Schur Orthogonality Relations for Non Square Integrable Representations of Real Semisimple Linear Group and Its Application

Hisaichi Midorikawa

Introduction

In the previous paper [20], we discuss the Schur orthogonality relations for certain non square integrable representations of a given connected real semisimple linear group G. Those representations are the subrepresentations of unitary principal series of G induced from a maximal cuspidal parabolic subgroup, although I did not state explicitly this fact in [20]. We formulate our results as follows.

Let $C^{\infty}(G)$ be the set of all complex valued C^{∞}-functions on G and g_{C} the complexification of the Lie algebra \mathfrak{g} of G. The universal enveloping algebra $\mathfrak{u t}(\mathrm{g})$ of g_{c} acts on $C^{\infty}(G)$. The left (resp. right) action of b in $\mathfrak{u}(\mathrm{g})$ will be denoted by $b f$ (resp. $f b$) for f in $C^{\infty}(G)$. Let z be the center of $\mathfrak{H}(\mathrm{g})$ and $d(p, q)$ the Riemannian distance on the symmetric space G / K where K is a maximal compact subgroup of G. Define a function d on G and a seminorm $\left\|\|_{p}\right.$ on $C^{\infty}(G)$ by

$$
d(x)=d(x o, o), o \text { is the origin in } G / K
$$

and

$$
\|f\|_{p}^{2}=\lim _{\varepsilon \rightarrow+0} \varepsilon^{p} \int_{G}|f(x)|^{2} e^{-\varepsilon d(x)} d x \text { for } f \text { in } C^{\infty}(G)
$$

where p is a nonnegative real number and $d x$ is the Haar measure on G.
Definition I. Let χ be a character of z°. The space $H_{p}(G, \chi)$ is defined as the set of all C^{∞}-functions f satisfying $\left\|b_{1} f b_{2}\right\|_{p}<\infty$ and $(z-\chi(z)) f$ $=0$ for all b_{i} in $\mathfrak{H}(\mathrm{g})$ and z in $\mathfrak{z} . \quad H_{p}(G, \chi)$ is a topological G-module with the canonical actions. Furthermore $\left\|R_{x} f\right\|_{p}=\left\|L_{x} f\right\|_{p}=\|f\|_{p}$ for x in G and f in $H_{p}(G, \chi)$ where R and L are respectively the right and left actions of G on $H_{p}(G, \chi)$. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. We denote the root space decomposition of \mathfrak{g}_{C} by $\mathfrak{g}_{C}=\mathfrak{h}_{\boldsymbol{C}} \oplus \sum_{\alpha \in \mathscr{\Phi}} \mathfrak{g}_{\alpha}$ where Φ is the root system of $\left(\mathfrak{g}_{\boldsymbol{c}}, \mathfrak{h}_{c}\right)$. Select, for each α in Φ, X_{α} in \mathfrak{g}_{α} satisfying $B\left(X_{\alpha}, X_{-\alpha}\right)=1$
(B is the Killing form on \mathfrak{g}_{C}). Each element $H_{\alpha}=a d\left(X_{\alpha}\right) X_{-\alpha}$ belongs to \mathfrak{G}_{c}. Using the canonical isomorphism of z into the ring of polynomial functions on the dual space of $\mathfrak{h}_{\boldsymbol{c}}$, we can parametrize all characters χ of z by the linear forms on \mathfrak{K}_{c}. We shall denote this parametrization by $\chi=\chi_{\lambda}, \lambda$ is a linear form on \mathfrak{G}_{C}.

Definition II. The number $i(\chi)$ is defined by $i(\chi)=\sharp\left\{\alpha \in \Psi ; \lambda\left(H_{\alpha}\right) \in\right.$ $\boldsymbol{R}-\{0\}\}$ where Ψ is a fundamental root system of $\Phi, \# S$ is the cardinality of a given set S. The number $i(\chi)$ is called the index of χ.

Theorem I. Let χ be a character of $\overline{\mathrm{j}}$. Assume that $H_{i(x)}(G, \chi)$ is nontrivial. Then $H_{i(x)}(G, \chi)$ is a pre-Hilbert space with the norm $\left\|\|_{i(x)}\right.$.

The theorem will be proved by using Harish-Charandra's classification theorem for discrete series representations and the asymptotic expansion theorems (for the K-finite eigenfunctions on G) obtained by Harish-Chandra [8], W. Casselman and Miličić [4], [5], [21] (see also M. Kashiwara et al. [17], N.R. Wallach [25]).

We shall denote the completion of $H_{i(\chi)}(G, \chi)$ and its norm by $H(G, \chi)$ and $\|\|$ respectively. The regular representations R and L on $H(G, \chi)$ are unitary, and all K-finite functions in $H(G, \chi)$ are real analytic.

Definition III. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if there exists an isometric linear operator η of H into $H(G, \chi)$ such that $R_{x} \circ \eta=\eta \circ \pi(x)$ for all x in G.

Theorem II. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if and only if there exists a K-finite vector ϕ in H such that $(\pi(x) \phi, \phi)$ belongs to $H(G, \chi)$.

We remark that if $i(\chi)=0$, then $H(G, \chi) \subset L^{2}(G)$ where $L^{2}(G)$ is the space consisting of all square integrable functions on G. Therefore $H(G, \chi)$ is a closed invariant subspace of $L^{2}(G)$, and the representation π realized on $H(G, \chi)$ belongs to the discrete series in this case.

By using Theorem I and Theorem II, the standard arguments for the proof of Schur orthogonality relations of square integrable representations of G imply the following theorem.

Theorem III. Let (π, H) and $\left(\pi^{\prime}, H^{\prime}\right)$ be two irreducible unitary representations of G realized on $H(G, \chi)$. Then there exists a positive constant d_{π} such that
$\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{G}(\pi(x) \phi, \psi) \overline{\left(\pi^{\prime}(x) \phi^{\prime}, \psi^{\prime}\right)} e^{-\varepsilon d(x)} d x= \begin{cases}d_{\pi}^{-1}\left(\phi, \phi^{\prime}\right) \overline{\left(\psi, \psi^{\prime}\right)} & \text { if } \pi \cong \pi^{\prime} \\ 0 & \text { otherwise }\end{cases}$
for all K-finite vectors $\phi, \psi \in H$ and $\phi^{\prime}, \psi^{\prime} \in H^{\prime}$.
The constant d_{π} is called the formal degree of π. In case of $i(\chi)=0$, the relations in the above theorem are well known as a result of R . Godement [6] (see Theorem 4.5.9.3, [26]). For the case $i(\chi)=1$, we proved the similar theorem in [20].

In the following we shall assume that $i(\chi)>0$. Let $P=M A N$ be a proper cuspidal parabolic subgroup of G. Consider a discrete series representation σ of M and a unitary character $a \rightarrow e^{\nu(\log a)}$ of A where ν is a purely imaginary valued linear form on the Lie algebra \mathfrak{a} of A. The representation $\sigma \otimes e^{\nu}$ of $M A$ is extended to P by $\left(\sigma \otimes e^{\nu} \otimes 1\right)(\mathrm{man})=e^{\nu(\log a)} \sigma(m)$ for $a \in A, m \in M$ and $n \in N$. Let $\pi(\sigma, \nu)=\operatorname{ind}_{P}^{\epsilon}\left(\sigma \otimes e^{\nu} \otimes 1\right)$ be the induced representation of G from P constructed by canonical procedure. $\pi(\sigma, \nu)$ is called a principal series unitary representation of G induced from P. The following theorem is proved by Schur orthogonality relations in Theorem III.

Theorem IV. Assume that $i(\chi)>0$. Then each irreducible unitary representation of G realized on $H(G, \chi)$ is equivalent to a subrepresentation of a principal series of G induced from a certain cuspidal parabolic subgroup $P=M A N$ with $i(\chi)=\operatorname{dim} A$.

Definition IV. Let notations be as above. A principal series representation $\pi(\sigma, \nu)$ of G induced from $P=M A N$ is regular if the linear form ν on \mathfrak{a} is regular.

Theorem V. Each regular principal series unitary representation $\pi(\sigma, \nu)$ of G with infinitesimal character χ is realized on $H(G, \chi)$.

As an application of Schur orthogonality relations for non square integrable representation of G, we give a proof of irreducibility of the regular principal series in the following.

Theorem VI (Bruhat and Harish-Chandra). All regular principal series unitary representations of G are irreducible.

Our proof of this theorem is based on the character theory due to T. Hirai [13], the lowest (minimal) K-type theorem for principal series representation of G obtained by D. Vogan [24] (see also A.W. Knapp [15], J. Carmona [3]) and Schur orthogonality relations. By [13], we see that all tempered invariant eigendistributions on G with the same regular infinitesimal character are uniquely determined up to constant. To apply Hirai's theorem we use the following theorem.

Theorem VII (Knapp and Zuckerman). Let $\pi(\sigma, \nu)$ be a principal series representation of G. Then the character of each subrepresentation of $\pi(\sigma, \nu)$ is tempered.

In [14], there is a character table of all irreducible components of principal series representations of G. Since their characters are determined explicitly, we can observe that the character of each irreducible component of $\pi(\sigma, \nu)$ is tempered. However, in this paper, we shall prove directly the temperedness as in the above theorem by using uniform estimation, which is a result of P.C. Trombi and V.S. Varadarajan [22], for the matrix coefficients of discrete series representation σ of M.

The author would like to thank Professors W. Schmid, T. Oshima, M. Duflo, D. Vogan and J. Sekiguchi for helpful advices to his conference talk, especially on a proof of irreducibility of regular principal series which are restricted to special case in his first manuscript, held at Kyoto Univ. and Hiroshima Univ., '86.

Contents

§ 1. Preliminaries and notational definitions . 260
§ 2. Principal P-series representation . 263
§3. Temperedness for the character of subrepresentation
of principal P-series . 265
§ 4. pre-Hilbert structure on $H_{i(x)}(G, \chi) \ldots \ldots .$.
§ 5. Schur orthogonality relations. 276
§ 6. Realization of regular principal series representation. 279
§ 7. Irreducibilities for regular principal series representations. . . . 284

§ 1. Preliminaries and notational definitions

We first state, in this section, two lemmas for elementary spherical function Ξ on a connected real semisimple linear group G. Let K be a fixed maximal compact subgroup of G and $P_{0}=M_{0} A_{0} N_{0}$ a minimal parabolic subgroup of G with θ-stable split component A_{0} where θ is the Cartan involution of (G, K). Therefore $G=K A_{0} N_{0}$ is the Iwasawa decomposition. Each element x in G is uniquely written by $x=k(x) \exp H(x) n(x), k(x) \in$ $K, H(x) \in \mathfrak{a}_{0}$ and $n(x) \in N_{0}$ where \mathfrak{a}_{0} is the Lie algebra of A_{0}. Let \mathfrak{g} and \mathfrak{n}_{0} be the Lie algebras of G and N_{0} respectively. The action $\operatorname{Ad}(p)$ $\left(p \in P_{0}\right)$ on \mathfrak{n}_{0} will be denoted by $\left.\operatorname{Ad}(p)\right|_{n_{0}}$. Then there exists a linear form ρ on \mathfrak{a}_{0} such that $e^{\rho(\log a)}=\sqrt{|\operatorname{det} \operatorname{Ad}(a)|_{n_{0}} \mid}$ for all a in A_{0}. We de-
fine a function on G by $\Xi(x)=\int_{K} e^{-\rho(H(x-1 k)} d k, x \in G$ where $d k$ is the Haar measure on K normalized as $\int_{K} d k=1$. Let $d(p, q)(p, q \in G / K)$ be the Riemannian distance on the symmetric space G / K and o the origin in the space. Then we have the following (see, for the proofs, Lemma 8.5.2.6 and Lemma in p. 239 [26]).

Lemma 1. The function satisfies the properties below;
(1) $\Xi\left(k x k^{\prime}\right)=\Xi(x)$ for all $x \in G, k, k^{\prime} \in K$,
(2) $\Xi\left(x^{-1}\right)=\Xi(x)$,
(3) there exists a nonnegative integer p such that

$$
e^{-\rho(\log a)} \leqq \boldsymbol{\Xi}(a) \leqq a \text { const. } e^{-\rho(\log a)}(1+d(x o, o))^{p}
$$

for all a in the positive Weyl chamber A_{0}^{+}of A_{0} and
(4) choosing a positive number p^{\prime} suitably

$$
\Xi(a n)(1+d(a n o, o))^{-p^{\prime}} \leqq a \text { const. } e^{-(\rho(\log a)+\rho(H(\theta(n-1))))}
$$

for all a in A_{0} and n in N_{0}.
Remark 1. The function $\rho\left(H\left(\theta\left(n^{-1}\right)\right)\right)$ on N_{0} is nonnegative.
Secondly we define the Schwarz space on G following Harish-Chandra. Let $\mathfrak{u}(\mathrm{g})$ be the universal enveloping algebra of g_{c}. The actions on the ring of all C^{∞}-functions $C^{\infty}(G)$ on G are defined by

$$
(X f)(x)=\left.\frac{d}{d t} f(\exp -t X x)\right|_{t=0} \quad \text { and } \quad(f X)(x)=\left.\frac{d}{d t} f(x \exp t X)\right|_{t=0}
$$

for x in G, f in $C^{\infty}(G)$ and X in g. We shall denote the actions to the left and right by $b f$ and $f b$ respectively for all b in $\mathfrak{u}(g)$ and f in $C^{\infty}(G)$. Let b_{1}, b_{2} be two elements in $\mathfrak{t}(\mathrm{g})$ and r a real number. We put a seminorm $\nu_{b_{1}, b_{2}, r}$ on $C^{\infty}(G)$ by

$$
\nu_{b_{1}, b_{2}, r}(f)=\sup _{x \in G}\left|\left(b_{1} f b_{2}\right)(x)\right| \Xi(x)^{-1}(1+d(x))^{-r}
$$

where $d(x)=d(x o, o)$.
Definition 1. The Schwarz space $\mathscr{C}(G)$ on G is consists of all C^{∞} functions f on G with the following properties; $\nu_{b_{1}, b_{2}, r}(f)<\infty$ for all b_{1}, b_{2} in $\mathfrak{H}(\mathfrak{g})$ and positive real numbers r.

