Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 257–287

Schur Orthogonality Relations for Non Square Integrable Representations of Real Semisimple Linear Group and Its Application

Hisaichi Midorikawa

Introduction

In the previous paper [20], we discuss the Schur orthogonality relations for certain non square integrable representations of a given connected real semisimple linear group G. Those representations are the subrepresentations of unitary principal series of G induced from a maximal cuspidal parabolic subgroup, although I did not state explicitly this fact in [20]. We formulate our results as follows.

Let $C^{\infty}(G)$ be the set of all complex valued C^{∞} -functions on G and $\mathfrak{g}_{\mathcal{C}}$ the complexification of the Lie algebra \mathfrak{g} of G. The universal enveloping algebra $\mathfrak{u}(\mathfrak{g})$ of $\mathfrak{g}_{\mathcal{C}}$ acts on $C^{\infty}(G)$. The left (resp. right) action of b in $\mathfrak{u}(\mathfrak{g})$ will be denoted by bf (resp. fb) for f in $C^{\infty}(G)$. Let \mathfrak{z} be the center of $\mathfrak{u}(\mathfrak{g})$ and d(p,q) the Riemannian distance on the symmetric space G/K where K is a maximal compact subgroup of G. Define a function d on G and a seminorm $\| \|_p$ on $C^{\infty}(G)$ by

$$d(x) = d(xo, o)$$
, o is the origin in G/K

and

$$||f||_p^2 = \lim_{\varepsilon \to +0} \varepsilon^p \int_G |f(x)|^2 e^{-\varepsilon d(x)} dx \text{ for } f \text{ in } C^{\infty}(G)$$

where p is a nonnegative real number and dx is the Haar measure on G.

Definition I. Let χ be a character of \mathfrak{F} . The space $H_p(G, \chi)$ is defined as the set of all C^{∞} -functions f satisfying $||b_1fb_2||_p < \infty$ and $(z-\chi(z))f = 0$ for all b_i in $\mathfrak{u}(\mathfrak{g})$ and z in \mathfrak{F} . $H_p(G, \chi)$ is a topological G-module with the canonical actions. Furthermore $||R_xf||_p = ||L_xf||_p = ||f||_p$ for x in G and f in $H_p(G, \chi)$ where R and L are respectively the right and left actions of G on $H_p(G, \chi)$. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . We denote the root space decomposition of \mathfrak{g}_C by $\mathfrak{g}_C = \mathfrak{h}_C \oplus \sum_{\alpha \in \mathfrak{G}} \mathfrak{g}_\alpha$ where Φ is the root system of $(\mathfrak{g}_C, \mathfrak{h}_C)$. Select, for each α in Φ , X_α in \mathfrak{g}_α satisfying $B(X_\alpha, X_{-\alpha}) = 1$

Received January 21, 1987.

(B is the Killing form on \mathfrak{g}_c). Each element $H_{\alpha} = ad(X_{\alpha})X_{-\alpha}$ belongs to \mathfrak{h}_c . Using the canonical isomorphism of \mathfrak{g} into the ring of polynomial functions on the dual space of \mathfrak{h}_c , we can parametrize all characters \mathfrak{X} of \mathfrak{g} by the linear forms on \mathfrak{h}_c . We shall denote this parametrization by $\mathfrak{X} = \mathfrak{X}_{\mathfrak{g}}, \lambda$ is a linear form on \mathfrak{h}_c .

Definition II. The number $i(\chi)$ is defined by $i(\chi) = \#\{\alpha \in \Psi; \lambda(H_{\alpha}) \in \mathbb{R} - \{0\}\}$ where Ψ is a fundamental root system of Φ , #S is the cardinality of a given set S. The number $i(\chi)$ is called the index of χ .

Theorem I. Let χ be a character of \mathfrak{F} . Assume that $H_{i(\chi)}(G, \chi)$ is nontrivial. Then $H_{i(\chi)}(G, \chi)$ is a pre-Hilbert space with the norm $\| \|_{i(\chi)}$.

The theorem will be proved by using Harish-Charandra's classification theorem for discrete series representations and the asymptotic expansion theorems (for the K-finite eigenfunctions on G) obtained by Harish-Chandra [8], W. Casselman and Miličić [4], [5], [21] (see also M. Kashiwara et al. [17], N.R. Wallach [25]).

We shall denote the completion of $H_{i(\chi)}(G, \chi)$ and its norm by $H(G, \chi)$ and || || respectively. The regular representations R and L on $H(G, \chi)$ are unitary, and all K-finite functions in $H(G, \chi)$ are real analytic.

Definition III. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if there exists an isometric linear operator η of H into $H(G, \chi)$ such that $R_x \circ \eta = \eta \circ \pi(x)$ for all x in G.

Theorem II. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if and only if there exists a K-finite vector ϕ in H such that $(\pi(x)\phi, \phi)$ belongs to $H(G, \chi)$.

We remark that if $i(\chi)=0$, then $H(G, \chi) \subset L^2(G)$ where $L^2(G)$ is the space consisting of all square integrable functions on G. Therefore $H(G, \chi)$ is a closed invariant subspace of $L^2(G)$, and the representation π realized on $H(G, \chi)$ belongs to the discrete series in this case.

By using Theorem I and Theorem II, the standard arguments for the proof of Schur orthogonality relations of square integrable representations of G imply the following theorem.

Theorem III. Let (π, H) and (π', H') be two irreducible unitary representations of G realized on $H(G, \chi)$. Then there exists a positive constant d_{π} such that

$$\lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{\mathcal{G}} (\pi(x)\phi, \psi) \overline{(\pi'(x)\phi', \psi')} e^{-\varepsilon d(x)} dx = \begin{cases} d_{\pi}^{-1}(\phi, \phi') \overline{(\psi, \psi')} & \text{if } \pi \cong \pi' \\ 0 & \text{otherwise} \end{cases}$$

for all K-finite vectors ϕ , $\psi \in H$ and ϕ' , $\psi' \in H'$.

The constant d_{π} is called the formal degree of π . In case of $i(\chi)=0$, the relations in the above theorem are well known as a result of R. Godement [6] (see Theorem 4.5.9.3, [26]). For the case $i(\chi)=1$, we proved the similar theorem in [20].

In the following we shall assume that $i(\chi) > 0$. Let P = MAN be a proper cuspidal parabolic subgroup of G. Consider a discrete series representation σ of M and a unitary character $a \rightarrow e^{\nu (\log a)}$ of A where ν is a purely imaginary valued linear form on the Lie algebra α of A. The representation $\sigma \otimes e^{\nu}$ of MA is extended to P by $(\sigma \otimes e^{\nu} \otimes 1) (\operatorname{man}) = e^{\nu (\log a)} \sigma(m)$ for $a \in A, m \in M$ and $n \in N$. Let $\pi(\sigma, \nu) = \operatorname{ind}_{P}^{G} (\sigma \otimes e^{\nu} \otimes 1)$ be the induced representation of G from P constructed by canonical procedure. $\pi(\sigma, \nu)$ is called a principal series unitary representation of G induced from P. The following theorem is proved by Schur orthogonality relations in Theorem III.

Theorem IV. Assume that $i(\chi) > 0$. Then each irreducible unitary representation of G realized on $H(G, \chi)$ is equivalent to a subrepresentation of a principal series of G induced from a certain cuspidal parabolic subgroup P = MAN with $i(\chi) = \dim A$.

Definition IV. Let notations be as above. A principal series representation $\pi(\sigma, \nu)$ of G induced from P = MAN is regular if the linear form ν on α is regular.

Theorem V. Each regular principal series unitary representation $\pi(\sigma, \nu)$ of G with infinitesimal character χ is realized on $H(G, \chi)$.

As an application of Schur orthogonality relations for non square integrable representation of G, we give a proof of irreducibility of the regular principal series in the following.

Theorem VI (Bruhat and Harish-Chandra). All regular principal series unitary representations of G are irreducible.

Our proof of this theorem is based on the character theory due to T. Hirai [13], the lowest (minimal) K-type theorem for principal series representation of G obtained by D. Vogan [24] (see also A.W. Knapp [15], J. Carmona [3]) and Schur orthogonality relations. By [13], we see that all tempered invariant eigendistributions on G with the same regular infinite-simal character are uniquely determined up to constant. To apply Hirai's theorem we use the following theorem.

Theorem VII (Knapp and Zuckerman). Let $\pi(\sigma, \nu)$ be a principal series representation of G. Then the character of each subrepresentation of $\pi(\sigma, \nu)$ is tempered.

In [14], there is a character table of all irreducible components of principal series representations of G. Since their characters are determined explicitly, we can observe that the character of each irreducible component of $\pi(\sigma, \nu)$ is tempered. However, in this paper, we shall prove directly the temperedness as in the above theorem by using uniform estimation, which is a result of P.C. Trombi and V.S. Varadarajan [22], for the matrix coefficients of discrete series representation σ of M.

The author would like to thank Professors W. Schmid, T. Oshima, M. Duflo, D. Vogan and J. Sekiguchi for helpful advices to his conference talk, especially on a proof of irreducibility of regular principal series which are restricted to special case in his first manuscript, held at Kyoto Univ. and Hiroshima Univ., '86.

Contents

§1.	Preliminaries and notational definitions	260
§2.	Principal P-series representation	263
§ 3.	Temperedness for the character of subrepresentation	
	of principal P-series	265
§4.	pre-Hilbert structure on $H_{i(\chi)}(G, \chi)$	268
§5.	Schur orthogonality relations	276
§6.	Realization of regular principal series representation	279
§ 7.	Irreducibilities for regular principal series representations	284

§ 1. Preliminaries and notational definitions

We first state, in this section, two lemmas for elementary spherical function E on a connected real semisimple linear group G. Let K be a fixed maximal compact subgroup of G and $P_0 = M_0 A_0 N_0$ a minimal parabolic subgroup of G with θ -stable split component A_0 where θ is the Cartan involution of (G, K). Therefore $G = KA_0N_0$ is the Iwasawa decomposition. Each element x in G is uniquely written by $x = k(x) \exp H(x)n(x)$, $k(x) \in$ K, $H(x) \in \alpha_0$ and $n(x) \in N_0$ where α_0 is the Lie algebra of A_0 . Let g and n_0 be the Lie algebras of G and N_0 respectively. The action Ad (p) $(p \in P_0)$ on n_0 will be denoted by Ad $(p)|_{n_0}$. Then there exists a linear form ρ on α_0 such that $e^{\rho (\log \alpha)} = \sqrt{|\det Ad(\alpha)|_{n_0}|}$ for all α in A_0 . We define a function on G by $E(x) = \int_{K} e^{-\rho(H(x^{-1}k))} dk$, $x \in G$ where dk is the Haar measure on K normalized as $\int_{K} dk = 1$. Let d(p, q) $(p, q \in G/K)$ be the Riemannian distance on the symmetric space G/K and o the origin in the space. Then we have the following (see, for the proofs, Lemma 8.5.2.6 and Lemma in p. 239 [26]).

Lemma 1. The function satisfies the properties below;

- (1) $\Xi(kxk') = \Xi(x)$ for all $x \in G, k, k' \in K$,
- (2) $\Xi(x^{-1})=\Xi(x),$
- (3) there exists a nonnegative integer p such that

$$e^{-\rho (\log a)} \leq \Xi(a) \leq a \text{ const. } e^{-\rho (\log a)} (1 + d(xo, o))^{r}$$

for all a in the positive Weyl chamber A_0^+ of A_0 and

(4) choosing a positive number p' suitably

$$\Xi(an)(1+d(ano, o))^{-p'} \leq a \text{ const. } e^{-(\rho(\log a) + \rho(H(\theta(n-1))))}$$

for all a in A_0 and n in N_0 .

Remark 1. The function $\rho(H(\theta(n^{-1})))$ on N_0 is nonnegative.

Secondly we define the Schwarz space on G following Harish-Chandra. Let u(g) be the universal enveloping algebra of g_c . The actions on the ring of all C^{∞} -functions $C^{\infty}(G)$ on G are defined by

$$(Xf)(x) = \frac{d}{dt} f(\exp - tXx)|_{t=0} \quad \text{and} \quad (fX)(x) = \frac{d}{dt} f(x \exp tX)|_{t=0}$$

for x in G, f in $C^{\infty}(G)$ and X in g. We shall denote the actions to the left and right by bf and fb respectively for all b in u(g) and f in $C^{\infty}(G)$. Let b_1, b_2 be two elements in u(g) and r a real number. We put a seminorm $\nu_{b_1, b_2, r}$ on $C^{\infty}(G)$ by

$$\nu_{b_1,b_2,r}(f) = \sup_{x \in G} |(b_1 f b_2)(x)| \Xi(x)^{-1} (1 + d(x))^{-r}$$

where d(x) = d(xo, o).

Definition 1. The Schwarz space $\mathscr{C}(G)$ on G is consists of all C^{∞} -functions f on G with the following properties; $\nu_{b_1,b_2,r}(f) < \infty$ for all b_1, b_2 in $\mathfrak{u}(\mathfrak{g})$ and positive real numbers r.

