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Cohomological Hardy Space for SU (2, 2) 

Hisayosi Matumoto 

Introduction 

Let G be a connected real semisimple linear Lie group and let P be a 
parabolic subgroup. Let Ga and Pa be the complexification of G and P 
respectively. Our aim is to find a good description of relations between 
the G-orbits of Ga/Pa and subquotients of degenerate principal series. In 
this article we treat an example for the group SU(2, 2). 

Let G=SU(2, 2) and K=S(U(2)X U(2)). Let P be a parabolic sub­
group of G such that G/P is Shilov boundary of G/K. Then G/P is a 
unique closed G-orbit of Ga/Pa and there exist three open G-orbits of 
Ga/Pa. Two open orbits are isomorphic to G/K as G-homogeneous space. 
But in this article we consider the other orbit. This orbit is isomorphic 
to a semisimple symmetric space SU(2,2)/S(U(I, l)X U(I, 1)). We call 
this orbit l5. We consider the homogeneous line bundle L corresponding 
to the representation in unitary degenerate series with "the most singular 
parameter". We can get a holomorphic homogeneous line bundle on 
Gal Pa whose restriction to G/ P is L. We denote this line bundle and the 
sheaf of its holomorphic sections by the same letter L. We investigate 
some relation between the Cech cohomology group H 2(!5, L) and a de­
composition of the above degenerate series representation in Kashiwara 
and Vergne [KV]. Although the K-type of this cohomology group is 
known by the very general result of Rawnsley, Schmid, and Wolf [RSW], 
our approach is purely geometric and we construct an injective G­
equivariant "boundary map" of the cohomology space to the space of 
hyperfunction-section of Lon G/P using a Mayer-Vietris exact sequence. 
We remark this construction of the boundary map is applicable in the case 
of SOo(n, 2). 

I wish to thank Professor Toshio Oshima for helpful discussions. He 
had proposed, before [RSW] appeared, the study of cohomology groups 
of a semisimple symmetric space which has complex structure. 

Received January 8, 1987. 
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§ 1. The representation in degenerate series of SU{2, 2) with "the most 
singular parameter" 

1.1. Let Fe be the complex Grassmann manifold of all 2-dimensional 
subspaces in C4. Let e0 e Fe be the subspace of C4 which is generated by 
two vectors: 

Then G0 =GL(4, C) acts on Fe transitively, and the stabilizer at e0 is 
the group: 

Here, each * means an arbitrary 2 X 2 complex matrix. Hence Fe 1s 
identified with the homogeneous space G cl Pc· 

Put 

(
0 0 

J= 0 0 
i 0 
0 i 

-i 
0 
0 
0 

Next we define a real form G of G c by 

Here, r* means the complex conjugate of the transpose of r. 
Next we consider the G-orbit structure of Fe (for example see Wolf 

[W]). For positive integers p and q such that 0<p+q<2, we denote by 
QCP,Ql the set of elements x of Fe such that the signature of the restriction 
to x of the Hermitian form corresponding to J is (p, q). 

Then we have the following G-orbital decomposition: 

Fe= U ocp,q) (0<p+q<2; disjoint union). 

The open orbits are oc2, 0i, O<1, 1l, and 0<0, 2>. The two orbits O<2, 0l and 
o<0, 2l have a structures of Hermitian symmetric spaces. We write O+, o-, 
and 15 for 0<2, 0l, o<0, 2l, and 0<1, 1> respectively. Let e1 e Fe be the 2-dimen-
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sional subspace of C4 which is generated by two vectors 

Then we have e1 e 15. 

Let Ebe the 2X2-matrix (6 -~)-The stabilizer Hof Gate, is 

written as follows. 

H=S(U(I, l)X U(l, 1)) 

~{( ~~1-~:) e GIAC'~CA*, AEA'+CEC•~1}, 

Hence 15 has a structure of a semisimple symmetric space. 
o<o,o) is a unique closed orbit and we write F for this closed orbit. 

Then e0 e F, and the stabilizer of G at e0 is: 

Here, each * means an arbitrary 2 X 2-matrix. Hence we identify F and 
G/P. 

Next we consider some open cell of F0 and F. Let H(2) be the set 
of all the 2 X 2 Hermitian matrices. Put 

N={( ~ j;)jx e H(2)}cG, 

N,~ { (~I ; ) e oc} 
Then N 0 -e0 is an open dence N 0 -orbit of F0 , and is identified with Mz(C) 
= {2 X 2-matrices/C} or C 4 via the following correspondence. 

( 1) 
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We can also identify N, e0 with H(2) or R4 via the above correspondence 
(1). N-e 0 is an open dence subset of F. 

We put for zq EC (q= I, · · ·, 4) 

o+={(z1, "' ·, Z4) E C4 IYf-y~-y:-y!>O, Yi>O}, 

o-={(z1, .. ·, Z4) E C4 IYi-Y~-y;-y;>O, Y1<0}. 

These are the realizations of Hermitian symmetric spaces as a tube do­
mains. R 4=H(2) is the Shilov boundary of Q±. Next we put D=J5n 
Nc,e,· Then Dis an open dence subset of 15, and we have 

D={(z1, · · ·, Z4) E C 4 IYf-y~-yf-y;<O}. 