Definition 2. A distribution T on G is called tempered if T is extended
to a continuous linear form on $\mathscr{C}(G)$. To study the tempered distributions on G the following integral formula on G is crucial. Let \mathfrak{h} be a θ-stable Cartan subalgebra of \mathfrak{g} containing \mathfrak{a}_{0} and Φ the root system of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$. For the root system $\Phi\left(A_{0}\right)$ of $\left(P_{0}, A_{0}\right)$, we induce a linear order of Φ as the following; if α is positive on \mathfrak{a}_{0}, then α is also positive on \mathfrak{h}. Let Φ_{+}be the set of all positive roots in Φ which does not vanish on \mathfrak{a}_{0}. We define a function D on A_{0} by

$$
D(a)=\prod_{\alpha \in \Phi_{+}}|\exp \alpha(\log a)-\exp (-\alpha(\log a))|, \quad a \in A_{0}
$$

Lemma 2. There exists a positive constant $C=C_{G}$ such that

$$
\int_{G} f(x) d x=C \int_{A_{0}^{+}} d a \iint_{K \times K} f\left(k a k^{\prime}\right) D(a) d k d k^{\prime}
$$

for all f in $C_{c}^{\infty}(G)$ where A_{0}^{+}is the positive Weyl chamber of A_{0} and $C_{c}^{\infty}(G)$ is the set of all C^{∞}-functions on G with compact support.
(See Proposition 10.17, [11]).
Let z be the center of $\mathfrak{u}(g)$. A function f in $C^{\infty}(G)$ is z - (resp. K-) finite if $\operatorname{dim}_{z} f$ (resp. the dimension of linear span $\left\{L_{k} \circ R_{k^{\prime}} f ; k, k^{\prime} \in K\right\}$) is finite, where L and R are respectively the canonical actions on $C^{\infty}(G)$ to the left and right respectively.

Finally, we shall state for the character of a given admissible unitary representation of G after the following preparations. Let $\mathscr{E}(K)$ be the set of all equivalence classes of irreducible unitary representations of K. We put, for each $[\tau]$ in $\mathscr{E}(K), \chi_{\tau}(k)=d_{\tau}$ Trace $\tau(k), k \in K, d_{\tau}=$ the dimension (degree) of τ. Let (π, H) be a unitary representation of G. We define a projection operator $E(\tau)$ on H as follows; $E(\tau) v=\int_{K} \overline{\chi_{z}(k)} \pi(k) d k, v \in H$.

Definition 3. A unitary representation (π, H) of G is admissible if there exist two positive numbers N and m such that $\operatorname{dim} E(\tau) H \leqq N\left(d_{\tau}\right)^{m}$ for all $[\tau]$ in $\mathscr{E}(K)$.

For an admissible unitary representation π of G the operator $\pi(f)=$ $\int_{G} f(x) \pi(x) d x$ is of trace class, $\Theta_{\pi}(f)=$ Trace $\pi(f)$ is a distribution on G where f is a function in $C_{c}^{\infty}(G)$. Furthermore if π is irreducible, then there exists a character χ of z such that $(z-\chi(z)) \Theta_{\pi}=0$ for all z in $z . \quad \Theta_{\pi}$ (resp. χ) is the character (resp. the infinitesimal character) of π.

§ 2. Principal \boldsymbol{P}-series representation

In this section, we shall define a principal series representation of G induced from a given cuspidal parabolic subgroup, and state for the admissibility of the representation.

Let $P=M A N$ be the Langlands decomposition of a cuspidal parabolic subgroup P of G. Throughout of this paper, we always assume that the split component A of P is θ-stable. The Lie algebras of M, A and N respectively are denoted by $\mathfrak{m}, \mathfrak{a}$ and \mathfrak{n}. We define a function d_{P} on P and linear form ρ_{P} on \mathfrak{a} as follows; $d_{P}(p)=\sqrt{|\operatorname{det} \operatorname{Ad}(p)|_{\mathfrak{n}} \mid}$ and $\exp \rho_{P}(\log a)$ $=d_{P}(a)$ for p in P and a in A.

Let $\left(\sigma, H_{\sigma}\right)$ be a square integrable (discrete series) representation of M and $a \mapsto e^{\nu(\log a)}$ a unitary character of A where ν is a purely imaginary valued linear form on \mathfrak{a}. We extend the representation $\sigma \otimes e^{\nu}$ of $M A$ to P by $\left(\sigma \otimes e^{\nu} \otimes 1\right)(m a n)=\left(\sigma \otimes e^{\nu}\right)(m a), m \in M, a \in A, n \in N$. A H_{σ}-valued C^{∞} function f on G belongs to $C^{\infty}\left(G, H_{\sigma}\right)$ if f satisfies that
(2.1) $f(x p)=d_{P}(p)^{-1}\left(\sigma \otimes e^{\nu} \otimes 1\right)(p)^{-1} f(x)$ for all x in G and p in P. The space $C^{\infty}\left(G, H_{\sigma}\right)$ is a pre-Hilbert space with the following positive definite Hermitian structure (,);

$$
\begin{equation*}
(\phi, \psi)=\int_{K}(\phi(k), \psi(k)) d k \quad \text { for, } \phi, \psi \quad \text { in } C^{\infty}\left(G, H_{\sigma}\right) \tag{2.2}
\end{equation*}
$$

The completion of $C^{\infty}\left(G, H_{\sigma}\right)$ will be denoted by $H(\sigma, \nu)$. We see that the left regular representation $\pi(\sigma, \nu) \equiv \operatorname{ind}_{P}^{G}\left(\sigma \otimes e^{\nu} \otimes 1\right)$ of G on the space $H(\sigma, \nu)$ is unitary. $\pi(\sigma, \nu)$ is called a principal series representation of G induced from the cuspidal parabolic subgroup P (or simply principal P series representation of G). Let $H(\sigma)$ be the set of all restriction of functions in $H(\sigma, \nu)$ to $K . H(\sigma)$ can be identified to the subspace $\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}$ of $L^{2}(K) \otimes H_{\sigma}, L^{2}(K)$ is the space of all square integrable functions on K and
(2.3) $\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}=$ the set of all $\sum_{i} f_{i} \otimes v_{i}$ in $L^{2}(K) \otimes H_{\sigma}$ satisfying $\sum_{i} f_{i} \otimes v_{i}(k m)=\sum_{i} f_{i}(k) \otimes \sigma(m)^{-1} v_{i}$ for all k in K and m in $K_{M} \equiv K \cap M$ where the summation runs over a finite members of i.

Let us give an another realization of $\pi(\sigma, \nu)$ as following.
Define a representation $\pi^{\prime}(\sigma, \nu)$ of G on $H(\sigma)$ by

$$
\begin{gather*}
\left(\pi^{\prime}(\sigma, \nu)(x) \phi\right)(k)=e^{-\left(\nu+\rho_{P}\right)(H(x-1 k))} \sigma\left(m\left(x^{-1} k\right)\right)^{-1} \phi\left(k\left(x^{-1} k\right)\right) \tag{2.4}\\
\text { where } k\left(x^{-1} k\right) \in K, \quad m\left(x^{-1} k\right) \in M, \quad H_{P}\left(x^{-1} k\right) \in \mathfrak{a}
\end{gather*}
$$

determined by $x^{-1} k \in k\left(x^{-1} k\right) m\left(x^{-1} k\right) \exp H_{P}\left(x^{-1} k\right) N$ for k in K, x in G.

Let η be a linear mapping of $H(\sigma, \nu)$ onto $H(\sigma)$ defined by $\eta(\phi)(k)=$ $\phi(k), \phi \in H(\sigma, \nu)$. Then $\pi^{\prime}(\sigma, \nu)(x) \circ \eta=\eta \circ \pi(\sigma, \nu)(x)$ for all x in G. We shall denote $\pi^{\prime}(\sigma, \nu)=\pi(\sigma, \nu)$ under this identification. Let us state the admissibility for $\pi(\sigma, \nu)$. Let $\mathscr{E}(K)$ be the set of all equivalence classes of irreducible unitary representations of K and $\left.\pi(\sigma, \nu)\right|_{K}$ the restriction of $\pi(\sigma, \nu)$ to K. For each class [$\tau]$ in $\mathscr{E}(K)$, we denote the multiplicity of τ appearing in $\left.\pi(\sigma, \nu)\right|_{K}$ by $\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau\right]$. Similarly we also denote by $\left[\left.\sigma\right|_{K_{M}}: \xi\right]$ for $[\xi]$ in $\mathscr{E}\left(K_{M}\right)$ the same as K. Since $\left.\pi(\sigma, \nu)\right|_{K}$ is the left regular representation of compact group K, the Frobenius reciprocity theorem implies that

$$
\begin{align*}
& {\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau\right]=\sum_{[\xi \xi] \in\left(K_{M M)}\right)}\left[\left.\sigma\right|_{K_{X}}: \xi\right]\left[\left.\tau\right|_{K_{M}}: \xi\right]} \tag{2.5}\\
& \quad \text { for all }[\tau] \text { in } \mathscr{E}(K) .
\end{align*}
$$

By our assumption for σ, σ is realized on a closed invariant subspace of $L^{2}(M)$. Consequently, by using Peter-Weyl theorem, we have

$$
\begin{equation*}
\left[\left.\sigma\right|_{K_{\mu}}: \xi\right] \leqq\left(d_{\xi}\right)^{2} \quad \text { for all }[\xi] \text { in } \mathscr{E}\left(K_{\mu}\right) . \tag{2.6}
\end{equation*}
$$

Combining (2.5) with (2.6), we have the following.
Lemma 1. Let notations and assumptions being as above. Then $\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau\right] \leqq\left(d_{\tau}\right)^{4}$ for all $[\tau]$ in $\mathscr{E}(K)$.

Thus by the above lemma, each subrepresentation π of $\pi(\sigma, \nu)$ is admissible.

Lemma 2. There exists a character χ of z such that $(z-\chi(z)) \Theta_{\pi}=0$ for all subrepresentations π of $\pi(\sigma, \nu)$ and z in $\bar{\delta}$.

Proof. In view of the explicit formura of the character $\Theta_{\pi(\sigma, \nu)}$ (see [12]), there exists a character χ of \bar{z} such that $(z-\chi(z)) \Theta_{\pi(\sigma, \nu)}=0$ for all z in子. We define for $[\tau]$ in $\mathscr{E}(K)$ and f in $C^{\infty}(G), \chi_{\tau} * f$ and $f * \chi_{\tau}$ by

$$
\begin{align*}
& \left(\chi_{\tau} * f\right)(x)=\int_{K} \overline{\chi_{\tau}(k)} f\left(k^{-1} x\right) d k, \tag{2.7}\\
& \left(f * \chi_{\tau}\right)(x)=\int_{K} \overline{\chi_{\tau}(k)} f(x k) d k, \quad x \in G .
\end{align*}
$$

Let $E(\tau)$ be the projection operator as in Section 1. By the definition $\Theta_{\pi(\sigma, \nu)}(f)=\sum_{[r] \in e(K<} \int_{G} f(x) \phi_{\tau}(x) d x$ for all f in $C_{c}^{\infty}(G)$ where $\phi_{\tau}(x)=$ $\operatorname{Trace}(E(\tau) \pi(\sigma, \nu)(x) E(\tau))$. Therefore $\Theta_{\pi(\sigma, \nu)}\left(\chi_{\tau} * f * \chi_{z}\right)=\int_{G} f(x) \phi_{\tau}(x) d x$.
Since $\Theta_{\pi(o, \nu)}$ is contained the kernel of $z-\chi(z)$ we have

$$
\begin{equation*}
(z-\chi(z)) \phi_{\tau}=0 \quad \text { for all } z \text { in } z \tag{2.8}
\end{equation*}
$$

We choose $[\tau]$ in $\mathscr{E}(K)$ satisfying $\left[\left.\pi\right|_{K}: \tau\right]>0$ for a given irreducible subrepresentation π of $\pi(\sigma, \nu)$. Then there exist a finite number of irreducible subrepresentations $\pi=\pi_{1}, \pi_{2}, \cdots, \pi_{n}$ of $\pi(\sigma, \nu)$ such that

$$
\begin{equation*}
\phi_{\tau}=\sum_{i=1}^{n}\left[\left.\pi(\sigma, \nu)\right|_{K}: \pi_{i}\right] \phi_{i}, \phi_{i}(x)=\operatorname{Trace}\left(E(\tau) \pi_{i}(x) E(\tau)\right) . \tag{2.9}
\end{equation*}
$$

Let χ_{i} be the infinitesimal character of π_{i}. Then by (2.8) and (2.9), we have $\sum_{i=1}^{n}\left[\left.\pi(\sigma, \nu)\right|_{K}: \pi_{i}\right]\left(\chi(z)-\chi_{i}(z)\right) \phi_{i}=0$. Since all π_{i} 's are inequivalent to each other, $\left\{\phi_{i}\right\}$ is linearly independent. Thus $(z-\chi(z)) \Theta_{\pi}=0$ for all z in z and subrepresentations π of $\pi(\sigma, \nu)$ as claimed.

§ 3. Temperedness for the character of subrepresentation of principal P-series

We keep the same notations as in previous section. Choose an orthonormal basis $\phi_{1}, \phi_{2}, \cdots$ of $H(\sigma) \cong\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}$ satisfying $E\left(\tau_{i}\right) \phi_{i}=\phi_{i}$ for some $\left[\tau_{i}\right]$ in $\mathscr{E}(K)$ and v_{1}, v_{2}, \cdots of H_{σ} with properties $E\left(\xi_{i}\right) v_{i}=v_{i}$ for $\left[\xi_{i}\right]$ in $\mathscr{E}\left(K_{M}\right)$. We now fix $\phi=\phi_{p}$ and $\tau=\tau_{p}$. Then ϕ is of the form

$$
\begin{equation*}
\phi(k)=\sum_{j, l, m} c_{j, l, m}\left(\tau(k) \psi_{l}, \psi_{m}\right) \otimes v_{j} \tag{3.1}
\end{equation*}
$$

where the summation runs over the set

$$
W_{\tau, \sigma}=\left\{(j, l, m) ;\left[\left.\tau\right|_{K_{M}}: \xi_{j}\right]>0, j \in N \text { and } 1 \leqq i, m \leqq d_{\tau}\right\}
$$

$N=$ the set of all natural numbers and $\psi_{1}, \psi_{2}, \cdots, \psi_{d_{\tau}}$ is an orthonormal basis of the space on which τ acts.

Lemma 1. Let $c_{j, l, m}$ be the constant as in (3.1). Then we have $\left|c_{j, l, m}\right|^{2} \leqq d_{\tau}$ for (j, l, m) in $W_{\tau, \sigma}$.