Definition 2. A distribution T on G is called tempered if T is extended

to a continuous linear form on $\mathscr{C}(G)$. To study the tempered distributions on G the following integral formula on G is crucial. Let \mathfrak{h} be a θ -stable Cartan subalgebra of \mathfrak{g} containing \mathfrak{a}_0 and Φ the root system of $(\mathfrak{g}_C, \mathfrak{h}_C)$. For the root system $\Phi(A_0)$ of (P_0, A_0) , we induce a linear order of Φ as the following; if α is positive on \mathfrak{a}_0 , then α is also positive on \mathfrak{h} . Let Φ_+ be the set of all positive roots in Φ which does not vanish on \mathfrak{a}_0 . We define a function D on A_0 by

$$D(a) = \prod_{\alpha \in \Phi_+} |\exp \alpha (\log a) - \exp (-\alpha (\log a))|, \qquad a \in A_0.$$

Lemma 2. There exists a positive constant $C = C_g$ such that

$$\int_{G} f(x)dx = C \int_{A_0^+} da \iint_{K \times K} f(kak') D(a) dk dk'$$

for all f in $C_c^{\infty}(G)$ where A_0^+ is the positive Weyl chamber of A_0 and $C_c^{\infty}(G)$ is the set of all C^{∞} -functions on G with compact support.

(See Proposition 10.17, [11]).

Let \mathfrak{F} be the center of $\mathfrak{u}(\mathfrak{g})$. A function f in $C^{\infty}(G)$ is \mathfrak{F} - (resp. K-) finite if dim $\mathfrak{F} f$ (resp. the dimension of linear span $\{L_k \circ R_{k'}f; k, k' \in K\}$) is finite, where L and R are respectively the canonical actions on $C^{\infty}(G)$ to the left and right respectively.

Finally, we shall state for the character of a given admissible unitary representation of G after the following preparations. Let $\mathscr{E}(K)$ be the set of all equivalence classes of irreducible unitary representations of K. We put, for each $[\tau]$ in $\mathscr{E}(K)$, $\chi_{\tau}(k) = d_{\tau} \operatorname{Trace} \tau(k)$, $k \in K$, $d_{\tau} =$ the dimension (degree) of τ . Let (π, H) be a unitary representation of G. We define a projection operator $E(\tau)$ on H as follows; $E(\tau)v = \int_{-\pi} \overline{\chi_{\tau}(k)} \pi(k) dk$, $v \in H$.

Definition 3. A unitary representation (π, H) of G is admissible if there exist two positive numbers N and m such that dim $E(\tau)H \leq N(d_{\tau})^m$ for all $[\tau]$ in $\mathscr{E}(K)$.

For an admissible unitary representation π of G the operator $\pi(f) = \int_{C} f(x)\pi(x)dx$ is of trace class, $\Theta_{\pi}(f) = \text{Trace } \pi(f)$ is a distribution on G where f is a function in $C_{c}^{\infty}(G)$. Furthermore if π is irreducible, then there exists a character χ of \mathfrak{F} such that $(z - \chi(z))\Theta_{\pi} = 0$ for all z in \mathfrak{F} . Θ_{π} (resp. χ) is the character (resp. the infinitesimal character) of π .

§ 2. Principal P-series representation

In this section, we shall define a principal series representation of G induced from a given cuspidal parabolic subgroup, and state for the admissibility of the representation.

Let P = MAN be the Langlands decomposition of a cuspidal parabolic subgroup P of G. Throughout of this paper, we always assume that the split component A of P is θ -stable. The Lie algebras of M, A and N respectively are denoted by m, α and n. We define a function d_P on P and linear form ρ_P on α as follows; $d_P(p) = \sqrt{|\det \operatorname{Ad}(p)|_{\pi}|}$ and $\exp \rho_P(\log a) = d_P(a)$ for p in P and a in A.

Let (σ, H_{σ}) be a square integrable (discrete series) representation of M and $a \mapsto e^{\nu (\log a)}$ a unitary character of A where ν is a purely imaginary valued linear form on α . We extend the representation $\sigma \otimes e^{\nu}$ of MA to P by $(\sigma \otimes e^{\nu} \otimes 1) (man) = (\sigma \otimes e^{\nu}) (ma), m \in M, a \in A, n \in N$. A H_{σ} -valued C^{∞} -function f on G belongs to $C^{\infty}(G, H_{\sigma})$ if f satisfies that

(2.1) $f(xp) = d_P(p)^{-1}(\sigma \otimes e^{\nu} \otimes 1)(p)^{-1}f(x)$ for all x in G and p in P. The space $C^{\infty}(G, H_{\sigma})$ is a pre-Hilbert space with the following positive definite Hermitian structure (,);

(2.2)
$$(\phi, \psi) = \int_{\kappa} (\phi(k), \psi(k)) dk \text{ for, } \phi, \psi \text{ in } C^{\infty}(G, H_{\sigma}).$$

The completion of $C^{\infty}(G, H_{\sigma})$ will be denoted by $H(\sigma, \nu)$. We see that the left regular representation $\pi(\sigma, \nu) \equiv \operatorname{ind}_{P}^{\sigma}(\sigma \otimes e^{\nu} \otimes 1)$ of G on the space $H(\sigma, \nu)$ is unitary. $\pi(\sigma, \nu)$ is called a principal series representation of G induced from the cuspidal parabolic subgroup P (or simply principal P-series representation of G). Let $H(\sigma)$ be the set of all restriction of functions in $H(\sigma, \nu)$ to K. $H(\sigma)$ can be identified to the subspace $(L^{2}(K) \otimes H_{\sigma})_{\sigma}$ of $L^{2}(K) \otimes H_{\sigma}, L^{2}(K)$ is the space of all square integrable functions on K and

(2.3) $(L^2(K)\otimes H_{\sigma})_{\sigma}$ = the set of all $\sum_i f_i \otimes v_i$ in $L^2(K)\otimes H_{\sigma}$ satisfying $\sum_i f_i \otimes v_i(km) = \sum_i f_i(k) \otimes \sigma(m)^{-1} v_i$ for all k in K and m in $K_M \equiv K \cap M$ where the summation runs over a finite members of *i*.

Let us give an another realization of $\pi(\sigma, \nu)$ as following.

Define a representation $\pi'(\sigma, \nu)$ of G on $H(\sigma)$ by

(2.4)
$$(\pi'(\sigma, \nu)(x)\phi)(k) = e^{-(\nu+\rho_P)(H(x^{-1}k))}\sigma(m(x^{-1}k))^{-1}\phi(k(x^{-1}k))$$
where $k(x^{-1}k) \in K$, $m(x^{-1}k) \in M$, $H_P(x^{-1}k) \in \mathfrak{a}$

determined by $x^{-1}k \in k(x^{-1}k)m(x^{-1}k) \exp H_P(x^{-1}k)N$ for k in K, x in G.

Let η be a linear mapping of $H(\sigma, \nu)$ onto $H(\sigma)$ defined by $\eta(\phi)(k) = \phi(k), \phi \in H(\sigma, \nu)$. Then $\pi'(\sigma, \nu)(x) \circ \eta = \eta \circ \pi(\sigma, \nu)(x)$ for all x in G. We shall denote $\pi'(\sigma, \nu) = \pi(\sigma, \nu)$ under this identification. Let us state the admissibility for $\pi(\sigma, \nu)$. Let $\mathscr{E}(K)$ be the set of all equivalence classes of irreducible unitary representations of K and $\pi(\sigma, \nu)|_{K}$ the restriction of $\pi(\sigma, \nu)$ to K. For each class $[\tau]$ in $\mathscr{E}(K)$, we denote the multiplicity of τ appearing in $\pi(\sigma, \nu)|_{K}$ by $[\pi(\sigma, \nu)|_{K}$: τ]. Similarly we also denote by $[\sigma|_{K_{M}}: \xi]$ for $[\xi]$ in $\mathscr{E}(K_{M})$ the same as K. Since $\pi(\sigma, \nu)|_{K}$ is the left regular representation of compact group K, the Frobenius reciprocity theorem implies that

(2.5)
$$[\pi(\sigma,\nu)]_{K}:\tau] = \sum_{[\xi] \in \mathscr{I}(K_{M})} [\sigma]_{K_{M}}:\xi] [\tau]_{K_{M}}:\xi]$$
for all $[\tau]$ in $\mathscr{E}(K)$.

By our assumption for σ , σ is realized on a closed invariant subspace of $L^2(M)$. Consequently, by using Peter-Weyl theorem, we have

(2.6)
$$[\sigma|_{K_M}:\xi] \leq (d_{\xi})^2 \quad \text{for all } [\xi] \text{ in } \mathscr{E}(K_M).$$

Combining (2.5) with (2.6), we have the following.

Lemma 1. Let notations and assumptions being as above. Then $[\pi(\sigma, \nu)|_{K}: \tau] \leq (d_{\tau})^{4}$ for all $[\tau]$ in $\mathscr{E}(K)$.

Thus by the above lemma, each subrepresentation π of $\pi(\sigma, \nu)$ is admissible.

Lemma 2. There exists a character χ of \mathfrak{z} such that $(z - \chi(z))\Theta_{\pi} = 0$ for all subrepresentations π of $\pi(\sigma, \nu)$ and z in \mathfrak{z} .

Proof. In view of the explicit formura of the character $\Theta_{\pi(\sigma,\nu)}$ (see [12]), there exists a character χ of \mathfrak{z} such that $(z - \chi(z))\Theta_{\pi(\sigma,\nu)} = 0$ for all z in \mathfrak{z} . We define for $[\tau]$ in $\mathscr{E}(K)$ and f in $C^{\infty}(G)$, $\chi_{\tau} * f$ and $f * \chi_{\tau}$ by

(2.7)
$$(\mathfrak{X}_{\tau} * f)(x) = \int_{K} \overline{\mathcal{X}_{\tau}(k)} f(k^{-1}x) dk,$$
$$(f * \mathfrak{X}_{\tau})(x) = \int_{K} \overline{\mathcal{X}_{\tau}(k)} f(xk) dk, \qquad x \in G.$$

Let $E(\tau)$ be the projection operator as in Section 1. By the definition $\Theta_{\pi(\sigma,\nu)}(f) = \sum_{\tau \in \sigma(K)} \int_{G} f(x)\phi_{\tau}(x)dx$ for all f in $C_{\sigma}^{\infty}(G)$ where $\phi_{\tau}(x) =$ Trace $(E(\tau)\pi(\sigma,\nu)(x)E(\tau))$. Therefore $\Theta_{\pi(\sigma,\nu)}(\chi_{\tau}*f*\chi_{\tau}) = \int_{G} f(x)\phi_{\tau}(x)dx$. Since $\Theta_{\pi(\sigma,\nu)}$ is contained the kernel of $z - \chi(z)$ we have

264

Schur Orthogonality Relations

(2.8)
$$(z-\chi(z))\phi_z=0$$
 for all z in ∂_z .

We choose $[\tau]$ in $\mathscr{E}(K)$ satisfying $[\pi|_K: \tau] > 0$ for a given irreducible subrepresentation π of $\pi(\sigma, \nu)$. Then there exist a finite number of irreducible subrepresentations $\pi = \pi_1, \pi_2, \dots, \pi_n$ of $\pi(\sigma, \nu)$ such that

(2.9)
$$\phi_{\tau} = \sum_{i=1}^{n} [\pi(\sigma, \nu)]_{\kappa} : \pi_{i}]\phi_{i}, \ \phi_{i}(x) = \operatorname{Trace} \left(E(\tau)\pi_{i}(x)E(\tau)\right).$$

Let χ_i be the infinitesimal character of π_i . Then by (2.8) and (2.9), we have $\sum_{i=1}^{n} [\pi(\sigma, \nu)]_{\kappa}$: $\pi_i](\chi(z) - \chi_i(z))\phi_i = 0$. Since all π_i 's are inequivalent to each other, $\{\phi_i\}$ is linearly independent. Thus $(z - \chi(z))\Theta_x = 0$ for all z in \mathfrak{F} and subrepresentations π of $\pi(\sigma, \nu)$ as claimed.

§ 3. Temperedness for the character of subrepresentation of principal *P*-series

We keep the same notations as in previous section. Choose an orthonormal basis ϕ_1, ϕ_2, \cdots of $H(\sigma) \cong (L^2(K) \otimes H_{\sigma})_{\sigma}$ satisfying $E(\tau_i)\phi_i = \phi_i$ for some $[\tau_i]$ in $\mathscr{E}(K)$ and v_1, v_2, \cdots of H_{σ} with properties $E(\xi_i)v_i = v_i$ for $[\xi_i]$ in $\mathscr{E}(K_M)$. We now fix $\phi = \phi_p$ and $\tau = \tau_p$. Then ϕ is of the form

(3.1)
$$\phi(k) = \sum_{j,l,m} c_{j,l,m}(\tau(k)\psi_l,\psi_m) \otimes v_j$$

where the summation runs over the set

$$W_{\tau,\sigma} = \{ (j, l, m); [\tau|_{K_M} : \xi_j] > 0, j \in N \text{ and } 1 \leq i, m \leq d_\tau \},\$$

N= the set of all natural numbers and $\psi_1, \psi_2, \dots, \psi_{d_{\tau}}$ is an orthonormal basis of the space on which τ acts.