1.2. According to Kashiwara and Vergne [KV], we describe a repre­
sentation of G which is realized on a function space on Shilov boundary 
H(2). Let L2(H(2)) be the L2-space with respect to the Euclidean measure 
on H(2)=R4. For feL2(H(2)), XeH(2) and geG such that g- 1 = 

(:I:) (a, b, c, d, are 2 X 2-matrices), we define 

(T(g)f)(X)=(det (cX +d))- 2 f((aX +b)(cX +d)- 1). 

Here, the above formula is well-defined for almost all Xe H(2), and 
(T, L2(H(2)) is a unitary representation of G. 

In fact this representation belongs to the unitary degenerate series 
and is realized on the space of sections of a homogeneous line bundle L 

on F defined as follows. First for Y = ( : I : ) E Pc we put 

p'(Y')=(det d) 2 • 

Then p' is a I-dimensional holomorphic representation of Pc· Let L 
be the holomorphic homogeneous line bundle on Fe= G cl Pc associated 
with p'. We also denote the restriction of L to F by the same letter L. 
Then the space of hyperfunction-sections of L on F is identified with the 
following space. 

Pli(F; L)= {f E Pli(G) lf(gp)= p'(p)- 1f(g) forgeG,peP}. 
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Here, f!J(G) is the space of hyperfunctions on G. The representation 
corresponding to L belongs to unitary degenerate series and its restriction 
to the open cell N0 • e0 is (T, L2(H(2))). (See Jakobsen and Vergne [JV].) 

Next we consider the Fourier transformation of (T, L2(H(2))). Let 
H(2)* be the dual vector space (over C) of H(2). We identify H(2) and 
H(2)* via a bilinear form Tr XY (X, Ye H(2)). Here we have 

(2) T (z1+z2 Z3-iZ4) (V1+V2 Vs-iV4)-2( + + + ) r . . - Z1V1 Z2V2 Z3V3 Z4V4 • 
z3+zz4 z1-z 2 v3+1v4 V1 -V 2 

For f E L2(H(2)) and BE H(2)*, we define the Fourier transformation as 
follows. 

(/Ff)(B)=f(B)= fe-iTrXBf(X)dX. 

Here dXis the Euclidean measure on R4=H(2). Let ;F- 1 be the inverse 
Fourier transformation. For g E G andf E L2(H(2)*) we put 

T(g)f =:F(T(g)(:F- 1f)). 

Then (T, L2(H(2)*)) is a unitary representation of G which is isomorphic 
to (T, L2(H(2))). 

Put 

and 

L= {( a I O ) I a e GL(2, C) <let (a) e R}. 
0 (a*)- 1 

Then P=LN is a Levi decomposition of a maximal parabolic subgroup. 
For a E GL(2, C) such that <let (a) ER and Xe H(2) we have the followings. 

( f( (~I (a~)- 1 ) )1 )(B)=(det (a))2f(aBa*), 

( t( (~I~) )f )(E)=eiTrXB f(B). 

Let V+, V, and V_ be the spaces of the elements of H(2)* whose signature 
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as Hermitian forms are (2, 0), (1, 1), and (0, 2) respectively. From the 
above formulas we have the following decomposition of .P-representations. 

( 3) L2(H(2)*)=L2(VJEBL2(V)EBL2(V_). 

Then we easily have: 

Lemma 1.2.1. The decomposition (3) is a decomposition into irreducible 
P-representations. 

The following theorem is a special case of the result of Kashiwara 
and Vergne [KV]. 

Theorem 1.2.2. The decomposition (3) is a decomposition into irre­
ducible G-representations. 

The representations L2(V±) are realized as Hardy spaces on the 
Hermitian symmetric space with respect to G. So, we consider the repre­
sentation L2(V) hereafter. 

§ 2. Factorization of the inverse Fourier transformation 

2.1. We identify H(2)* and R4 via the following correspondence. 

Then we have 

Here we consider the following 2-sphere 

S2 ={(v 2, v,, v,)[v;+v:+v!=l}. 

For x=(x 2, x,, x4) e R'-{(0, 0, 0)} we define p(x) e S2 by 

p(x)=(x 2/[x[, x,/[x[, x4/xl), 

where Jx[=(x~+x:+x!) 112• 

We have: 

Lemma 2.1.1. There exists a family of triangulations of S2 {l9n[n EN} 
which satisfies the following conditions. 

(A) Each edge of 19n (n e N) is a geodesic arc with respect to the 
Riemannian metric induced from the Euclidean metric of R'. 
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(B) en+ 1 is a subdivision of en for all n e N. 
(C) lf n tends to oo then the maximum of diameters of faces of en 

tends to zero. 
(D) Each triangle ofen does not have an obtuse angle. 

Proof. We consider an octahedron H whose vertices are ( + 1, 0, 0), 
(0, ± 1, 0), (0, 0, ± 1 ). We define a triangulation '/JI,,. of H whose edges 
are all straight line segments as follows. First let '//11 be the triangulation 
whose vertices, edges, and faces are vertices, edges, and faces of the octa­
hedom H respectively. 