Proof. Since $|\phi|=1$, we have

$$
\begin{aligned}
1 & =\sum_{j} \int_{K} \sum_{(j, l, m) \in W_{\tau}, \sigma}\left|\left(\tau(k) \psi_{l}, \psi_{m}\right) c_{j, l, m}\right|^{2} d k \\
& =\left(d_{\tau}\right)^{-1} \sum_{(j, l, m) \in W_{\tau}, \sigma}\left|c_{j, l, m}\right|^{2}
\end{aligned}
$$

Hence the lemma follows.
We put $f(x)=(\pi(\sigma, \nu)(x) \phi, \phi)$ for x in G. In view of the formula in (2.4), we have

$$
\begin{aligned}
|f(x)| & \leqq \int_{K} e^{-\rho_{P}(H(x-1 k)}\left|\left(\sigma\left(m\left(x^{-1} k\right)\right)^{-1} \phi\left(k\left(x^{-1} k\right)\right), \phi(k)\right)\right| d k \\
& \leqq \sum_{j, l, m} \sum_{i, s, t} \int_{K} e^{-\rho_{P}(H(x-1 k)} \mid\left(\sigma\left(m\left(x^{-1} k\right) v_{i}, v_{j}\right)\left|d k d_{z}\right| c_{j, l, m} c_{i, s, t} \mid\right.
\end{aligned}
$$

hence by the above lemma we get the following.

$$
\begin{equation*}
|f(x)| \leqq \sum_{j, l, m} \sum_{i, s, t}\left(d_{\tau}\right)^{2} \int_{K} e^{-\rho_{P}(H(x-1 k)}\left|\left(\sigma\left(m\left(x^{-1} k\right)\right)^{-1} v_{j}, v_{i}\right)\right| d k \tag{3.2}
\end{equation*}
$$

where (j, l, m) and (i, s, t) run over the set $W_{\tau, \tau}$.
Let m be an element in M. We put $g_{i, j}(m)=\left(\sigma(m)^{-1} v_{i}, v_{j}\right)$ for all $i, j=1,2, \cdots,\left(v_{i}\right.$'s are the orthonormal basis of $\left.H_{\sigma}\right)$. For a fixed (i, j) we put $V_{i, j}=$ the linear span of the set $\left\{L_{k} \circ R_{k^{\prime}} g_{i, j} ; k, k^{\prime} \in K_{M}\right\}$. Since v_{i} and v_{j} are K_{M}-finite $V_{i, j}$ is finite dimensional. Let $\Omega_{K_{M}}$ be the Casimir operator on K_{M}. Then there exists a constant $\chi_{\xi_{i}}\left(\Omega_{K_{M}}\right)$ such that $\Omega_{K_{M}} \xi_{i}$ $=\chi_{\xi_{i}}\left(\Omega_{K_{M}}\right) \xi_{i}$. Therefore $\Omega_{K_{M}}$ acts on $V_{i, j}$ to the left (resp. right) as a scalar operator $\xi_{i}\left(\Omega_{K_{M}}\right)$ (resp. $\xi_{j}\left(\Omega_{K_{M}}\right)$). Consequently by the uniform estimation, which is due to P.C. Trombi and V.S. Varadrarajan (see for instance, Theorem 16.1.9, II, [22]),
(3.3) there exist two positive constants C, κ and a positive number q such that

$$
\left|g_{i, j}(m)\right| \leqq C\left(\left(1+\left|\xi_{i}\left(\Omega_{K_{\mu}}\right)\right|\right)\left(1+\mid \xi_{j}\left(\Omega_{K_{m}}| |\right)\right)^{q}\left\|g_{i, j}\right\| \Xi_{M k}(m)^{1+\kappa}\right.
$$

for all m and $i, j=1,2, \cdots$, where C, κ, q are independent on i, j and m in $M,\left\|g_{i, j}\right\|$ is the L^{2}-norm on $\left.M, \mid \xi_{i}(\Omega)_{K_{H}}\right) \mid$ is the operator norm of $\xi_{i}\left(\Omega_{K_{M}}\right)$. Using the Schur orthogonality relations for square integrable representation σ, there exists a positive constant d_{σ} (which is called the formal degree of σ) such that $\left\|g_{i, j}\right\|^{2}=d_{\sigma}^{-1}\left|v_{i} \| v_{j}\right|$ for all $i, j=1,2, \cdots$ Therefore (3.3) is rewritten as follows;
(3.4) $\left|g_{i, j}(m)\right| \leqq C\left(1+d_{\tau}\left|\chi_{\tau}\left(\Omega_{K}\right)\right|\right)^{2 q} \Xi_{M}(m)^{1+\kappa}$ for all (i, j) satisfying $\left[\tau: \xi_{j}\right]$ >0 and $\left[\tau: \xi_{i}\right]>0$ where $\tau=\tau_{p}$ is the fixed representation of K as in (3.2), $\chi_{\tau}\left(\Omega_{K}\right) 1=\tau\left(\Omega_{K}\right)$ and C, κ, q are constant (positive) independent on m in M and (i, j).

Combining (3.4) with (3.2) we have

$$
\begin{equation*}
|f(x)| \leqq C^{\prime}\left(1+d_{\tau}\left|\chi_{\tau}\left(\Omega_{K}\right)\right|\right)^{2 q}\left(\# W_{\tau, \sigma}\right)^{2} \int_{K} e^{-\rho_{P}(H(x-1 k))} \Xi_{M}\left(m\left(x^{-1} k\right)\right)^{1+\varepsilon} d k \tag{3.5}
\end{equation*}
$$

where C^{\prime} does not depend on m in $M, \tau=\tau_{p}, \phi=\phi_{p}$, and f is the function defined by $f(x)=(\pi(\sigma, \nu)(x) \phi, \phi)$.

By the definition of $W_{\tau, \sigma}$ as in (3.1), $\# W_{\tau, \sigma}$ is estimated by

$$
\begin{equation*}
\# W_{\tau \sigma} \leqq\left(d_{\tau}\right)^{2} \sum_{j}\left[\left.\tau\right|_{K_{M}}: \xi_{j}\right]\left[\left.\sigma\right|_{K_{M}}: \xi_{j}\right] \leqq\left(d_{\tau}\right)^{5} . \tag{3.6}
\end{equation*}
$$

Let us estimate $\Xi_{M}\left(m\left(x^{-1} k\right)\right)^{1+\kappa}$. Let $P_{0}^{*}=M_{0}^{*} A_{0}^{*} N_{0}^{*}$ be a minimal parabolic subgroup of M. Choosing P_{0}^{*} suitably, we can assume $A_{0}=A A_{0}^{*}$. Define $\rho^{*}, k^{*}(m), H^{*}(m)$ and $n^{*}(m)$ for M by the same as in Section 1. Then we have (see Lemma 1.1) $\Xi_{m}(m)=\Xi_{M}\left(\exp H^{*}(m) n^{*}(m)\right), m \in M$. Furthermore by (4) in Lemma 1.1, we have $\Xi_{M}\left(m\left(x^{-1} k\right)\right)^{1+\kappa} \leqq$ a const. $e^{-\rho^{*}\left(H^{*}(m(x-1 k))\right)}$ for all $x \in G$ and $k \in K$. Hence by (3.6) and (3.5), we have the following lemma.

Lemma 2. There exist two positive numbers p, q and a positive constant C such that $\left|\left(\pi(\sigma, \nu)(x) \phi_{i}, \phi_{i}\right)\right| \leqq\left. C\left(1+d_{\tau_{i}}\right)^{p} \chi_{\tau_{i}}\left(\Omega_{K}\right)\right|^{q} \Xi_{M}(x)$ for all $i=$ $1,2, \cdots$, and x in G where Ω_{K} is the Casimir operator on $K, \chi_{\tau_{i}}\left(\Omega_{K}\right)$ is the constant determined by $\tau_{i}\left(\Omega_{K}\right)=\chi_{\tau_{i}}\left(\Omega_{K}\right) 1, \phi_{1}, \phi_{2}, \cdots$ is an orthonormal basis of $H(\sigma, \nu)$ satisfying $E\left(\tau_{i}\right) \phi_{i}=\phi_{i}$ for some τ_{i} in $\mathscr{E}(K)$.

Theorem 1. Let (π, H) be an irreducible component of principal P series representation $\pi(\sigma, \nu)$ of G where $P=M A N$ is a parabolic subgroup which is cuspidal, σ is a discrete series representation of M and e^{ν} is a unitary character of A. Then the character Θ_{π} of π is tempered.

Remark. There is a table of characters of all irreducible components of principal P-series representations of G which is obtained by A.W. Knapp and G. Zuckerman ([14]). In view of the table, we see that all character of subrepresentations are tempered. In this paper we give a proof which is different from [14].

Proof of Theorem 1. Let $\phi_{1}, \phi_{2}, \cdots$ be an orthonormal basis of H. We choose ϕ_{i} which has the same property as in Lemma 2. Let p and q be the same as in Lemma 2. Then there exists a positive number m such that the series $c_{m}=\sum_{[\tau] \in \delta(K)}\left(1+d_{\tau}\right)^{p} d \tau^{4}\left(\chi_{\tau}\left(\Omega_{K}\right)\right)^{2(q-m)}$ is convergent. We fix such a number m. By definition

$$
\begin{aligned}
\left|\Theta_{\pi}(f)\right| & \leqq \sum_{i=1}^{\infty}\left|\int_{G} f(x)\left(\pi(x) \phi_{i}, \phi_{i}\right) d x\right| \\
& \leqq \sum_{i=1}^{\infty}\left(\chi_{\tau_{i}}\left(\Omega_{K}\right)\right)^{-2 m} \int_{G}\left(f \Omega_{K}^{2 m}\right)(x)| |\left(\pi(x) \phi_{i}, \phi_{i}\right) \mid d x \\
& \left.=\sum_{[\tau] \in \delta(K)} \sum_{E(\tau) \phi_{i}=\phi_{i}}\left(\chi_{\tau}\left(\Omega_{K}\right)\right)^{-2 m} \int_{G} \mid f \Omega_{K}^{2 m}\right)(x)\left|\left|\left(\pi(x) \phi_{i}, \phi_{i}\right)\right| d x .\right.
\end{aligned}
$$

Hence by Lemma 2.1 and Lemma 3, we have

$$
\left|\Theta_{\pi}(f)\right| \leqq c_{m} \int_{G}\left|\left(f \Omega_{K}^{2 m}\right)(x)\right| E(x) d x .
$$

Let r be a positive number satisfying $c=\int_{G} \Xi(x)^{2}(1+d(x))^{-r} d x<\infty$. Then we have $\left|\Theta_{\pi}(f)\right| \leqq c c_{m} \nu_{1, \Omega_{K}^{2 m}, r}(f)$ for all f in $C_{c}^{\infty}(G)$. Thus the character Θ_{π} is tempered. This completes our proof.

§ 4. Pre-Hilbert structure on $\boldsymbol{H}_{i(x)}(\boldsymbol{G}, \boldsymbol{\chi})$

First of all, in this section, we define a topological G-module $H_{i(x)}(G, \chi)$ for an infinitesimal character χ of \bar{z}. Let $P_{0}=M_{0} A_{0} N_{0}$ be the minimal parabolic subgroup of G and \mathfrak{h} a θ-stable Cartan subalgebra of g containing \mathfrak{a}_{0}. The root system and Weyl group of $\left(\mathfrak{g}_{\boldsymbol{c}}, \mathfrak{h}_{\boldsymbol{c}}\right)$ will be denoted by Φ and W respectively. Canonically W acts on the universal enveloping algebra $\mathfrak{u t}(\mathfrak{h})$ of $\mathfrak{h}_{\boldsymbol{c}}$. We regard $\mathfrak{u}(\mathfrak{h})$ as an algebra of polynomial functions on the dual space of $\mathfrak{G}_{\boldsymbol{C}}$, and denote $I(\mathfrak{h})$ the stabilizer of W in $\mathfrak{H}(\mathfrak{h})$. Let Φ^{+}be a positive root system of Φ. Therefore $\mathfrak{g}_{C}=\mathfrak{h}_{C} \oplus \sum_{\alpha \in \Phi+} \mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha}=$ $\left\{X \in \mathfrak{g}_{c} ; a d(H) X=\alpha(H) X\right.$ for all H in $\left.\mathfrak{G}\right\}$. We put $\mathfrak{n}^{+}=\sum_{\alpha \in \mathscr{\Phi}+} \mathfrak{g}_{\alpha}$. Then there exists a unique isomorphism γ of z into $\mathfrak{t}(\mathfrak{h})$ such that $z-\gamma(z) \in$ $\mathfrak{H}(\mathrm{g}) \mathfrak{M}^{+}$for z in \mathfrak{z}. Let ρ be one half the sum of all positive roots in Φ, and define μ of z into $\mathfrak{u}(\mathfrak{h})$ by $\mu(z)(\lambda)=\gamma(z)(\lambda-\rho)$ for z in z and linear form λ on \mathfrak{h}_{c}. μ is an isomorphism of z onto $I(\mathfrak{h})$. Therefore each character χ of z is parametrized by $\chi=\chi_{\lambda}$ where $\chi(z)=\mu(z)(\lambda)$ for some linear form λ on $\mathfrak{G}_{\boldsymbol{c}}$. By the definition, $\chi_{s \lambda}=\chi_{\lambda}$ for all s in W. Let X_{α} and $X_{-\alpha}$ be the basis of g_{α} and $\mathfrak{g}_{-\alpha}$ respectively satisfying $B\left(X_{\alpha}, X_{-\alpha}\right)=1$, and put $H_{\alpha}=\left[X_{\alpha}, X_{-\alpha}\right]$ where B is the Killing form on $g_{C} \cdot A$ character χ_{λ} of z is regular if $\lambda\left(H_{\alpha}\right) \neq 0$ for all α in Φ and real if $\lambda\left(H_{\alpha}\right) \in \boldsymbol{R}$ for all α in Φ.

Definition 1. Let Ψ be a fundamental root system of Φ. We put $\Psi(\chi)=\left\{\alpha \in \Psi ; \lambda\left(H_{\alpha}\right) \in \boldsymbol{R}-\{0\}\right\}$. The number $i(\chi)=\sharp \Psi-\# \Psi(\chi)$ is called the index of $\chi=\chi_{\lambda}$.

Definition 2. Let χ be a character of \bar{j}. A function f in $C^{\infty}(G)$ belongs to $H_{i(x)}(G, \chi)$ if f satisfies $(z-\chi(z)) f=0$ and $\left\|b_{1} f b_{2}\right\|<\infty$ for all z in z and b_{i} in $\mathfrak{u}(\mathrm{g})$, where $\left\|\|\right.$ is the seminorm on $C^{\infty}(G)$ defined by

$$
\begin{equation*}
\|f\|^{2}=\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{G}|f(x)|^{2} e^{-\varepsilon d(x)} d x, \quad d(x)=d(x o, o) \tag{4.1}
\end{equation*}
$$

We restate the properties for $H_{i(x)}(G, \chi)$ in the following two lemmas (see Lemma 2.1 and Lemma 2.2 in [20]).

Lemma 1. $H_{i(x)}(G, \chi)$ is a topological G-module with seminorm \|||
under the canonical left (resp. right) action L and R. Furthermore for each f in $H_{i(x)}(G, \chi)$ and x in $G,\left\|L_{x} f\right\|=\left\|R_{x} f\right\|=\|f\|$.

