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Introduction

Let A be an excellent normal two-dimensional henselian local ring
with finite residue field F and quotient field K. The purpose of this paper
is to construct the class field theory for K, using the method and results
in [S-1]. Let P be the set of all prime ideals of height one in 4. For
each pe P, let A, be the henselization of 4 at p and let K, (resp. x(p)) be
its quotient (resp. residue) field. Then, K, is a henselian two-dimensional
local field in the sense of [K-1] (cf. also [S-1] (2.2)). For such a field,
K. Kato constructed the class field theory in [K-1] and [K-2]. Then,
our method is to put together these local theories, which is a standard
technique in the classical class field theory. To state our main results,
we recall briefly some results in [K-1] and [K-2]: In general, for a
noetherian scheme Z, Put HY(Z)=H'(Z., @/Z) which is identified
with the Pontrijagin dual of the abelian fundamental group 73°(Z). For
a noetherian ring R, we put H'(R)=H!(Spec(R)). For each pe P, Kato
constructed a canonical homomorphism

¥ip: HI(K,) — (Ko(Kp)or >
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344 S. Saito

where for a group G, (G)¥, denotes the group of all homomorphisms

x: G- QJZ of finite orders. Moreover, we have the following commuta-
tive diagram

H'(K,) — (K (K
(0.1) 1 1
H'(A,)~ H'(x(p)) =2 (x(P))r»

where o is the dual of the classical reciprocity map for the henselian
discrete valuation field x(p) with finite residue field (cf. [Se]), and the
right vertical arrow is the dual of the tame symbol

0, Ky(Ky) — k(0)*; {f, 9} — (= D*fPg7=],

where we put a=ordk,(f) and B=ordk,(g). We note that Ker(J,)
coincides with K,(A4,). Then results of [K-1] and [K-2] state that ¥k,
is almost isomorphic (for a precise statement, see (1.5)).

Starting with this local result, we put together all maps ¥, for pe P
to obtain a description of H'(K). Here, we give the following corollary
of our main result (1.10).

Theorem (0.2). (1) There exists an integer r(A)20 such that the
kernel of the natural map o

¢t H(K) — pl;[P H'(K,)

is isomorphic to (Q/Z)" 4.
(2) An element (y,),.p€ Il H'(K,) lies in the image of ¢k if and
peP

only if the following two conditions are satisfied.
(A) For almost all pe P, y, lies in the subgroup H'(A,)~H'(x(p)).
(B) For any ae K,(K), we have

EP Yk,(x,) (a,)=0,

where a, is the image of a in K,(K,) (Note that a, lies in K,(A,) for
almost all p € P so that (A) and (0.1) implies that the sum is a finite sum).

Moreover, the integer r(A4) in (0.2.1) is calculated as the Z-rank of
the graph of the exceptional fiber of a resolution of Spec (A) (cf. §2).

(0.2.2) may be desirable and familiar in its form for those who
knows the classical class field theory. On the other hand, the existence of
the non-trivial kernel of ¢ is a new phenomenon in our class field theory.
In fact, for y e Ker (¢k), Ker (3) corresponds to a cyclic extension L of K
in which any p e P splits completely, namely L® K, is isomorphic to a
finite number of copies of K, (cf. §2).
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Lastly, to establish the unramified class field theory in our context,
we first recall that there exists a complex coming from the localization
theory for the K-theory on Spec (A4);

(0.3) K(A) — K,(K) -2, p@P k(p)* -2 Z —— 0.

Here K,(K)—k(p)* is given by the tame symbol d,, and x(p)*— Z is the
composite map

K(p))< ordK(p) zZ dy z

where d,=[F,: F] with the residue field F, of x(p) and F=A/m, (m is
the maximal ideal of 4). We define

(0.4) SK,(A)=Coker(d,) and SK,(A)°=Ker(d,)/Im (¢,)=Ker(d),

where we put 0: SK,;(4)— Z to be the map induced by ¢,. When A4 is
regular, (0.3) is exact by [Q] and [B] so that we have

SK,(4)°=0 and SK,(4)— Z.