Next, using the following subdivisional triangulations of each face of 
H consisting of only regular triangles (Fig. 1), we can define subdivisions 
of '/JI,,. for all n>2 which have the above mentioned property (B), (C), and 
(D). 

Fig. 1 

Finally we define e,,. by the image of '/JI n under p. Then we can easily 
see {E>n In e N} has desired properties. D 

Hereafter we fix some en which is sufficiently fine. We write e for 
en for simplicity. Let LI be a triangle of e whose vertices are .;1, .;2, .;3• 

Here, c;i =(.;~, .;:, c;l) e R3, and I;J=lc;J)2= 1. We, if necessary, change the 
numeration and we assume 

We define 

where v'=(v 2, V3, V4). Then the convex hull of V4 is a proper convex cone. 
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We denote the set of triangles of e or the set of vertices of e by the same 
letter e. Then we easily get: 

Lemma 2.1.2. V = U 4 e8 V4 • This union is disjoint except for a set of 
measure zero. 

We define a function X4 on V by 

ifxeV 4 

otherwise. 

For f e L2(V) we putf:i=f-X 4 • Then we have 

(as L2-functions). 

2.2. Put 

S 4 = U {(st, th.;t th.;t the;!) E R4 I t>O, h> l}. 
i=l,2,3 . 
a=±l 

We denote the closure of the face of L1 e e by the same letter L1. Then we 
have: 

Lemma 2.2.1. V4 is contained in the convex hull of S 4• 

Proof Let v = (vi, v2, V 3, v4) e V4 • Put I v'I = M + v: + v:)112• If 
v1 :;t=O, v is contained in the convex hull of 

since I v1 I <I v'I and (v2/ I v'I, v3/I v'I, V4/ I v'I) is contained in L1 whose vertices 
are· .;1, .;2, .;3• 

If v1=0, then we have (±o, v2, V3, v4) e V4 for sufficiently small o. D 

For a vertex c;=(.;2, ,; 3 , .; 4) in e, we put 

Here, Yt=~zt for i=2, 3, 4. We define 

Da=U w;. 
f Ell 

Lemma 2.2.2. Let L1 be a triangle off) and .;t (i= 1, 2, 3) the, vertices 
of Ll. Then ff-¼ is holomorphic on w;, n w;. n w; .. 

Proof For zt e C (i= 1, · · ·, 4) we put Y.=~zt. Put 
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Ut={(z1, .. ·, Z4) E C4IV(v1, .. ;, V4) E S4 YiV1+ ... +Y4V4>0}. 

From Lemma 2.2.1, .'F- 1fA is holomorphic on Uf On the other hand 
we have 

UJ= n {(z1, • • ·, Z4) e C 4 JVh>1Vt>0Ve= ± 
i=l,2,3 

1 etYt + thy2~~+ thy3~~ + thy4~l >0} 

= n {(z1, "" ·, Z4) E C4IY2~~+Ys~:+A~l>iYil} 
i=l,2,8 

=n w:, 
For each vertex~ we denote by St(~) the open kernel of 

U LI. 
4EIJ 
eE4 

D 

Here, we identify each triangle LI and the closure of its face as above. 
We put 

Here, Yi=.;szi (i=2, 3, 4). We can immediately see W0 is convex. Espe­
cially each w. is Stein. From (D) of Lemma 2.1.1, we easily have: 

Lemma 2.2.3. 

Let (!) be the sheaf of germs of holomorphic functions. For a triangle 
LI e <EJ let~~ (i= 1, 2, 3) be the vertices of LI. We can assume 

Let/ e L2(V). Since JF-½ e <!J(W.~ n W0~ n W.~) we can define 

Here, we use the notation ofV.P. Palamodov for cochains. See Palamodov 
[P] Chapter 3, Section 3 p. 105-110. 

Put 

Olt9 ={W. I~ E <EJ}. 
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Let Z 2(0//8 , 0) be the space of 2-cocycles of the Cech complex of @-coef­
ficient with respect to the Leray (Stein) covering 0/18 • Since the intersection 
of any four distinct W/s is empty, Z 2(0/l8 , 0) conincides with the space of 
2-cochains. Hence we have the following map. 

2.3. Now we review some fundamental facts about the theory of 
hyperfunctions. For details, see [KKK]. 

For a sheaf g, on en, we define a sheaf I'Rn(.':/1) as follows. 

for all open subset U of en. Here supp (s) means the support of s. Let 
e be the natural embedding Rn=-+en. 

If we fix an orientation of Rn, then we can define the sheaf of germs 
of hyperfunctions Ell by C 1 Rn I' Rn( 0 en), where Rn I' R" means the n-th derived 
functor of I' R" and 0c,. is the sheaf of germs of holomorphic functions on 
en. 

We can represent the space of global sections f!l(U) on any open 
subset U of Rn by relative cohomologies as follows. 

f!l(U)=H;J(U', 0), 

where U' is any complex neighbourhood of U in en. We also have 

H'J(U', 0)=0. (q=t-n) 

Next we consider the (abstract) boundary values of holomorphic 
functions. Let W be an open subset of en. We call W a proper convex 
conic tube domain, if there exists some proper open convex cone Q in Rn 
whose vertex is the origin such that W=Rn+iQ. Let W be a proper 
convex conic tube domain. Then for each holomorphic function f on W 
we can define a boundary value bw(f) e f!l(Rn) ( or sometimes we write 
b(W; f) or simply b(f)). The boundary values have the following 
properties. 