Let τ be an irreducible unitary representation of K. We define two actions $\chi_{\tau} *$ and $* \chi_{\tau}$ on $C^{\infty}(G)$ as in (2.7). Then by Peter-Weyl theorem on the compact group K, we have

$$
\begin{equation*}
f(x)=\sum_{\tau, \tau^{\prime} \in \delta(K)} d_{\tau} d_{\tau^{\prime}}\left(\chi_{\tau} * f * \chi_{\tau^{\prime}}\right)(x) \quad \text { for } f \text { in } C^{\infty}(G) . \tag{4.2}
\end{equation*}
$$

Lemma 2. Let f be an element in $H_{i(x)}(G, \chi)$. Then we have
(1) $\left\|\chi_{\tau} * f * \chi_{\tau^{\prime}}\right\| \leqq\left(d_{\tau} d_{\tau^{\prime}}\right)^{1 / 2}\|f\|$ for all τ and τ^{\prime} in $\mathscr{E}(K)$,
(2) the expansion of f in (4.2) converges to f in the topology $H_{i(x)}(G, \chi)$.

Remark 1. Let $H_{i(x), K}$ be the set of all K-finite (left and right) functions in $H_{i(x)}(G, \chi) . \quad H_{i(x), K}$ is an algebraic $\mathfrak{u t}(\mathrm{g})$-module (see for a proof, Lemma 3.5 in [19]).

The purpose of this section is to prove $H_{i(x)}(G, \chi)$ is a pre-Hilbert space with norm $\|\|$. This will be proved by using two asymptotic expansion theorems for τ-spherical eigenfunctions on G.

Definition. A unitary representation (τ, U) of $K \times K$ is a double representation of K if there exist two unitary representations τ_{1} and τ_{2} of K such that $\tau\left(k_{1}, k_{2}\right) \phi=\tau_{1}\left(k_{1}\right) \phi \tau_{2}\left(k_{2}\right)$ for all k_{i} in K and ϕ in U.

For the double unitary representation of K, we shall denote $\tau=\left(\tau_{1}, \tau_{2}\right)$.
Let f be a C^{∞}-function on G. We define for each x in G,

$$
\begin{equation*}
F(x)\left(k_{1}, k_{2}\right)=f\left(k_{1} x k_{2}\right) \tag{4.3}
\end{equation*}
$$

We see that $F(x)$ belongs to $L^{2}(K \times K)$ for a fixed x in G.
Lemma 3. Let f be a K-finite C^{∞}-function on G and $F=F_{f}$ the same as in (4.3). Then there exists a finite dimensional double unitary representation (τ, U) of K such that $F(x) \in U$ and $F\left(k x k^{\prime}\right)=\tau_{1}(k) F(x) \tau_{2}\left(k^{\prime}\right)$ for all x in G, k, k^{\prime} in K.

Proof. We define two unitary representations of K on $L^{2}(K \times K)$ by $\left(\zeta_{1}(k) \phi\right)\left(k_{1}, k_{2}\right)=\phi\left(k_{1} k, k_{2}\right),\left(\zeta_{2}(k) \phi\right)\left(k_{1}, k_{2}\right)=\phi\left(k_{1}, k k_{2}\right)$ for k in K and ϕ in $L^{2}(K \times K)$. Then $\zeta=\left(\zeta_{1}, \zeta_{2}\right)$ is a double unitary representation of K. Furthermore we have $F\left(k x k^{\prime}\right)=\zeta_{1}(k) F(x) \zeta_{2}\left(k^{\prime}\right)$ for all x in G and k, k^{\prime} in K. Let U be the subspace of $L^{2}(K \times K)$ generated by the set $\left\{\zeta_{1}(k) F(x) \zeta_{2}\left(k^{\prime}\right)\right.$; $k, k^{\prime} \in K$ and $\left.x \in G\right\}$. Since f is K-finite, the dimension of U is finite, Let $\tau=\left(\tau_{1}, \tau_{2}\right)$ be the restriction of ζ to U. Then F and τ have the property as claimed.

Remark 2. By definition of $F=F_{f}$, we see that there exists ϕ in U such that $f(x)=(F(x), \phi)$ for all x in G where f is a K-finite C^{∞}-function on G.

Definition 4. Let $\tau=\left(\tau_{1}, \tau_{2}\right)$ be a finite dimensional double unitary representation of K realized on U. A U-valued C^{∞} - (resp. L^{2}-) function F on G is τ-spherical if F satisfies $F\left(k x k^{\prime}\right)=\tau_{1}(k) F(x) \tau_{2}\left(k^{\prime}\right)$ for all k, k^{\prime} in K and x in G.

Let f be a K-finite function in $H_{i(x)}(G, \chi)$. We define $F=F_{f}$ as in (4.3). By Lemma 3, F is (τ, U)-spherical on G. Furthermore by using the integral formula of Lemma 1.2, we have

$$
\begin{equation*}
\|f\|^{2}=C_{G} \lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{A_{0}^{+}}|F(a)|^{2} D(a) e^{-\varepsilon a(a)} d a . \tag{4.4}
\end{equation*}
$$

Since $(z-\chi(z)) f=0$, we have also

$$
\begin{equation*}
(z-\chi(z)) F=0 \quad \text { for all } z \text { in } z . \tag{4.5}
\end{equation*}
$$

Thus the function $F=F_{f}$ is a τ-spherical eigenfunction of z. Concerning with the integral of (4.4), we give the following estimations for d;
(4.6) there exist two positive constants c_{1} and c_{2} such that $c_{1} e^{\rho(\log a)}$ $\leqq d(a) \leqq c_{2} e^{\rho(\log a)}$ for all a in A_{0}^{+}(we remark that $d(a)^{2}=B(\log a, \log a)$ for all a in A_{0}).

Let $\Psi\left(A_{0}\right)$ be the simple root system of $\left(P_{0}, A_{0}\right)$. We choose the dual basis $\omega_{1}, \omega_{2}, \cdots, \omega_{l}$ of \mathfrak{a}_{0} with respect to $\Psi\left(A_{0}\right)=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\right\}$ satisfying $\alpha_{i}\left(\omega_{j}\right)=\delta_{i, j}$. We put $A_{0}^{+}(R)=\left\{a \in A_{0}^{+} ; \alpha(\log a)>R\right.$ for $\left.\alpha \in \Psi\left(A_{0}\right)\right\}$ for a given positive real number $R . \quad Z^{+}=$the set of all nonnegative integers. We state the first expansion theorem for a τ-spherical eigenfunction on G.

Lemma 4. Let F be a τ-spherical 3 -finite function on G where τ is realized on a finite dimensional vector space U. Then F has the following expansion on $A_{0}^{+}(R)$; there exist a finite number of linear forms $\nu_{1}, \nu_{2}, \cdots, \nu_{p}$ and polynomials $p_{1}, p_{2}, \cdots, p_{q}$ on \mathfrak{a}_{0} and $F_{i, j}(1 \leqq i \leqq q, 1 \leqq j \leqq p)$ such that

$$
\begin{aligned}
\left(d_{P_{0}} F\right)(a) & =\sum_{i=1}^{q} \sum_{j=1}^{p} p_{i}(\log a) e^{\nu_{j}(\log a)} F_{i, j}(a), \\
F_{i, j}(a) & =\sum_{m=\left(m_{1}, m_{2}, \cdots, m_{l}\right) \in(\boldsymbol{Z}+) \iota} c_{i, j, m} e^{-\left(m_{1} \alpha_{1}+m_{2} \alpha_{2}+\cdots+m_{l} \alpha_{l}\right)(\log a)}
\end{aligned}
$$

where $c_{i, j, m} \in \dot{U}$,

Furthermore the series $F_{i j}$ is uniform and absolute convergence on $A_{0}^{+}(R)$.
(For the proof of this lemma, see Theorem 8.32, [16]).
We now parametrize A_{0} by $A_{0}=\left\{a_{t} ; t=\left(t_{1}, t_{2}, \cdots, t_{l}\right) \in \boldsymbol{R}^{l}\right\}$ where $a_{t}=\exp \left(\sum_{i=1}^{l} t_{i} \omega_{i}\right)$. Therefore $A_{0}^{+}(R) \in a_{t}$ if and only if $t_{i}>R$ for all $i=1$, $2, \cdots, l$.

Lemma 5. Each K-finite function in $H_{i(\chi)}(G, \chi)$ is tempered.
Proof. Let f be a K-finite function in $H_{i(x)}(G, \chi)$. We define the τ-spherical eigenfunction $F=F_{f}$ of z as in Lemma 3. In view of (4.4) and (4.6), we have

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{A_{0}^{+}(R)}\left|\left(d_{P_{0}} F\right)(a)\right|^{2} e^{-\varepsilon \rho(\log a)} d a \\
\leqq a \text { const. } \lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{A_{0}^{+}}|F(a)|^{2} D(a) e^{-\varepsilon d(a)} d a<\infty .
\end{gathered}
$$

Using the expansion for F as in Lemma 4, an elementary calculation verifies that $\left(\operatorname{Re} \nu_{i}\right)\left(\omega_{k}\right) \leqq 0$ for all (j, k) where ν_{j} 's are the same as in the expansion of F.

Consequently, it follows from a result of Casselman and Miličić (see Theorem 8.47, [16]) that $\left|\left(d_{P_{0}} F\right)(a)\right| \leqq a$ const. $(1+d(a))^{n}$ for all a in A_{0} for a suitable nonnegative number n. Therefore F is tempered, and hence f is also tempered (see Remark 2).

We shall state the second theorem for the asymptotic expansion (which is due to Harish-Chandra) for a τ-spherical eigenfunction of \bar{z} on G. Let $P=M A N$ be a fixed parabolic subgroup of G. We denote the Lie algebras of A and M respectively by \mathfrak{a} and $\mathfrak{m} . \quad \mathfrak{m}_{1}=\mathfrak{m} \oplus \mathfrak{a}$ is the Lie algebra of reductive group $M_{1}=M A$.

Notations: $\mathfrak{u}\left(\mathfrak{m}_{1}\right)=$ the universal enveloping algebra of $\left(\mathfrak{m}_{1}\right) c$,
$z_{M_{1}}=$ the center of $\mathfrak{u}\left(\mathrm{m}_{1}\right)$, $W_{1}=$ the Weyl group of $\left(\left(m_{1}\right)_{c}, \mathfrak{h}_{c}\right)$, $I_{1}(\mathfrak{G})=$ the ring of all W_{1}-invariants of $u(\mathfrak{G})$, $\mu_{1}=$ the canonical isomorphism of $z_{M_{1}}$ to $I_{1}(\mathfrak{h})$ and $\mu=$ the canonical isomorphism of \mathfrak{z} to $I(\mathfrak{h})$.
We see that there exists a unique isomorphism μ_{P} of $\frac{z}{}$ into $3_{M_{1}}$ such that $\mu=\mu_{1} \circ \mu_{P}$.

Let A^{+}and $\Psi(A)$ be the positive Weyl chamber and the simple root system of (P, A) respectively. We define a function β on $\operatorname{cl}\left(A^{+}\right)$by
$\beta(a)=\min _{\alpha \in \mathbb{\Psi}(A)} \alpha(\log a), a \in \mathrm{cl}\left(A^{+}\right)$where $\operatorname{cl}\left(A^{+}\right)$is the closure of A^{+}. We denote $\left(\tau_{K_{M}}, U\right)=$ the restriction of τ to K_{M}.

Lemma 6. Let F be a tempered \bar{z}-finite (τ, U)-spherical function on G. Then there exists $a_{\mathcal{J}_{1}}$-finite tempered $\tau_{K_{M}}$-spherical function F_{P} on M_{1} and a nonnegative real number r such that
(1) $\left|\left(d_{P} F\right)(a m)-F_{P}(a m)\right| \leqq a$ const. $\Xi_{M}(m) e^{-\beta(a)}(1+d(m a))^{r}$ for all a in $\mathrm{cl}\left(A^{+}\right)$and m in Ω where Ω is a compact subset in M_{1},
(2) $\mu_{P}(z) F_{P}=(z F)_{P}$ for all z in z.
(For a proof this lemma, see Chapter 14, II, [23]).
The function F_{P} is called the constant term of F along P. By (1) in the above lemma, we see that F_{P} is uniquely determined by F. Furthermore since $z_{M_{1}}$ is a free $\mu_{P}\left(\frac{z}{z}\right)$-module with finite rank (see Corollary 4.2.10, I, [23]), it follows from (2) in the lemma that F_{P} is of the form
(4.7) $\quad F_{P}(a m)=\sum_{i=1}^{q} p_{i}(\log a) e^{\lambda_{i}(\log a)} F_{i}(m)$ where p_{i} is a polynomial and λ_{i} is a purely imaginary valued linear form on \mathfrak{a}, F_{i} is a tempered $\tau_{K_{M M^{-}}}$ spherical eigenfunction of z_{M} on M for some character χ_{i}^{*} of z_{M}.

Let Θ be a fixed subset of $\Psi\left(A_{0}\right)$. We put

$$
\begin{equation*}
\left.A_{\theta}=\left\{a \in A_{0} ; \beta(\log a)=0\right\} \quad \text { for all } \beta \text { in } \Psi\left(A_{0}\right)-\{\alpha\}\right\} . \tag{4.8}
\end{equation*}
$$

Then there exists a parabolic subgroup P_{θ} of G such that $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ (see for precise descriptions [1] or [26]). Let α be an element in Θ, and put $\Theta_{\alpha}=\Theta-\{\alpha\}$. Then the parabolic subgroup $P_{\theta_{\alpha}}=M_{\theta_{\alpha}} A_{\theta_{\alpha}} N_{\theta_{\alpha}}$ satisfies $M_{\theta_{\alpha}} \subset M_{\theta}, A_{\theta_{\alpha}} \supset A_{\theta}$ and $N_{\theta_{\alpha}} \supset N_{\theta}$. We put $P_{\theta, \alpha}=M_{\theta} \cap P_{\theta_{\alpha}}$. Let $\left(P_{\theta}^{*}\right)_{0}$ $=\left(M_{\theta}^{*}\right)_{0}\left(A_{\theta}^{*}\right)_{0}\left(N_{\theta}^{*}\right)_{0}$ be the minimal parabolic subgroup of M_{θ}. Then we have $A_{0}=A_{\theta}\left(A_{\theta}^{*}\right)_{0}$.

Let r be a positive real number and $\mathrm{cl}\left(A_{0}^{+}\right)$the closure of A_{0}^{+}in A_{0}. We put for each α in $\Psi\left(A_{0}\right)$.

$$
\begin{equation*}
A(\alpha, r)=\left\{a \in \operatorname{cl}\left(A_{0}^{+}\right) ; \alpha(\log a) \geqq r \rho(\log a)\right\} . \tag{4.9}
\end{equation*}
$$

Lemma 7. For a sufficiently small real positive number r, we have that $\mathrm{cl}\left(A_{0}^{+}\right) \subset \cup_{\alpha \in \Psi\left(A_{0}\right)} A(\alpha, r)$.