Let X =Spec(A)—{m,}. By definition, 73®(X) coincides with the
Gal(K*r-/K), where K¥ is the maximum abelian extension of K in
which any p € P is unramified. Let

Da: @ K(p) — m(X)
be the sum of the composite maps for all pe P
K(p)* —— Gal (k(p)**/x(p)) — 7§*(X),
where the first map is the reciprocity map for k(p) (cf. [Se]).
Theorem (0.5). The map 4 induces a canonical homomorphism
Y4 SK((4) — n°(X),

and we have the following properties.
(1) We have the commutative diagram

SK,(X) -2 Z
e ]
m2%(X) —£, Gal (F**/F),

where the right vertical arrow sends 1€ Z to the Frobenius over F, and
the map B is the composite n3®(X)— n3®(Spec (4))~ Gal (F2°/F).
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(2) We have an isomorphism
(X)/Im ()= (Zy,

where Im ( ,) is the closure of the image of Y ,.

(3) The kernel of Y, is equal to the maximum divisible subgroup
D(A) of SK,(A).

(4) The image of SK,(A)° under r, is finite and coincides with the
torsion part m3®(X),, of mi¥(X), namely we have an isomorphism of
finite abelian groups

SK(A)°/D(A) > 73> X) o -

The Galois theoretic interpretation of our results is explained in the
following diagram in which each extension is galois.

Extensions Galois groups

K«

//Z “““““““ SK,(4)°/D(A) (finite)
/K Kc.s.
R \

where K7 is defined as before, K¢-5- is the maximum subextension of
Kvr/K in which any pe P splits completely, K is the quotient field of
the strict henselization of 4, and d(A) is the greatest common divisor of d,
for all pe P.

Finally, the author expresses his hearty thanks to Professor K. Kato,
who suggested to make these researches and gave him many ideas.

Notations

For a field k, k2?; a maximum abelian extension of k.

For a discrete valuation field k, ¢, ; the ring of integers, m,; its maximal
ideal, ord,: k*— Z; the normalized additive valuation of k.

For an abelian group G, (G)* (resp.(G)¥,); the set of all homo-
morphism y: G—Q/Z (resp. of finite orders).

For an abelian group M and integer n>0,
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M,:=Ker(M —»» M) and M/n:=Coker (M —> M).
For an abelian group M and a prime number /,

M) =lim M,. .

For a commutative ring R and an integer i 20, K(R); the i-th K-group
of R in the sense of [Q].

For a field k and an integer i 20, K}(k); the i-th Milnor K-group of
k (cf. [Mil]). It is well-known that KM(k)=K (k) for i<2.
§1. The statements of the main results

First, we introduce some notations and results in [K-1] and [K-2]
(cf. also [S-1] §2).

For a field A and a prime number I, we define an [-primary torsion
group Hi(A)(!) by;

HY(A) () =lim H(A, p@4V)  if 1#ch(4),
H{(A) () =lim H'(A, W,Qi7Lg) if [=p:=ch(4)>0,

where W, Qi1 is the logarithmic part of the De Rham-Witt complex
on Spec(A),, (cf. [1]) and the transition maps are induced by the multi-
plication by p. We put

Hi(A)= z® Hi(A)(D).
We can see that
H'(A)~Hom,,, (Gal(A42*/4), 0/Z) and H*A)~Br(A).
On the other hand, in case I#ch (A), we have the Tate’s Galois symbol
KY(A) — HI(A, 4§,
and in case I=ch (A), we have the differential, symbol
KM(A) — HYA, W, 1,0) -
Hence, using cup products on cohomologies, we have a pairing
Hi(A) x KM(A) — H*i(A).

In case A is a two-dimensional henselian local field in the sense of
[K-1] and [K-2] (cf. also [S-1] (2.2)), there is a canonical isomorphism
(cf. [K~1] §5 and [K-2] §3)
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(1.1) inv,: H3(A) = Q/Z.