(A) Let W and W' be proper convex conic tube domains such that 
W' c W. Let f be q holomorphic function on W. Then we have 

bw(f)=bw,(fw,). 

(B) Letf be a holomorphic function on W such that limi-of(x+ity) 
(x, ye Rn, x+iy e W) exists as a distribution. Then limi-of(x+ity)= 
(bw(f))(x). Here we can regard the space of distributions as a subspace of 
the space of hyperfunctions. 
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Next we consider the relation between relative cohomologies and 
boundary values. Let { W1, • • ·, Wm} be a open covering of C n - Rn such 
that each Wi is an open proper convex conic tube domain and the intersec­
tion of any n+ 1 distinct W/s is empty. Then we can immediately see 
{ W1, • • ·, Wm} is a Leray covering with respect to not only the sheaf of 
germs of holomorphic function 0 but also constant sheaf of Z-coefficient. 
Ifwe assume n>l, then we have 

The above isomorphism is not canonical. Fixing an orientation of Rn is 
equivalent to fixing an isomorphism 

e: Hn-1(cn-Rn, Z)~Z. 

Let zn- 1(cn-Rn, Z) be the space of (n-1)-cocycles of the Cech complex 
of Z-coefficient with respect to the Leray covering {W1, • • ·, Wm}. Let 
Pi: zn- 1(cn-Rn, Z)~Hn- 1 (cn-Rn, Z) be a natural projection. 
zn-1(cn-Rn, Z) is generated over Zby the following elements. 

We put 

Then we have 

Next we consider the @-coefficient cohomology. Let zn- 1(Cn-Rn, 0) be 
the space of (n- 1)-cocycles of the Cech complex of @-coefficient with re­
spect to the Stein covering {W1, ···,Wm} and P2 : zn- 1(Cn-Rn, 0)---+ 
Hn- 1(Cn-Rn, 0) the natural projection. Any element X of zn- 1(Cn­
Rn, 0) is written as follows. 

Here, gii,···,in e @(Wi1 n · · · n Wi,.). If we identify !J6(Rn) and H'Jtn(Cn, 0) 
=H"-1(C"-Rn, 0), then we have 

Next we return to the original situation. For each element c E 

Z 2(%'19, 0) has the following expression. 
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Here g4 e 0(W 0~ n w.~ n w.~) and ~~ (i= 1, 2, 3) are the vertices of L1 such 
that 

Then we can define a boundary value map 

as follows. 

Immediately, we have: 

Lemma 2.3.1. 

2.4. Put 

We have 

I't={(z 1, • • ·, Z4) e C 4 l(z1, · · ·, Z4) ~ De, ;'sz1>0}, 

I';= {(zi, ... 'Z4) E C 4 I (zi, ... 'Z4) ~ De, ;'sz1::;:0}. 

(C 4 -I't) U (C4 -I' 8)=C 4 -R4, 

(C 4 -I't) n (C 4 -I';)=De, 

Hence we have the following Mayer-Vietris exact sequence 

( 4) · · · ~Hq+ 1(C 4 -R4, 0)~Hq(De, 0)~Hq(C 4 -I't, 0) 

(£)Hq(C4 -I' 8, 0)~Hq(C 4 -R4, 0)~· · ·· 

Since C 4 is Stein, we have 

Hq(C 4 -I':, 0)=H~! 1(C4, 0) 
e 

Hq(C 4 -R4, 0)=H'11 1(C4, 0) 

(q>l), 

(q>l). 

Here, the right hands of the above equations are relative cohomologies 
(cf. [KKK]). From Kashiwara and Laurent [KL] Theorem 1.1.2, we have 
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From 2.3, we have 

(q=t=0). 

q=4, 
otherwise. 

Since the intersection of any four distinct W/s is empty, we have 

H3(D8 , 0)=0. 

Hence we get: 

Lemma 2.4.1. (A) For q=t=0, 2, 

Hq(D 8 , 0)=0. 

(B) We have the following exact sequence. 

0~H~ 8(C4, 0)(f;Hf,/C 4, 0)~£1(R 4)~H 2(D 8 , 0)~0. 

2.5. Letpr 8 : Z 2(0/t8 , 0)----+H2(D 8 , 0) be the natural projection. 
We are going to show: 

Lemma 2.5.1. b8 opr8 =o8 • 

Proof. We fix some L1 e e with vertices~~.~~'~~ such that 

We have only to show 

for all/ E 0(W.~ n W.~ n Wd)-

481 

Hereafter we put y t = ~zt for i = l, 2, 3, 4. Let µ be a sufficiently 
small positive number. Put 

Here, ~=(~ 2, ~s, ~4) is a vertex of e. Lett: be the open kernels of I'l 
respectively. Put 
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Then oU8 is a Stein covering of C'-R' and we can easily see that any five 
distinct elements of 0/i 8 do not intersect. Put 

We put 

l¥'t={(z1, · · ·, z,) e W. IYi<~2Y2+~sYs+~,A}, 

Wi={(z1, · · ·, z,) e W. I -Yi <~2Y2+~sYs+~,y,}. 