Proof. We put $S^{+}=\left\{a \in \operatorname{cl}\left(A_{0}^{+}\right) ; d(a)=1\right\}$, and define two functions f, g by $f(a)=\max _{\beta \in \Psi\left(A_{0}\right)} \beta(\log a), g(a)=\rho(\log a) . \quad S^{+}$is compact and f (resp. g) is continuous on $\mathrm{cl}\left(A_{0}^{+}\right)$. Therefore g (resp. f) has the maximal (resp. minimal) value r_{2} (resp. r_{1}) on S^{+}. Since f and g are positive on
S^{+}, r_{1} and r_{2} are positive. Let r be a real number satisfying $0<r<\left(r_{1} / r_{2}\right)$. We claim that $\mathrm{cl}\left(A_{0}^{+}\right) \subseteq \bigcup_{\alpha \in \Psi\left(A_{0}\right)} A(\alpha, r)$. Let a be an element in A_{0}^{+}. We put $H^{\prime}=d(a)^{-1} \log a$. Then $a^{\prime}=\exp H^{\prime}$ belongs to S^{+}. Consequently $r_{1} \leqq f\left(a^{\prime}\right)$ and $g\left(a^{\prime}\right) \leqq r_{2}$. Choose an element α in $\Psi\left(A_{0}\right)$ satisfying $\alpha\left(\log a^{\prime}\right)$ $=f\left(a^{\prime}\right)$. Then we have $\alpha\left(\log a^{\prime}\right)>r \rho\left(\log a^{\prime}\right)$. Hence the lemma follows.

Lemma 8. Let F be a tempered \bar{z}-finite (τ, U)-spherical function on G. Assume that $F_{P}=0$ for all maximal proper parabolic subgroup P of G. Then F is square integrable on G.

Proof. Let $A(\alpha, r)$ be the same as in Lemma 7. Then we have

$$
\begin{equation*}
\int_{G}|F(x)|^{2} d x \leqq C_{G} \sum_{\alpha \in \Psi\left(A_{0}\right)} \int_{A(\alpha, r)}\left|\left(d_{P_{0}} F\right)(a)\right|^{2} d a . \tag{4.10}
\end{equation*}
$$

We now fix an element α in $\Psi\left(A_{0}\right)$, and consider the maximal parabolic subgroup $P=M A N$ corresponding to the set $\Theta=\{\alpha\}$. For the minimal parabolic subgroup $P_{0}^{*}=M_{0}^{*} A_{0}^{*} N_{0}^{*}$ of M, we define ρ^{*} by the same as in Section 1. By (1) in Lemma 6 and our assumption $F_{P}=0$, the function $d_{P} F$ is estimated by

$$
\begin{equation*}
\left|\left(d_{P} F\right)(a)\right| \leqq a \text { const. } \Xi_{M}(a)(1+d(a))^{p} e^{-r \rho(\log a)} \tag{4.11}
\end{equation*}
$$

for all a in $A(\alpha, r)$ where p is a nonnegative integer. Hence by Lemma 1.1, we get $\left|d_{P} F(a)\right| \leqq c^{\prime} e^{-c \rho(\log a)} e^{-\rho^{*}(\log a)}$ for all a in $A(\alpha, r)$ where c and c^{\prime} are positive constants. Combining (4.10) with this inequality, we have our conclusion.

Remark 3. Let F be a square integrable τ-spherical function on G and χ a character of z. If F satisfies the differential equation $(z-\chi(z)) F=$ 0 and F is nontrivial. Then χ is real regular. For this proof, see HarishChandra's classification for discrete series representations of G ([8] or Theorem 14.4.9 and Theorem 16.3.19, II, [23]).

We now prove our main purpose of this section.
Theorem 1. Let $H_{i(x)}(G, \chi)$ be the topological vector space as in Definition 2. Assume that $H_{i(x)}(G, \chi) \neq\{0\}$. Then the space has a preHilbert structure with norm || \|.

Proof. Let f be a nontrivial element in $H_{i(x)}(G, \chi)$. It is enough to show that if $\|f\|=0$, then there is a contradiction. By Lemma 2, the series $\sum_{\tau, z^{\prime} \in \delta(K)}\left(\chi_{\tau} * f * \chi_{\tau}\right)$ converges to f in the topology of $H_{i(x)}(G, \chi)$. Consequently we have $\|f\|^{2}=\sum_{\tau, \tau^{\prime} \in \delta(K)}\left\|\chi_{\tau} * f * \chi_{\tau^{\prime}}\right\|^{2}$. Therefore we can assume
that f is K-finite and nontrivial. Define a τ-spherical eigenfunction $F=F_{f}$ as in (4.3). Let p_{i}, ν_{j} and $F_{i, j}$ be the same appearing in the expansion of F on $A^{+}(R)$ as in Lemma 4. By our assumption $F \neq 0$, we can assume that $p_{i} F_{i, j} \neq 0$ for all (i, j). Furthermore since

$$
\|f\|^{2}=\lim _{\varepsilon \rightarrow+0} C_{G} \varepsilon^{i(x)} \int_{A_{0}^{+}}|F(a)|^{2} D(a) e^{-\varepsilon d(a)} d a=0
$$

we get for each $\nu=\nu_{i},(1)(\operatorname{Re} \nu)\left(\omega_{k}\right) \leqq 0$ for all $k=1,2, \cdots, l$, (2) $\# \Theta_{i}<$ $i(\chi)$ for all i where $\Theta_{i}=\left\{\alpha_{k} \in \Psi\left(A_{0}\right) ; \operatorname{Re} \nu_{i}\left(\omega_{k}\right)=0\right\}$. We choose $\Theta_{i_{0}}$ satisfying $\# \Theta_{i} \leqq \# \Theta_{i_{0}}$ for all $i=1,2, \cdots, p$. Put $\Theta=\Theta_{i_{0}}$. Then we have

$$
\begin{equation*}
i(\chi)>\# \Theta . \tag{4.12}
\end{equation*}
$$

Let $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ be the parabolic subgroup of G corresponding to Θ. and $F_{P_{\theta}}$ the constant term of F along P_{θ}. Combining (1) in Lemma 6 with the expansion of F in Lemma 4, the choice of Θ implies that $F_{P_{\Theta}} \neq 0$. Let $F_{P_{\theta}}=\sum_{k} p_{k} e^{\lambda_{k}} F_{k}$ and χ_{k}^{*} be the same as in (4.7).

We put for each α in $\Theta, \Theta_{\alpha}=\Theta-\{\alpha\}$, and consider the parabolic subgroup $P_{\theta, \alpha}^{*}=M_{\theta} \cap P_{\theta_{\alpha}}=M_{\theta, \alpha}^{*} A_{\theta, \alpha}^{*} N_{\theta, \alpha}^{*} . \quad$ Then we have $A_{\theta_{\alpha}}=A_{\theta, \alpha}^{*} A_{\theta}$. Define a function $F_{P_{\theta}, a}$ on M_{θ} for a fixed a in A_{θ} by $\left(F_{P_{\theta}, a}\right)(m)=F_{P_{\theta}}(a m)$. Then we have $\left(F_{P_{\theta}, a}\right)_{P_{\theta}^{*}, \alpha}\left(a^{*} m^{*}\right)=F_{P_{\theta_{\alpha}}}\left(a a^{*} m^{*}\right)$ for all a in A_{θ}, a^{*} in $A_{\theta, \alpha}^{*}$ and m^{*} in $M_{\theta, \alpha}^{*}$. Therefore

$$
\begin{equation*}
F_{P_{\theta_{\alpha}}}\left(a a^{*} m^{*}\right)=\sum_{k} e^{\lambda_{k}}\left(\sum_{j} p_{j, k}^{*} e^{\lambda_{j, k}} F_{j, k}\right) \tag{4.13}
\end{equation*}
$$

where λ_{k} and $\lambda_{j, k}$ are purely imaginaly valued linear forms on \mathfrak{a}_{θ} and $\mathfrak{a}_{\theta, \alpha}^{*}$ respectively. In the expression of $d_{P_{0}} F=\sum_{i=1}^{q} \sum_{j=1}^{p} p_{i} e^{\nu j} F_{i, j}$ on $A_{0}^{+}(R)$ as in Lemma 4, we have $\# \Theta_{j} \leqq \sharp \Theta=\operatorname{dim} A_{\theta}$. However by the estimation for $\left(d_{P_{\theta}} F-F_{P_{\theta}}\right)$ as in Lemma 6 and the fact $\operatorname{dim} A_{\theta_{\alpha}}=\operatorname{dim} A_{\theta}+1$, it follows from the uniqueness for expansion of F on $A_{0}^{+}(\boldsymbol{R})$ that $F_{P \theta_{\alpha}}=0$ for all α in Θ. Hence by Lemma 8 and Remark 3, χ_{i}^{*} is real regular. Consequently we have a contradiction;

$$
i(\chi)=\# \Psi-\# \Psi(\chi) \leqq \# \Psi-\operatorname{rank}\left(M_{\theta}\right)=\operatorname{dim} A_{\theta}<i(\chi) .
$$

This completes our proof.
Lemma 9. Let notations and assumptions being as in above theorem. In the term of expansion of $F=F_{f}=\sum_{i} \sum_{j} p_{i} e^{\nu j} F_{i, j}$ on $A_{0}^{+}(R)$, we have $i(\chi)=\# \Theta_{j}$ and $p_{i}=a$ constant where f is a nontrivial function (K-finite) in $H_{i(x)}(G, \chi)$ and $\Theta_{j}=\left\{\alpha_{k} \in \Psi\left(A_{0}\right) ; \operatorname{Re} \nu_{j}\left(\omega_{k}\right)=0\right\}$.

Proof. In view of the proof for Theorem 1, we see that $i(\chi) \leqq \# \Theta_{j}$.

On the other hand since

$$
\begin{equation*}
\|f\|^{2} \geqq a \text { positive const. } \lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{A_{0}^{+}}\left|\left(d_{P} F\right)(a)\right|^{2} e^{-\varepsilon \rho(\log a)} d a, \tag{4.14}
\end{equation*}
$$

we have $i(\chi) \geqq \sharp \Theta_{j}$. Consequently $i(\chi)=\# \Theta_{j}$ for all $j=1,2, \cdots, p$. Again by (4.14), we have also $p_{i}=a$ const. for all $i=1,2, \cdots, q$.

Lemma 10. Let f be a nontrivial K-finite function in $H_{i(x)}(G, \chi)$. Then there exists a cuspidal parabolic subgroup P of G such that $F_{P} \neq 0$ where $F=F_{f}$ and F_{P} is the constant term of F along P.

Proof. Let Θ_{j} be the same as in the above lemma, and put $\Theta=\Theta_{j}$. We denote $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}, F_{P_{\theta}}=\sum_{k} p_{k} e^{\lambda_{k}} F_{k}$. By the choice of Θ, we have $F_{P_{\Theta}} \neq 0$ and $\left(F_{k}\right)_{P_{\theta, \alpha}^{*}}=0$ for all α in Θ, where $\Theta_{\alpha}=\Theta-\{\alpha\}, P_{\theta, \alpha}^{*}=M_{\theta} \cap$ $P_{\theta_{\alpha}}$. Hence F_{k} is square integrable on M. Since F_{k} is nontrivial, it follows from a result of Harish-Chadra that rank $M=\operatorname{rank} M \cap K$. Thus P_{θ} is a parabolic cuspidal subgroup of G.

Lemma 11. Let f be a nontrivial K-finite function in $H_{i(x)}(G, \chi)$ and $F_{P_{\theta}}=\sum_{k} p_{k} e^{\lambda_{k}} F_{k}$ the constant term of $F=F_{f}$ along P_{θ} where Θ is a given subset of $\Psi\left(A_{0}\right)$ and F_{k} is a tempered $\tau_{K_{M}}$-spherical function on M_{θ} satisfying $\left(z-\chi_{k}(z)\right) F_{k}=0\left(z \in z_{M_{\theta}}\right)$ for some character χ_{k} of z_{M}, p_{k} is a polynomial function on \mathfrak{a}_{θ} and λ_{k} is a purely imaginary valued linear form on \mathfrak{a}_{θ}. Assume that $F_{P_{\theta}} \neq 0$. Then we have $i(\chi)=\operatorname{dim} A_{\theta}+i\left(\chi_{k}\right)$ for all k.

Proof. Let $P_{0}^{*}=M_{0}^{*} A_{0}^{*} N_{0}^{*}$ be the minimal parabolic subgroup of M_{θ} and $d_{P_{0}^{*}} F_{k}=\sum_{i=1}^{p} \sum_{j=1}^{q} p_{k, i} e^{\nu_{k}, j} F_{i, j}^{k}$ be the expansion of F_{k} on $\left(A_{0}^{*}\right)^{+}(R)$ as in Lemma 4. We put $\Theta_{k, j}=\left\{\alpha_{u} \in \Theta=\Psi\left(\left(A_{0}^{*}\right)^{+}\right) ; \operatorname{Re} \nu_{k, j}\left(\omega_{u}\right)=0\right\}$. Let $P_{\theta_{k}, j}^{*}$ be the parabolic subgroup of M_{θ} corresponding to the set $\Theta_{k, j}$. Then we have $\left(F_{k}\right)_{P_{\theta_{k, j}^{*}}} \neq 0$. We now fix a number k and denote $\left(F_{u}^{*}\right)_{p_{\theta_{k}, j}^{*}}=$ $\sum_{t} p_{u, j, t} e^{\lambda_{u, j, t}} F_{u, j, t}^{*}$ where $F_{u, j, t}^{*}$ is a solution of the differential equations $z F_{u, j, t}^{*}=\chi_{u, j, t}^{*}(z) F_{u, j, t}^{*}\left(z \in \mathcal{J}_{M_{\theta_{j, k}}^{*}}\right)$ for some character $\chi_{u, j, t}^{*}$ of $z_{M_{\theta_{j, k}}^{*}}^{*}$ By the choice of $\Theta_{k, j}, \chi_{k, j, t}^{*}$ is real regular. Therefore $i\left(\chi_{k}\right)=\# \Theta_{k, j}$.

