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Some Relations Among New Invariants of 
Prime Number p Congruent to I mod 4 

Hideo Yokoi 

In this paper, we shall define some invariants (i.e. number theoretic 
function) of prime p congruent to 1 mod 4, and consider the problem to 
express the prime p by using those new invariants of p. 

Namely, almost all such primes p are uniquely expressed as a poly­
nomial of degree 2 of the first invariant n, which takes any value of natural 
numbers. Then, the coefficient of the term of degree 2 is the square of 
the second invariant u, which takes any value of natural numbers of the 
form 26 TI p~' (o=O or 1, and prime P,=I mod4). The coefficients 2a 
and b of terms of degree 1 and O respectively are invariants depending on 
u and satisfying the relations a2 +4=bu 2 and 0<a<(l/2)u 2• 

Moreover, with terms of these invariants, a necessary condition of 
solvability of the diophantine equation x2 -py 2 = ±4m for any natural 
number m, an explicit formula of the fundamental unit of the real quad­
ratic field Q( Jp), and an estimate formula from below of the class­
number of Q( Jp) are given. 

Throughout this paper, the following notation is used: 

N: the set of all natural numbers 

Z: the ring of all rational integers 

Q: the rational number field 

N: the absolute norm mapping 

(-): Legendre-Jacobi-Kronecker symbol. 

Theorem. Almost all rational prime p congruent to I mod 4 are 
uniquely expressed in the form 

p=u 2n2 ±2an+b, 

where 
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ue U={2" }]
1
P1'; o=O or I, ei>l,primep/=.1 (mod4)}, 

a E Au={ ±a,; O~a,< ~ u2, A=I, 2, · · ·, 2.+r- 1}, 

which is a system of representatives of the residue classes of the solutions 
of x 2=. -4 (mod u2) (put a=O in the case r=O), and 

a2 +4 b=-- (i.e. a2 +4=bu 2). 
u2 

Moreover, then 

( i) 1 ;-
ep= 2 (u2n± a+u-v p )> I 

is the fundamental unit of the real quadratic field Q( [p). 
(ii) For a natural number m> I, if the diophantine equation x2 -py 2 

= ±4m has at least one non-trivial integral solution, then m>n holds. 
(iii) For the class-number h=h(p) of Q(Jp) and the least prime 

q0 =qo(p) such that (....!!__)=I, i.e. q0 splits completely in Q( [p), it holds 
qo 

h?:. logn . 
- logq 0 

To prove this theorem, we need two lemmas. 
In a square-free integer D> 1 and a natural number m> I, we say 

that an integral solution (u, v) of the diophantine equation x 2 -Dy 2 = ±4m 
is trivial if and only if m=n 2 is a square and u-=-v-=-0 (mod n). 

Lemma 1 (Davenport-Ankeny-Hasse-Ichimura). Let D > I be a 
square-free rational integer, and denote the fundamental unit of the real 
quadratic field Q( JD) bY_ 

1 ;-
eD= -(t + u,v D )> 1. 

2 

Then, for any natural number m >I, if the diophantine equation x2 -Dy 2 

= ±4m has at least one non-trivial integral solution, it holds 

m>j :2 · · -NsD= -1, 

- t-2 
--- · · -NsD=l. 

u2 
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Proof For proofs in the case of no square m, see N. C. Ankeny, S. 
Chowla and H. Hasse [1] or H. Hasse [2]. For arbitrary natural number 
m, this lemma was first proved by H. lchimura as follows in a letter to the 
author: 

We prove this lemma in the case Nev= -I only, because in another 
case it can be proved similarly. If there exists at least one non-trivial 
solution (x', y') of x 2 -Dy 2 = ±4m, then we know y'=;t=O at once. Hence, 
let (x 0, y 0) be the non-trivial solution such that x 0 >0 and y 0>0 is the 
smallest, then 

holds, and multiplying this by 

we obtain 

N( x 0t-; 0uD + x 0u~y 0t VD)= ±4m, 

and we see easily that both of 

are rational integers. 