Oltt={f;} u {Wt I~ e 8}, 

0/t; = {ft} u {Wi I~ e 8}. 

Then 0/tt (resp. 0//8) is a Leray (Stein) covering of C'-I't (resp. C 4-I' 8). 
Let C*(0/18 , 0), C*(O/i 8 ; 0), C*(O/tt, 0), and C*(O/tt, 0) be the cochain 

complexes for Cech cohomologies with respect to the Leray coverings 0/18 , 

0/i 8 , 0/tt, and 0/18 respectively. 
For~. ~', ~" e 8 we easily have 

WtnWi=w., 

WtUWi=W., 
(Wt n Wt,) u (Win Wi,)= w. n w.,, 

(Wt n W:, n Wt,,) u (Wi n W:, n Wi,,) = w. n w., n w ... , etc. 

Hence we can easily see there exists the following exact sequence of com­
plex. 

(5) 

Since the Mayer-Vietris exact sequence (4) is induced from the exact 
sequence (5), considering the snake lemma, we can describe 

as follows. Here f e 0( We j n w.~ n w.~) and L1 . is a triangle in 8 with 
vertices ~~. ~~. ~~ such that 

Since we have 
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cw;, n w;. n w;.) u cw:, n w:-;, n w:.)= wd n w.~ n w.~. 
4 4 4 '4 •4 •4 

cw;, n w; n w;. ) n cw;, n w;. n w;.)= w.} n w.~ n w.~. 
4 4 4 4 4 4 

and w.~ n Wd n W.~ is Stein, we can write 

f=h+-h-, 

where h.,. E lDCW~ n W; n W!)-
<4 <4 <4 

483 

We denote by Z 8Coii 9 , lD) the space of 2-cocycle with respect to the 
covering ofi 9 and let pr,;9 : z•c ofi 9 , lD)-H 8C C4 - R\ lD) be the natural pro­
jection. 

Considering the smake lemma, we can easily deduce 

o9 opre(JW.~/\ w.~/\ w.~) 
= pr,;9 Ch+ft I\ w.}/\ w.~/\ w.~)-pr,;9 (h_ w.}/\ w.~/\ w.~/\f;). 

If we consider the orientation, we have 

o9 opre(fWe}/\ W.~/\ W.~) 

=hCft n w.~ n w.~ n w.~; hJ-bCw.~ n w.~ n w.~ n t;; h_) 

=hCw~ n w+. n w+.; h+)-hcw-, n w-. n w-.; h_) 
<4 <4 <4 <,i <4 <4 

=b(We}n W.~n W.~;f) 

=be(JW.~/\ w.~/\ w.~)- Q.E.D. 

Put 

From Lemma 2.3.1 and Lemma 2.5.1, we immediately have: 

Corollary 2.5.2. o9 o,y9 =ffe- 1• 

2.6. If n<m, then we have D 9 ,. CD 9 m. Then there exists a restric­
tion map 

r: H*CDem, lD)~HCDem, lD). 

We have: 

Lemma 2.6.1. For m >n, we have 
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Proof Functoriality of the Mayer-Vietris exact sequence implies 

Hence we have 

lien °r 0 tem = 0em 0 tem 
=~-1 

Since Oen is injective (Lemma 2.4.1), we have the desired result. D 

From Lemma 2.6.1, we get a canonical map 

t': L2(V)----+limH2(Den, c:D). 
n 

Since D= Un Den from Lemma 2.1.1, we have a canonical map 

q: H 2(D, c:D)----+lim H 2 (Den, c:D). 
n 

We quote: 

Lemma 2.6.2 ([KL] Lemma 1.1.6). Let X be a topological space, Fa 
sheaf on X, and k E N. Let { Un In E N} be a family of open sets of X which 
satisfies the following conditions. 

(A) Un<:; Un+i for all n, 
(B) UnUn=X. 
(C) The restriction map Hk-1(Un+i, c:D)-+Hk-1(Un, F) 

is surjective for all n. 
Then the canonical map 

Hk(X, F)----+lim Hk(Un, F) 
n 

is an isomorphism. 

From this lemma and Lemma 2.4.1, we see that q is an isomorphism. 
Hence from t' and q-1, we can define 

Let I'± be the closures of D± in C 4 respectively. Then we have 

(C 4 - r+) U (C 4 - r-)= C4 -R4, 

(C 4 - r-) U (C 4 - r-)=D. 
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Hence we get the following Mayer-Vietris exact sequence. 

(6) 
0 

·. ·+-H 3(C 4 -R4, (!))+-H 2(D, (!))+-H2(C 4 -I'+, (!)) 

ffiH 2(C 4 -I'-, (!))+-H 2(C 4 -R4, (!))+-· · ·. 

The above sequence is the inverse limit of (4). Let g be the Lie algebra of 
G and U(g) the universal enveloping algebra of complexification of g. We 
can immediately see all maps in (6) are U(g) and .?-homomorphism under 
twisted action compatible with the actions on f!l(R4). 

