp. (LN H*)(LN P)°?) or not.

(iv) Let y be an element of LN K such that Ad())a is o-stable.
Then it follows from the above consideration in (iii) and from the latter
half of Theorem (vii) that

ye(LNH)XLNP)' <y e (LNH*)LNP))*.

(v) When G=G'XG’, H={(x, x)|x e G’} and P=P'X P’ with a
connected semisimple Lie group G’ and a minimal parabolic subgroup P’
=P(«/, 2'*) of G’, the double coset decomposition H\G/P can be natu-
rally identified with the Bruhat decomposition P/\G'/P'~W(«’). In this
case it is known as Bruhat ordering on W(a’) that (P'wP’)*'=P’L; - - -
L P'=PW,---W,P'. Here L)=Z, ("), «"={Y ed|7(Y)=0} for 7=
2, w=wy,- - -w,, is a reduced expression of w e W(a’) by reflections w;,,
- -+, w,, With respect to simple roots 7, ---, 7, in 2’* and W, ={1, w;,}
fori=1, ..., n. '

In general if the number of KN H-conjugacy classes of ¢-stable max-
imal abelian subspaces of p is one, then it follows from [1] Theorem 2 that
Yi_1=Y; or y,w, in Theorem (vi) and that (LN HYLNP)=(LNH*(LNP)
=L. Hence it follows from Theorem (iv) and Theorem (vi) that

(HP)*=HwPL, --L,,=HwW, ---W,P
and that
(H*P)*=H*wPL,,---L,=H*wW, .. -W,P.
So we can say that Theorem (vi) is a generalization of Bruhat ordering.

As in Corollary 2 of [1] Theorem 1, there exists a natural one-to-one
correspondence between H\G/P and H®\G/P given by HyP—H®yP if
Ad (y)ais g-stable and y ¢ K. From Remark (iv) and from Theorem (Vi)
we have the following.

Corollary. Let D be an arbitrary H-P double coset and choose a y €
D\ K so that Ad ()a is g-stable. Then HyPC (HP)® if and only if H*P
C(H®yP)*. ;
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In the proof of the first six assertions in Theorem, a generalization
(Lemma 3) of [4] Lemma 5.1 plays an essential role. The proof of
Theorem (vii) is reduced to the following proposition which will be proved
in Section 3.

Proposition. For any closed H-P double coset D and for any open
H-P double coset D', we have D (D’)°L.

The author would like to thank J. Sekiguchi because the simple proof
of Proposition given in Section 5 is due to him, while the original proof
by the author was very complicated.

§ 2. Notations and preliminaries

Let Z denote the ring of integers and R the field of real numbers.
For a set S with a map ¢: $—S, we write S*={x e S|rx=x}. For a
topological group G,, we denote by (G,), the connected component of G,
containing the identity.

Let G, be a topological group, H, and H, be closed subgroups of G,
and S be a subset of G;,. Then we denote by S the closure of S in G,
and we put S°?(H,\G,/H)={x ¢ G,|(HyxH,))** N S+ @}. If the number of
H,-H, double cosets in G, is finite, then it is clear that S°?(H,\G,/H,) is
the minimal H,-H, invariant open subset of G, containing S. If Sis H,-H,
invariant, then S°! is also H,-H, invariant. Since we study double coset
decompositions, it is natural to use the symbol S°?(H,\G/H)) only when
S is H,-H, invariant.

The following general lemma will be used in Section 4 when H,=
(H:),

Lemma 1. Let G,, H, and H, be as above. Let H, be a normal sub-
group of H, and S a subset of G, such that H,SH,=S. Suppose that the
number of H,-H, double cosets in G, is finite. Then we have the followings.

(1) (H,S)'=H,S°".

(ii) (st)OP(HZ\GJHl):HzSop(Hs\\G1/H1)-

Proof. (i) Since H,SC H,S*C(H,S)%, we have only to prove that
H,S° is closed in G,. Since H, is normal in H,, we have

HS%= ) g(H,S)* =) (H,gS)*.
gEH: geH2

Since the number of H,-H, double cosets in G, is finite, the right hand side

of this formula is a union of a finite number of closed sets. Hence H,S¢

is closed in G,.
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(ii) Since the number of H,-H, double cosets in G, is finite,
(H,S)°?(H,\G,/H) is the minimal H,-invariant open subset of G, contain-
ing H,S for i=2,3. Clearly H,S°?(H,\G,/H,) is an H,-H, invariant open
subset of G, such that H,SC H,S°*(H,\G,/H,)C (H,S)°*(H,\G,/H,). Hence
the assertion holds. Q.E.D.