Here, we can verify that (a, b) is also a non-trivial integral solution 
of x 2 -Dy 2 = ±4m. For, if not, then there exists a positive integer n such 
that m=n2, a=.b=.0 (modn). Writing en1 as 

and noting 

we obtain 

en1 = _!__(t' + u'vD ), 
2 

(t', u' E Z), 

_ 1D _ t'a+u'bD + t'b+u'a 1D 
Xo Yo'V ----- ---~,y · 

2 2 

Since en1 is an integer of Q(vD) and Dis square-free, we know t 1 =.U1 

(mod 2), and hence we obtain 
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t'a+u'bD _ 
X0=----=0 

2 

t'b+u'a _ 
-Yo=---- 0 

2 

(mod n), 

(mod n). 

This contradicts the assumption that (x0, y0) is non-trivial. Therefore, 
(a, b) and so (\a\, \b\) is also a non-trivial solution of x2-Dy 2 = ±4m. 

Finally, because of the minimum choice of Yo, we get 

i.e. 

t+2 t-2 
x 0>---y 0>0 or 0<x 0::S:: --Yo· 

u u 

Hence, from x~-Dyg= ±4m, we obtain either 

+ 4m >-{( t+2 )2 -D}yg>-__±£_ 
(-) u u 

or 

(+/m<{( t~2 )2-n}y~~-:! . 
Therefore, in each case, we obtain m > t / u2 as asserted in the lemma. 

Lemma 2. Let D> 1 be a square-free positive integer, and q be an 
odd prime. Then, the following two assertions are equivalent to each other: 

( i ) The number e is the smallest natural number such that the 
diophantine equation x 2 -Dy 2 = ±4q• has at least one integral solution. 

(ii) (;) = 1 and the natural number e is the order of prime factors 

q1 * q2 of q in Q( ../ D ) in the ideal class group. 

Proof Let e1 be the smallest natural number such that x 2 -Dy 2 = 

± 4q•1 is solvable, then (;) = 1. On the other hand, for an odd prime q 

satisfying (;) = 1, let e2 be the order of prime factors q1 (i = 1, 2) of q in 

Q(../ D) in the ideal class group. Moreover, put qt•=(w), w=½(u+v../D ), 
then we get 
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and so we have u2 -Dv 2= +4q••, which implies e2 >e 1• 

Conversely, for some (u, v), it holds u2 -Dv 2 = ±4q• 1 , and so u2=Dv 2 

(mod q), which implies ( ~)=1. Hence, putting ½(u+v-v'D)=a>, (a>)= 

U, and q=q 1 ·q2, we get 

Then, we know U=qt 1 or qg1, which implies e1"2::e2• 

For, putting U=qrq;i-r (0 < r::;;; e1), we get U = q•i-rqr-ei (resp. 
qrqg1- 2r) in the case r>e 1 -r (resp. r<e 1 -r). Hence, qr-• 1 (resp. qg1 - 2r) 
=(r;) is a principal ideal, and so putting r;=½(u1 +v 1.J D ), we get 

which implies u~-Dv~= ±4q 2r-• 1 (resp. ±4qei- 2r). Hence, it follows 
from 2r-e 1>e 1 (resp. e1-2r>e 1) that r=e 1 (resp. r=O), i.e. U=qf 1 (resp. 
qgi). 

Proof of theorem. For any prime p congruent to 1 mod 4, let 

be the fundamental unit of the real quadratic field Q( Jp). Then, we get 
first 

r 
u =2e TI p~i 

p i ' 
i=l 

(o=O or I, prime Pi= I mod 4),*l 

and 

NeP= -1, i.e. t;-pu;= -4. 

Hence, u = up is an invariant of p and belongs to U. 
Next, there is uniquely determined a number nP of N+ by the ine­

quality 

*> C.f. Yokoi [5], Lemma 1. 
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For, if uP=2, then p=¼t~+ 1 = 1 (mod 4) implies tP=O (mod 4), and so 
tp/u~=tP/4 e N. Hence, n=nP is also an invariant ofp belonging to N+. 