Lemma 1. Let $c_{j,l,m}$ be the constant as in (3.1). Then we have $|c_{j,l,m}|^2 \leq d_{\tau}$ for (j, l, m) in $W_{\tau,\sigma}$.

Proof. Since $|\phi| = 1$, we have

$$1 = \sum_{j} \int_{K} \sum_{(j,l,m) \in W_{\tau,\sigma}} |(\tau(k)\psi_l, \psi_m)c_{j,l,m}|^2 dk$$
$$= (d_{\tau})^{-1} \sum_{(j,l,m) \in W_{\tau,\sigma}} |c_{j,l,m}|^2.$$

Hence the lemma follows.

We put $f(x) = (\pi(\sigma, \nu)(x)\phi, \phi)$ for x in G. In view of the formula in (2.4), we have

$$|f(x)| \leq \int_{K} e^{-\rho_{P}(H(x-1k))} |(\sigma(m(x^{-1}k)))^{-1} \phi(k(x^{-1}k)), \phi(k))| dk$$

$$\leq \sum_{j,l,m} \sum_{i,s,t} \int_{K} e^{-\rho_{P}(H(x-1k))} |(\sigma(m(x^{-1}k)v_{i}, v_{j})| dkd_{t} | c_{j,l,m} c_{i,s,t} |,$$

hence by the above lemma we get the following.

(3.2)
$$|f(x)| \leq \sum_{j,l,m} \sum_{i,s,t} (d_{\tau})^2 \int_{K} e^{-\rho_P (H(x^{-1}k))} |(\sigma(m(x^{-1}k))^{-1}v_j, v_i)| dk$$

where (j, l, m) and (i, s, t) run over the set $W_{\tau,\tau}$.

Let *m* be an element in *M*. We put $g_{i,j}(m) = (\sigma(m)^{-1}v_i, v_j)$ for all $i, j=1, 2, \cdots, (v_i)$'s are the orthonormal basis of H_{σ}). For a fixed (i, j) we put $V_{i,j}$ = the linear span of the set $\{L_k \circ R_k, g_{i,j}; k, k' \in K_M\}$. Since v_i and v_j are K_M -finite $V_{i,j}$ is finite dimensional. Let \mathcal{Q}_{K_M} be the Casimir operator on K_M . Then there exists a constant $\chi_{\xi_i}(\mathcal{Q}_{K_M})$ such that $\mathcal{Q}_{K_M}\xi_i = \chi_{\xi_i}(\mathcal{Q}_{K_M})\xi_i$. Therefore \mathcal{Q}_{K_M} acts on $V_{i,j}$ to the left (resp. right) as a scalar operator $\xi_i(\mathcal{Q}_{K_M})$ (resp. $\xi_j(\mathcal{Q}_{K_M})$). Consequently by the uniform estimation, which is due to P.C. Trombi and V.S. Varadrarajan (see for instance, Theorem 16.1.9, II, [22]),

(3.3) there exist two positive constants C, κ and a positive number q such that

$$|g_{i,j}(m)| \leq C((1+|\xi_i(\Omega_{K_M})|)(1+|\xi_j(\Omega_{K_M})|))^q ||g_{i,j}|| \mathcal{Z}_M(m)^{1+\kappa}$$

for all *m* and *i*, $j=1, 2, \cdots$, where *C*, κ , *q* are independent on *i*, *j* and *m* in *M*, $||g_{i,j}||$ is the L^2 -norm on *M*, $|\xi_i(\Omega)_{K_M}\rangle|$ is the operator norm of $\xi_i(\Omega_{K_M})$. Using the Schur orthogonality relations for square integrable representation σ , there exists a positive constant d_{σ} (which is called the formal degree of σ) such that $||g_{i,j}||^2 = d_{\sigma}^{-1}|v_i||v_j|$ for all $i, j=1, 2, \cdots$. Therefore (3.3) is rewritten as follows;

(3.4) $|g_{i,j}(m)| \leq C(1+d_i|\chi_{\tau}(\Omega_K)|)^{2q} \Xi_M(m)^{1+\kappa}$ for all (i, j) satisfying $[\tau: \xi_j] > 0$ and $[\tau: \xi_i] > 0$ where $\tau = \tau_p$ is the fixed representation of K as in (3.2), $\chi_{\tau}(\Omega_K) 1 = \tau(\Omega_K)$ and C, κ , q are constant (positive) independent on m in M and (i, j).

Combining (3.4) with (3.2) we have

(3.5)
$$|f(x)| \leq C'(1+d_{\tau}|\chi_{\tau}(\Omega_{K})|)^{2q} (\#W_{\tau,\sigma})^{2} \int_{K} e^{-\rho_{P}(H(x-1k))} \Xi_{M}(m(x^{-1}k))^{1+\epsilon} dk$$

where C' does not depend on m in M, $\tau = \tau_p$, $\phi = \phi_p$, and f is the function defined by $f(x) = (\pi(\sigma, \nu)(x)\phi, \phi)$.

By the definition of $W_{\tau,\sigma}$ as in (3.1), $\#W_{\tau,\sigma}$ is estimated by

$$(3.6) \qquad \qquad \# W_{\tau \sigma} \leq (d_{\tau})^2 \sum_j [\tau|_{K_M} : \xi_j] [\sigma|_{K_M} : \xi_j] \leq (d_{\tau})^5.$$

Let us estimate $\mathcal{B}_{M}(m(x^{-1}k))^{1+\epsilon}$. Let $P_{0}^{*} = M_{0}^{*}A_{0}^{*}N_{0}^{*}$ be a minimal parabolic subgroup of M. Choosing P_{0}^{*} suitably, we can assume $A_{0} = AA_{0}^{*}$. Define ρ^{*} , $k^{*}(m)$, $H^{*}(m)$ and $n^{*}(m)$ for M by the same as in Section 1. Then we have (see Lemma 1.1) $\mathcal{B}_{M}(m) = \mathcal{B}_{M}(\exp H^{*}(m)n^{*}(m)), m \in M$. Furthermore by (4) in Lemma 1.1, we have $\mathcal{B}_{M}(m(x^{-1}k))^{1+\epsilon} \leq a \operatorname{const.} e^{-\rho^{*}(H^{*}(m(x^{-1}k)))}$ for all $x \in G$ and $k \in K$. Hence by (3.6) and (3.5), we have the following lemma.

Lemma 2. There exist two positive numbers p, q and a positive constant C such that $|(\pi(\sigma, \nu)(x)\phi_i, \phi_i)| \leq C(1+d_{\tau_i})^p |\chi_{\tau_i}(\Omega_K)|^q \Xi_M(x)$ for all $i = 1, 2, \dots$, and x in G where Ω_K is the Casimir operator on $K, \chi_{\tau_i}(\Omega_K)$ is the constant determined by $\tau_i(\Omega_K) = \chi_{\tau_i}(\Omega_K) 1, \phi_1, \phi_2, \dots$ is an orthonormal basis of $H(\sigma, \nu)$ satisfying $E(\tau_i)\phi_i = \phi_i$ for some τ_i in $\mathscr{E}(K)$.

Theorem 1. Let (π, H) be an irreducible component of principal Pseries representation $\pi(\sigma, \nu)$ of G where P = MAN is a parabolic subgroup which is cuspidal, σ is a discrete series representation of M and e^{ν} is a unitary character of A. Then the character Θ_{π} of π is tempered.

Remark. There is a table of characters of all irreducible components of principal *P*-series representations of *G* which is obtained by A.W. Knapp and G. Zuckerman ([14]). In view of the table, we see that all character of subrepresentations are tempered. In this paper we give a proof which is different from [14].

Proof of Theorem 1. Let ϕ_1, ϕ_2, \cdots be an orthonormal basis of H. We choose ϕ_i which has the same property as in Lemma 2. Let p and q be the same as in Lemma 2. Then there exists a positive number m such that the series $c_m = \sum_{[\tau] \in \mathcal{S}(K)} (1 + d_{\tau})^p d\tau^4 (\chi_{\tau}(\Omega_K))^{2(q-m)}$ is convergent. We fix such a number m. By definition

$$\begin{aligned} |\Theta_{\pi}(f)| &\leq \sum_{i=1}^{\infty} \left| \int_{G} f(x)(\pi(x)\phi_{i},\phi_{i})dx \right| \\ &\leq \sum_{i=1}^{\infty} \left(\chi_{\tau_{i}}(\Omega_{K}) \right)^{-2m} \int_{G} (f \Omega_{K}^{2m})(x) ||(\pi(x)\phi_{i},\phi_{i})|dx \\ &= \sum_{[\tau] \in \mathscr{E}(K)} \sum_{E(\tau)\phi_{i}=\phi_{i}} (\chi_{\tau}(\Omega_{K}))^{-2m} \int_{G} |(f \Omega_{K}^{2m})(x)||(\pi(x)\phi_{i},\phi_{i})|dx. \end{aligned}$$

Hence by Lemma 2.1 and Lemma 3, we have

$$|\Theta_{\pi}(f)| \leq c_m \int_{\mathcal{G}} |(f \Omega_{K}^{2m})(x)| \mathcal{E}(x) dx.$$

Let *r* be a positive number satisfying $c = \int_{G} \Xi(x)^{2}(1+d(x))^{-r}dx < \infty$. Then we have $|\Theta_{\pi}(f)| \leq cc_{m}\nu_{1,\mathcal{Q}_{K}^{2m},r}(f)$ for all *f* in $C_{c}^{\infty}(G)$. Thus the character Θ_{π} is tempered. This completes our proof.

§ 4. Pre-Hilbert structure on $H_{i(\chi)}(G, \chi)$

First of all, in this section, we define a topological G-module $H_{i(x)}(G, \chi)$ for an infinitesimal character χ of \mathfrak{F} . Let $P_0 = M_0 A_0 N_0$ be the minimal parabolic subgroup of G and \mathfrak{h} a θ -stable Cartan subalgebra of g containing a_0 . The root system and Weyl group of (g_c, h_c) will be denoted by Φ and W respectively. Canonically W acts on the universal enveloping algebra $\mathfrak{u}(\mathfrak{h})$ of \mathfrak{h}_c . We regard $\mathfrak{u}(\mathfrak{h})$ as an algebra of polynomial functions on the dual space of \mathfrak{h}_c , and denote $I(\mathfrak{h})$ the stabilizer of W in $\mathfrak{u}(\mathfrak{h})$. Let Φ^* be a positive root system of Φ . Therefore $\mathfrak{g}_c = \mathfrak{h}_c \oplus \sum_{\alpha \in \Phi^+} \mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha} =$ $\{X \in \mathfrak{g}_c; ad(H)X = \alpha(H)X \text{ for all } H \text{ in } \mathfrak{h}\}.$ We put $\mathfrak{n}^+ = \sum_{\alpha \in \mathfrak{g}^+} \mathfrak{g}_{\alpha}$. Then there exists a unique isomorphism γ of z into u(b) such that $z - \gamma(z) \in \gamma(z)$ $\mathfrak{u}(\mathfrak{g})\mathfrak{n}^+$ for z in \mathfrak{F} . Let ρ be one half the sum of all positive roots in Φ , and define μ of β into $u(\beta)$ by $\mu(z)(\lambda) = \tilde{\gamma}(z)(\lambda - \rho)$ for z in β and linear form λ on $\mathfrak{h}_{\mathcal{C}}$. μ is an isomorphism of \mathfrak{F} onto $I(\mathfrak{h})$. Therefore each character χ of β is parametrized by $\chi = \chi_{\lambda}$ where $\chi(z) = \mu(z)(\lambda)$ for some linear form λ on \mathfrak{h}_c . By the definition, $\chi_{s\lambda} = \chi_{\lambda}$ for all s in W. Let X_{α} and $X_{-\alpha}$ be the basis of g_{α} and $g_{-\alpha}$ respectively satisfying $B(X_{\alpha}, X_{-\alpha}) = 1$, and put $H_a = [X_a, X_{-a}]$ where B is the Killing form on $\mathfrak{g}_C \cdot A$ character \mathfrak{X}_{λ} of \mathfrak{F} is regular if $\lambda(H_{\alpha}) \neq 0$ for all α in ϕ and real if $\lambda(H_{\alpha}) \in \mathbf{R}$ for all α in ϕ .

Definition 1. Let Ψ be a fundamental root system of Φ . We put $\Psi(\chi) = \{ \alpha \in \Psi; \chi(H_{\alpha}) \in \mathbb{R} - \{o\} \}$. The number $i(\chi) = \# \Psi - \# \Psi(\chi)$ is called the index of $\chi = \chi_{\chi}$.

Definition 2. Let χ be a character of $\frac{1}{6}$. A function f in $C^{\infty}(G)$ belongs to $H_{i(\chi)}(G, \chi)$ if f satisfies $(z - \chi(z)) f = 0$ and $||b_1 f b_2|| < \infty$ for all z in $\frac{1}{6}$ and b_i in $\mathfrak{u}(\mathfrak{g})$, where || || is the seminorm on $C^{\infty}(G)$ defined by

(4.1)
$$||f||^2 = \lim_{\epsilon \to +0} \varepsilon^{i(\chi)} \int_{G} |f(\chi)|^2 e^{-\varepsilon d(\chi)} d\chi, \quad d(\chi) = d(\chi o, o).$$

We restate the properties for $H_{i(\chi)}(G, \chi)$ in the following two lemmas (see Lemma 2.1 and Lemma 2.2 in [20]).