Hence, we obtain a canonical pairing

(1.2) s Dar H(A) X Ky(A) — H¥ ()~ Q] Z,
and a canonical homomorphism

(1.3) ¥ 40 HY(A) — (Ky(A))-
Moreover, we see that the following diagram is commutative

H'(A) 24, (K,(A))f,
(1.4) ) 1
HY(0 )~ H'(k) 2 (k")

where k is the residue field of ¢, which is a henselian discrete valuation
field with finite residue field, and « is the dual of the classical reciprocity
map for k (cf. [Se]).

Theorem (1.5) (cf. [K-1] and [K-2]). (1) ¥, is injective.

(2) If xe(Ky(A)E, has an order prime to ch(k), it lies in the
image of ¥ 4.

(3) The image of ¥, lies in the subgroup D(K,(A)) of (Ky(A)E,
consisting of all elements which annihilate some open subgroup of
K,(A). Here the topology on K,(A) is defined in [K-1] §7 (cf. also
[S-1] (2.3)). Moreover, if k is complete, we have

Y. H(A)~D(K(A)).
Now, fix 4 as the introduction. We define a pairing
(1.6) Ok H(K) x Iy — Q1 Z; <y, a>K=sz s ap>"p,

where I is the idele group defined to be the restricted product of K,(K,)
for pe P with respect to the subgroups K,(4,). Note that for each
y €H'(K) its image y, in H'(K,) lies in the subgroup H'(A4,) for almost
all pe P. Hence, by (1.4), {x,, a,>=0 for almost all peP so that
(1.6) is well defined. Moreover, by the reciprocity law for A (cf. [S-1]
(2.9) and [S-2] Ch. I), we see that { , >, induces a canonical pairing

(1.7) L Okt H(K)xCy— Q) Z.

Here we put Cy=Coker (K,(K)—Ig) and K,(K) is mapped diagonally
to Ix. Thus we obtain a natural homomorphism

(1.8) Yi: HY(K) — (Cg)r-
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Let S be a finite (may be empty) subset of P and put
Cs=Coker( [ Ky(4,)—Cyg)
peP—S

= Coker (Ky(K)=( & 1(p))&(& K(K,)).

We call Cy the idele class group for A with the modulus S. When S is
empty, Cg is nothing other than SK;(A) defined in the introduction.
Note that S is considered a closed subset of X =Spec(4)—{in,} and put
Us=X-—S. Then HY(Ug) is the Pontrijagin dual of Gal (K} /K), where
Ky is the maximum abelian extension of K where every pe P—S is
unramified. Thus image of H'(Ug) in H'(K,) is contained in H'(4,)
for every pe P—S. Hence, by (1.4) ¥, induces

(1.9) ¥Ys: H(Ug) — (Cs)or-

In particular, we have obtained the map ¥4 in (0.5) as the dual of ¥ for

S=¢.

Now, our main result is the following

Theorem (1.10). (1) There exists an integer r(A)=0 such that
Ker (Vx)=Ker (V) ~(Q/Z ).

(2) An element we(Cs)¥, lies in the image of ¥g if and only if
w, lies in the image of Yk, for every p€ S, where w, is the restriction of
 to the p-component of Cs.

(3) An element we(Cg)¥, lies in the image of WYx if and only if
the following conditions are satisfied:

(A) For almost all pe P, w, annihilates the subgroup K,(4,).

(B) ForanypeP, o, lies in the image of ¥Yk,.

Note that (1.10.3) is an immediate consequence of (1.10.2).

Definition (1.11). An element we(Cy)f, is continuous if for any
p €S, the restriction of w to K,(K,) annihilates some open subgroup (cf.
(1.5.3)). We denote by D(Cs) the subgroup of (Cg)¥, consisting of all
continuous elements.

By (1.5.3), the image of ¥ lies in D(Cy).

Remark (1.12). By the definition of the topology of K,(K,) (cf.
[K-1] §7, also [S-1] §2), we see that any we(Cy)¥, of the order prime
to ch (K) is continuous,

Corollary (1.13). Let we(Cy¥,.
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(1) If w has an order prime to ch(x(p)) for every peS, it lies in
the image of V.