Let G be a connected real semisimple Lie group, ¢ an involutive
automorphism of G and H a subgroup of G satisfying G; C HC G°. Then
the factor space H\G is called an affine symmetric space.

Let g be the Lie algebra of G and ¢ the automorphism of g induced
from the automorphism ¢ of G. Fix a Cartan involution 8§ of g such that
gf=0c. Letg=0h+q, g=9"+q* and g=F-+p denote the +1 and —1
eigenspace decompositions for ¢, ¢f and 4, respectively. Let B: gXg—>R
be the Killing form on g.

Let K denote the analytic subgroup of G for f. Put H*=(KN H)-
exp(pNq). Then H*\G is called the affine symmetric space associated to
H\G. We remark here that a property for an affine symmetric spaceH \ G
also holds for H*\G. (We can replace H, §), q and ¢ by H%, §*, q* and
a6, respectively.) This is an important technique frequently used in this
paper.

Let 3 be a subalgebra of g, S a subgroup of G, { an abelian subspace
of p and t* the space of real linear forms on t. Then we put 3(; a)=
{Xe3llY, X]=a(Y)X for all Yet} for any « et* and put X(3; )=
{et*—{0}|8(t; B)=={0}}. Let Zy (1) (resp. Ng(1)) denote the centralizer
(normalizer) of {in S and put W(t)=N(1)/Z(1). Write 3,(t)=35(; 0).

When t is maximal abelian in p, it is wellknown that 2'(t)=23(g; 1)
satisfies the axioms of a root system and that W(t)= W(t) is the Weyl
group of J(t). In this case we choose an element w, € N.(t) for each
a € 2(1) so that the restriction of Ad (w,) to {is the reflection with respect
to «. (All the statements in this paper are independent of the choice of
W,.)

When the real rank of G is one, we can describe the closure relations
which we want to study in this paper as follows.

Lemma 2. Let a be a maximal abelian subspace of 9. Suppose that
dima=1 and that aCY. Let a be a reduced root in X=23(g; a) and put
P=2Z,(a) expn with n=g(a; a)+g(a; 2e). Suppose that g(a; ) N q+#{0}
and fix an element c, of K defined by c,—=exp(zf2)(X+0X) with X e
g(a; )N q satisfying 2{a, aYB(X, X)= —1. Then we have the followings.

(i) G=HPUHw,PUHc,PUHc'P.

(ii) The double cosets HP and Hw, P are closed in G and the double
cosets Hc,P and Hc;'P are open in G.
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(iiiy dim HP=dim Hw,P=dim G—dim (N q).

(iv) H,P=Hw,P if and only if n N YH={0}.

(v) Hye P=H'P if and only if dim (n N q) >2.

(vi) (Hc,P)*=Hc,PUHPUHwW,P and (He;*P)'=Hc;'"PUHP U
Hw,P.

Proof. (i) Since {¢, {X}} is a complete set of representatives of
W (a)-conjugacy classes of g-orthogonal systems of Y, the assertion follows
from [1] Theorem 3.

(ii) follows from Proposition 1 and Proposition 2 in [1].

(iii) follows from Lemma 7 in Section 5. (It is easy to give a direct
proof of (iii).)

@iv) IfncCgq, then fi=g(a; —a)+g(a; —2a) is also contained in g
since fq=¢q. Hence H C I, Ny z,(0) =Z ¢z, (o) and therefore H,P N Hyw,P
=¢ by [1] Theorem 1. Conversely suppose that n N §=={0}. Since @ or
2« is contained in 2'(9; ) and since Wy 4,(a) is the Weyl group of 2'(§; o),
we have w,Z (a) \ Hy#¢. Hence H,P=Hw,P.

(v) Suppose that dim (nNq)=1. Then dim (pNq)=1 since pCTi+
a-+n and since aCY. Hence a’=Ad (c,)a=pNq and the adjoint action
of KN Hy=(KN H), on « is trivial. Therefore Nz, (a")=Zx,(0") and
Hye,PNHye;'*P=@ by [1] Theorem 1. Suppose that dim(nNq)>2.
Then dim HP=dim Hw,P<dim G—2 by (iii). Hence G— HP— Hw,P is
connected, and therefore Hyc,P=H,c;'P.