Lemma 1. $H_{i(x)}(G, \chi)$ is a topological G-module with seminorm $\| \|$

under the canonical left (resp. right) action L and R. Furthermore for each f in $H_{i(\chi)}(G, \chi)$ and χ in $G, ||L_{\chi}f|| = ||R_{\chi}f|| = ||f||$.

Let τ be an irreducible unitary representation of K. We define two actions $\chi_{\tau} *$ and $*\chi_{\tau}$ on $C^{\infty}(G)$ as in (2.7). Then by Peter-Weyl theorem on the compact group K, we have

(4.2)
$$f(x) = \sum_{\tau,\tau' \in \mathscr{E}(K)} d_\tau d_{\tau'} (\chi_\tau * f * \chi_{\tau'})(x) \quad \text{for } f \text{ in } C^{\infty}(G).$$

Lemma 2. Let f be an element in $H_{i(x)}(G, \lambda)$. Then we have

(1) $\|\chi_{\tau} * f * \chi_{\tau}\| \leq (d_{\tau}d_{\tau'})^{1/2} \|f\|$ for all τ and τ' in $\mathscr{E}(K)$,

(2) the expansion of f in (4.2) converges to f in the topology $H_{i(\mathfrak{X})}(G, \mathfrak{X})$.

Remark 1. Let $H_{i(\chi), K}$ be the set of all K-finite (left and right) functions in $H_{i(\chi)}(G, \chi)$. $H_{i(\chi), K}$ is an algebraic $u(\mathfrak{g})$ -module (see for a proof, Lemma 3.5 in [19]).

The purpose of this section is to prove $H_{i(x)}(G, \lambda)$ is a pre-Hilbert space with norm || ||. This will be proved by using two asymptotic expansion theorems for τ -spherical eigenfunctions on G.

Definition. A unitary representation (τ, U) of $K \times K$ is a double representation of K if there exist two unitary representations τ_1 and τ_2 of K such that $\tau(k_1, k_2)\phi = \tau_1(k_1)\phi\tau_2(k_2)$ for all k_i in K and ϕ in U.

For the double unitary representation of K, we shall denote $\tau = (\tau_1, \tau_2)$. Let f be a C^{∞}-function on G. We define for each x in G,

(4.3)
$$F(x)(k_1, k_2) = f(k_1 x k_2).$$

We see that F(x) belongs to $L^2(K \times K)$ for a fixed x in G.

Lemma 3. Let f be a K-finite C^{∞} -function on G and $F = F_f$ the same as in (4.3). Then there exists a finite dimensional double unitary representation (τ, U) of K such that $F(x) \in U$ and $F(kxk') = \tau_1(k)F(x)\tau_2(k')$ for all x in G, k, k' in K.

Proof. We define two unitary representations of K on $L^2(K \times K)$ by $(\zeta_1(k)\phi)(k_1, k_2) = \phi(k_1k, k_2), (\zeta_2(k)\phi)(k_1, k_2) = \phi(k_1, kk_2)$ for k in K and ϕ in $L^2(K \times K)$. Then $\zeta = (\zeta_1, \zeta_2)$ is a double unitary representation of K. Furthermore we have $F(kxk') = \zeta_1(k)F(x)\zeta_2(k')$ for all x in G and k, k' in K. Let U be the subspace of $L^2(K \times K)$ generated by the set $\{\zeta_1(k)F(x)\zeta_2(k'); k, k' \in K \text{ and } x \in G\}$. Since f is K-finite, the dimension of U is finite, Let $\tau = (\tau_1, \tau_2)$ be the restriction of ζ to U. Then F and τ have the property as claimed.

Remark 2. By definition of $F = F_f$, we see that there exists ϕ in U such that $f(x) = (F(x), \phi)$ for all x in G where f is a K-finite C^{∞} -function on G.

Definition 4. Let $\tau = (\tau_1, \tau_2)$ be a finite dimensional double unitary representation of K realized on U. A U-valued C^{∞} - (resp. L^2 -) function F on G is τ -spherical if F satisfies $F(kxk') = \tau_1(k)F(x)\tau_2(k')$ for all k, k' in K and x in G.

Let f be a K-finite function in $H_{i(\chi)}(G, \chi)$. We define $F=F_f$ as in (4.3). By Lemma 3, F is (τ, U) -spherical on G. Furthermore by using the integral formula of Lemma 1.2, we have

(4.4)
$$||f||^2 = C_G \lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{A_0^+} |F(a)|^2 D(a) e^{-\varepsilon d(a)} da.$$

Since $(z - \lambda(z)) f = 0$, we have also

(4.5)
$$(z - \chi(z))F = 0$$
 for all z in $\frac{1}{6}$.

Thus the function $F = F_f$ is a τ -spherical eigenfunction of ϑ . Concerning with the integral of (4.4), we give the following estimations for d;

(4.6) there exist two positive constants c_1 and c_2 such that $c_1 e^{\rho(\log a)} \leq d(a) \leq c_2 e^{\rho(\log a)}$ for all a in A_0^+ (we remark that $d(a)^2 = B(\log a, \log a)$ for all a in A_0^+).

Let $\Psi(A_0)$ be the simple root system of (P_0, A_0) . We choose the dual basis $\omega_1, \omega_2, \dots, \omega_l$ of α_0 with respect to $\Psi(A_0) = \{\alpha_1, \alpha_2, \dots, \alpha_l\}$ satisfying $\alpha_i(\omega_j) = \delta_{i,j}$. We put $A_0^+(R) = \{a \in A_0^+; \alpha (\log a) > R \text{ for } \alpha \in \Psi(A_0)\}$ for a given positive real number R. Z^+ = the set of all nonnegative integers. We state the first expansion theorem for a τ -spherical eigenfunction on G.

Lemma 4. Let F be a τ -spherical \mathfrak{F} -finite function on G where τ is realized on a finite dimensional vector space U. Then F has the following expansion on $A_0^+(R)$; there exist a finite number of linear forms $\nu_1, \nu_2, \dots, \nu_p$ and polynomials p_1, p_2, \dots, p_q on \mathfrak{a}_0 and $F_{i,j}$ $(1 \leq i \leq q, 1 \leq j \leq p)$ such that

$$(d_{P_0}F)(a) = \sum_{i=1}^{q} \sum_{j=1}^{p} p_i (\log a) e^{\nu_j (\log a)} F_{i,j}(a),$$

$$F_{i,j}(a) = \sum_{m = (m_1, m_2, \dots, m_l) \in (\mathbb{Z}^+)^l} c_{i,j,m} e^{-(m_1a_1 + m_2a_2 + \dots + m_la_l) (\log a)}$$

where $c_{i,j,m} \in U$,

Furthermore the series $F_{i,j}$ is uniform and absolute convergence on $A_0^+(R)$.

(For the proof of this lemma, see Theorem 8.32, [16]).

We now parametrize A_0 by $A_0 = \{a_t; t = (t_1, t_2, \dots, t_l) \in \mathbb{R}^l\}$ where $a_t = \exp(\sum_{i=1}^l t_i \omega_i)$. Therefore $A_0^+(R) \in a_t$ if and only if $t_i > R$ for all $i = 1, 2, \dots, l$.

Lemma 5. Each K-finite function in $H_{i(\mathfrak{X})}(G, \mathfrak{X})$ is tempered.

Proof. Let f be a K-finite function in $H_{i(\chi)}(G, \chi)$. We define the τ -spherical eigenfunction $F = F_f$ of $\frac{3}{6}$ as in Lemma 3. In view of (4.4) and (4.6), we have

$$\lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{A_0^+(R)} |(d_{P_0}F)(a)|^2 e^{-\varepsilon_{\rho}(\log a)} da$$

$$\leq a \text{ const.} \lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{A_0^+} |F(a)|^2 D(a) e^{-\varepsilon d(a)} da < \infty.$$

Using the expansion for F as in Lemma 4, an elementary calculation verifies that $(\operatorname{Re} \nu_j)(\omega_k) \leq 0$ for all (j, k) where ν_j 's are the same as in the expansion of F.

Consequently, it follows from a result of Casselman and Miličić (see Theorem 8.47, [16]) that $|(d_{P_0}F)(a)| \leq a \text{ const. } (1+d(a))^n$ for all $a \text{ in } A_0$ for a suitable nonnegative number n. Therefore F is tempered, and hence f is also tempered (see Remark 2).

We shall state the second theorem for the asymptotic expansion (which is due to Harish-Chandra) for a τ -spherical eigenfunction of \mathfrak{F} on *G*. Let P = MAN be a fixed parabolic subgroup of *G*. We denote the Lie algebras of *A* and *M* respectively by \mathfrak{a} and \mathfrak{m} . $\mathfrak{m}_1 = \mathfrak{m} \oplus \mathfrak{a}$ is the Lie algebra of reductive group $M_1 = MA$.

Notations: $u(\mathfrak{m}_1)$ = the universal enveloping algebra of $(\mathfrak{m}_1)_c$,

 \mathfrak{F}_{M_1} = the center of $\mathfrak{u}(\mathfrak{m}_1)$,

 W_1 = the Weyl group of $((\mathfrak{m}_1)_c, \mathfrak{h}_c)$,

 $I_1(\mathfrak{h}) =$ the ring of all W_1 -invariants of $u(\mathfrak{h})$,

 μ_1 = the canonical isomorphism of \mathcal{J}_{M_1} to $I_1(\mathfrak{h})$ and

 μ = the canonical isomorphism of \mathfrak{F} to $I(\mathfrak{h})$.

We see that there exists a unique isomorphism μ_P of \mathfrak{F} into \mathfrak{F}_{M_1} such that $\mu = \mu_1 \circ \mu_P$.

Let A^+ and $\Psi(A)$ be the positive Weyl chamber and the simple root system of (P, A) respectively. We define a function β on cl (A^+) by

 $\beta(a) = \min_{a \in \mathbb{T}(A)} \alpha (\log a), a \in cl(A^+)$ where $cl(A^+)$ is the closure of A^+ . We denote $(\tau_{K_M}, U) =$ the restriction of τ to K_M .

Lemma 6. Let F be a tempered \mathfrak{F} -finite (τ, U) -spherical function on G. Then there exists a \mathfrak{F}_{M_1} -finite tempered τ_{K_M} -spherical function F_P on M_1 and a nonnegative real number r such that

(1) $|(d_PF)(am) - F_P(am)| \leq a \text{ const. } \mathcal{Z}_M(m)e^{-\beta(a)}(1+d(ma))^r \text{ for all } a$ in cl (A^+) and m in Ω where Ω is a compact subset in M_1 ,

(2) $\mu_P(z)F_P = (zF)_P$ for all z in z.

(For a proof this lemma, see Chapter 14, II, [23]).

The function F_P is called the constant term of F along P. By (1) in the above lemma, we see that F_P is uniquely determined by F. Furthermore since ∂_{M_1} is a free $\mu_P(\partial)$ -module with finite rank (see Corollary 4.2.10, I, [23]), it follows from (2) in the lemma that F_P is of the form

(4.7) $F_P(am) = \sum_{i=1}^{q} p_i (\log a) e^{\lambda_i (\log a)} F_i(m)$ where p_i is a polynomial and λ_i is a purely imaginary valued linear form on α , F_i is a tempered τ_{K_M} -spherical eigenfunction of \mathfrak{Z}_M on M for some character χ_i^* of \mathfrak{Z}_M .

Let Θ be a fixed subset of $\Psi(A_0)$. We put

(4.8)
$$A_{\theta} = \{ a \in A_{0}; \beta (\log a) = 0 \} \text{ for all } \beta \text{ in } \mathcal{V}(A_{0}) - \{\alpha\} \}.$$

Then there exists a parabolic subgroup P_{θ} of G such that $P_{\theta} = M_{\theta}A_{\theta}N_{\theta}$ (see for precise descriptions [1] or [26]). Let α be an element in Θ , and put $\Theta_{\alpha} = \Theta - \{\alpha\}$. Then the parabolic subgroup $P_{\theta\alpha} = M_{\theta\alpha}A_{\theta\alpha}N_{\theta\alpha}$ satisfies $M_{\theta\alpha} \subset M_{\theta}, A_{\theta\alpha} \supset A_{\theta}$ and $N_{\theta\alpha} \supset N_{\theta}$. We put $P_{\theta,\alpha} = M_{\theta} \cap P_{\theta\alpha}$. Let $(P_{\theta}^{*})_{0} = (M_{\theta}^{*})_{0}(A_{\theta}^{*})_{0}(N_{\theta}^{*})_{0}$ be the minimal parabolic subgroup of M_{θ} . Then we have $A_{0} = A_{\theta}(A_{\theta}^{*})_{0}$.

Let r be a positive real number and $cl(A_0^+)$ the closure of A_0^+ in A_0 . We put for each α in $\Psi(A_0)$.