(2) If k(p) is complete for every pe S, w lies in the image of ¥ if
and only if it lies in D(Cy).

Corollary (1.14). If A is complete, we have an exact sequence
0 —(Q/Z)y — H(Ug) X5, D(Cs) — 0.
(1.13) and (1.14) follow at once from (1.10) and (1.5).

Corollary (1.15). Let S be a non-empty finite subset of P, and
assume that A is regular. Then, (y,),.s€ @ H'(K,) comes from H'(Us)
peS

if and only if
Z lIIKp(Xp): ® KZ(Kp) ? Q/Z
pes peS

annihilates the diagonal image of K,(Ag), where Ag is the affine ring of Ug.
(1.15) follows from (1.10), (1.4) and the following

Lemma (1.16). Let the assumption be as (1.15). Then the sequence

Ky(As) — Ky(K) -2 @ «(p)".
peP—S

is exact. Moreover, Coker (0) is finite and isomorphic to the cokernel
of the sum of the following maps for pe S;

K(P) Sy, £ 4y Z (cf. (0.3)).

The first assertion of (1.16) follows from the localization theory for
the K-theory on Ug=Spec(As). The second follows from the exactness
of the sequence (0.3) when A is regular (cf. [Q] and [B)).

The proof of (1.10.1) will be given in Section 2, that of (1.10.2) will
be given in Section 7 and Section 8, and finally (0.5) will be deduced
from (1.10) and the finiteness theorem (4.1) (cf. the end of §8).

§2. The determination of Ker(¥y)

First, we recall the following

Definition (2.1) (cf. [S-2] Ch. II (2.1)). Let Z be a noetherian scheme.
. A finite etale covering f: W—Z is called a c.s. covering, if for any closed
point z of Z, zx ;W is isomorphic to a finite sum of z. We denote by
n5-5-(Z) the quotient group of #3%(Z) which classifies abelian c.s. coverings
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of Z. 1In other words, n$5-(Z) is the dual of the intersection of the kernels
of the maps

HYZ, Q|Z)— H'(z, Q| Z)
for all closed points z of Z.

Let A be as before and X = Spec (A4)—x, where x is the unique closed
point of Spec(A). By definition, 7$-5-(X) coincides with Gal (K**/K),
where K°*- is defined in the introduction, and by the injectivity of Yk,
for p € P, we have an isomorphism

KCI’ (lIIK)z Homcont (TC‘i‘s'(X), Q/Z) .

Thus, we are reduced to determine the structure of =§s(X). This
is done by the same method in [S-2] Ch. II §2: Choose a resolution of
Spec (A), by which we mean a proper birational morphism

f: ¥ — Spec(A)

which satisfies the following conditions: X is a two-dimensional regular
scheme, Y:=(f"1(x)),.q 1s a geometrically connected one dimensional
scheme over F=A/m, such that any irreducible component of Y is regular
and it has only ordinary double points as singularities, and f induces an
isomorphism ¥\Y~X. Then, we have the following two basic facts.

Proposition (2.2). The specialization map
P X) — 7(X) = ni(Y)
induces an isomorphism
5 (X) 2y (Y)

Proposition (2.3). Let I’ be the graph of Y (c¢f. [S-2] Ch. 1I (2.3)).
Then, there exists an isomorphism

s (V= H (T, Z)®,Z~Z",
where r is the rank of H\(I', Z).
Definition (2.4). The rank r(A) of A is the rank of H,(I', Z).

Clearly, r(A4) does not depend on the choice of X.

The proof of (2.3) is given in [S-2] Ch. II (2.4), and (2.2) is proved
in the same argument as the proof of [S-2] Ch. II (2.2).