(vi) If HP=Hw,P or Hc,P= Hc['P, then the assertions are trivial.
So we may assume that dim n=1 by (iv) and (v). Then G/P is diffeo-
morphic to a circle, the two closed H,-orbits H,P and Hw,P are distinct
points on the circle, and the two open H-orbits Hyc,P and Hc;'P are the
remaining open arcs. Thus the assertions are clear. Q.E.D.

Lemma 2/. Retain the assumptions and notations in Lemma 2. Then
we have the followings.

(i) G=H*PUH*w,P\UH,PUH%'P.

(ii) The double cosets H*P and H°w,P are open in G and the double
cosets Hc,P and H°c;'P are closed in G.

(iii) dim H%c,P=dim H%;'"P=dim G—dim (nNH)—1.

(iv) H¢=Hw,P if and only if n N H=={0}.

(v) Hgc,P=Hgc;'P if and only if dim (n N q)>2.

(vi) (H*P)*=H*PU H*c,PUH"'P and (H*w,P)* =H*w,P U
Héc,PUH;'P.

Proof. The assertions (i), (iv) and (v) follow from Corollary 2 of [1]
Theorem 1. (ii) follows from Corollary of [1] Section 3. (vi) is proved as
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in the proof of Lemma 2.

(iii) is proved as follows. Since pCfi+a+n and since aCpNy,
we have dim(nN§)=dim (pNH—1. On the other hand since pC
Ad (c)fi+ Ad (c,)a+ Ad (c,)n and since Ad (¢,)aCpNq=PpN}Hh°, we have
dim (Ad (c)nNq*) =dim(pNq*) =dim(pNY). Hence it follows from
Lemma 7 in Section 5 that dim He,P=dim Hc¢;'P=dim G—dim(Ad(c)n
Ng¥)=dim G—dim (nN H)—1. Q.E.D.

§ 3. Lemmas for the main theorem

We use the following notations throughout this section. Let a be a
maximal abelian subspace of p such that sa=a, X* a positive system of
the root system 3 = 3(a) and P the minimal parabolic subgroup of G de-
fined by

P=Z (x)expn

where n=73,.y.g(a; 8. Let ¥ denote the set of all the simple roots in
2+, Leta bearootin ¥ and put a*={Y e a|a(Y)=0}, L,=Z,(a%), [,
=30, Ma= D pc s+ -(a, 2:8(a; ), Po=L,€xp 1, P =[,+1n, and n(e)=
a(a; a)+gla; 2a). Then P, is a parabolic subgroup of G containing P.
Let [2 be the subalgebra of g generated by n(a)+6n(x) and L the analytic
subgroup of G for [{. For a subset S of G, write S°?=S°?(H*\G/P).

First we have the following lemma which is a generalization of [4]
Lemma 5.1.

Lemma 3. There are six cases (depending on the choice of a, X* and
«) for the decomposition of the set HP, into H-P double cosets as follows.

(A) Ifoa#t~+a andoa ¢ X*, then HP,— HP Hw,P, dim Hw,P=
dim HP-—dim n{e) and Hw, P (HP)*.

(B) Ifoa+~+a and ox € 2", then HP,= HP\U Hw,P, dim Hw,P=
dim HP+dim n(a) and HP C (Hw,P)*.

©) Ifoa=a and g(a; a)Nq={0}, then HP,= HP.

(D) The case when sa=a and g(a; @) N\ q+1{0}. Define an element
¢, € LS by c,=exp (n/2)(X+60X) with an X e g(a; o) N q satisfying 2, )
-B(X,0X)=—1. Then Ad(c)a=Ad (c;Y)a is o-stable,

HP,=HPU Hw,PU He,PU He;*P,

dim He, P=dim He;'P=dim HP+ dim (n(a) N q)
=dim Hw,P+dim (n(a) N 9),

(He PY'DHPU Hw,P, (Hce;'P)**DHPU Hw, P,

HP=Hw,P  if n(@)Nh=={0},
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and He, P=Hc;'P if dim(n(a)Nq)>2.