(4.9)
$$A(\alpha, r) = \{a \in \operatorname{cl}(A_0^+); \alpha(\log a) \ge r\rho(\log a)\}.$$

Lemma 7. For a sufficiently small real positive number r, we have that $\operatorname{cl}(A_0^+) \subset \bigcup_{\alpha \in \mathbb{T}(A_0)} A(\alpha, r).$

Proof. We put $S^+ = \{a \in cl (A_0^+); d(a) = 1\}$, and define two functions f, g by $f(a) = \max_{\beta \in \mathcal{F}(A_0)} \beta(\log a), g(a) = \rho(\log a)$. S^+ is compact and f (resp. g) is continuous on $cl (A_0^+)$. Therefore g (resp. f) has the maximal (resp. minimal) value r_2 (resp. r_1) on S^+ . Since f and g are positive on

 S^+ , r_1 and r_2 are positive. Let r be a real number satisfying $0 < r < (r_1/r_2)$. We claim that $\operatorname{cl}(A_0^+) \subseteq \bigcup_{\alpha \in \overline{\Psi}(A_0)} A(\alpha, r)$. Let a be an element in A_0^+ . We put $H' = d(a)^{-1} \log a$. Then $a' = \exp H'$ belongs to S^+ . Consequently $r_1 \leq f(a')$ and $g(a') \leq r_2$. Choose an element α in $\overline{\Psi}(A_0)$ satisfying $\alpha (\log a') = f(a')$. Then we have $\alpha (\log a') > r_{\rho} (\log a')$. Hence the lemma follows.

Lemma 8. Let F be a tempered \mathfrak{F} -finite (τ, U) -spherical function on G. Assume that $F_P = 0$ for all maximal proper parabolic subgroup P of G. Then F is square integrable on G.

Proof. Let $A(\alpha, r)$ be the same as in Lemma 7. Then we have

(4.10)
$$\int_{G} |F(x)|^{2} dx \leq C_{G} \sum_{\alpha \in \overline{\Psi}(A_{0})} \int_{A(\alpha, r)} |(d_{P_{0}}F)(\alpha)|^{2} d\alpha.$$

We now fix an element α in $\Psi(A_0)$, and consider the maximal parabolic subgroup P = MAN corresponding to the set $\Theta = \{\alpha\}$. For the minimal parabolic subgroup $P_0^* = M_0^* A_0^* N_0^*$ of M, we define ρ^* by the same as in Section 1. By (1) in Lemma 6 and our assumption $F_P = 0$, the function $d_P F$ is estimated by

$$(4.11) \qquad |(d_P F)(a)| \leq a \operatorname{const.} \Xi_M(a)(1+d(a))^p e^{-r\rho(\log a)}$$

for all a in $A(\alpha, r)$ where p is a nonnegative integer. Hence by Lemma 1.1, we get $|d_p F(a)| \leq c' e^{-c\rho(\log a)} e^{-\rho^*(\log a)}$ for all a in $A(\alpha, r)$ where c and c' are positive constants. Combining (4.10) with this inequality, we have our conclusion.

Remark 3. Let F be a square integrable τ -spherical function on G and χ a character of \mathfrak{F} . If F satisfies the differential equation $(z - \chi(z))F = 0$ and F is nontrivial. Then χ is real regular. For this proof, see Harish-Chandra's classification for discrete series representations of G ([8] or Theorem 14.4.9 and Theorem 16.3.19, II, [23]).

We now prove our main purpose of this section.

Theorem 1. Let $H_{i(\mathfrak{X})}(G, \mathfrak{X})$ be the topological vector space as in Definition 2. Assume that $H_{i(\mathfrak{X})}(G, \mathfrak{X}) \neq \{0\}$. Then the space has a pre-Hilbert structure with norm $\| \|$.

Proof. Let f be a nontrivial element in $H_{i(\chi)}(G, \chi)$. It is enough to show that if ||f||=0, then there is a contradiction. By Lemma 2, the series $\sum_{\tau,\tau'\in \mathcal{E}(K)} (\chi_{\tau*}f*\chi_{\tau})$ converges to f in the topology of $H_{i(\chi)}(G, \chi)$. Consequently we have $||f||^2 = \sum_{\tau,\tau'\in \mathcal{E}(K)} ||\chi_{\tau*}f*\chi_{\tau'}||^2$. Therefore we can assume

that f is K-finite and nontrivial. Define a τ -spherical eigenfunction $F = F_f$ as in (4.3). Let p_i , ν_j and $F_{i,j}$ be the same appearing in the expansion of F on $A^+(R)$ as in Lemma 4. By our assumption $F \neq 0$, we can assume that $p_i F_{i,j} \neq 0$ for all (i, j). Furthermore since

$$||f||^2 = \lim_{\varepsilon \to +0} C_G \varepsilon^{i(\chi)} \int_{A_0^+} |F(a)|^2 D(a) e^{-\varepsilon d(a)} da = 0,$$

we get for each $\nu = \nu_i$, (1) $(\operatorname{Re}\nu)(\omega_k) \leq 0$ for all $k = 1, 2, \dots, l$, (2) $\#\Theta_i < i(\lambda)$ for all *i* where $\Theta_i = \{\alpha_k \in \Psi(A_0); \operatorname{Re}\nu_i(\omega_k) = 0\}$. We choose Θ_{i_0} satisfying $\#\Theta_i \leq \#\Theta_{i_0}$ for all $i = 1, 2, \dots, p$. Put $\Theta = \Theta_{i_0}$. Then we have

$$(4.12) i(\chi) > \sharp \Theta$$

Let $P_{\theta} = M_{\theta}A_{\theta}N_{\theta}$ be the parabolic subgroup of G corresponding to Θ . and $F_{P_{\theta}}$ the constant term of F along P_{θ} . Combining (1) in Lemma 6 with the expansion of F in Lemma 4, the choice of Θ implies that $F_{P_{\theta}} \neq 0$. Let $F_{P_{\theta}} = \sum_{k} p_{k} e^{\lambda k} F_{k}$ and χ_{k}^{*} be the same as in (4.7).

We put for each α in Θ , $\Theta_{\alpha} = \Theta - \{\alpha\}$, and consider the parabolic subgroup $P_{\Theta,\alpha}^* = M_{\Theta} \cap P_{\Theta,\alpha} = M_{\Theta,\alpha}^* A_{\Theta,\alpha}^* N_{\Theta,\alpha}^*$. Then we have $A_{\Theta,\alpha} = A_{\Theta,\alpha}^* A_{\Theta}$. Define a function $F_{P_{\Theta,\alpha}}$ on M_{Θ} for a fixed a in A_{Θ} by $(F_{P_{\Theta,\alpha}})(m) = F_{P_{\Theta}}(am)$. Then we have $(F_{P_{\Theta,\alpha}})_{P_{\Theta,\alpha}^*}(a^*m^*) = F_{P_{\Theta,\alpha}}(aa^*m^*)$ for all a in A_{Θ} , a^* in $A_{\Theta,\alpha}^*$ and m^* in $M_{\Theta,\alpha}^*$. Therefore

(4.13)
$$F_{P_{\theta_{\alpha}}}(aa^*m^*) = \sum_{k} e^{\lambda k} (\sum_{j} p_{j,k}^* e^{\lambda j,k} F_{j,k})$$

where λ_k and $\lambda_{j,k}$ are purely imaginally valued linear forms on α_{θ} and $\alpha_{\theta,\alpha}^*$ respectively. In the expression of $d_{P_0} F = \sum_{i=1}^{q} \sum_{j=1}^{p} p_i e^{\nu_j} F_{i,j}$ on $A_0^+(R)$ as in Lemma 4, we have $\# \Theta_j \leq \# \Theta = \dim A_{\theta}$. However by the estimation for $(d_{P_{\theta}}F - F_{P_{\theta}})$ as in Lemma 6 and the fact dim $A_{\theta\alpha} = \dim A_{\theta} + 1$, it follows from the uniqueness for expansion of F on $A_0^+(R)$ that $F_{P_{\theta\alpha}} = 0$ for all α in Θ . Hence by Lemma 8 and Remark 3, χ_i^* is real regular. Consequently we have a contradiction;

$$i(\chi) = \# \Psi - \# \Psi(\chi) \leq \# \Psi - \operatorname{rank}(M_{\theta}) = \dim A_{\theta} < i(\chi).$$

This completes our proof.

Lemma 9. Let notations and assumptions being as in above theorem. In the term of expansion of $F = F_f = \sum_i \sum_j p_i e^{\nu_j} F_{i,j}$ on $A_0^+(R)$, we have $i(\chi) = \# \Theta_j$ and $p_i = a$ constant where f is a nontrivial function (K-finite) in $H_{i(\chi)}(G, \chi)$ and $\Theta_j = \{\alpha_k \in \Psi(A_0); \operatorname{Re} \nu_j(\omega_k) = 0\}$.

Proof. In view of the proof for Theorem 1, we see that $i(\chi) \leq \# \Theta_j$.

On the other hand since

(4.14) $||f||^2 \ge a$ positive const. $\lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{A_0^+} |(d_P F)(a)|^2 e^{-\varepsilon_{\rho}(\log a)} da$, we have $i(\chi) \ge \# \Theta_j$. Consequently $i(\chi) = \# \Theta_j$ for all $j = 1, 2, \dots, p$. Again by (4.14), we have also $p_i = a$ const. for all $i = 1, 2, \dots, q$.

Lemma 10. Let f be a nontrivial K-finite function in $H_{i(x)}(G, \chi)$. Then there exists a cuspidal parabolic subgroup P of G such that $F_P \neq 0$ where $F = F_j$ and F_P is the constant term of F along P.

Proof. Let Θ_j be the same as in the above lemma, and put $\Theta = \Theta_j$. We denote $P_{\Theta} = M_{\Theta} A_{\Theta} N_{\Theta}$, $F_{P_{\Theta}} = \sum_k p_k e^{i_k} F_k$. By the choice of Θ , we have $F_{P_{\Theta}} \neq 0$ and $(F_k)_{P_{\Theta,\alpha}^*} = 0$ for all α in Θ , where $\Theta_{\alpha} = \Theta - \{\alpha\}$, $P_{\Theta,\alpha}^* = M_{\Theta} \cap P_{\Theta_{\alpha}}$. Hence F_k is square integrable on M. Since F_k is nontrivial, it follows from a result of Harish-Chadra that rank $M = \operatorname{rank} M \cap K$. Thus P_{Θ} is a parabolic cuspidal subgroup of G.

Lemma 11. Let f be a nontrivial K-finite function in $H_{i(\mathfrak{X})}(G, \mathfrak{X})$ and $F_{P_{\Theta}} = \sum_{k} p_{k} e^{\lambda_{k}} F_{k}$ the constant term of $F = F_{f}$ along P_{Θ} where Θ is a given subset of $\Psi(A_{0})$ and F_{k} is a tempered $\tau_{K_{M}}$ -spherical function on M_{Θ} satisfying $(z - \chi_{k}(z))F_{k} = 0$ ($z \in \mathfrak{Z}_{M_{\Theta}}$) for some character χ_{k} of \mathfrak{Z}_{M} , p_{k} is a polynomial function on α_{Θ} and λ_{k} is a purely imaginary valued linear form on α_{Θ} . Assume that $F_{P_{\Theta}} \neq 0$. Then we have $i(\mathfrak{X}) = \dim A_{\Theta} + i(\chi_{k})$ for all k.

Proof. Let $P_0^* = M_0^* A_0^* N_0^*$ be the minimal parabolic subgroup of M_{θ} and $d_{P_0^*} F_k = \sum_{i=1}^p \sum_{j=1}^q p_{k,i} e^{\nu_{k,j}} F_{i,j}^k$ be the expansion of F_k on $(A_0^*)^+(R)$ as in Lemma 4. We put $\Theta_{k,j} = \{\alpha_u \in \Theta = \Psi((A_0^*)^+); \text{Re } \nu_{k,j}(\omega_u) = 0\}$. Let $P_{\theta_{k,j}}^*$ be the parabolic subgroup of M_{θ} corresponding to the set $\Theta_{k,j}$. Then we have $(F_k)_{P_{\theta_{k,j}}^*} \neq 0$. We now fix a number k and denote $(F_u^*)_{p_{\theta_{k,j}}^*} = \sum_t p_{u,j,t} e^{\lambda_{u,j,t}} F_{u,j,t}^*$ where $F_{u,j,t}^*$ is a solution of the differential equations $zF_{u,j,t}^* = \chi_{u,j,t}^*(z)F_{u,j,t}^*$ ($z \in \mathfrak{Z}_{M_{\theta_{j,k}}^*}$) for some character $\chi_{u,j,t}^*$ of $\mathfrak{Z}_{M_{\theta_{j,k}}^*}$. By the choice of $\Theta_{k,j}, \chi_{k,j,t}^*$ is real regular. Therefore $i(\chi_k) = \# \Theta_{k,j}$.

Since $(F_{P_{\theta,a}})_{P_{\theta,a}^*}(a^*m) = F_{P_{\theta_{k,j}}}(aa^*m)$ for all a in A_{θ} , a^* in $A_{\theta,j}^*$ and m in $M_{\theta_{k,j}}^*$,

(4.15)
$$F_{P_{\Theta_{k,j}}}(aa^*m) = \sum_{i} p_i e^{\lambda_i} (\sum_{u,i} p_{u,j,i} e^{\lambda_{u,j,i}} F_{u,j,i}^*)$$

where λ_k and $\lambda_{u,j,t}$ are purely imaginary valued linear forms. Since $\chi^*_{k,j,t}$ is real, it follows from the expressions for $F_{P_{\Theta_{k,j}}}$ and the expansion of F in Lemma 4, that $i(\chi) = \# \Psi - \operatorname{rank} M_{\Theta_{k,j}} = \dim A_{\Theta_{k,j}} = \dim A_{\Theta} + \dim A^*_{\Theta_{k,j}} = \dim A_{\Theta} + i(\chi_k)$ and $p_k p_{u,j,t} = a$ const. (see Lemma 9). Thus the lemma follows.

