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Some Relations Among New Invariants of
Prime Number p Congruent to 1 mod 4

Hideo Yokoi

In this paper, we shall define some invariants (i.e. number theoretic
function) of prime p congruent to 1 mod 4, and consider the problem to
express the prime p by using those new invariants of p.

Namely, almost all such primes p are uniquely expressed as a poly-
nomial of degree 2 of the first invariant n, which takes any value of natural
numbers. Then, the coefficient of the term of degree 2 is the square of
the second invariant u#, which takes any value of natural numbers of the
form 2° [ p% (6=0 or 1, and prime p,=1mod4). The coefficients 2a
and b of terms of degree 1 and 0 respectively are invariants depending on
u and satisfying the relations @®+4=>5u* and 0<a<<(1/2)i.

Moreover, with terms of these invariants, a necessary condition of
solvability of the diophantine equation x*—p)*= +4m for any natural
number m, an explicit formula of the fundamental unit of the real quad-
ratic field Q(v p), and an estimate formula from below of the class-
number of Q(v p) are given.

Throughout this paper, the following notation is used:

N: the set of all natural numbers
Z: the ring of all rational integers
Q: the rational number field
N: the absolute norm mapping
(—): Legendre-Jacobi-Kronecker symbol.
Theorem. Almost all rational prime p congruent to 1 mod 4 are
uniquely expressed in the form
p=un*+2an-+b,
where
ne N*={0}UN,
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ue U={25 ﬁ p%; 0=0o0r 1, e,21, prime p,=1 (mod 4)},
i=1
ae Au:{ia“ 0:<__al<%_u2’ 2:1, 2’ ceey, 25+T-1},

which is a system of representatives of the residue classes of the solutions
of x*= —4 (mod %) (put a=0 in the case r=0), and

b=Lt4 (1o prd—bu),

uZ
Moreover, then

(Wn+at+uyp)>1

| =

(1) £, =

is the fundamental unit of the real quadratic field Q(+' p).
(ii) For a natural number m>1, if the diophantine equation x*—py*
= +4m has at least one non-trivial integral solution, then m=n holds.

(iiiy For the class-number h=h(p) of Q(+ p) and the least prime
q,=q,(p) such that (L) =1, i.e. q, splits completely in Q(v/ p), it holds
10
h> logn )
log g,
To prove this theorem, we need two lemmas.
In a square-free integer D>1 and a natural number m>1, we say

that an integral solution (u, v) of the diophantine equation x* — Dy?= -+4m
is trivial if and only if m=n? is a square and u=v=0 (mod n).

Lemma 1 (Davenport-Ankeny-Hasse-Ichimura). Let D>1 be a
square-free rational integer, and denote the fundamental unit of the real

quadratic field Q(v' D) by

= é—(t—{— u/D)>1.
Then, for any natural number m> 1, if the diophantine equation x* — Dy*
= -+4m has at least one non-trivial integral solution, it holds

o Nep=—1,
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Proof. For proofs in the case of no square m, see N. C. Ankeny, S.
Chowla and H. Hasse [1] or H. Hasse [2]. For arbitrary natural number
m, this lemma was first proved by H. Ichimura as follows in a letter to the
author:

We prove this lemma in the case Ne,= —1 only, because in another
case it can be proved similarly. If there exists at least one non-trivial
solution (x’, y’) of x*— Dy*= +4m, then we know »’=0 at once. Hence,
let (x,, »,) be the non-trivial solution such that x,=>0 and y,>0 is the
smallest, then

N(x,—y VD)= +4m

holds, and multiplying this by

N( Z+142x/5)=_1',

we obtain

N(xot—zyouD T xou—2—y0t x/b_)=i-4m,

and we see easily that both of

Xt —yuD and b= XoU— Yot
2 2

a—=

are rational integers.