Taking inverse limit, now we can easily have: 

Theorem 2.6.3. (A) For the inverse Fourier transformation 

we have g:;--1=oof. 
(B) g;--1, t, and o are all U(g) and Ji-homomorphisms. 
(C) o is injective. 

§ 3. Some cohomology group of the line bundle L on G/ H 

3.1. From the generalized Borel-Weil-Bott theorem (Kostant [Ko] 
Theorem 6.4), we have: 

Lemma 3.1.1. Let L be the line bundle defined in 1.2. Then we have 

(q=O, 1, 2, · · · ). 

3.2. Let I'± be the closure of D± in Fe respectively. Then we have 

(Fe-I'+) U (Fe-I'-)=Fe-F, 

(Fe-I'+) n (Fe-I'-)=15. 

Hence we get the following Mayer-Vietris exact sequence. 

( 7) · · · +-Hq+ 1(Fe-F, L)~Hq(JJ, L)+-Hq(Fe-I'+, L) 

ffiHq(Fe-I'-, L)+-Hq(Fe-F, L)+-· · ·. 

From Lemma 3.1.1, for all q EN we have 

Hq(Fe-I'\ L)=H'j,;/(Fe, L), 

Hq(Fe-F, L)=Hz.+ 1(Fe, L). 
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Since we can regard I'± as a closed convex set in C 4 (See Wolf [WoJ 
3.), from the result of Kashiwara-Morimoto (also see [KL] Theoreme 
1.1.2) we have 

(q=,t:3). 

Since F0 is a complex neighbourhood of F, we have 

Hj.(F 0 , L)=O (q=,t= 4), 

H}(F 0 , L)=f!J(F, L). 

Hence we have: 

Theorem 3.2.1. (A) Hq(IJ, L)=O (q=,t:2, 3). 
(B) The following is a exact sequence of G-equivariant maps. 

O~H 3(D, L)~Ht+(F 0 , L)©H1-(F 0 , L)~f!J(F 0 , L) 

a -
~H2(D,L)~O 

3.3. Put 

Then K is a maximal compact subgroup of G. We write f for the Lie 
algebra of of K. For a f-module M we write Mi for the space of f-finite 
elements in M. 

Put 

S=F 0 -U. 

Then we have I'± n U=I'±. Hence we get 

(q=,t:4). 

Here, we identify @ and the sheaf of germs of holomorphic sections of the 
restriction of L to U. 

Therefore we easily get the following commutative diagram, from the 
flabbiness of the hyperfunction, Lemma 2.4.1 (B), and Theorem 3.2.1 (B). 
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0 

1 
HJ+ns(Fc, L)(BHJ-ns(Fc, L) 

lp i* a 
HJ+(Fc, L)(BHJ-(Fc, L)...--!!J(F, L) ...--H 2(IJ, L)...---0 

lr' 1, lr" 
"* i5 

Hf.+(C4, 0)(f)Hf.-(C4, 0)~/!J(H(2))...--H2(D, 0)...---0 

1 
0 

Here, r', r, r" are restriction maps and all rows and columns are exact. 
The following lemma will be proved in the next section. 

Lemma 3.3.1. HJ±ns(Fc, L) 1=0. 

Using this lemma, we have: 

Lemma 3.3.2. If f e !!J(F, L) 1 satisfies r(f) e Im (a), then f e Im (<5). 

Proof Since 

r' oi*(f)=j*or(f)=O, 

there exists some element g of Hf+ns(Fc, L)ffiH4r-ns(Fc, L) such that p(g) 
=i*(f). Since pis injective, g is f-finite. Hence we have g=O. There­
fore i*(f)=O. From the exactness, we have the desired conclusion. D 

Now we have the main result of this section. 

Theorem 3.3.3. The restriction map 

is an U(g)-isomorphism. 

Proof Surjectivity of r" is immediately deduced from Lemma 3.3.2. 
Injectivity is deduced from the injectivity of 

r: !!J(F, L)r--~/!J(H(2)). 

Hence r" gives an isomorphism of H 2(IJ, L) 1 to H 2(D, 0) 1• 

From Theorem 2.6.3, we have: 

Q.E.D. 



488 H. Matumoto 

Corollary 3.3.4. We get an embedding of a U(g)-module: 

L2(V)ic=-~H 2('l5, L). 

Remark. In the general result of [RSW] 4.28, H 2(15, L) 1 is calculated. 

§ 4. Proof of Lemma 3.3.1. 

4.1. We fix the following Levi part of P 0 • 

L,-{ ( ~ I ~ ) IA, Be GL(2, C), det (A)-det(B)-J 

We fix the following Cartan subalgebra fj0 of Las well as G. 

The Killing form of g0 = ~r( 4, C) coincides with Tr XYup to scalar factor. 
Using this bilinear form, we will identify fj0 and its dual fj!. 