§ 5. Schur orthogonality relations

Let χ be a character of $\frac{1}{2}$ and $H_{i(\chi)}(G, \chi)$ the same as in (4.1). We define a Hermitian form (\cdot, \cdot) on $H_{i(\chi)}(G, \chi)$ by

(5.1)
$$(f,g) = \lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{G} f(\chi) \overline{g(\chi)} e^{-\varepsilon d(\chi)} d\chi$$

where d(x) = d(xo, o), d(,) is the Riemannian distance on the symmetric space G/K and o is the origin.

By Theorem 4.1, the form (,) is a positive definite Hermitian form on $H_{i(\chi)}(G, \chi)$.

Definition 1. $H(G, \chi)$: the completion of $H_{i(\chi)}(G, \chi)$, $H_{K}(G, \chi)$: the set of all K-finite elements in $H(G, \chi)$,

 \mathfrak{F}^{\vee} : the set of all characters of \mathfrak{F} satisfying $H(G, \mathfrak{X}) \neq \{0\}$.

Remark 1. Let $H_{i(\chi),K}$ be the set of all K-finite functions in $H_{i(\chi)}(G, \chi)$. Since $H_{i(\chi),K}$ is dense in $H_{i(\chi)}(G, \chi)$, we have $H_K(G, \chi) = H_{i(\chi),K}$. Therefore all functions in $H_K(G, \chi)$ are real analytic and tempered (see Lemma 4.5).

Let R be the right regular representation of G on $H(G, \lambda)$. We see that the representation $(R, H(G, \lambda))$ is unitary.

Definition 2. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if (π, H) is unitary equivalent to a subrepresentation of $(R, H(G, \chi))$.

Let (π, H) be an irreducible unitary representation of G and $C_c^{\infty}(G)$ the set of all C^{∞} -functions on G with compact support. For a fixed K-finite vector ϕ in H, we put

(5.2)
$$H(\phi) = \{\pi(f); f \in C_c^{\infty}(G)\} \text{ where } \pi(f) = \int_G f(x)\pi(x)dx.$$

Then all vectors in $H(\phi)$ are differentiable. Furthermore since π is irreducible the space $H(\phi)$ is a G-invariant dense subspace of H. Let ϕ_0, ψ_0 be two fixed K-finite vectors in H. We define a linear operator S_{ψ_0} of $H(\phi_0)$ to $C^{\infty}(G)$ by

(5.3)
$$S_{\psi_0}(\pi(f)\phi_0)(y) = (\pi(y)\pi(f)\phi_0, \psi_0)$$
 for y in G.

Immediately we have

(5.4) S_{ψ_0} is injective, $R_x \circ S_{\psi_0} = S_{\psi_0} \circ \pi(x)$ for all x in G.

Lemma 1, Let (π, H) be an irreducible unitary representation of G. Suppose that there exist two K-finite vectors ψ_0 and ϕ_0 such that $S_{\psi_0}(\phi_0) \in H(G, \chi)$ for some χ in \mathfrak{F} . Then we have $S_{\psi_0}(\pi(f)\phi_0) \in H(G, \chi)$ for all f in $C_e^{\infty}(G)$.

Proof. Let χ_{π} be the infinitesimal character of π . Then we have $\chi = \chi_{\pi}$ and $zS_{\psi_0}(\pi(f)\phi_0) = \chi(z)S_{\psi_0}(\pi(f)\phi_0)$ for all f in $C_c^{\infty}(G)$. It remains to prove $||S_{\psi_0}(\pi(f)\phi_0)|| < \infty$. Let W be the support of f. We put

$$c_f = \int_{a} |f(x)|^2 dx = \int_{w} |f(x)|^2 dx.$$

By using Schwarz inequality, we have

$$\|S_{\psi_0}(\pi(f)\phi_0)\|^2 \leq c_f \lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_G \int_W |(\pi(yx)\phi_0, \psi_0)|^2 e^{-\varepsilon d(x)} dx$$
$$\leq c_f \lim \varepsilon^{i(\chi)} \int_W \int_G |(\pi(yx)\phi_0, \psi_0)|^2 e^{-\varepsilon d(x)} dx$$
$$\leq c_f \operatorname{vol}(W) \|S_{\psi_0}(\phi_0)\|^2$$

where vol(W) is the volume of W. Hence the lemma follows.

Lemma 2. Let notations and assumptions being as above lemma. Then the representation (π, H) is realized on $H(G, \chi)$.

Proof. Let H' be the minimal closed invariant subspace of $(R, H(G, \chi))$ containing $S_{\psi_0}(\phi_0)$. We put π' =the restriction of R to H'. By Lemma 1, we have $S_{\psi_0}(H(\phi_0)) \subset H'$. We shall prove that (π', H') is irreducible. Choosing ϕ_0 suitably we can assume that $E(\tau)\phi_0 = \phi_0$ for an element $[\tau]$ in $\mathscr{E}(K)$. We put $H(\tau) = E(\tau)H$ and

$$R(\tau) = \left\{ f \in C^{\infty}_{c}(G); \, \chi_{\tau} * f = f, \int_{K} f(kxk^{-1}) dx = f(x) \text{ for all } x \text{ in } G \right\}.$$

 $R(\tau)$ is an algebra with convolution product. Furthermore the representation of algebra $R(\tau)$ on $H(\tau)$ is irreducible (see [7], Theorem 6). Consequently since dim $H(\tau) = \dim S_{\psi_0}(H(\tau))$ is finite, the algebra representation of $R(\tau)$ on $S_{\psi_0}(H(\tau))$ is irreducible. Let W be a nontrivial closed invariant subspace of H' and W^{\perp} the orthogonal complement of W. Then we have $S_{\psi_0}(H(\tau)) \subset E(\tau)W + E(\tau)W^{\perp}$. Consequently the irreducibility of the representation of $R(\tau)$ on $S_{\psi_0}(H(\tau))$ implies $S_{\psi_0}(H(\tau)) \subset E(\tau)W$ or $S_{\psi_0}(H(\tau))$ $\subset E(\tau)W$. Since $S_{\psi_0}(H(\tau))$ contains $S_{\psi_0}(\phi_0)$, it follows from this fact that $S_{\psi_0}(\phi_0)$ belongs to W or W^{\perp} . However H' is the minimal invariant subspace of $H(G, \chi)$. Hence W = H' and $W^{\perp} = \{0\}$. Thus π' is irreducible

as claimed. Therefore π and π' are irreducible and infinitesimal equivalent to each other. We now apply Corollary 4.5.5.3 in [26] to those of representations. Then π and π' are unitary equivalent.

The following theorem will be proved in Section 6.

Theorem 1. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if and only if there exists a K-finite vector ϕ in H such that $S_{\phi}(\phi) \in H(G, \chi)$.

We now establish the Schur orthogonality relations of a representation of G realized on $H(G, \lambda)$.

Theorem 2. Let χ be an element in \mathfrak{F} . Then for each two irreducible unitary representations (π, H) and (π', H') of G realized on $H(G, \chi)$, we have the following.

There exists a positive constant d_{π} such that

$$\lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{G} (\pi(x)\phi, \psi) \overline{(\pi'(x)\phi', \psi')} e^{-\varepsilon d(x)} dx = \begin{cases} d_{\pi}^{-1}(\phi, \phi') \overline{(\psi, \psi')} & \text{if } \pi \cong \pi' \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let ϕ and ψ be K-finite vectors in H. By Lemma 1 and Lemma 2, we have $S_{\psi}(\phi) \in H(G, \chi)$. Let H^* be the closure of $S_{\psi}(H(\phi))$ in $H(G, \chi)$ and π^* the restriction of R to H^* . Then by the proof of Lemma 2, (π, H) and (π^*, H^*) are unitary equivalent. Applying the same arguments as in the proof of Theorem 4.5.9.1 and Theorem 4.5.9.3, [26] to those representations, the conclusion in this theorem follows.

Remark 2. When the case $i(\chi)=0$, π and π' are square integrable. Therefore the relations in Theorem 1 is well known as a result of R. Godement [6]. In [20], we treat the same theorem as above for the case $i(\chi)=1$.

Theorem 3. Let χ be an element in $\mathfrak{z}^{\checkmark}$ satisfying $i(\chi) \geq 1$. Then each irreducible unitary representation (π, H) of G realized on $H(G, \chi)$ is equivalent to a subrepresentation of principal series of G induced from a cuspidal parabolic subgroup P = MAN with $i(\chi) = \dim A$.

Proof. Let ϕ be a fixed K-finite vector in H. We put $f(x) = (\pi(x)\phi, \phi)$. Then we have $f \neq 0$. Define $F = F_f$ as in (4.3). By using Lemma 4.10, we have there exists a cuspidal parabolic subgroup P = MAN such that $F_P \neq 0$. F_P is (τ_{KM}, U) -spherical function on MA. Bearing in mind Lemma 4.11, F_P is of the form $F_P(am) = \sum_{k=1}^{p} e^{\lambda_k (\log a)} F_k(m)$ for a in A and

278

m in M where λ_k is purely imaginary valued linear form on α and F_k a square integrable function on M satisfying $(z - \chi_k(z))F_k = 0, z \in \mathcal{J}_M$ for a character χ_k of \mathfrak{g}_M . We fix a number k. Let V be a closed invariant subspace generated by $\{R_m F_k; m \in M\}$ in $U \otimes L^2(M)$. Then the right regular representation σ of M on V is equivalent to a sum of finite number of discrete series. We denote $V = H_{\sigma}$. Define a $L^2(K) \otimes U \otimes L^2(M)$ -valued C^{∞} -function g on G by $g(kman) = e^{-(\nu + \rho_P)(\log a)} \tau_1(k) F_k(m), \tau = (\tau_1, \tau_2)$. Since F_k is τ_{K_M} -spherical the function g is well defined. Let $(L^2(K) \otimes H_{\sigma})_{\sigma}$ be the same as in (2.3). Then g belongs to $(L^2(K) \otimes H_g)_g$. We define a unitary representation $\pi(\sigma, \nu)$ as in Section 2. We shall prove π is unitary equivalent to a subrepresentation of $\pi(\sigma, \nu)$. Let c be the positive constant determined by $||f||^2 = c \int_{K} \int_{M} |\tau_1(k)g(m)|^2 dm dk$. Using the Schur orthogonality relations of π in Theorem 2, we have $||f||^2 = (d\pi)^{-1} |\phi|^2$. Let H_0 be the abstract subspace of H generated by $\{\pi(x)\phi; x \in G\}$. H_0 is a G-invariant dense subspace of H. Moreover since π is unitary, we have $|\pi(x)\psi| = |\psi|$ for all x in G and ψ in H_0 . Let us now define a linear operator η of H_0 to $(L^2(K)\otimes H_{\mathfrak{g}})_{\mathfrak{g}}$ by $\eta(\pi(x)\phi)(y) = (cd_{\pi})^{1/2}g(x^{-1}y), x, y \in G$. By definition, η is unitary and $\eta \circ \pi(x) = \pi(\sigma, \nu)(x) \circ \eta$ on H_0 for all x in G. Consequently η is extended to a equivalent mapping of H to $(L^2(K)\otimes H_{\sigma})_{\sigma}$. This completes our proof.

Remark 3. Combining Theorem 3 with Theorem 3.1, we see that all irreducible unitary representations realized on $H(G, \lambda)$ have the tempered characters. We now correct the error in the proof of Theorem 6.4, [20].

§ 6. Realization of a regular principal series representation

In this section, we shall prove that all regular principal series unitary representation, induced from cuspidal parabolic subgroup, of G is realized on $H(G, \chi)$. Let $P_0 = M_0 A_0 N_0$ be a minimal parabolic subgroup of G with θ -stable split component A_0 and $\Psi(A_0)$ the simple root system of (P_0, A_0) . Let f be a K-finite C^{∞} -function on G. We define a (τ, U) -spherical function $F = F_f$ as in (4.3). Assume that F is tempered. Then F has the constant term F_P of F along a given parabolic subgroup P of G. The function F_P is of the form

(6.1) $F_P(am) = \sum_{k=1}^{s} p_k (\log a) e^{\lambda_k (\log a)} F_k(m)$, $a \in A$, $m \in M$ where p_k is a polynomial function and λ_k a purely imaginary valued linear form on α , and F_k is a tempered (τ_{K_M}, U) -spherical function on M satisfying $(z - \chi_k(z))F_k = 0$ $(z \in \mathfrak{F}_M)$ for some character χ_k of \mathfrak{F}_M .