Here, we can verify that (a, b) is also a non-trivial integral solution
of x*—Dy*= +4+4m. For, if not, then there exists a positive integer »n such
that m=n?, a=b=0 (mod n). Writing ¢3' as

551-’:%(1/4—”,'\/5‘), (t/> u,GZ),
and noting
ep(xo—yoﬂ/b—)=a+b\/3,

we obtain

—_— ’ 4 ’ ’ _
X,—y/ D = ta+2ubD+ tb;—ua JD.

Since ¢3! is an integer of Q(4/D ) and D is square-free, we know t'=u’
(mod 2), and hence we obtain
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__ t'a4u'bD

Xo= 5 =0 (mod n),
— Y= t’b—;—#u’a =0 (mod n).

This contradicts the assumption that (x,, y,) is non-trivial. Therefore,
(a, b) and so (|a|, | b)) is also a non-trivial solution of x*— Dy*= +4m.
Finally, because of the minimum choice of y,, we get

lbl=1 xou;yot

Z Yos

%= T23>0 or 0<x,< t-2
u

Yo

Hence, from x2— Dy:= 4-4m, we obtain either
2
+ amz{(T2) _phiz
(-) u u

or

o <{(2)-pp=-%-

Therefore, in each case, we obtain m>1#/u? as asserted in the lemma.
Lemma 2. Let D>1 be a square-free positive integer, and q be an
odd prime. Then, the following two assertions are equivalent to each other:

(i) The number e is the smallest natural number such that the
diophantine equation x* — Dy*= -+4q* has at least one integral solution.

(ii) <£)=1 and the natural number e is the order of prime factors
q

0170, of g in Q(WD)) in the ideal class group.

Proof. Let e, be the smallest natural number such that x*—Dy?=

+4g* is solvable, then (2)= 1. On the other hand, for an odd prime ¢
q

satisfying (2) =1, let e, be the order of prime factors q, (i=1,2) of g in
q

QD) in the ideal class group. Moreover, put 622=(w), o= (u+vVD),
then we get
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¢ e 1
4 =(N0)*=IN@)| = |0 — D7),
and so we have #*— Dv*= 4-4q°, which implies e,>e,.
Conversely, for some (i, v), it holds #? — Dv?= +44°, and so u*= Dv*
(mod ¢), which implies (_D-> =1. Hence, putting L(u+vvD)=0, ()=
q
U, and g=q;-q,, we get

NUA=|N(0)|=g=(q:9,)"

Then, we know U=gq{* or g, which implies e,>e,.

For, putting A=qlge " (0 r<e), we get W=ge-rq¥ e (resp.
q7g*) in the case rz=e,—r (resp. r<e,—r). Hence, g7~ (resp. q3~%)
=(7) is a principal ideal, and so putting y=3(u;+v,4/D ), we get

i_qZT—el (resp. -{__—qel"w):N(‘y])z —i—(uf——Dvﬁ),

which implies u}—Dvi= 4-4¢* - (resp. +49°~*"). Hence, it follows
from 2r—e,>e, (resp. e, —2r=e,) that r=e, (resp. r=0), i.e. A=q{* (resp.
az)-

Proof of theorem. For any prime p congruent to 1 mod 4, let

= AV D) (1>0,0,>0),
be the fundamental unit of the real quadratic field Q(v/ p ). Then, we get
first

u,=2¢ i]i[l pé, (=0 or 1, prime p,=1 mod 4),®

and

Ne,=—1, ie. £3—pui=—4.

Hence, u=u, is an invariant of p and belongs to U.

Next, there is uniquely determined a number n, of N* by the ine-
quality

t, 1
2 <<
n 'l T2

# Cf. Yokoi [5], Lemma 1.
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For, if u,=2, then p=2%t;+1=1 (mod 4) implies ¢,=0 (mod 4), and so

t,jus=1t,]4 e N. Hence, n=n, is also an invariant of p belonging to N*.
Moreover, if we put

then we get

and hence 0<a<Juh

Here, a=0 if and only if r=0. For, if a=0, i.e. ,=0 (mod u}),
then it follows from (z,, u,)=1 or 2 that u,=1 or 2. Conversely, if r=0,
i.e. u,=1 or 2, then it follows easily from ¢} —pu}= —4 that ¢,=0 (mod
u), i.e. a=0.