Since $\left(F_{P_{\theta, a}}\right)_{P_{\theta k, j}^{*}}\left(a^{*} m\right)=F_{P_{\theta_{k, j}}}\left(a a^{*} m\right)$ for all a in A_{θ}, a^{*} in $A_{\theta_{k, j}}^{*}$ and m in $M_{\theta_{\mu}, j}^{*}$,

$$
\begin{equation*}
F_{P_{\theta_{k, j}}}\left(a a^{*} m\right)=\sum_{i} p_{i} e^{\lambda_{i}}\left(\sum_{u, t} p_{u, j, t} e^{\lambda_{u, j, t}} F_{u, j, t}^{*}\right) \tag{4.15}
\end{equation*}
$$

where λ_{k} and $\lambda_{u, j, t}$ are purely imaginary valued linear forms. Since $\chi_{k, j, t}^{*}$ is real, it follows from the expressions for $F_{P_{\theta_{k}, j}}$ and the expansion of F in Lemma 4, that $i(\chi)=\# \Psi-\operatorname{rank} M_{\theta_{k, j}}=\operatorname{dim} A_{\theta_{k, j}}=\operatorname{dim} A_{\theta}+\operatorname{dim} A_{\theta_{k, j}}^{*}=$ $\operatorname{dim} A_{\theta}+i\left(\chi_{k}\right)$ and $p_{k} p_{u, j, t}=a$ const. (see Lemma 9). Thus the lemma follows.

§ 5. Schur orthogonality relations

Let χ be a character of $\bar{\sigma}$ and $H_{i(x)}(G, \chi)$ the same as in (4.1). We define a Hermitian form (,) on $H_{i(x)}(G, \chi)$ by

$$
\begin{equation*}
(f, g)=\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{G} f(x) \overline{g(x)} e^{-\varepsilon d(x)} d x \tag{5.1}
\end{equation*}
$$

where $d(x)=d(x o, o), d($,$) is the Riemannian distance on the symmetric$ space G / K and o is the origin.

By Theorem 4.1, the form (,) is a positive definite Hermitian form on $H_{i(x)}(G, \chi)$.

Definition 1. $H(G, \chi)$: the completion of $H_{i(x)}(G, \chi)$, $H_{K}(G, \chi)$: the set of all K-finite elements in $H(G, \chi)$,
z^{2} : the set of all characters of z satisfying $H(G, \chi) \neq$ $\{0\}$.

Remark 1. Let $H_{i(x), K}$ be the set of all K-finite functions in $H_{i(x)}(G, \chi)$. Since $H_{i(x), K}$ is dense in $H_{i(x)}(G, \chi)$, we have $H_{K}(G, \chi)=H_{i(x), K}$. Therefore all functions in $H_{K}(G, \chi)$ are real analytic and tempered (see Lemma 4.5).

Let R be the right regular representation of G on $H(G, \chi)$. We see that the representation $(R, H(G, \chi))$ is unitary.

Definition 2. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if (π, H) is unitary equivalent to a subrepresentation of $(R, H(G, \chi))$.

Let (π, H) be an irreducible unitary representation of G and $C_{c}^{\infty}(G)$ the set of all C^{∞}-functions on G with compact support. For a fixed K finite vector ϕ in H, we put

$$
\begin{equation*}
H(\phi)=\left\{\pi(f) ; f \in C_{c}^{\infty}(G)\right\} \quad \text { where } \pi(f)=\int_{G} f(x) \pi(x) d x \tag{5.2}
\end{equation*}
$$

Then all vectors in $H(\phi)$ are differentiable. Furthermore since π is irreducible the space $H(\phi)$ is a G-invariant dense subspace of H. Let ϕ_{0}, ψ_{0} be two fixed K-finite vectors in H. We define a linear operator $S_{\psi_{0}}$ of $H\left(\phi_{0}\right)$ to $C^{\infty}(G)$ by
(5.3) $\quad S_{\psi_{0}}\left(\pi(f) \phi_{0}\right)(y)=\left(\pi(y) \pi(f) \phi_{0}, \psi_{0}\right)$ for y in G.

Immediately we have
(5.4) $S_{\psi_{0}}$ is injective, $R_{x} \circ S_{\psi_{0}}=S_{\psi_{0}} \circ \pi(x)$ for all x in G.

Lemma 1, Let (π, H) be an irreducible unitary representation of G. Suppose that there exist two K-finite vectors ψ_{0} and ϕ_{0} such that $S_{\psi_{0}}\left(\phi_{0}\right) \in$ $H(G, \chi)$ for some χ in \jmath^{2}. Then we have $S_{\psi_{0}}\left(\pi(f) \phi_{0}\right) \in H(G, \chi)$ for all f in $C_{c}^{\infty}(G)$.

Proof. Let χ_{π} be the infinitesimal character of π. Then we have $\chi=\chi_{\pi}$ and $z S_{\psi_{0}}\left(\pi(f) \phi_{0}\right)=\chi(z) S_{\psi_{0}}\left(\pi(f) \phi_{0}\right)$ for all f in $C_{c}^{\infty}(G)$. It remains to prove $\left\|S_{\psi_{0}}\left(\pi(f) \phi_{0}\right)\right\|<\infty$. Let W be the support of f. We put

$$
c_{f}=\int_{G}|f(x)|^{2} d x=\int_{W}|f(x)|^{2} d x .
$$

By using Schwarz inequality, we have

$$
\begin{aligned}
\left\|S_{\psi_{0}}\left(\pi(f) \phi_{0}\right)\right\|^{2} & \leqq c_{f} \lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{G} \int_{W}\left|\left(\pi(y x) \phi_{0}, \psi_{0}\right)\right|^{2} e^{-\varepsilon d(x)} d x \\
& \leqq c_{f} \lim \varepsilon^{i(x)} \int_{W} \int_{G}\left|\left(\pi(y x) \phi_{0}, \psi_{0}\right)\right|^{2} e^{-\varepsilon d(x)} d x \\
& \leqq c_{f} \operatorname{vol}(W)\left\|S_{\psi_{0}}\left(\phi_{0}\right)\right\|^{2}
\end{aligned}
$$

where $\operatorname{vol}(W)$ is the volume of W. Hence the lemma follows.
Lemma 2. Let notations and assumptions being as above lemma. Then the representation (π, H) is realized on $H(G, \chi)$.

Proof. Let H^{\prime} be the minimal closed invariant subspace of $(R, H(G, \chi))$ containing $S_{\psi_{0}}\left(\phi_{0}\right)$. We put $\pi^{\prime}=$ the restriction of R to H^{\prime}. By Lemma 1, we have $S_{\psi_{0}}\left(H\left(\phi_{0}\right)\right) \subset H^{\prime}$. We shall prove that $\left(\pi^{\prime}, H^{\prime}\right)$ is irreducible. Choosing ϕ_{0} suitably we can assume that $E(\tau) \phi_{0}=\phi_{0}$ for an element [τ] in $\mathscr{E}(K)$. We put $H(\tau)=E(\tau) H$ and

$$
R(\tau)=\left\{f \in C_{c}^{\infty}(G) ; \chi_{\tau} * f=f, \int_{K} f\left(k x k^{-1}\right) d x=f(x) \text { for all } x \text { in } G\right\} .
$$

$R(\tau)$ is an algebra with convolution product. Furthermore the representation of algebra $R(\tau)$ on $H(\tau)$ is irreducible (see [7], Theorem 6). Consequently since $\operatorname{dim} H(\tau)=\operatorname{dim} S_{\psi_{0}}(H(\tau))$ is finite, the algebra representation of $R(\tau)$ on $S_{\psi_{0}}(H(\tau))$ is irreducible. Let W be a nontrivial closed invariant subspace of H^{\prime} and W^{\perp} the orthogonal complement of W. Then we have $S_{\psi_{0}}(H(\tau)) \subset E(\tau) W+E(\tau) W^{\perp}$. Consequently the irreducibility of the representation of $R(\tau)$ on $S_{\psi_{0}}(H(\tau))$ implies $S_{\psi_{0}}(H(\tau)) \subset E(\tau) W$ or $S_{\psi_{0}}(H(\tau))$ $\subset E(\tau) W$. Since $S_{\psi_{0}}(H(\tau))$ contains $S_{\psi_{0}}\left(\phi_{0}\right)$, it follows from this fact that $S_{\psi_{0}}\left(\phi_{0}\right)$ belongs to W or W^{\perp}. However H^{\prime} is the minimal invariant subspace of $H(G, \chi)$. Hence $W=H^{\prime}$ and $W^{\perp}=\{0\}$. Thus π^{\prime} is irreducible
as claimed. Therefore π and π^{\prime} are irreducible and infinitesimal equivalent to each other. We now apply Corollary 4.5 .5 .3 in [26] to those of representations. Then π and π^{\prime} are unitary equivalent.

The following theorem will be proved in Section 6.
Theorem 1. An irreducible unitary representation (π, H) of G is realized on $H(G, \chi)$ if and only if there exists a K-finite vector ϕ in H such that $S_{\phi}(\phi)$ $\in H(G, \chi)$.

We now establish the Schur orthogonality relations of a representation of G realized on $H(G, \chi)$.

Theorem 2. Let χ be an element in z^{2}. Then for each two irreducible unitary representations (π, H) and $\left(\pi^{\prime}, H^{\prime}\right)$ of G realized on $H(G, \chi)$, we have the following.

There exists a positive constant d_{π} such that
$\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{G}(\pi(x) \phi, \psi) \overline{\left(\pi^{\prime}(x) \phi^{\prime}, \psi^{\prime}\right)} e^{-\varepsilon d(x)} d x=\left\{\begin{array}{lr}d_{\pi}^{-1}\left(\phi, \phi^{\prime}\right) \overline{\left(\psi, \psi^{\prime}\right)} & \text { if } \pi \cong \pi^{\prime} \\ 0 & \text { otherwise } .\end{array}\right.$
Proof. Let ϕ and ψ be K-finite vectors in H. By Lemma 1 and Lemma 2, we have $S_{\psi}(\phi) \in H(G, \chi)$. Let H^{*} be the closure of $S_{\psi}(H(\phi))$ in $H(G, \chi)$ and π^{*} the restriction of R to H^{*}. Then by the proof of Lemma $2,(\pi, H)$ and $\left(\pi^{*}, H^{*}\right)$ are unitary equivalent. Applying the same arguments as in the proof of Theorem 4.5.9.1 and Theorem 4.5.9.3, [26] to those representations, the conclusion in this theorem follows.

Remark 2. When the case $i(\chi)=0, \pi$ and π^{\prime} are square integrable. Therefore the relations in Theorem 1 is well known as a result of R. Godement [6]. In [20], we treat the same theorem as above for the case $i(\chi)=1$.

Theorem 3. Let χ be an element in \jmath^{2} satisfying $i(\chi) \geqq 1$. Then each irreducible unitary representation (π, H) of G realized on $H(G, \chi)$ is equivalent to a subrepresentation of principal series of G induced from a cuspidal parabolic subgroup $P=M A N$ with $i(\chi)=\operatorname{dim} A$.

Proof. Let ϕ be a fixed K-finite vector in H. We put $f(x)=(\pi(x) \phi, \phi)$. Then we have $f \neq 0$. Define $F=F_{f}$ as in (4.3). By using Lemma 4.10, we have there exists a cuspidal parabolic subgroup $P=M A N$ such that $F_{P} \neq 0 . \quad F_{P}$ is $\left(\tau_{K_{M I}}, U\right)$-spherical function on $M A$. Bearing in mind Lemma 4.11, F_{P} is of the form $F_{P}(a m)=\sum_{k=1}^{p} e^{\lambda_{k}(\log a)} F_{k}(m)$ for a in A and
m in M where λ_{k} is purely imaginary valued linear form on a and F_{k} a square integrable function on M satisfying $\left(z-\chi_{k}(z)\right) F_{k}=0, z \in z_{M}$ for a character χ_{k} of z_{z}. We fix a number k. Let V be a closed invariant subspace generated by $\left\{R_{m} F_{k} ; m \in M\right\}$ in $U \otimes L^{2}(M)$. Then the right regular representation σ of M on V is equivalent to a sum of finite number of discrete series. We denote $V=H_{\sigma}$. Define a $L^{2}(K) \otimes U \otimes L^{2}(M)$-valued C^{∞}-function g on G by $g(k m a n)=e^{-\left(\nu+\rho_{P}\right)(\log a)} \tau_{1}(k) F_{k}(m), \tau=\left(\tau_{1}, \tau_{2}\right)$. Since F_{k} is $\tau_{K_{M}}$-spherical the function g is well defined. Let $\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}$ be the same as in (2.3). Then g belongs to $\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}$. We define a unitary representation $\pi(\sigma, \nu)$ as in Section 2. We shall prove π is unitary equivalent to a subrepresentation of $\pi(\sigma, \nu)$. Let c be the positive constant determined by $\|\left. f\right|^{2}=c \int_{K} \int_{M}\left|\tau_{1}(k) g(m)\right|^{2} d m d k$. Using the Schur orthogonality relations of π in Theorem 2 , we have $\|f\|^{2}=(d \pi)^{-1}|\phi|^{2}$. Let H_{0} be the abstract subspace of H generated by $\{\pi(x) \phi ; x \in G\} . \quad H_{0}$ is a G-invariant dense subspace of H. Moreover since π is unitary, we have $|\pi(x) \psi|=|\psi|$ for all x in G and ψ in H_{0}. Let us now define a linear operator η of H_{0} to $\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}$ by $\eta(\pi(x) \phi)(y)=\left(c d_{\pi}\right)^{1 / 2} g\left(x^{-1} y\right), x, y \in G . \quad$ By definition, η is unitary and $\eta \circ \pi(x)=\pi(\sigma, \nu)(x) \circ \eta$ on H_{0} for all x in G. Consequently η is extended to a equivalent mapping of H to $\left(L^{2}(K) \otimes H_{\sigma}\right)_{\sigma}$. This completes our proof.

Remark 3. Combining Theorem 3 with Theorem 3.1, we see that all irreducible unitary representations realized on $H(G, \chi)$ have the tempered characters. We now correct the error in the proof of Theorem 6.4, [20].

§ 6. Realization of a regular principal series representation

In this section, we shall prove that all regular principal series unitary representation, induced from cuspidal parabolic subgroup, of G is realized on $H(G, \chi)$. Let $P_{0}=M_{0} A_{0} N_{0}$ be a minimal parabolic subgroup of G with θ-stable split component A_{0} and $\Psi\left(A_{0}\right)$ the simple root system of $\left(P_{0}, A_{0}\right)$. Let f be a K-finite C^{∞}-function on G. We define a (τ, U)-spherical function $F=F_{f}$ as in (4.3). Assume that F is tempered. Then F has the constant term F_{P} of F along a given parabolic subgroup P of G. The function F_{P} is of the form
(6.1) $\quad F_{P}(a m)=\sum_{k=1}^{s} p_{k}(\log a) e^{\lambda_{k}(\log a)} F_{k}(m), a \in A, m \in M$ where p_{k} is a polynomial function and λ_{k} a purely imaginary valued linear form on \mathfrak{a}, and F_{k} is a tempered $\left(\tau_{K_{M}}, U\right)$-spherical function on M satisfying $\left(z-\chi_{k}(z)\right) F_{k}=0\left(z \in z_{M}\right)$ for some character χ_{k} of z_{M}.