Definition 1. A function F on G belongs to $\mathscr{A}_0(G, \chi)$ (χ is a given character of \mathfrak{Z}) if F has the following properties:

(1) there exists a finite dimensional double unitary representation (τ, U) of K such that F is τ -spherical,

(2) F is tempered, and satisfies $(z - \chi(z))F = 0$ for all z in ∂_{z} ,

(3) for each parabolic subgroup P = MAN, if $F_P \neq 0$ then $i(\chi) = \dim A + i(\chi_k)$ and p_k is constant for all $k = 1, 2, \dots, s$ where p_k, χ_k are the same as in (6.1).

A parabolic subgroup P is standard if $P = P_{\theta}$ for a suitable subset Θ in $\Psi(A_0)$. All parabolic subgroup P of G is conjugate to a standard parabolic subgroup under an inner automorphism of K. Let F be a τ -spherical \mathfrak{F} -finite tempered function on G and P = MAN a parabolic subgroup of G. In view of Lemma 4.6, we have $F_{Pk}(m^k) = \tau_1(k)F_P(m)\tau_2(k)^{-1}$ for all m in MA where $P^k = kPk^{-1}$, $m^k = kmk^{-1}$, k is a fixed element in K. Therefore the above assumption (3) can be restricted to all standard parabolic subgroup of G.

Lemma 1. Let P = MAN be a standard parabolic subgroup of G and F a function in $\mathscr{A}_0(G, \chi)$ with constant term $F_P = \sum_k e^{\lambda_k} F_k$. Then the τ_{K_M} -spherical function F_k belongs to $\mathscr{A}_0(M, \chi_k)$ where χ_k is the same as in (6.1).

Proof. Let $P_{\theta} = M_{\theta}A_{\theta}N_{\theta}$ be a parabolic subgroup corresponding to a subset Θ in $\Psi(A_0)$ and $(P_{\theta}^*)_0 = (M_{\theta}^*)_0(A_{\theta}^*)_0(N_{\theta}^*)_0$ the minimal parabolic subgroup of M_{θ} . Then we have $\Theta = \Psi((A_{\theta}^*)_0)$. Therefore all standard parabolic subgroup of M_{θ} are given by $P_{\theta'}^* = M_{\theta} \cap P_{\theta'}$ for the sets Θ' in Θ . We shall denote the Langlands decomposition of $P_{\theta'}^*$ by $P_{\theta'}^* = M_{\theta'}A_{\theta}^*N_{\theta'}^*$. We see that $A_{\theta'} = A_{\theta}A_{\theta'}^*$. Define for each fixed element a in A_{θ} , a τ_{KM} spherical function $F_{P_{\theta,a}}$ on M_{θ} by $(F_{P_{\theta,a}})(m) = F_{P_{\theta}}(am)$. Then we have $(F_{P_{\theta,a}})_{P_{\theta'}^*}(a^*m) = F_{P_{\theta'}}(aa^*m)$ for $a \in A_{\theta'}^*$, $a \in A_{\theta}$ and $m \in M_{\theta'}^*$. Consequently $F_{P_{\theta'}}(aa^*m) = \sum_k \sum_j p_{k,j} e^{\lambda_k + \lambda_{k,j}} F_{k,j}$, where $(F_k)_{P_{\theta'}^*} = \sum_j e^{\lambda_{k,j}} F_{k,j}$ and $F_{k,j}$ satisfies $(z - \lambda_{k,j}(z)) F_{k,j} = 0$ for all $z \text{ in } \partial_{M_{\theta'}}^*$.

By the assumptions in (3) for *F*, we have $p_{k,j} = a \text{ const.}$ and $i(\chi) = \dim A_{\theta'} + i(\chi_{k,j}) = \dim A_{\theta} + i(\chi_k)$. Hence $i(\chi_k) = (\dim A_{\theta'} - \dim A_{\theta}) + i(\chi_{k,j}) = \dim A_{\theta'}^* + i(\chi_{k,j})$. Thus the lemma follows.

Let α be a fixed element in $\Psi(A_0)$. For the simplicity of our notations, we denote the parabolic subgroup of G corresponding to $\Theta = \{\alpha\}$ by $P_{\alpha} = M_{\alpha}A_{\alpha}N_{\alpha}$. Since dim $A_{\alpha} = 1$, A_{α} is parametrized by $A_{\alpha} = \{\exp tH_1; t \in \mathbf{R}\}$ where H_1 is the element satisfying $\alpha(H_1) = 1$. Let $P_{\alpha}^* = M_{\alpha}^*A_{\alpha}^*N_{\alpha}^*$ be the minimal parabolic subgroup of M_{α} satisfying $A_0 = A_{\alpha}A_{\alpha}^*$. We define $D = D_{\alpha}$ as in Section 1, and extend it by $D_{\alpha}(aa^*) = D_{\alpha}(a^*)$ for $a \in A, a^* \in A^*$. Let r be a positive real number as in Lemma 4.7. We define a subset $B_r(t)$ of $cl((A^*)^+)$ by $B_r(t) = \{a^* \in cl((A^*_a)^+); (1 - r\rho(H_1))t \ge (r\rho - \alpha)(\log a^*)\}$ where $t \ge 0$ and $cl((A^*_a)^+)$ is the closure of positive Weyl chamber $(A^*_a)^+$ of A^*_a . Then we have the following; for the set $A(\alpha, r)$ as in Lemma 4.7,

(6.2) $A(\alpha, r) = \bigcup_{t \ge 0} a_t B_r(t), a_t = \exp t H_1$ (see, for a proof of this fact Lemma 6.4 [20]).

Lemma 2. Let F be a function in $\mathcal{A}_0(G, \chi)$. Then we have

$$(*) \qquad \qquad \lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{A_0^+} |F(a)|^2 D(a) e^{-\varepsilon \rho (\log a)} da < \infty.$$

(Proof by an induction on $i(\chi)$). If $i(\chi)=0$, our assertion is obvious. Let us assume $i(\chi)=p>0$, and for all linear semisimple linear group G' and the characters χ' of \mathfrak{z}' with property $i(\chi') \leq p-1$, all functions F' in $\mathscr{A}_0(G', \chi')$ satisfy (*) (where \mathfrak{z}' is the center of universal enveloping algebra of \mathfrak{g}'_C). Let F be a function in $\mathscr{A}_0(G, \chi)$. In view of Lemma 4.7, it is sufficient to prove that $I(F) = \lim_{\varepsilon \to +0} \varepsilon^p \int_{\mathcal{A}(\alpha, \tau)} |F(\alpha)|^2 D(\alpha) e^{-\varepsilon \rho (\log \alpha)} d\alpha < \infty$ for all α in $\Psi(\mathcal{A}_0)$. By using Lemma 4.6, we have

$$I(F) \leq a \text{ const.} \lim_{\varepsilon \to +0} \varepsilon^p \int_{A(\alpha,\tau)} |F_{P_{\alpha}}(a)|^2 D_{\alpha}(a) e^{-\varepsilon_{\rho} (\log \alpha)} da$$

and hence by (6.2)

$$\leq a \operatorname{const.} \lim_{\varepsilon \to +0} \varepsilon^p \int_0^\infty \int_{B_r(t)} |F_{P_a}(a_t a^*)|^2 D_a(a^*) e^{-\varepsilon \rho (\log a^*)} e^{-\varepsilon t} da^* dt.$$

In the expression of $F_P = \sum_k e^{\lambda_k} F_k$, $F_k \in \mathcal{A}_0(M, \chi_k)$ and $i(\chi_k) = p-1$ (see Lemma 1). Hence our inductive hypothesis implies that

$$I(F_k) = \lim_{\varepsilon \to +0} \varepsilon^{p-1} \int_{\langle A^* \rangle_0^+} |F_k(a^*)|^2 D_a(a^*) e^{-\varepsilon_{\rho}(\log a)} da^* \quad \text{is finite.}$$

Consequently we have $I(F) \leq a \operatorname{const.} \left(\lim_{\varepsilon \to +0} \varepsilon \int_{0}^{0} e^{-\varepsilon t} dt \right) (\sum_{k} I(F_{k}))$. This completes our proof.

Combining Lemma 4.11 with Lemma 2, we have the following.

Theorem 1. Let χ be a character of \mathfrak{F} and $\mathscr{A}_0(G, \chi)$ the same as in Definition 1. Then a K-finite function f belongs to $H_{\kappa}(G, \chi)$ if and only if $F = F_f \in \mathscr{A}_0(G, \chi)$.

Definition 2. A principal series representation $\pi(\sigma, \nu)$ of G induced

from a cuspidal parabolic subgroup P = MAN is regular if ν is regular on α .

Theorem 2. Let $\pi(\sigma, \nu)$ be a regular principal P-series representation of G. Then each K-finite matrix coefficient belongs to $H_{\kappa}(G, \lambda)$ where λ is the infinitesimal character of $\pi(\sigma, \nu)$.

Proof. Let f be a K-finite matrix element of $\pi(\sigma, \nu)$. By using Theorem 1 it is enough to show that $F = F_f$ belongs to $\mathscr{A}_0(G, \chi)$. Let Θ be a subset of $\Psi(A_0)$ and $P_{\theta} = M_{\theta}A_{\theta}N_{\theta}$ be the parabolic subgroup of G. Since ν is regular on α and σ has the real regular infinitesimal character, we see that $\chi = \chi_{\lambda(\sigma,\nu)}$ is regular. Therefore the constant term of F along P_{θ} is of the form $F_{P_{\theta}} = \sum_k e^{\nu_k} F_k$, ν_k is regular on α_{θ} , and F_k satisfies $(z - \chi_{\lambda_k}(z))F_k = 0$ for a regular character χ_{λ_k} of $\mathfrak{Z}_{M_{\theta}}$. Let $\chi_{\lambda(\sigma)}$ be the infinitesimal character of σ . Then there exists w in W such that $w(\nu_k + \lambda_k)$ $= \lambda(\sigma) + \nu$. Hence we have dim $A_{\theta} + i(\alpha_{\lambda_k}) = \dim A = i(\chi)$. Therefore F belongs to $\mathscr{A}_0(G, \chi)$ as claimed.

Theorem 5 in the previous section will be proved by using the following lemma.

Lemma 3. Let ϕ be a K-finite function in $H(G, \mathfrak{X})$ satisfying $\mathfrak{X}_{\tau'} * \phi = \phi * \mathfrak{X}_{\tau} = \phi$ for two suitable elements τ, τ' in $\mathscr{E}(K)$. We put

$$h(x, y) = \int_{K} \overline{\chi(k)} \phi(xky) dk, x, y \in G.$$

Then there are $\phi_1, \phi_2, \dots, \phi_p$ and $\psi_1, \psi_2, \dots, \psi_p$ in $H_K(G, \chi)$ such that $h(x, y) = \sum_k \phi_k(x) \psi_k(y)$.

Proof. We define two functions f_x and g_x on G by $f_x(y)=h(y, x)$ and $g_x(y)=h(x, y)$. Since f_x , $g_x \in H_K(G, \chi)$ (see Lemma 4.1), there exist $\phi_1, \phi_2, \dots, \phi_p$ ($\psi_1, \psi_2, \dots, \psi_q$) in $H_K(G, \chi)$ and f_1, f_2, \dots, f_p (resp. $g_1, g_2,$ \dots, g_q) in $C^{\infty}(G)$ such that $f_y(x) = \sum_k f_k(y)\phi_k(x)$ and $g_x(y) = \sum_i g_i(x)\psi_i(y)$. Therefore, since $f_y(x) = g_x(y)$, we have

(6.3)
$$\sum_{k} f_{k}(y)\phi_{k}(x) = \sum_{j} g_{j}(x)\psi_{j}(y).$$

We claim all f_k belong to $H_k(G, \chi)$. By (6.3) we have immediately $\sum_k (zf_k) (y)\phi_k(x) = \sum_j g_j(x) (z\psi_j) (y) = \sum_k \chi(z)f_k(y)\phi_k(x)$ for each z in \mathfrak{z} , x and y in G. Since $\{\phi_1 \phi_2, \dots, \phi_p\}$ is linearly independent over C, we get $zf_k = \chi(z)f_k$ for all z in \mathfrak{z} . Similarly we can prove all f_k 's are K-finite.

Define F_{ψ_i} and F_{f_k} as in (4.3). Then we have

(6.4)
$$\sum_{k} F_{f_k}(y)\phi_i(x) = \sum_{j} F_{\psi_j}(y)g_j(x).$$

Let $d_{P_0}F_{f_k} = \sum_{i,s} p_{k,i,s} e^{\nu_{k,i,s}} F_{k,i,s}$ be the expansion of F_{f_k} on $A_0^+(R)$ as in Lemma 4.4. Bearing in mind $\phi_1, \phi_2, \dots, \phi_p$ is linearly independent, the temperedness of F_{ψ_j} implies that $\operatorname{Re} \nu_{k,i,s}(\omega_t) \leq 0$ for all k, i, s, t where we use the same notations as in Section 4. Consequently by a result of Casselman and Miličić (Theorem 8.4.7, [16]), all F_{f_k} 's are tempered. Let P be a standard parabolic subgroup of G and $(F_{\psi_j})_P$, $(F_{f_k})_P$ the constant term of F_{ψ_i} , F_{f_k} along P. By (6.4), we have

(6.5)
$$\sum_{k} (F_{j_k})_P \phi_k(x) = \sum_{j} (F_{\psi_j})_P g_j(x) \quad \text{for all } x \text{ in } G.$$

Since $F_{\psi_j} \in \mathscr{A}_0(G, \chi)$ (see Theorem 1) and $\phi_1, \phi_2, \dots, \phi_p$ is linearly independent, we conclude that all F_{f_k} belong to $\mathscr{A}_0(G, \chi)$. Hence again by Theorem 1, we have $f_k \in H_K(G, \chi)$. Thus we can prove the lemma.