Let 2 be the root system of ~r( 4, C) with respect to the Cartan sub­
algebra 90 • Let a, {3, and r be roots corresponding to 

(0
000 g g g) 

0 -1 0' 
0 0 1 

(
-1 0 0 0) 
0 0 0 0 
0 0 1 0 ' 
0 0 0 0 

'1 0 0 0) 
(
0 -1 0 0 
0 0 0 0 
0 0 0 0 

respectively. Then {a, {3, r} forms a fundamental system of roots. 

a fi r 
0-0-0 

Let ;r+ be the positive system of 2 with respect to the above fundamental 
system. 

Let W (resp. W,) be the Weyl group of G0 =SL(4, C) (resp. L 0 ) with 
respect to the Cartan subalgebra fj0 • Put 

Wu={w E W\(-w2+) n I+ s;{/3, {3+r, a+ {3+r, a+ {3}}. 

Then we have 
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Here, e means the identity element of Wand s* means the simple reflection 
with respect to the simple root * (*=a, /3, r). 

Put 

{(1 * 0 0) l + 0 1 0 0 
U O = * * l 0 e SL( 4, C) . 

* * * 1 

The following is a special case of Borel-Kostant's generalized Bruhat 
decomposition (Warner [Wa] Proposition 1.2.4.9). 

Lemma 4.1.1. 

Here w is some representative of win G0 • 

Put 

Then we have 

namely w0 is the longest element of W. 
Put 

Therefore 

We can choose 

and 

(disjoint union). 

(disjoint union), 

(
0 -1 0 0) 
1 0 0 0 
0 0 1 0' 
0 0 0 1 

which are contained in P 0 , as representatives in GO of sa and s7 respective­
ly. Hence, if we put 
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then we have 

(disjoint union). 

We choose representatives of the elements of W* as follows. 

(° 
0 -1 0) 

- 0 0 0 -1 
w O ~ w 5 = t 0 0 0 ' 

1 0 0 

( 
0 0 -~) - 0 0 0 

SaSrSpSrSa~W4= ~ 0 1 0 ' 
1 0 0 

( 
0 0 

~), - 0 0 -1 
SfiSrS_8~W 3 = Q 1 0 

.o 0 0 

(0 0 0 -ii - 0 1 0 
SpSaSp~Wz= ~ 0 1 0 , 

0 0 0 

(° 
0 -1 

~), - 0 1 0 
Sp~W1= t 0 0 

0 0 

( 
0 0 

~} - 0 1 0 
e~w 0 = ~ 0 1 

0 0 

Hereafter we assume i= 1, 2, 3, 4. Put 

ei=i1\·e 0 E F 0 • 

Then we have 

5 

Fa= LJ (Uc -et) (disjoint union). 
i=O 
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Next we consider the following local coordinate system of F0 • Put 

We can introduce a coordinate on U, as follows. 

Then we immediately have 

The following result follows from some direct calculations. 

Lemma 4.1.2. Under the above coordinates of Ut (i= 1, · .. , 4), we 
have the following description of Uc· et. 

Uc ·e 0= U0=N 0 -e0, 

Uc ·e1={(z1, ... 'Z4) E C4Jz1+Z4=0}C Ui, 

Uc·e2={(z1, .. ·,Z4) E C4Jz1+Z2=0, Z3-iZ4=0}CU2, 

Uc·ea={(z1, .. ·, Z4) E C4Jz1+Z2=0, Za+iz4=0}CU3, 

Uc. e4= {(zi, ... 'Z4) E C4 j Z1-Z2=0, Za=Z4=0} C U4, 

Uc-e 5={(0, · · ·, O)}CU 5• 

Next we try to represent D n U, by the coordinate on Ut. 

Lemma 4.1.3. If i=O, 1, 4, 5, then we have 

15n U,={(z1, ... 'Z4) E C 4 jy~-y:-y:-y!<O, Y.=~z. i= 1, ... '4}. 

Especially, if i= =4, 5, then 

(Uc -e,) n D= 0. 

Proof If i = 0, then the above statement means D = 15 n U,. If i = 
1, 4, 5, then we have tt\ e G. Hence we have the statement of the lemma 
from the case of i=O, D 

After direct calculations, we have: 

Lemma 4.1.4. Ifi=2,3, then 
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4.2. Now we prove Lemma 3.3.1. We will show 

The case of I'- is similar. 
First from Lemma 4.1.3, and Lemma 4.1.4, we have 

Since {e5} U (Uij. e4 n I'+) is closed in I'+ n S, we have the following exact 
sequence. 

H't 0 -,,nr+(Fa, L)-----.+Hf,.1ucu0 -e.nr+i(Fa, L)------+Ht+nsCFa, L) 

------+Hifa.e,nr+(Fa, L). 

On U1, we introduce the following new coordinate. 

Put 

Under the coordinate (( 1, ( 2, ( 3 , ( 4) on U1, we have 

H'ba-e,nr+(Fa, L)~H'Ja·e,nr+(U1, (!)) 

~H{t)x<C+)xR.(C4, (!)). 

From [KL] Theoreme 1.1.2, we have 

Hence we have the following exact sequence. 

Let/be any element of Ht+ns(F 0 , L) 1, then -r(f) E Hltixcc+JxR•(C4, (!)) 
is also .t-finite. 

Now we prove: 

Lemma 4.2.1. 
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Proof Put 

H=C-{isJs e R, JsJ2:1}. 