Furthermore, from

pup=t,+4=(n,+a)+4
=nuy 4 2anmul+a* +4,

we get o +4=0 (mod ).

Hence, a is an invariant of p belonging to A4, and b defined by a*+4
=hu* is also an invariant of p, and consequently the prime p is expressed
by those invariants of p in the form

p=u'n*+2an+b.

Conversely, if a prime p congruent to 1 mod 4 is expressed in this
form, then it is known by Yokoi-Nakahara** that for almost all (i.e.
except for finite number of ) such primes p,

Lin tatudp)

Ep=—

b

is the fundamental unit of the real quadratic field Q(v p). Hence, u,=u
and ¢,=w'n+a, and moreover

Therefore, u, n, a and b in p=u?n*+2an-+b are uniquely determined by
prime p.

## Cf. Yokoi [5], Nakahara [3].
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Furthermore, for a natural number m, if the diophantine equation
x*—py*=+4m has at least one nonp-trivial integral solution, then by
Lemma 1 we get m=t,/u,=n-+a/u, and noting 0<a/u’ <}, we obtain
mz=n.

Finally, for any rational prime ¢ splitting completely in Q(+/ p), i.e.

(ﬂ): 1, by Lemma 2 we obtain
q

qtz=n, ie. hg—lgén-.
loggq

Hence, in particular, for the least prime ¢,=q,(p) satisfying (.1_7_):1,

9,

h> 1087 4 514s.
log g,

Example.

(1) The case of u=1.
(a, b)=(0, 4). Hence p=n*+4.
For example,

(p,m; H)=(5,151), (13,3; 1), (29, 5; 1), (53, 7; 1),
(173, 13; 1), (293, 17; 1), (1373, 37; 3),

e=—;—(n+fp‘).

(2) The case of u=2.

(a, b) =(0, 1). Hence p=2*4-1.
For example,
(p,n; =(5,1;1), (17,2; 1), (37,3; 1), (101, 5; 1),
(197,7; 1), (677, 13; 1), (5477, 37;3), - - -

e=2n++p.

(3) The case of u=>5.
(a, b)= (11,5). Hence p=5*"n*+2.11n4-5.

For example,
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(p, n; B=(61,2;1), 317, 4; 1), (773, 6; 1),
(1429, 8; 5). - .p=5"n'—2-11n4-5,
(p,n; )=(149,2; 1) . .p=5n*+2.11n+5.

The case of u=10.

(a, b)=(36, 13). Hence p=10#"4-2-36n413.

For example,
(p, n; )=(41, 15 1), (269, 2; 1), (2153, 5; 5),
(3181, 6; 5), (4409, 7;9). - . p=10°n*—2-36n4-13.
(p, n; ))=(557, 2; 1), (1129, 3; 9), (1901, 4; 3),
(5417, 7; 7y - - p=10"n4-2-36n+13.

The case of p=1,009.

e,=5404+17Vp. h(p)=T.
Hence 7,=1,080, u,=34, n=1.
(a, b)=(76, 5).

Therefore, p=1,009=34*.1"—2.76-145.

The case of p=2,677.

ep=_;_(3,777+73«/?). h(p)=3.

Hence t,=3,777, u,=73, n=1.
(a, b)=(1552, 452).
Therefore, p=2,677=73*.1*—2.1552.14-452,

The case of p=15,273.

e,,=944+13«/})—. Kp)=1.
Hence #,=1,888, u,=26, n=3.
(a, b)=(140, 29).
Therefore, p=15,273=26%.3*—-2.140.34+29.
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