Proof of Theorem 5.1. Bearing in mind Lemma 5.2, it is sufficient to show that if (π, H) is realized on $H(G, \chi)$ then $(\pi(x)v, v)$ belongs to $H(G, \chi)$ for a suitable K-finite vector in H. We put $E_l(\tau)f = \chi_* * f$ and $E_r(\tau)f = \chi_* * f$ for each fixed $[\tau]$ in $\mathscr{E}(K)$. Let η be the equivalent mapping of H into $H(G, \chi)$, and denote $H' = \eta(H)$, $\pi' =$ the restriction of R to H'. Then we have $\pi'(x) \circ \eta = \eta \circ \pi(x)$ for x in G. Let $[\tau]$ be an element in $\mathscr{E}(K)$. Since $\pi'(x)$ and $E_l(\tau)$ are commutative, $\pi'(x) \circ (E_l(\tau) \circ \eta) = (E_l(\tau) \circ \eta) \circ \pi(x)$. Consequently, it follows from the irreducibilities of π and π' that $E_l(\tau) \circ \eta$ = 0 or $E_l(\tau) \circ \eta$ is bijective. On the other hand since $H' = \bigoplus_{\tau \in \mathscr{E}(K)} E_l(\tau)H'$, there exists a unique $[\tau']$ in $\mathscr{E}(K)$ such that $E_l(\tau')H' = H'$. Let us now choose $[\tau]$ in $\mathscr{E}(K)$ satisfying $[\pi|_K: \tau] > 0$. Then there exists v in H such that $E(\tau)v = v$. We put $\phi(x) = ((E_l(\tau') \circ \eta)(v))(x)$. Then ϕ is K-finite and $(\pi'(x)\phi, \phi) = (\pi(x)v, v)$. We shall prove that $f(x) = (\pi(x)v, v) \in H(G, \chi)$. Since $E_r(\tau)\phi = \phi$,

$$f(x) = \lim_{\varepsilon \to +0} \varepsilon^{i(\chi)} \int_{G} \left(\int_{K} \overline{\chi_{r}(k)} \phi(ykx) dk \right) \phi(y) e^{-\varepsilon d(y)} dy.$$

We now apply Lemma 3. Then we have $\int_{K} \overline{\chi_{i}(k)} \phi(ykx) dk = \sum_{i=1}^{p} \phi_{i}(y) \psi_{i}(x)$ for a finite number of elements $\phi_{1}, \phi_{2}, \dots, \phi_{p}$ and $\psi_{1}, \psi_{2}, \dots, \psi_{p}$ in $H_{K}(G, \chi)$. This implies that $f(x) = \sum_{i} \psi_{i}(x) (\phi_{i}, \phi) \in H_{K}(G, \chi)$. Hence we can prove Theorem 5.1 completely.

§ 7. Irreducibilities for regular principal series representations

First of all in this section, we shall state a minimal K-type theorem of principal P-series representation of G. Let t be the Lie algebra of K and b a Cartan subalgebra of t. Φ_K is the root system of (t_c, b_c) and ρ_K one half the sum of all positive roots in Φ_K . All irreducible unitary representations of K are parametrized by the dominant integral forms on b_c which is the highest weight. We shall denote by $\tau = \tau_{\mu}$ the irreducible unitary representation with highest weight μ . Let $\pi(\sigma, \nu)$ be a fixed principal series representation of G induced from a cuspidal parabolic subgroup P = MAN. Then we have $\pi(\sigma, \nu)|_K = \bigoplus_{\mu \in \mathbb{N}^*} [\pi(\sigma, \nu)|_K : \tau_{\mu}]\tau_{\mu}$ where b* is the set of all dominant integral forms on b_c , $\pi(\sigma, \nu)|_K$ is the restriction of $\pi(\sigma, \nu)$ to K and $[\pi(\sigma, \nu)|_K : \tau_{\mu}]$ the multiplicity of τ_{μ} appearing in $\pi(\sigma, \nu)|_K$.

Definition 1. An irreducible unitary representation τ of K is a minimal (lowest) K-type of $\pi(\sigma, \nu)$ if $[\pi(\sigma, \nu)|_{K}: \tau_{\mu}] > 0$ and $|\mu + \rho_{K}| \leq |\mu' + \rho_{K}|$ for all $\tau_{\mu'}$ in $\mathscr{E}(K)$ satisfying $[\pi(\sigma, \nu)|_{K}: \tau_{\mu'}] > 0$.

The follownig theorem is due to D. Vogan [24].

Lemma 1. Each principal P-series representation $\pi(\sigma, \nu)$ has a minimal *K*-type with multiplicity one.

For a proof of the lemma, see Theorem 15.1, [16] ([24] and [3]).

Remark 1. The proof of Theorem 15.1 in [16] is given by using the minimal K-type theorem of the discrete series representation σ . For the minimal K-type theorem of discrete series, see [10].

Let $\pi(\sigma, \nu)$ be a regular principal *P*-series unitary representation of *G* with infinitesimal character $\chi = \chi_{\lambda(\sigma,\nu)}$. Consider an irreducible component π of $\pi(\sigma, \nu)$. Then the characters Θ_{π} and $\Theta_{\pi(\sigma,\nu)}$ satisfy the following properties (see Lemma 2.2 and Theorem 3.1);

(1) Θ_{π} and $\Theta_{\pi(\sigma,\nu)}$ are the solutions of differential equation $(z-\chi(z))\Theta=0, z \in \mathfrak{z}$ where χ is the same as above,

(2) Θ_{π} and $\Theta_{\pi(q,\nu)}$ are tempered.

Therefore by using the uniqueness theorem for tempered invariant eigendistributions on G (see Theorem 13, [13]), there exists a constant c_{π} such that

(7.1)
$$\Theta_{\pi} = c_{\pi} \Theta_{\pi(q)}.$$

We now give a proof of the irreducibility of regular principal P-series

284

unitary representation $\pi(\sigma, \nu)$ of G.

Theorem 1. All regular principal P-series unitary representation $\pi(\sigma, \nu)$ are irreducible.

Proof. Let $P_0 = M_0 A_0 N_0$ be a minimal parabolic subgroup of G with θ -stable split component A_0 . We put $G_1 = K A_0^+ K$, $A_0^+ =$ the positive Weyl chamber of (P_0, A_0) . Then G_1 is K-invariant open dense subset of G. Let ϕ be a K-finite element in $H(\sigma, \nu)$. We define a function $f_{\varepsilon}(x) = (\pi(\sigma, \nu)(x)\phi, \phi)e^{-\varepsilon d(x)}$ for a fixed positive real number ε . We see that f_{ε} is a tempered C^{∞} -function on G_1 (see Lemma 5.4, [20]). Let (π, H) be an irreducible component of $(\pi(\sigma, \nu), H(\sigma, \nu))$ and ϕ_1, ϕ_2, \cdots be orthonormal basis of H satisfying $E(\tau_i)\phi_i = \phi_i$ for some $[\tau_i]$ in $\mathscr{E}(K)$. We denote $\phi = \phi_1$ and $\tau = \tau_1$, and define $f_{\varepsilon} = (f_{\varepsilon})_{\phi}$ as above. Bearing in mind f_{ε} is K-finite, we have immediately

$$\Theta_{\pi}(\overline{f_{\varepsilon}}) = \sum_{i=1}^{\infty} \int_{G} \overline{f_{\varepsilon}(x)}(\pi(x)\phi_{i}, \phi_{i})dx = \sum_{i=1}^{n} \int_{G} \overline{f_{\varepsilon}(x)}(\pi(x)\phi_{i}, \phi_{i})dx$$

for a suitable number n.

On the other hand since $\pi(\sigma, \nu)$ is a regular principal series, it follows from Theorem 5.2 that $\lim_{\epsilon \to +0} \varepsilon^{i(\chi)} \Theta(f_{\epsilon}) = d_{\pi}^{-1}$ where d_{π} is the formal degree of π . Similarly we have $\lim_{\epsilon \to +0} \varepsilon^{i(\chi)} \Theta_{\pi(\sigma,\nu)} = [\pi(\sigma, \nu) : \pi](d_{\pi})^{-1}$. Hence by (7.1), we have

(7.2)
$$[\pi(\sigma, \nu): \pi] = c_{\pi}.$$

Let us now consider a following special subrepresentation π of $\pi(\sigma, \nu)$. By using Lemma 1, we can choose a minimal K-type τ of $\pi(\sigma, \nu)$ with multiplicity one. Let (π, H) be an irreducible component of $\pi(\sigma, \nu)$ satisfying $[\pi|_{K}: \tau] \neq 0$. Then $[\pi(\sigma, \nu): \pi] = 1$, and therefore by (7.2) $c_{\pi} = 1$. This implies that $\Theta = \Theta_{\pi(\sigma, \nu)}$. Thus $\pi(\sigma, \nu)$ is irreducible.

Remark 1. The irreducibility of regular principal series $\pi(\sigma, \nu)$ induced from minimal parabolic subgroup of G is proved by F. Bruhat [2]. In general Harish-Chandra proves the irreducibilities of all regular principal *P*-series representations ([9]).

Remark 2. B. Kostant [18] gives an criterion for the irreducibility of spherical principal series (not necessary unitary) of G in an algebraic situation.

References

- A. Borel, Introduction aux groupes arithmétiques, Publication de l'Institut [1] Mathématique de l'Universite de Strasbourg XV, Herman Paris (1967).
- F. Bruhat, Sur les représentations induites de groupes de Lie, Bull. Soc. [2] Math. France, (1956), 97-205.
- J. Carmona, Sur la classification de modules admissible irreducibles, Non-[3] commutative Harmonic Analysis and Lie groups, Springer-Verlag, Lecture Notes in Math., 1020 (1983), 11-34.
- W. Casselman, System of analytic partial differential equations of finite co-[4] dimension, manuscript (1975).
- W. Casselman and Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J., 49 (1982), 869–930. [5]
- R. Godement, Sur les relations d'orthogonalite de V. Bargmann, I and II, [6] C. R. Acad. Sci. Paris, 225 (1947), 521–523 and 657–659. —, A theory of spherical functions I, Trans. Amer. Math. Soc., 73 (1952),
- [7] 496-556.
- Harish-Chandra, Discrete series for semisimple Lie groups II, Acta. Math., [8] 116 (1966), 1-111.
- , Harmonic analysis on real reductive groups III, Ann. of Math., 104 [9] (1976), 117-201.
- [10] H. Hecht and W. Schmid, A proof of Blattner's conjecture, Invent. Math., 31 (1975), 129-154.
- [11] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press New York (1962).
- T. Hirai, The characters of some induced representations of semisimple Lie [12] groups, J. Math. Kyoto Univ., 8 (1968), 313-363.
- -, Invariant eigendistributions of Laplace operators on real semisimple [13] Lie groups II. Japanese J. Math., 2 (1976), 27-89.
- A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered [14] representation of semisimple Lie groups, Ann. of Math., 116 (1982), 389-501
- A. W. Knapp, Minimal K-type formula, Non Commutative Harmonic analysis and Lie groups, Springer-Verlag, Lecture Notes in Math., 1020 [15] (1983), 107-118.
- Representation Theory of semisimple Lie groups, Princeton Univ. [16] Press New Jersey (1986).
- M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. [17] Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math., 107 (1978), 1-39.
- B. Kostant, On the existence and irreducibility of certain series represen-[18] tations, Lie groups and Their Representations, Halsted Press, New York (1975) 231-329.
- H. Midorikawa, On certain irreducible representations for the real rank one [19] classical groups, J. Fac. Sci. Univ. Tokyo, 21 (1974), 435-459.
- [20] -, Schur orthogonality relations for certain nonsquare integrable representations of real semisimple Lie groups, Tokyo J. Math., 8 (1985), 303-336.
- D. Miličić, Notes on asymptotics of admissible representations of semisimple [21] Lie groups, manuscript (1976).
- P. C. Trombi and V. S. Varadarajan, Asymptotic behavior of eigen func-[22] tions on a semisimple Lie group; The discrete spectrum, Acta Math., 129 (1972), 237-280.
- V. S. Varadarajan, Harmonic analysis on real reductive groups, Springer-[23] Verlag Lecture Notes in Math.. 576 (1977).
- [24] D. Vogan, The algebraic structure of representations of semisimple Lie

- groups I, Ann. of Math., **109** (1979), 1–60. [25] N. R. Wallach, On regular singularities in several variables, manuscript (1975).
- G. Warner, Harmonic analysis on semisimple Lie group I, Springer-Verlag, [26] New York (1972).
- ---, Harmonic analysis on semisimple Lie group II, Springer Verlag, New [27] ---York (1972).

Department of Mathematics Tsuda College Tsuda-machi, Kodaira, Tokyo 187 Japan