Definition 1. A function F on G belongs to $\mathscr{A}_{0}(G, \chi)(\chi$ is a given character of z) if F has the following properties:
(1) there exists a finite dimensional double unitary representation (τ, U) of K such that F is τ-spherical,
(2) F is tempered, and satisfies $(z-\chi(z)) F=0$ for all z in z,
(3) for each parabolic subgroup $P=M A N$, if $F_{P} \neq 0$ then $i(\chi)=$ $\operatorname{dim} A+i\left(\chi_{k}\right)$ and p_{k} is constant for all $k=1,2, \cdots, s$ where p_{k}, χ_{k} are the same as in (6.1).
A parabolic subgroup P is standard if $P=P_{\theta}$ for a suitable subset Θ in $\Psi\left(A_{0}\right)$. All parabolic subgroup P of G is conjugate to a standard parabolic subgroup under an inner automorphism of K. Let F be a τ-spherical z^{-} finite tempered function on G and $P=M A N$ a parabolic subgroup of G. In view of Lemma 4.6, we have $F_{P k}\left(m^{k}\right)=\tau_{1}(k) F_{P}(m) \tau_{2}(k)^{-1}$ for all m in $M A$ where $P^{k}=k P k^{-1}, m^{k}=k m k^{-1}, k$ is a fixed element in K. Therefore the above assumption (3) can be restricted to all standard parabolic subgroup of G.

Lemma 1. Let $P=M A N$ be a standard parabolic subgroup of G and F a function in $\mathscr{A}_{0}(G, \chi)$ with constant term $F_{P}=\sum_{k} e^{\lambda_{k}} F_{k}$. Then the $\tau_{K_{M}}$ spherical function F_{k} belongs to $\mathscr{A}_{0}\left(M, \chi_{k}\right)$ where χ_{k} is the same as in (6.1).

Proof. Let $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ be a parabolic subgroup corresponding to a subset Θ in $\Psi\left(A_{0}\right)$ and $\left(P_{\theta}^{*}\right)_{0}=\left(M_{\theta}^{*}\right)_{0}\left(A_{\theta}^{*}\right)_{0}\left(N_{\theta}^{*}\right)_{0}$ the minimal parabolic subgroup of M_{θ}. Then we have $\Theta=\Psi\left(\left(A_{\theta}^{*}\right)_{0}\right)$. Therefore all standard parabolic subgroup of M_{θ} are given by $P_{\theta^{\prime}}^{*}=M_{\theta} \cap P_{\theta^{\prime}}$ for the sets Θ^{\prime} in Θ. We shall denote the Langlands decomposition of $P_{\theta^{\prime}}^{*}$ by $P_{\theta^{\prime}}^{*}=M_{\theta^{\prime}}^{*} A_{\theta^{\prime}}^{*} N_{\theta^{\prime}}^{*}$. We see that $A_{\theta^{\prime}}=A_{\theta} A_{\theta^{\prime}}^{*}$. Define for each fixed element a in A_{θ}, a $\tau_{K_{K H^{-}}}$ spherical function $F_{P_{\theta}, a}$ on M_{θ} by $\left(F_{P_{\theta}, a}\right)(m)=F_{P_{\theta}}(a m)$. Then we have $\left(F_{P_{\theta}, a}\right)_{P_{\theta^{\prime}}^{*}}\left(a a^{*} m\right)=F_{P_{\theta^{\prime}}}\left(a a^{*} m\right)$ for $a \in A_{\theta^{\prime}}^{*}, a \in A_{\theta}$ and $m \in M_{\theta^{\prime}}^{*}$. Consequently $F_{P \theta^{\prime}}\left(a a^{*} m\right)=\sum_{k} \sum_{j} p_{k, j} e^{\lambda_{k}+\lambda_{k, j}} F_{k, j}$, where $\left(F_{k}\right)_{P_{\theta^{\prime}}^{*}}=\sum_{j} e^{\lambda_{k, j}} F_{k, j}$ and $F_{k, j}$ satisfies $\left(z-\chi_{k, j}(z)\right) F_{k, j}=0$ for all z in $\delta m_{\theta^{\prime}}^{*}$.

By the assumptions in (3) for F, we have $p_{k, j}=a$ const. and $i(\chi)=$ $\operatorname{dim} A_{\theta^{\prime}}+i\left(\chi_{k, j}\right)=\operatorname{dim} A_{\theta}+i\left(\chi_{k}\right)$. Hence $i\left(\chi_{k}\right)=\left(\operatorname{dim} A_{\theta^{\prime}}-\operatorname{dim} A_{\theta}\right)+i\left(\chi_{k, j}\right)$ $=\operatorname{dim} A_{\theta^{\prime}}^{*}+i\left(\chi_{k, j}\right)$. Thus the lemma follows.

Let α be a fixed element in $\Psi\left(A_{0}\right)$. For the simplicity of our notations, we denote the parabolic subgroup of G corresponding to $\Theta=\{\alpha\}$ by $P_{\alpha}=M_{\alpha} A_{\alpha} N_{\alpha} . \quad$ Since $\operatorname{dim} A_{\alpha}=1, A_{\alpha}$ is parametrized by $A_{\alpha}=\left\{\exp t H_{1} ;\right.$ $t \in \boldsymbol{R}\}$ where H_{1} is the element satisfying $\alpha\left(H_{1}\right)=1$. Let $P_{\alpha}^{*}=M_{\alpha}^{*} A_{\alpha}^{*} N_{\alpha}^{*}$ be the minimal parabolic subgroup of M_{α} satisfying $A_{0}=A_{\alpha} A_{\alpha}^{*}$. We define $D=D_{\alpha}$ as in Section 1, and extend it by $D_{\alpha}\left(a a^{*}\right)=D_{\alpha}\left(a^{*}\right)$ for $a \in A, a^{*} \in$ A^{*}. Let r be a positive real number as in Lemma 4.7. We define a subset
$B_{r}(t)$ of $\mathrm{cl}\left(\left(A^{*}\right)^{+}\right)$by $B_{r}(t)=\left\{a^{*} \in \operatorname{cl}\left(\left(A_{\alpha}^{*}\right)^{+}\right) ;\left(1-r \rho\left(H_{1}\right)\right) t \geqq(r \rho-\alpha)\left(\log a^{*}\right)\right\}$ where $t \geqq 0$ and $\mathrm{cl}\left(\left(A_{\alpha}^{*}\right)^{+}\right)$is the closure of positive Weyl chamber $\left(A_{\alpha}^{*}\right)^{+}$ of A_{α}^{*}. Then we have the following; for the set $A(\alpha, r)$ as in Lemma 4.7,
(6.2) $A(\alpha, r)=\cup_{t \geqq 0} a_{t} B_{r}(t), a_{t}=\exp t H_{1}$ (see, for a proof of this fact Lemma 6.4 [20]).

Lemma 2. Let F be a function in $\mathscr{A}_{0}(G, \chi)$. Then we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{A_{0}^{+}}|F(a)|^{2} D(a) e^{-\varepsilon \rho(\log a)} d a<\infty \tag{*}
\end{equation*}
$$

(Proof by an induction on $i(\chi)$). If $i(\chi)=0$, our assertion is obvious. Let us assume $i(\chi)=p>0$, and for all linear semisimple linear group G^{\prime} and the characters χ^{\prime} of z^{\prime} with property $i\left(\chi^{\prime}\right) \leqq p-1$, all functions F^{\prime} in $\mathscr{A}_{0}\left(G^{\prime}, \chi^{\prime}\right)$ satisfy $\left(^{*}\right)$ (where z^{\prime} is the center of universal enveloping algebra of g_{C}^{\prime}). Let F be a function in $\mathscr{A}_{0}(G, \chi)$. In view of Lemma 4.7, it is sufficient to prove that $I(F)=\lim _{\varepsilon \rightarrow+0} \varepsilon^{p} \int_{A(\alpha, r)}|F(a)|^{2} D(a) e^{-\varepsilon \rho(\log a)} d a<\infty$ for all α in $\Psi\left(A_{0}\right)$. By using Lemma 4.6, we have

$$
I(F) \leq a \text { const. } \lim _{\varepsilon \rightarrow+0} \varepsilon^{p} \int_{A(\alpha, r)}\left|F_{P_{\alpha}}(a)\right|^{2} D_{\alpha}(a) e^{-\varepsilon \rho(\log a)} d a
$$

and hence by (6.2)

$$
\leqq a \text { const. } \lim _{\varepsilon \rightarrow+0} \varepsilon^{p} \int_{0}^{\infty} \int_{B_{r}(t)}\left|F_{P_{\alpha}}\left(a_{t} a^{*}\right)\right|^{2} D_{\alpha}\left(a^{*}\right) e^{-\varepsilon_{\rho}\left(\log a^{*}\right)} e^{-\varepsilon t} d a^{*} d t
$$

In the expression of $F_{P}=\sum_{k} e^{\lambda_{k}} F_{k}, F_{k} \in \mathscr{A}_{0}\left(M, \chi_{k}\right)$ and $i\left(\chi_{k}\right)=p-1$ (see Lemma 1). Hence our inductive hypothesis implies that

$$
I\left(F_{k}\right)=\lim _{\varepsilon \rightarrow+0} \varepsilon^{p-1} \int_{\left(A^{*}\right)_{0}^{+}}\left|F_{k}\left(a^{*}\right)\right|^{2} D_{\alpha}\left(a^{*}\right) e^{-\varepsilon \rho(\log a)} d a^{*} \quad \text { is finite. }
$$

Consequently we have $I(F) \leqq a$ const. $\left(\lim _{\varepsilon \rightarrow+0} \varepsilon \int_{0} e^{-\varepsilon t} d t\right)\left(\sum_{k} I\left(F_{k}\right)\right)$. This completes our proof.

Combining Lemma 4.11 with Lemma 2, we have the following.
Theorem 1. Let χ be a character of $₹$ and $\mathscr{A}_{0}(G, \chi)$ the same as in Definition 1. Then a K-finite function f belongs to $H_{K}(G, \chi)$ if and only if $F=F_{f} \in \mathscr{A}_{0}(G, \chi)$.

Definition 2. A principal series representation $\pi(\sigma, \nu)$ of G induced
from a cuspidal parabolic subgroup $P=M A N$ is regular if ν is regular on \mathfrak{a}.

Theorem 2. Let $\pi(\sigma, \nu)$ be a regular principal P-series representation of G. Then each K-finite matrix coefficient belongs to $H_{K}(G, \chi)$ where χ is the infinitesimal character of $\pi(\sigma, \nu)$.

Proof. Let f be a K-finite matrix element of $\pi(\sigma, \nu)$. By using Theorem 1 it is enough to show that $F=F_{f}$ belongs to $\mathscr{A}_{0}(G, \chi)$. Let Θ be a subset of $\Psi\left(A_{0}\right)$ and $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ be the parabolic subgroup of G. Since ν is regular on \mathfrak{a} and σ has the real regular infinitesimal character, we see that $\chi=\chi_{\lambda(\sigma, \nu)}$ is regular. Therefore the constant term of F along P_{θ} is of the form $F_{P_{\theta}}=\sum_{k} e^{\nu_{k}} F_{k}, \nu_{k}$ is regular on \mathfrak{a}_{θ}, and F_{k} satisfies $\left(z-\chi_{\lambda_{k}}(z)\right) F_{k}=0$ for a regular character $\chi_{\lambda_{k}}$ of $z_{M_{\theta}}$. Let $\chi_{\lambda(\sigma)}$ be the infinitesimal character of σ. Then there exists w in W such that $w\left(\nu_{k}+\lambda_{k}\right)$ $=\lambda(\sigma)+\nu$. Hence we have $\operatorname{dim} A_{\theta}+i\left(\alpha_{\lambda_{k}}\right)=\operatorname{dim} A=i(\chi)$. Therefore F belongs to $\mathscr{A}_{0}(G, \chi)$ as claimed.

Theorem 5 in the previous section will be proved by using the following lemma.

Lemma 3. Let ϕ be a K-finite function in $H(G, \chi)$ satisfying $\chi_{\tau^{\prime}} * \phi=$ $\phi * \chi_{\tau}=\phi$ for two suitable elements τ, τ^{\prime} in $\mathscr{E}(K)$. We put

$$
h(x, y)=\int_{K} \overline{\chi_{\tau}(k)} \phi(x k y) d k, x, y \in G
$$

Then there are $\phi_{1}, \phi_{2}, \cdots, \phi_{p}$ and $\psi_{1}, \psi_{2}, \cdots, \psi_{p}$ in $H_{K}(G, \chi)$ such that $h(x, y)=\sum_{k} \phi_{k}(x) \psi_{k}(y)$.

Proof. We define two functions f_{x} and g_{x} on G by $f_{x}(y)=h(y, x)$ and $g_{x}(y)=h(x, y)$. Since $f_{x}, g_{x} \in H_{K}(G, \chi)$ (see Lemma 4.1), there exist $\phi_{1}, \phi_{2}, \cdots, \phi_{p}\left(\psi_{1}, \psi_{2}, \cdots, \psi_{q}\right)$ in $H_{K}(G, \chi)$ and $f_{1}, f_{2}, \cdots, f_{p}$ (resp. g_{1}, g_{2}, $\left.\cdots, g_{q}\right)$ in $C^{\infty}(G)$ such that $f_{y}(x)=\sum_{k} f_{k}(y) \phi_{k}(x)$ and $g_{x}(y)=\sum_{i} g_{i}(x) \psi_{i}(y)$. Therefore, since $f_{y}(x)=g_{x}(y)$, we have

$$
\begin{equation*}
\sum_{k} f_{k}(y) \phi_{k}(x)=\sum_{j} g_{j}(x) \psi_{j}(y) . \tag{6.3}
\end{equation*}
$$

We claim all f_{k} belong to $H_{K}(G, \chi)$. By (6.3) we have immediately $\sum_{k}\left(z f_{k}\right)(y) \phi_{k}(x)=\sum_{j} g_{j}(x)\left(z \psi_{j}\right)(y)=\sum_{k} \chi(z) f_{k}(y) \phi_{k}(x)$ for each z in z^{2}, x and y in G. Since $\left\{\phi_{1} \phi_{2}, \cdots, \phi_{p}\right\}$ is linearly independent over C, we get $z f_{k}=\chi(z) f_{k}$ for all z in z. Similarly we can prove all f_{k} 's are K-finite.