Consequently, we obtained the desired isomorphism

Ker (Yy)~H\(I', Q| Z)~(Q]Z)".
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§3. The ramification along the special fiber

Let A, K and P be as before and let S be a finite subset of P. In this
section, we fix a resolution of Spec (A4) as in Section 2,

f: X—— Spec(4),

and define a new idele class group Ty which takes an account of the
ramification along special fiber of f. For this, we introduce some notations
(cf. [S-17 §1). Let X=Spec(A)—x, where x is the unique closed point
of Spec (A4). By definition, P is identified with the set of all closed points
of X. Let Y=(f"'(x)),.q and let Y, (resp. Y;) be the set of all closed
(resp. generic) points of Y. For ne Y, let K, be the quotient field of the
henselization of the local ring of X at # and let n, be the set of all xe ¥,
lying on the closure of 7 in X. For xe Y, let A, be the henselization of
the local ring of X at x. It is an excellent regular two-dimensional henselian
local ring. Let K, be the quotient field of 4, and P, be the set of all
prime ideals of height one in A,. For xe Y, let Y§ be the subset of P,
consisting of all elements lying over some element of Y,. For ne Y, and
X €1y, there is a unique 7, € Y lying over #, and x(#,) is the henselization
of x(n) at x. We denote by K, the henselization of K, at #,. For each
x € Yy, the cardinality of Y¥ is one or two, according as x is a regular
point of Y or not. For peP, its closure in X contains a unique x € ¥,
when we denote “p—x’’. For x e Y,, let P* be the subset of P consisting
of all p such that p—»x. For pe P*, p,:=pA, is an element of P, and
A,~(A,),.. Thus, P~is identified with a subset of P,, and P, is the
disjoint union of P* and Y7.
To define Tg, we first put for each x e Y,,
T .= Coker (Kz(Rx.s)_’(p(‘%x KZ(Kp))(-D( @Y KZ(Knx)))’
€ nxeY¥

where S*=SNP* and R, is the affine ring of Spec(A,)x  Ug with
Us=X—-S. We see easily that for neY;, each ae K,(K,) has a trivial
image under the map

Ky(K,) — Ky(K,) — Ts,
for almost all xen,. Thus, we define

3.0 Ts=Coker (@ K,(K,)— (—BY Ts,).

neY,
In view of the exactness of the following sequence (cf. (1.16))

Ky(R,5) — Ky(K) — @ x(p)*— 0 (Ui=P*-S%),

peUs
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we have the following isomorphism
(3.2) T, ~the cokernel of the map
Ky (K)— (D K(p)x)(%(p@gx K, (K)o @ Ki(K,)).

peUs§ nxeY§

In particular, T, coincides with the idele class group for A, with the
modulus S* U Y7 defined in Section 1. Hence, we have the natural map

¢t Tsy — 7i°(Spec (R, 5)) — n3®(Us)

for each x € Y,, where the first map is the dual of the map (1.9) for R, .
Then, by the class field theory for K, (y€Y,) (cf. [K-3]), the sum of ¢,
for x € Y, induces a natural homomorphism

¢s: Ts— ni*(Us),
and we get a natural homomorphism
(3.3) &5 H(Us) — (T
On the other hand, by (3.2), we have a natural map

Pxt ( S K(p)x)@( @ I<2(I<)p))—> TS.x
peUs pesS¥

for each x e Y,. Then, we can easily see that & p, induces a canonical

xe¥o

map
(3.4) Ps: CS — Ts .

Moreover, by the reciprocity law for K, (cf. [S-1] (2.9) and [S-2] Ch. 1),
we see that the following diagram is commutative

H'(Us)

(3.5) o NI

( Ts)ltr W (CS):"M'

Now we will define a descending filtration on Ty which controls the
ramification along the special fiber Y. For this, let .# be the set of all
coherent ideals I of @, such that Supp(04/I)=Y. For Ie# and an
integer n>1, let U7K,(K, ) be the subgroup of K,(K, ) generated by all
elements of the form {a, b} with ae(K, )* and bel+I"0k, . Then,
for n=1, we define U} Ty to be the image in Ty of

@ @ U?KZ(Kﬂx)

xe¥o nxeY¥
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Remark (3.6). By definition, for any I, J €.#, there exists an integer
e>0 such that I¢=J so that Up¢T< U’T for any n=1.