Moreover, if we put 

then we get 

0:S~=/..!L-nJ<_!_, 
u· u2 2 

and hence O<a<½u 2• 

Here, a=O if and only if r=O. For, if a=O, i.e. tP=O (mod u~), 
then it follows from (tp, up)= 1 or 2 that uP= l or 2. Conversely, if r=O, 
i.e. uP= l or 2, then it follows easily from t~-pu~= -4 that tP=O (mod 
u~), i.e. a=O. 

Furthermore, from 

pu~= t~+4=(nu~±a)2+4 

=n 2u!±2anu~+a 2 +4, 

we get a2 +4=0 (mod u~). 
Hence, a is an invariant of p belonging to A, and b defined by a2 +4 

=bu 2 is also an invariant of p, and consequently the prime p is expressed 
by those invariants of p in the form 

Conversely, if a prime p congruent to 1 mod 4 is expressed in this 
form, then it is known by Yokoi-Nakahara**' that for almost all (i.e. 
except for finite number of) such primes p, 

is the fundamental unit of the real quadratic field Q( ./p). Hence, uP=u 
and tP=u2n±a, and moreover 

Therefore, u, n, a and b in p=u 2n2 ±2an+b are uniquely determined by 
primep. 

**> C.f. Yokoi [5], Nakahara [3]. 
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Furthermore, for a natural number m, if the diophantine equation 
x2 - py 2 = ±4m has at least one non-trivial integral solution, then by 
Lemma 1 we get m>tP/u~=n±a/u~, and noting O<a/u~<½, we obtain 
m?.n. 

Finally, for any rational prime q splitting completely in: Q( ~p), i.e. 

( ~ )= 1, by Lemma 2 we obtain 

i.e. h> logn . 
- logq 

Hence, in particular, for the least prime q0 =qo(p) satisfying (L)=l, 
qo 

h?. log n holds. 
- logq 0 

Example. 

(1) The case of u= I. 

(a, b)=(O, 4). Hence p=n 2 +4. 

For example, 

(p, n; h)=(5, 1; 1), (13, 3; 1), (29, 5; 1), (53, 7; 1), 

(173, 13; 1), (293, 17; 1), (1373, 37; 3), 

1 1-
e=-(n+v p ). 

2 

(2) The case of u=2. 

(a, b) =(0, 1). Hence p=2 2n2 + I. 

For example, 

(p, n; h)=(5, 1; 1), (17, 2; 1), (37, 3; 1), (101, 5; 1), 

(197, 7; 1), (677, 13; 1), (5477, 37; 3), · · · 

e=2n+~P-

(3) The case of u= 5. 

(a, b)= (11, 5). Hence p=5 2n2 ±2- lln+5. 

For example, 
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(p, n; h)=(6I, 2; 1), (317, 4; 1), (773, 6; I), 

(1429, 8; 5)- · ·P=5 2n2 -2- lln+5, 

(p, n; h)=(I49, 2; 1) ·. -p=5 2n2 +2- lln+5. 

(4) The case of u= IO. 

(a, b)=(36, 13). Hencep=l0 2n2 ±2-36n+13. 

For example, 

(p, n; h)=(4I, I; 1), (269, 2; 1), (2153, 5; 5), 

(3181, 6; 5), (4409, 7; 9)·. -p=I0 2n2 -2-36n+l3. 

(p, n; h)=(557, 2; 1), (1129, 3; 9), (1901, 4; 3), 

(5417, 7; 7)-. ·p=I0 2n2 +2-36n+13. 

(5) The case of p= 1,009. 

sv=540+17,vp. h(p)=7. 

Hence tv=l,080, uv=34, n=I. 

(a, b)=(76, 5). 

Therefore, p= 1,009=34 2 • 12-2· 76- 1 +5. 

(6) The case of p=2,677. 

1 -
SP= -(3,777 + 73,V p ). h(p)=3. 

2 

Hence tv=3,777, uv=73, n= I. 
(a, b)=(1552, 452). 

Therefore, p=2,677=73 2 • 12-2-1552-1 +452. 

(7) The case of p=5,273. 

8p=944+ 13,vp. h(p)=7. 

Hence tv= 1,888, uP=26, n=3. 

(a, b)=(140, 29). 

Therefore, p=5,273=26 2 - 32 -2-140-3+29. 
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