Define $F_{\psi_{j}}$ and $F_{f_{k}}$ as in (4.3). Then we have

$$
\begin{equation*}
\sum_{k} F_{f_{k}}(y) \phi_{i}(x)=\sum_{j} F_{\psi_{j}}(y) g_{j}(x) . \tag{6.4}
\end{equation*}
$$

Let $d_{P_{0}} F_{f_{k}}=\sum \sum_{i, s} p_{k, i, s} e^{v_{k}, i, s} F_{k, i, s}$ be the expansion of $F_{f_{k}}$ on $A_{0}^{+}(R)$ as in Lemma 4.4. Bearing in mind $\phi_{1}, \phi_{2}, \cdots, \phi_{p}$ is linearly independent, the temperedness of $F_{\psi_{j}}$ implies that $\operatorname{Re} \nu_{k, i, s}\left(\omega_{t}\right) \leqq 0$ for all k, i, s, t where we use the same notations as in Section 4. Consequently by a result of Casselman and Miličić (Theorem 8.4.7, [16]), all $F_{f_{k}}$'s are tempered. Let P be a standard parabolic subgroup of G and $\left(F_{\psi_{j}}\right)_{P},\left(F_{f_{k}}\right)_{P}$ the constant term of $F_{\psi_{j}}, F_{f_{k}}$ along P. By (6.4), we have

$$
\begin{equation*}
\sum_{k}\left(F_{f_{k}}\right)_{P} \phi_{k}(x)=\sum_{j}\left(F_{\psi_{j}}\right)_{P} g_{j}(x) \quad \text { for all } x \text { in } G \tag{6.5}
\end{equation*}
$$

Since $F_{\psi_{j}} \in \mathscr{A}_{0}(G, \chi)$ (see Theorem 1) and $\phi_{1}, \phi_{2}, \cdots, \phi_{p}$ is linearly independent, we conclude that all $F_{f_{k}}$ belong to $\mathscr{A}_{0}(G, \chi)$. Hence again by Theorem 1, we have $f_{k} \in H_{K}(G, \chi)$. Thus we can prove the lemma.

Proof of Theorem 5.1. Bearing in mind Lemma 5.2, it is sufficient to show that if (π, H) is realized on $H(G, \chi)$ then $(\pi(x) v, v)$ belongs to $H(G, \chi)$ for a suitable K-finite vector in H. We put $E_{l}(\tau) f=\chi_{\tau} * f$ and $E_{r}(\tau) f=\chi_{t} * f$ for each fixed $[\tau]$ in $\mathscr{E}(K)$. Let η be the equivalent mapping of H into $H(G, \chi)$, and denote $H^{\prime}=\eta(H), \pi^{\prime}=$ the restriction of R to H^{\prime}. Then we have $\pi^{\prime}(x) \circ \eta=\eta \circ \pi(x)$ for x in G. Let $[\tau]$ be an element in $\mathscr{E}(K)$. Since $\pi^{\prime}(x)$ and $E_{l}(\tau)$ are commutative, $\pi^{\prime}(x) \circ\left(E_{l}(\tau) \circ \eta\right)=\left(E_{l}(\tau) \circ \eta\right) \circ \pi(x)$. Consequently, it follows from the irreducibilities of π and π^{\prime} that $E_{l}(\tau) \circ \eta$ $=0$ or $E_{l}(\tau) \circ \eta$ is bijective. On the other hand since $H^{\prime}=\oplus_{\tau \in \rho(K)} E_{l}(\tau) H^{\prime}$, there exists a unique [τ^{\prime}] in $\mathscr{E}(K)$ such that $E_{l}\left(\tau^{\prime}\right) H^{\prime}=H^{\prime}$. Let us now choose $[\tau]$ in $\mathscr{E}(K)$ satisfying $\left[\left.\pi\right|_{K}: \tau\right]>0$. Then there exists v in H such that $E(\tau) v=v$. We put $\phi(x)=\left(\left(E_{l}\left(\tau^{\prime}\right) \circ \eta\right)(v)\right)(x)$. Then ϕ is K-finite and $\left(\pi^{\prime}(x) \phi, \phi\right)=(\pi(x) v, v)$. We shall prove that $f(x)=(\pi(x) v, v) \in H(G, \chi)$. Since $E_{r}(\tau) \phi=\phi$,

$$
f(x)=\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \int_{G}\left(\int_{K} \overline{\chi_{\tau}(k)} \phi(y k x) d k\right) \phi(y) e^{-\varepsilon d(y)} d y
$$

We now apply Lemma 3. Then we have $\int_{K} \overline{\chi_{\tau}(k)} \phi(y k x) d k=\sum_{i=1}^{p} \phi_{i}(y) \psi_{i}(x)$ for a finite number of elements $\phi_{1}, \phi_{2}, \cdots, \phi_{p}$ and $\psi_{1}, \psi_{2}, \cdots, \psi_{p}$ in $H_{K}(G, \chi)$. This implies that $f(x)=\sum_{i} \psi_{i}(x)\left(\phi_{i}, \phi\right) \in H_{K}(G, \chi)$. Hence we can prove Theorem 5.1 completely.

§ 7. Irreducibilities for regular principal series representations

First of all in this section, we shall state a minimal K-type theorem of principal P-series representation of G. Let \mathfrak{f} be the Lie algebra of K and \mathfrak{b} a Cartan subalgebra of $\mathfrak{f} . \Phi_{K}$ is the root system of $\left(\mathfrak{f}_{C}, \mathfrak{b}_{C}\right)$ and ρ_{K} one half the sum of all positive roots in Φ_{K}. All irreducible unitary representations of K are parametrized by the dominant integral forms on $\mathfrak{b}_{\boldsymbol{C}}$ which is the highest weight. We shall denote by $\tau=\tau_{\mu}$ the irreducible unitary representation with highest weight μ. Let $\pi(\sigma, \nu)$ be a fixed principal series representation of G induced from a cuspidal parabolic subgroup $P=M A N$. Then we have $\left.\pi(\sigma, \nu)\right|_{K}=\oplus_{\mu \in b^{*}}\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau_{\mu}\right] \tau_{\mu}$ where \mathfrak{b}^{*} is the set of all dominant integral forms on $\mathfrak{b}_{C},\left.\pi(\sigma, \nu)\right|_{K}$ is the restriction of $\pi(\sigma, \nu)$ to K and $\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau_{\mu}\right]$ the multiplicity of τ_{μ} appearing in $\left.\pi(\sigma, \nu)\right|_{K}$.

Definition 1. An irreducible unitary representation τ of K is a minimal (lowest) K-type of $\pi(\sigma, \nu)$ if $\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau_{\mu}\right]>0$ and $\left|\mu+\rho_{K}\right| \leqq$ $\left|\mu^{\prime}+\rho_{K}\right|$ for all $\tau_{\mu^{\prime}}$ in $\mathscr{E}(K)$ satisfying $\left[\left.\pi(\sigma, \nu)\right|_{K}: \tau_{\mu^{\prime}}\right]>0$.

The follownig theorem is due to D. Vogan [24].
Lemma 1. Each principal P-series representation $\pi(\sigma, \nu)$ has a minimal K-type with multiplicity one.

For a proof of the lemma, see Theorem 15.1, [16] ([24] and [3]).
Remark 1. The proof of Theorem 15.1 in [16] is given by using the minimal K-type theorem of the discrete series representation σ. For the minimal K-type theorem of discrete series, see [10].

Let $\pi(\sigma, \nu)$ be a regular principal P-series unitary representation of G with infinitesimal character $\chi=\chi_{\lambda(\sigma, \nu)}$. Consider an irreducible component π of $\pi(\sigma, \nu)$. Then the characters Θ_{π} and $\Theta_{\pi(\sigma \nu)}$ satisfy the following properties (see Lemma 2.2 and Theorem 3.1);
(1) Θ_{π} and $\Theta_{\pi(\sigma, \nu)}$ are the solutions of differential equation $(z-\chi(z)) \Theta=0, z \in z$ where χ is the same as above,
(2) Θ_{π} and $\Theta_{\pi(\sigma, \nu)}$ are tempered.

Therefore by using the uniqueness theorem for tempered invariant eigendistributions on G (see Theorem 13, [13]), there exists a constant c_{π} such that

$$
\begin{equation*}
\Theta_{\pi}=c_{\pi} \Theta_{\pi(\sigma)} \tag{7.1}
\end{equation*}
$$

We now give a proof of the irreducibility of regular principal P-series
unitary representation $\pi(\sigma, \nu)$ of G.
Theorem 1. All regular principal P-series unitary representation $\pi(\sigma, \nu)$ are irreducible.

Proof. Let $P_{0}=M_{0} A_{0} N_{0}$ be a minimal parabolic subgroup of G with θ-stable split component A_{0}. We put $G_{1}=K A_{0}^{+} K, A_{0}^{+}=$the positive Weyl chamber of $\left(P_{0}, A_{0}\right)$. Then G_{1} is K-invariant open dense subset of G. Let ϕ be a K-finite element in $H(\sigma, \nu)$. We define a function $f_{\varepsilon}(x)=$ $(\pi(\sigma, \nu)(x) \phi, \phi) e^{-\varepsilon d(x)}$ for a fixed positive real number ε. We see that f_{ε} is a tempered C^{∞}-function on G_{1} (see Lemma 5.4, [20]). Let (π, H) be an irreducible component of $(\pi(\sigma, \nu), H(\sigma, \nu))$ and $\phi_{1}, \phi_{2}, \cdots$ be orthonormal basis of H satisfying $E\left(\tau_{i}\right) \phi_{i}=\phi_{i}$ for some [$\left.\tau_{i}\right]$ in $\mathscr{E}(K)$. We denote $\phi=\phi_{1}$ and $\tau=\tau_{1}$, and define $f_{\varepsilon}=\left(f_{\varepsilon}\right)_{\phi}$ as above. Bearing in mind f_{ε} is K-finite, we have immediately

$$
\Theta_{\pi}\left(\overline{f_{\varepsilon}}\right)=\sum_{i=1}^{\infty} \int_{G} \overline{f_{\varepsilon}(x)}\left(\pi(x) \phi_{i}, \phi_{i}\right) d x=\sum_{i=1}^{n} \int_{G} \overline{f_{\varepsilon}(x)}\left(\pi(x) \phi_{i}, \phi_{i}\right) d x
$$

for a suitable number n.
On the other hand since $\pi(\sigma, \nu)$ is a regular principal series, it follows from Theorem 5.2 that $\lim _{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \Theta\left(f_{\varepsilon}\right)=d_{\pi}^{-1}$ where d_{π} is the formal degree of π. Similarly we have $\operatorname{im}_{\varepsilon \rightarrow+0} \varepsilon^{i(x)} \Theta_{\pi(\sigma, \nu)}=[\pi(\sigma, \nu): \pi]\left(d_{\pi}\right)^{-1}$. Hence by (7.1), we have

$$
\begin{equation*}
[\pi(\sigma, \nu): \pi]=c_{\pi} . \tag{7.2}
\end{equation*}
$$

Let us now consider a following special subrepresentation π of $\pi(\sigma, \nu)$. By using Lemma 1 , we can choose a minimal K-type τ of $\pi(\sigma, \nu)$ with multiplicity one. Let (π, H) be an irreducible component of $\pi(\sigma, \nu)$ satisfying $\left[\left.\pi\right|_{K}: \tau\right] \neq 0$. Then $[\pi(\sigma, \nu): \pi]=1$, and therefore by (7.2) $c_{\pi}=1$. This implies that $\Theta=\Theta_{\pi(\sigma \nu)}$. Thus $\pi(\sigma, \nu)$ is irreducible.

Remark 1. The irreducibility of regular principal series $\pi(\sigma, \nu)$ induced from minimal parabolic subgroup of G is proved by F. Bruhat [2]. In general Harish-Chandra proves the irreducibilities of all regular principal P-series representations ([9]).

Remark 2. B. Kostant [18] gives an criterion for the irreducibility of spherical principal series (not necessary unitary) of G in an algebraic situation.

References

[1] A. Borel, Introduction aux groupes arithmétiques, Publication de l'Institut Mathématique de l'Universite de Strasbourg XV, Herman Paris (1967).
[2] F. Bruhat, Sur les représentations induites de groupes de Lie, Bull. Soc. Math. France, (1956), 97-205.
[3] J. Carmona, Sur la classification de modules admissible irreducibles, Noncommutative Harmonic Analysis and Lie groups, Springer-Verlag, Lecture Notes in Math., 1020 (1983), 11-34.
[4] W. Casselman, System of analytic partial differential equations of finite codimension, manuscript (1975).
[5] W. Casselman and Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J., 49 (1982), 869-930.
[6] R. Godement, Sur les relations d'orthogonalite de V. Bargmann, I and II, C. R. Acad. Sci. Paris, 225 (1947), 521-523 and 657-659.
[7] -, A theory of spherical functions I, Trans. Amer. Math. Soc., 73 (1952), 496-556.
[8] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta. Math., 116 (1966), 1-111.
[9] -, Harmonic analysis on real reductive groups III, Ann. of Math., 104 (1976), 117-201.
[10] H. Hecht and W. Schmid, A proof of Blattner's conjecture, Invent. Math., 31 (1975), 129-154.
[11] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press New York (1962).
[12] T. Hirai, The characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ., 8 (1968), 313-363.
[13] - Invariant eigendistributions of Laplace operators on real semisimple Lie groups II. Japanese J. Math., 2 (1976), 27-89.
[14] A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representation of semisimple Lie groups, Ann. of Math., 116 (1982), 389-501
[15] A. W. Knapp, Minimal K-type formula, Non Commutative Harmonic analysis and Lie groups, Springer-Verlag, Lecture Notes in Math., 1020 (1983), 107-118.
[16] ——, Representation Theory of semisimple Lie groups, Princeton Univ. Press New Jersey (1986).
[17] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math., 107 (1978), 1-39.
[18] B. Kostant, On the existence and irreducibility of certain series representations, Lie groups and Their Representations, Halsted Press, New York (1975) 231-329.
[19] H. Midorikawa, On certain irreducible representations for the real rank one classical groups, J. Fac. Sci. Univ. Tokyo, 21 (1974), 435-459.
[20] - Schur orthogonality relations for certain nonsquare integrable representations of real semisimple Lie groups, Tokyo J. Math., 8 (1985), 303-336.
[21] D. Miličić, Notes on asymptotics of admissible representations of semisimple Lie groups, manuscript (1976).
[22] P. C. Trombi and V. S. Varadarajan, Asymptotic behavior of eigen functions on a semisimple Lie group; The discrete spectrum, Acta Math., 129 (1972), 237-280.
[23] V. S. Varadarajan, Harmonic analysis on real reductive groups, SpringerVerlag Lecture Notes in Math.. 576 (1977).
[24] D. Vogan, The algebraic structure of representations of semisimple Lie

groups I, Ann. of Math., 109 (1979), 1-60.

[25] N. R. Wallach, On regular singularities in several variables, manuscript (1975).
[26] G. Warner, Harmonic analysis on semisimple Lie group I, Springer-Verlag, New York (1972).
[27] - Harmonic analysis on semisimple Lie group II, Springer Verlag, New York (1972).

Department of Mathematics
Tsuda College
Tsuda-machi, Kodaira, Tokyo 187
Japan