(B) Ifoa=—a and g(a; a) N q*={0}, then HP,= HP.
(F) The case when o= —a and g(a; )N q°+1{0}. Define an element
¢, € Lt by c,=exp (z/2)(X+0X) with an X e g(a; o) N q° satisfying 2{a, o)
-B(X,0X)=—1. Then Ad (c,)a=Ad (c;Y)a is g-stable,
HP,=HPJ Hw,PU He,PU Hc 'P,
dim He, P=dim He;'P=dim HP—dim ((a) N §*)—1
=dim Hw,P—dim (n(e) N §*)—1,
(HP)*DHc,PUH'P,  (Hw,P)"D He, PU He:'P,
HP=Hw,P if ()N he=£{0},
and He P=Hce'P if dim (n(ae) N g*)>2.
Proof. Since the statements are independent of the choice of w, in
Ng(a), we may assume that w, € LS. Let p be the projection of P, onto

L, with respect to the Langlands decomposition P,=L, exp n,. Then we
have natural bijections

3.1) H\HP,/P<~P,N H\Pa/P—;aJ\La/Laﬂ P

where J=p(P,N H). Since (L,),=LZ, , () and since Z,,, (a) P, we
have L{/L5N P~(L,),/(L,),NP. Since L,N P intersects with every con-
nected component of L,, we have (L,)/(L,),NP=~L,/L,NP. Hence we
have a natural surjection

(3.2) LN J\LSJL N P—>J\LJL,NP.

Let i be the Lie algebra of J.
(A) Let X be an element of fn(x). Then X+oX e BT, N Y since —oa
e 2*. Hence X=p(X+0X)Cjsince —ow € ¥*—{a, 2a}. Thus we have

() CLEN ]
By the Bruhat decomposition of Li, we have
L:=D()UDw, and Dw)CD(1)*
where D(x)=(L: N J)x(L:N P) for x € LS. Hence by (3.1) and (3.2),
HP,=HPUHw,P and Hw,PC(HP).

Since o~ +«, we have w, ¢ Wy, x(a) and therefore HP+ Hw,P by [1]
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Theorem 1. Hence D(1)=£D(w,) and it follows from the naturality of (3.1)
and (3.2) that

dim HP—dim Hw,P=dim D(1)—dim D(w,)
=dim n(x).

(B) By a similar argument as in (A), we have
nle)CEN;.
By the Bruhat decomposition of Lf, we have
Li=D(1)UD(w,) and D(1)CD(w,)"
where D(x)=(L; N J)x(L: N P) for x ¢ L. Hence by (3.1) and (3.2),
HP,=HPUHw,P and HPC(Hw,P)®.
Since HP+ Hw,P and D{1)+D(w,) as in (A),

dim Hw,P—dim HP=dim D(w,)—dim D(1)
=dim n(a).
(C) Since I£ is generated by g(a; &)+ g(a; —a), ¥ is contained in §.

Hence HP,= HP by (3.1) and (3.2).
(D) Since L:N HC LiN J, we have a natural surjection

(3.3) LN H\L/L:N P—>J\LJL,NP

by (3.2). Since dim (I: N a)==1 and [ N aC}, it follows from Lemma 2 (i)
and (vi) that Li=D(1)U D(w,)U D(c,)U D(c;"), D(c,)** = D(c,)UD(1)U
D(w,) and D(c;Y) = D(c;H) U D(1)U D(w,). Here D(x)= (LN H)x(L: N P)
for x e L. Hence by (3.1) and (3.3),

HP,=HPU Hw,PU He,PUHc:'P, (He,P)*DHPU Hw,P

and (He;'P)*DHPU Hw,P.
Since Ad(c,)a is not KN H-conjugate to a, (HP U Hw,P)N (Hc, P U He;'P)
= by [1] Theorem 1. Thus we have

dim He,P=dim He;'P=dim HP+dim (n(e) N q)
=dim Hw, P+ dim (n(x) N q)

since dim D(1) = dim D(w,) = dim D(c,) — dim (n(e) N q) = dim D (c;?) —
dim (n(e) N q) by Lemma 2 (iii). The remaining assertions are clear from
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Lemma 2 (iv) and (v).

(E) Since [§ is generated by g(a; a)+g(a; —a), [$ is contained in
§e. Hence ENICENY and Li=(L:N H)(L: N P) by the Iwasawa de-
composition of L. Therefore HP, = HP by (3.1) and (3.2).