Definition (3.7). We define D(Tg) to be the subgroup of (Ty)¥,
consisting of all y which annihilate U} T for some n and whose restriction
to K,(K,) annihilate some open subgroup for every peS. By (3.6), this
definition does not depend on the choice of I.

Remark (3.8). Fixany Ie.#. Then, for any positive integer r prime
to ch(K), taking n large enough, we have rK,(K, )>UJK,(K,). In
particular, any w € (Ty)¥, of the order prime to ch(K) lies in D(Ty) (cf.

(1.12)).

By the class field theory for K, (cf. [K-3]), the image of & lies in
D(Ts). Moreover, we have

Lemma (3.9). Let we D(Ty), and for xe Y, and n, € Y5 (resp. p€S),
let w, (resp.w,) be the restriction of w to K,(K,) (resp. Ky(K,)).
Then there exist elements (),),cy, of @ H'(K,,) such that o, =¥, (1,,)

for neY, and xen,. Herey, is the lmage of x, in H\(K, ). Moreover,
for each xe Yy and a e K5(R, ), we have

(*) 2 o, (a)+ Z w,(a)=0.

anYx
This follows at once from the definition of Ty and the class field
theory for K, (cf. [K-3] §1). '
§4. A finiteness theorem

Let the notations be as before and fix a resolution X of Spec(A4) as
Section 2. The main purpose of this section is to prove the following
theorem, which is viewed as an analogue of the finiteness of the Hilbert
class field of an algebraic number field in the classical case.

Theorem (4.1). The kernel of the specialization homomorphism
1(X) — 7P(X) 2 7i™(Y)
is finite.
Corollary (4.2). The image of SK,(A)° under the map (cf. (0.5))
Va: SKy(4) — 7(X)

is finite and equal to the torsion part 73%(X),,, of n3*(X). Moreover, we
have an isomorphism
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TP/ o2 (Z Y+,
where r(A4) is the rank of A (cf. (2.4)).

This follows from (4.1) and the results of Section 2, together with
the finiteness of the kernel of the map

mP(Y) — (a5>(Y)@Gal (F**[F) = (Z) 1,

For I e.#, define a descending filtration U}T (n=1) on T as Section 3.
Then, (4.1) follows from the following

Let T=T, and ¢=®,: H'(X)—(T)¥,, be defined as in (3.1) and (3.3).

Proposition (4.3). (1) For each nz=1, put GrjT=U}T/UIT.
Then Gr 1T is finite for any n and is trivial for any sufficient large n.

(2) Let Je# be the ideal of definition for Y. Then, UIT/U}T is
finite (By definition, J<1I).

First, we deduce (4.1) from (4.3). We have to show that HY(X)/H'(X)
is finite. For each neY;, let H'(K,)" (resp. H'(0k,)) be the subgroup of
H'(K,) consisting of all y corresponding to tamely ramified (resp.
unramified) cyclic extensions of K,. We have

HY(K,)'|H'(0k,)~Hom (u(x(m), Q| Z),

where u(x(n)) is the group of all roots of unity in x(y) and it is finite.
On the other hand, by SGA1X (1.8), we have

H'(X)=Ker (H'(X)—> & H'(K,)/H'(0,)).
neYy
Hence it suffices to show that H!(X)/H'(X)' is finite, where we put
HY(X)'=Ker (H(X)— & H'(K,)/H'(K,)).
HeY1

Let ye HY(X) and assume that &(y) annihilates U}T. By the class field
theory for K, (cf. [K-3]), this implies that the image of y in H'(K,) belongs
to H'(K,) for any neY,. This proves that H!(X)/H'(X)"' injects into
D(U3IT) which is the subgroup of (UlIT)*, consisting of all élements

annihilating U}T for some n=1. Consequently, (4.1) follows at once
from (4.3).

To prove (4.3), we introduce some notations. Let I and J be as (4.3)
and let Z be the closed subscheme of X defined by I. For each integer
nz=0, put

Q,(n=Q,®,,I"/I"*' and 0,(n)=I"/I"".
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Lemma (4.4). (1) For nz1, there exist homomorphisms
a": HY(Z, Qy(n)) — Gr} T,
Br: HY(Z, 04(n)) — Gr} T/Im (o).