Then His simply-connected and an analytic function ./ 1 + z2 is well-defined 
on H. From the excision property, we have 

We introduce new (global) coordinate (t1, • • ·, t4) on HX C3 as follows. 

(1=!1, 

(2= t2+ t1Cti+ t!), 

(3= t,./1 + li' 
(4=t4./l+ti. 

Then we can easily see 

gives a holomorphic automorphism of HX C 3• 

Next we consider the following I-parameter subgroup of K. 

(
cos() 

k(())=w 1 _O () 
sm 

0 

0 -sin() 
1 0 
0 
0 

cos() 
1 

~)c-)-1 O W1 • 

1 

After direct calculation we have 

Here 

(e~s() ~)x+(5i;e ~))((-~in() ~)x+e~s() ~)rl 
( 

t~ ./l+(ti) 2 (t,-it4)) 
= ./I+(t~)2(t,+it4) t2+t~(t~+tD . 

./ 1 + li (t, -it4)) 
t2+t1(t:+t!) ' 

We also have 
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( det ((-sin 0 0) X + (cos 0 0)))-2 = 1 . 
0 0 0 1 (t1 sin0-cos0) 2 

Hence in the coordinate (t1, • • ·, t4), the action of the infinitesimal generator 
of {k(O)} was represented as follows . 

Put 

Put 

.1__( . l f(t~, f2, fa, f4))l =((l+tD_J__+2t1)f. 
o0 (t1 Slll 0-COS 0)2 o-o ot1 

R+={x e Rlx>0}, 

R_={x e Rlx<0}. 

For a closed set A of HX ca we put 

A•=HXCa-A. 

Then we have the following Mayer-Vietris exact sequence. 

H 2((RX c+ X R2)°, 0)~Ha(({O} X c+ X R2)°, 0) 

~Ha((R+ xc+xR 2)°, 0)tf)H 8((R_ xc+xR 2)", 0). 

HX C 3 is Stein, since it is a cylinder domain. Hence for all closed subset 
A of C4 we have 

(q>l). 

Hence the above exact sequence is rewritten follows. 

HixcC+)xR•(HX CS, (!J)~H~)xcc+)xR•(HX CS, (!)) 

~Hfi+xcc+)xR•(HX CS, 0)ffiH/t_x(C+)xR•(HX C3, (!)). 

From the excision property, we have 

On the other hand, from [KL] Theoreme 1.1.2, we have 
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Hence we have only to show: 

We prove the case of "plus". The other case is similar. 
Since HX C3 is Stein, we have 

Leth be any !-finite element of H 3(HX C 3 -R+ xc+ XR 2, 0). Since his 
f-finite, 

h, Ph, P 2h, P 8h, • • •, pnh, • • • 

are not linearly independent. Hence there exists some differential operator 

such that Qh=O. Herem is some positive integer and Q' is a differential 
operator of order <m. Q is free from t, and a/at, for i=2, 3, 4. 

Now we consider the following Leray covering of HXC 8 -R+ xc+ 
XR 2• 

O!l={(H-R+)XC8, HX(C-C+)xC2, HXC 

X(C-R)XC, HXC 2 X(C-R)}. 

Then we can identify the space of 3-cocycle Z3(0//, 0) and the space 

0((H-RJ X (C-C+) X (C-R)2). 

The space of 2-cochain C2(0//, 0) is identified with 

Here we put 

W1 =HX (C-C +) X (C-R) 2, 

W2=(H-RJXCX(C-R)2, 

W3=(H-R+)X(C-C+)XCX(C-R), 

W4=(H-R+)X(C-C+)X(C-R)XC. 

Then we have the following exact sequence 
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We choose g such that p(g)=f Since Qh=O, there exist some <pi E 

@(Wi) (i= 1, 2, 3, 4) such that 

Qg= d(<p1EB<p2EB<psE:B<p4). 

Since Hand H-R+ are simply-connected and Q is free from ti and o/oti 
for i=2, 3, 4, we can solve the following (ordinary) differential equation 
in the domain Wi for i= 1, 2, 3, 4. 

Put 

g' = g-d(u 1EBu2ffiu3E9u4). 

Then we have p(g') = h and 

(9) Qg'=O. 

Since g' e @((H-R+)X(C-C+)X(C-R)2) satisfies the above differential 
equation and His simply-connected, we can extend g' to a holomorphic 
function on HX(C-C+)x(C-R) 2• This means h=p(g')=O. D 

From the above Lemma 4.2.1 and exact sequence (8), we have only to 
show 

(10) 

Under the coordinate (1;;'1, • • ·, /;;'4) on U4, we have 

Hence we have 

Hh-e,nr+(Fc, L)=H1.ra-e,nr+(U4, @) 

=Hc+x{o)3(C4, @). 

From [KL] Theoreme 1.1.2, we have 

(11) 

The same argument as the proof of Lemma 4.2.1 implies: 

Lemma 4.2.2. 
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Hence we have only to prove 

(12) Hf •• 1(Fc, L),=0. 

However the left side of the above equation is "the space of f-finite 
hyperfunction on F whose support is contained in the point {e5} e F". 
Hence we can see (12) holds. Q.E.D. 
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