(F) Clearly (3.3) is also valid in this case. Note that dim (I{Na)=1
and that [! N aCq. Consider L, L: N H and ¢ as G, H* and ¢6 in Lemma
2/, respectively. Then we have Li=D(1)U D(w,)U D(c,) U D(c;?), D(1)
=D(1)U D(c,) U D(c;") and D(w,)**=D(w,)U D(c,) U D(c;') by Lemma 2’/
() and (vi). Here D(x)=(L;N H)x(L:N P) for x e L and c, is defined in
the statement of (F). Hence

HP,=HP UHw,PU He,PUHc'P, (HP)"*DHe,P U Hc'P
and (Hw,P)*DHc,PUHc'P
by (3.1) and (3.3). We have (HPU Hw,P)N (Hc,P \JHc;'P)= by the
same reason as in (D). Hence
dim He,P=dim Hc;*P=dim HP—dim (n(a) N §*)—1
=dim Hw,P—dim (n(a) N §*)—1
since dim D(c,) = dim D(c; ') = dim D(1)—dim (n(a) N §*)— 1 = dim D(w,)

—dim (n(a)NH*)—1 by Lemma 2’ (iii). The remaining assertions are
clear from Lemma 2’ (iv) and (v). Q.E.D.

Lemma 4. The following three conditions on X+ are equivalent.

(i) Ifaeltandoa#+—a, thenoca e X*.

(ii) Ifae¥ and ca+ —a, then o € 2+,

(iii) There exists a Y e aN§ such that a(Y)>0 for all o« e X+ satisfy-
ing ca+ —a.

Proof. (i)=>(ii) is trivial.

(i)=(). Every root g in X'* can be written as =) .y H,a With
some nonnegative integers n,. Put ¥ ={ae ¥ |oa=—a} and ¥\,=
{a¢ € ¥|oa*—a}. Then we have

(3.4) 0= —Ser_ N+ Saer, n00

It follows from the assumption that

3.5 D aero Ml € D pevZ, o

where Z, ={n e Z|n>0}. Suppose that ¢~ —p5. Then
(3.6) 0P ¢ 2 er_Za.
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Write 68=>_,ev Hoa (n, € Z). Then it follows from (3.4), (3.5) and (3.6)
that #,>0 for some e ¥, If ¢f is a negative root then #, <0 for all
ae¥. Henceofel*.

()=(ii). Let X be an element of a such that a(X)>0forall e e 3*.
Then Y=X-+o0X is a desired element.

(ii)=@0). If ¢ ed* and ga# —a, then ca(Y)=a(¥Y)>>0 by (iii).
Hence —oe is not contained in 3* by (iii) and therefore oo € 2*.

Q.E.D.

Definition. A positive system 2* of the root system X = 2X(a) is said
to be g-compatible if one of the equivalent three conditions in Lemma 4
is satisfied.

Suppose that 3'* is not g-compatible. Then by the above definition,
there exists a simple root o of 2'* such that o ¢ 2% and that oae#~ —a.

Lemma 5. Let « be a simple root of X* such that oo ¢ 2+ and that
oas—a. Then (i) (HP)"=(Hw,P)"L, and (ii) (H*P)*=(H*w,P)"L,.

Proof. (i) ByLemma3 (A), HP,= HPU Hw,P and Hw,PC (HP)*.
Hence (HP)**=(HP,)*. Since HP,C(Hw,P)*'P,C(HP,)*", we have only
to prove that (Hw,P)*'P,=(Hw,P)*'L, is closed in G. Since G/P is com-
pact, (Hw,P)*/P is a compact subset of G/P. Consider the natural map
of G/P onto G/P,. Then the image (Hw,P)*'P,/P, of (Hw,P)*'/P by this
map is compact. Hence (Hw,P)'P, is closed in G.

(i) By Lemma 3 (B), H*P,=H*PU H*w,P and H*PC (H*w,P)**.
Hence H*w,PC(H*P)® and so (H*P)?=(H"P,°*. Since H*P,C
(H°w, P)*L,C(H*P,)°* and since (H°w,P)°’L, is open in G, we have
(HP)°?=(H®P,)**=(Hw,P)°’L,. Q.E.D.

§ 4. Proof of Theorem

In this section we prove Theorem in Section 1.

Proof. (i) Put g,=w¢Pqa, for i=1, ---,n. Then we will first
prove that

“.1) o= +p, and of, ¢ wé I3,

Put X3 ={x e 2" |{a ¢ 2} (the set of reduced roots in 2*). Then w® 3
=F—{Bp - BPDU{—B, -, =B} for i=1, --.,n. We also have
Bi(Y,)<0 for i=1, . - -, n by the definition of w. Hence by the choice of
Y,, we have ¢8; ¢ 2* (which implies g8, 5;,). On the other hand, we
have a8; ¢ {— By, - - -, — B;_4} since B(¥y)=(eB,)(Y,) <O for any i=1, - - -,
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n. Thus we have proved that ¢f8; ¢ w¢-"3¢ which clearly implies that
af; ¢ w3+, The remaining assertion g8, — f, is clear from ¢ Y,=Y,
and B,(¥;)<0.