Movreover, " is surjective.
(2) There exist homomorphisms

o: H(Z, Q,®,,J/) — I:=UT|U}T,
p: HY(Z, J/I) — I'/Im (o).
Moreover, B is surjective.

Since Z is projective scheme over a finite ring, (4.3.2) and the first
assertion of (4.3.1) follows from (4.4) and EGAIII (2.2.2). As for the
second assertion of (4.3.1), by (3.6) we may replace I with any other I' € .#.
Then it follows from (4.4) and EGAIII (2.2.2) together with the following

Lemma (4.5)., There exists 1 € # which is invertible and ample.

Proof. 1t suffices to find a positive divisor

©=3% n,-E, (n,>0foranyneY,)

neyY,

such that 0x(— @) is ample, where for ne Y, E, is its closure in X. For
this, by [K1] it suffices to find @ such that (0, E,)<0 for any ne Y, and
it is possible by the negative definiteness of the intersection pairing on
@ Z (cf. [Mum)).

neY,

We start the proof of (4.4.1). The proof of (4.4.2) is similar and left
to the readers. In the following, for a coherent @,-module % and for
neY,, xeY,and n,e Y%, we put

F=FQu, 0k, F=FR®, A, and F, =F®,0, .
First, we have a homomorphism (cf. [K-27])
an : Qyn),. — Gri Ko(K,); ,‘fl“ ®b — {1+b, a} mod U K(K,).
(ae(tx, /1,)* and bel})

Secondly, fix an element n € K such that ordy, (n)=1forany neY,. Then,
we have a homomorphism

Bt 02(n),, — Gri Ky(K, )/Im (a2 ); b — {1+b, n} mod Im (a2 ).
(bely)
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It is easily seen that B does not depend on the choice of n and that it is
surjective. On the other hand, by the localization theories on Z and on
the henselization of Z at x, we have the following exact sequences for
F =Q,;(n) and O,4(n),

neYi " xeYo

F.— @ F

nxeYy

. — HYZ, F) — 0.

n

From this and the definition of T, we can easily see that «f and f;_for
x € Y, and . € Y¥ induce the desired homomorphisms o™ and .

§5. The Hasse principle for 4

Let k be an algebraic number field or an algebraic function field of
one variable over a finite field. For simplicity, we assume that k has no
real place. Then, by the classical Hasse principle and Artin’s reciprocity
law for k, we have an exact sequence

0—Br(k) —> @ Q/Zumudition, 97,0,
xePx

Here P, denotes the set of all finite places of k and ¢ sends c¢e H?(k) to
(inv, (¢,))xep,» Where c, is the image of ¢ in Br(k,) (k, is the henselization
of k at x) and

inv,: Br(k)~Q/Z

is the classical invariant map. The main purpose of this section is to give
the analogue of this result in our context. So let 4, K and P be as before.
As K. Kato has pointed out in [K—4], it is not Br (K) but H3(K) defined in
Section 1 that plays a central role in our context.

The starting point is the homomorphism

(k- H3(K) I p&)P Q/Z, a—- (inVKp (ap))heP’
where a, is the image of a in H3*(K,) and
invg,: H(K,)~Q/Z

is the canonical isomorphism defined in [K-1] §5 (cf. (1.1)). By the reci-
procity law for A4 (cf. [S-1] (2.9) and [S-2] Ch. I), the sequence

(GR)) H3(K) -, @PQ/Z addition, /7, ()
pe

is a complex. Now our main result is the following
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Theorem (5.2). The sequence (5.1) is exact and we have a natural
isomorphism
Ker (¢)=(Q/ Z)" D,
where r(A) is the rank of A (¢f.(2.4)). Namely, we have an exact sequence

0— (QIZ) ) — HXK) 55 @ Q]Z stditien, |7 — 0.

In this section, we prove the following prime-to-ch (K) part of (5.2)
and the ch (K)-primary part will be proved in the next section.