Put PO =w®P(w®)~* and define L, as in Section 3 for i=1, -- -, n.
(Forany e 2, put a*={Y e a| B(Y)=0} and L,=Z,(af).) Then by (4.1)
and Lemma 5 (i), we have

(HP (i—l))cl — (HW,stP @ —1))”Lﬁi

and therefore (Hw“ -VP) = (Hw®P)'L,, for i=1, ---, n since Ly =
W(i—l)Lai(W(i—-l))—l'

The latter formula can be proved by Lemma 5 (ii) in a similar way.

(i1) follows directly from (i) because (Pw='P)**=PL, ---L,,.

(iii) Since L,=Z,(Y,) by the choice of Y;, we can define a parabolic
subgroup P, of G containing P® by P,=L,exp l;, ;=2 e 5,17 p>08(a; 7).
Since L, and n, are g-stable, it is easy to show that PN H=(L,NH)-
exp(n,NY). Since P,N H, is the parabolic subgroup of H, defined by ¥,

eany, H/P,N H, is compact. Hence H,P, is closed in G and so HP, is
also closed in G by Lemma 1.

Let p be the projection of P, onto L, with respect to the Langlands

decomposition P,=L, exp n,. Considering the natural bijections

H\HP/P™ <~ P NH\PJP™ 7~>L1 NH\L/LNP™,
we have
4.2) (HP @)t = H((L,\ H)L, N P®))P®

since HP, is closed in G.

Let Z be the center of (L,),. Since (L,),=LZ and since ZC P ™, we
have L/LN P™ ~(L)),/(L),NP™. Since LN P™ intersects with every
connected component of L;, we have (L),/(L),NP™~L/L,NP™. So
we have natural bijections

LiLnp™w—=>LJ/LAPW
and
(LNHEN\L/LN P25 (LN H)N\L/L, NP ™.
since (L,N H),=(LN H)(ZN H), and since ZC P™. Hence we have

(4.3) (LN H)(L,N P ™))t
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= (Ll n H)((L1 N H)O(Ll np (n)))CZ
=(L,NH)Y(LNH)(LNP@)HL,NP™)
=(L;NHY(LNH)LNP™)UL,NP D)

by Lemma 1.

From (4.2) and (4.3) we get the formula for (HwP)¢’. (Note that
LNP™=LAOPsince wI*N2I([(; a)=2*N2({;a))

The formula for (H*wP)°? is proved as follows. First we have P,
H*=L,NH*®since P,NgfP,=L,. Next we will prove that H*P, is open
in G. We have only to prove that §o+%,=g. (B, is the the Lie algebra
of P,.) Let ¥ be a root in 3 such that 7(¥;)<0 and X an element of g(a;
7). Then

X=X+e0X)—a0X e §°+g(a; aO)TH*+ B,

since (g07)(Y)=—7(Y)>0. Since g=%P,+ > cs,xp<d(a;7), we have
g=0*+%PB,. Considering the natural bijections

H*\H*P,/[P™ <= P, NH"\P,/P ““—;—» LNH\LJL,NP®,
we have

4.4 (H*P®@)or(H*\ G/ P ™)
= Ha(((Ll N Ha)(L1 N P(n)))op(L1 N Ha\Ll/Ll ne (n)))P @

since H®P, is open in G.
By a similar argument as that for (4.3), we have

4.5  (LNHYLNP@)P(LNH\L/L,( P™)
=(L:NHY((LNHNLN PN LN HN\LILNP@HL,NP™).

From (4.4) and (4.5) we get the desired formula for (H*wP)°? since
LONP™=LNP.

(iv) follows from (ii) and (iii).

(v) Since [N ais a maximal abelian subspace of [N contained in
[NpNgq, it follows from Proposition 1 and Proposition 2 in {3] that
(LNH)YLNP)is open in L and that (LN H*)(LN P)is closed in L.

(vi) By (ii) we can choose a sequence Dy, - .-, D, of H-P double
cosets (resp. D}, - - -, D, of H*-P double cosets) satisfying the following
four conditions.

(1) D,=D (resp. Dy=D").

(2Q) D,C(Hw®P)® (resp. D,C(H*w® P)°F),

(® DL, DD, (resp. DiL,,DD;_,).
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@ If Di_IC(Hw“’P)”, then D,=D,_,. (resp. If D;_,C(H*w® P)°?,
then D}=D;_,.)
We choose representatives y, of D, (resp. D}) for i=0, ..., n in the
following inductive procedure.
We can choose y, € D, N((LNHYLNP)*w (resp. D,N{(LNH*)
(LN P))?w) so that a,=Ad (y,)a is g-stable by [1] Theorem 1. Suppose
that we have chosen y, e D, (resp. D), ---, v, e D, (resp. D}). Then we
choose y,_,e D, , as follows. If D, ,=D, (resp. D;_;=D}), then we
put y,.;=»,. So we may assume that D,_,Z(Hw®P)° (resp. D;_,¢
(H*w®P)®). Put P'=y,Py;", P, =y,PL,y;" and w,,=yw,, »;*. Then

Di—ICD'iLai:HyiPLz”:HPc,riyi

(resp. D;_,CD/L,,=H"y,PL, = H"P] p,).
Since D,_, N (HWw®P)* = & (resp. D;_ N (H*w®P)= ) and since D,C
(Hw @ P)° (resp. D,C(H*w® P)°?), we have
(4.6) D,_,y;'C HP/, —(HP')*

(resp. D;_,y;*C HP,,—(H*P")°*(H*\G/P")).
Now we apply Lemma 3 to (H\G, P’, P,,) (resp. (H*\G, P’, P.)).

First suppose that g(a,; a)) N g= {O} Then it follows from (4.6) and

from the five cases except (D) in Lemma 3 (resp. from the five cases except
(F) in Lemma 3) that

D;_,y;*=Hw, P’ (resp. Di_,y;'=Hw; P’)
and
dim Hw, P’ >dim HP’ (resp. dim How, P’ <dim H*P’).

(In the cases (B), (C) and (E) (resp. (A), (C) and (E)), we get HP,,C
(HP') (resp. H*P,,C (H*P")°?(H*\G/P’)), a contradiction to (4.6).)
Hence D,_,= Hyw,P (tesp. D;_,= H*w,P) and dim D, ,>dim'D,
(resp. dim D;_,<dim Dj). We put y,_,=y,w,,. (Thena,_,=q,.)

Next suppose that g(a,; «f) N q=={0}. Then it follows from (4.6) and
from Lemma 3 (D) (resp. Lemma 3 (F)) that

D,_ 1y7;_1=HW;iP/, HCQiP’ or Hc’ ip/
(resp. D}_,y;*=H"w,,P’, H*, P’ or H%['P’)

and that dim HP’=dim Hw, P’ <dim Hc, P’ =dim Hc,J'P’ (resp.
dim H°P’=dim H°w, P’>d1mH“c P = dlmH“ 771P’). Hence
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D, ,=Hyw,P, Hyc,P or Hyc,'P
(vesp. D;_,=H®yw, P, H*yc, P or H%y,c;'P)

and dim Hy,P=dim Hy,w, P <dim Hyc,P=dim Hy,c;} P (resp.
dim H*y,P = dim H*y,w,, P >dim H"y,c, P = dim H%p,c;'P). Thus we
can choose a representative y,_, of D,_, (resp. Dj_,) such that y,_,=y,w,,,
ViCay OF yiet. It is clear from the choice of ¢,, that a, ;=Ad(y,_)ais
g-stable.

(vii) Let D( resp. D’) be a closed H-P double coset (resp. an open
He-P double coset) contained in HRwW, . --W, P (resp. H*R'wW,, - - -
W, P). We have RC((LNH)LNP))* (resp. R’ (LN HYLN P))°?)
by (v) and Proposition in Section 1. Hence we have DC(HP) (resp. D’
C(H"P)°?) by (iv).

Conversely let D (resp. D’) be a closed H-P double coset (resp. an
open HP double coset) contained in (HP) (resp. (H*P)°?). Let y,, - - -,
¥, be as in (vi). Since all the closed H-P double cosets in G have the same
dimension by Lemma 7 in Section 5 (resp. since all the open H-P double
cosets in G have the same dimension), it follows from (vi) (d) that Hy,P is
closed (resp. H°y,P is open) in G for i=0, -..,n and that y, ,=y, or
yw,, for i=1, ..., n. Clearly (LNH)y,w'(LNP) is closed (resp.
(LN Hy,w (LN P)is open) in L. Hence we have

D=Hy,P CHRWW, ---W,P
(resp. D’'=H°*y,P CH*R'WW, - .-W,P).

Put U={y e K{Ad (y)a is g-stable} and U,={y e U|HyP is closed in
G}. (U,={ye U|H®yP is open in G} by Colollary of [1] § 3). Then by
the above result, we have the followings for y e U,.

4.7) HyPC (HP)“* &= There exists a y, e (RN U)wW,,---W,,
such that HyP= Hy,P.

(4.8) H®“yPC(H*P)*¢There existsa y,e (R*RNUWW,, ---W,,
such that H*yP=H"y,P.

On the other hand it follows from Corollary 2 of [1] Theorem 1 and
Corollary of [1] Section 3 that

4.9) RNU=RNU
and that if y, y, € U, then

(4.10) HyP=Hy,P&<>H*yP=H"y,P.
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Hence for y € U,, we have
HyP C(HP)* & H*yP C(H*P)°?
by (4.7), (4.8), (4.9) and (4.10). Q.E.D.

§ 5. Proof of Proposition

Let HxP° be an arbitrary closed H-P, double coset in G. Then by
[1] Proposition 2, there exists an 4 ¢ H such that P=hxP°x~*h~! can be
written as

P=P(a, 3*).

Here q, is a o-stable maximal abelian subspace of p such that a;=a,N}
is maximal abelian in pNY and X+ is a g-compatible positive system
(Definition following Lemma 4) of X=23(g; a;). Then we have only to
prove that D’ D HP for any open H-P double coset D in G. Put 3=
{a € 3|o6a=a}. Let [ be the subalgebra of g generated by {g(ay; &) | € 2%}
and L the corresponding analytic subgroup in G. Let P denote the Lie
algebra of P.

Lemma 6. (i) g(a,; @)Y for all ¢ e 2°°. (Hence {ChH* and LC
H*)
(i) (CH+*B and LC HP.

Proof. Since g(a,; @) is gf-stable, we have only to prove that g(a,; )
Nq®={0}. Suppose that there exists a nonzero element X of g(a,; ) N q°.
Then X—@X is an element of p N q*=p N ) commuting with aj. But this
contradicts to the assumption that a§ is maximal abelian in p N .

(i) We have only to prove that LCHP. Since |, is a Cartan in-
volution of L and since LN P is a minimal parabolic subgroup of L, we
have

L=(LNK)LNP)

by the Iwasawa decomposition of L. On the other hand, we have LNK
=LNKNH*=LNKNH since LCH*® by (i). Hence LCHP. Q.E.D.

Next we will prove the following lemma which we used in Section 2
and Section 4.

Lemma7. Put S={a@|aec2, a+0} and 3*={a|ael*, a+0}
where @ is the restriction of « to a. Then
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dim HP=dim G2, 5. dim (g(af; )N q)
=dim G—1% > ;.5 dim (g(ag; @) N Q).
Especially all the closed H-P double cosets in G have the same dimension.
Proof. By Lemma 6 (ii), we have
Y+P=P+ 1+ 2 he-5- (8(a5; )N D)

and therefore
dim H P =dim (§+P)=dim G— 3 ;. 5+ dim (g(a5; @) N )
=dim G—}% > ;5 dim (g(af; @) N q)

since dim (g(ag; )N q) =dim(g(as; —a) N q) for 1e Y. Since HP =
UyenVHP=U ,.x H,yP is a finite union of H-P double cosets having
the same dimension, we have the desired formula for dim HP. Q.E.D.

Lemma 8 (J. Sekiguchi). Put N=exp (3 ,es+9(0y; —a)). Let D be
an arbitrary H-P double coset in G. Then

DYDOHPES>DNNP+G.

(Remark. Proposition follows from this lemma since NP is dense in
G)

Proof. = is clear since NP is open in G. Suppose that DN NP+
@. Then DNN=#@. Let x e DN N and write x= exp Y ,ez+X., With
X_, e g(ay; —a). By Lemma 4, we can choose an element Y € af so that
a(Y)>0forall w e X*—27°. Puta,=exptY forte R. Then

axa;’ =exp > ez e *X_,e DNN
(since a, € HN P) and it follows from the choice of Y that
X =lim,_ ., @, xa;"=€XP D 4es+nzes X_o € L.
Hence D*N L > x,, and therefore D'\ HP= ¢ by Lemma 6 (ii). Since
HD®'P= D, we have DD HP, Q.E.D.
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