Theorem (5.3). Let n be a positive integer prime to ch(K). Then
there is an exact sequence

0 (Z/nZy —, H¥K, u®?) X, @ Z|nZ 24diten, ZinZ .
peP

Let S be a finite subset of P and Ag: Ug=X\S—X be the inclusion
map. Assume that if n is not prime to ch (F) S contains any p € P such
that ch(x(p))=ch(F). Then the localization theory on X gives the
following long exact sequence

- — H(K, u§?) - p(?P HFU(X, As?) — H(X, Asiu§?) — -

By the localization theory on Spec (4,), we have an isomorphism for i>2
H(K,, u$? if pesS,
H;',“(X, lszlh;@z)ﬁ
H"Y(x(p), ) if peP-—S.
Moreover, we have the following natural isomorphisms
HY(K,, j$)~K,(K,)n (cf. [M-S]),
H¥K,, p2)~ZInZ (cf. [K-1]§5),
H'(k(p), pn)=x(p)*/n and Hx(p), p,)~Z/nZ.

Hence, using the isomorphism H3(K, u®?)~K,(K)/n (cf. [M-S]), we can
see Coker (0%)~ Cg/n, and this gives a natural injection

ag: Cs/n — H3(X, Aqu?),
and an exact sequence

0 — Coker (og) — H¥K, u®?) %, @ Z/nZ
peP

— HYX, Asi®?) — 0,
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where the surjectivity of the last map follows from the fact cd,(K)=3
by [S-1] (5.1). Since we know that the image of ¢, lies in the kernel of
the addition map, we get a natural surjection

Bs: HYX, Asp$?*) — Z[nZ.
Thus, for the proof of (5.3), it suffices to show the following

Lemma (5.4). The map fs is an isomorphism and there exists a
natural isomorphism Coker (ag)~(Z/nZ )4,

First, we show the following

Claim (5.5). (5.4) is true if we assume the following.
(*) There is a resolution X of Spec(A) (cf. §2) such that for any xe Y,
the following sequence is exact

0 — HY(K,, p$?) ‘&=, @ Z|nZ wdition, ZinZ

pePyx

Let j: X—»X and i: Y>X be the inclusion maps and put
F =i*Rj(Asu®?). By the proper base change theorem, we have

(5.6) Hi(X, iqu®)~Hi{(Y, #) forany iz0.

The localization theories on Y and on the henselization of Y at x € Y, give
the following long exact sequences

xe¥o neY,

(5.8) —— H(Y, #F)— H(x, ii#)— & H(@, #)— -,

nxe¥§

where i,.: x— Y is the inclusion. Moreover, we have isomorphisms
Hi(n, #)~H{(K,, u3?),

(5.9) Hi(n,, #)~Hi(K,, 1$?),
Hi(x, ifF)~A":=H(Spec (R,), (A s)uF?),

where R, is the affine ring of Spec(4,) x X and we put
Ares=7As X x Spec (R,): Spec (R,.5) — Spec(R,).

To compute A%, the localization theory on Spec(R,) gives the following
exact sequence
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A2 — Ky (K)n— (& K(P)*/n)(%(pgasx K,(K,)/n) —

pels
— AP HY(K,, 1©) -1 @ H¥(K,, u$?) —>
pe P>

[ Qi

——>A4—>H4(Kx, ﬂ?2)=0 Z/nZ

The vanishing of H4(K,, u®?) follows from [S-1] (5.1). On the other
hand, by (5.5) (), we see

Coker (y)=0 and Ker (y)~Ker( & Z/nZ <2 Z/nZ),

nxeY§

where o is the addition map or the identity according as #Y¥=2or 1. In
particular, we have A*=0, and from these computations and (5.8), we see
isomorphisms

HYY, #)~Z/nZ,
HY, #)~Ts,/n (cf. §3),
Hence, by (5.7), we get an exact sequence
(5.10) 0— Ty/n — H3(Y, F)— Ker () — 0,
and an isomorphism
(5.11) H4(Y, #)~Coker (0),
where

0: @ H¥K,, u®?) — @ ZnZ

ney, xe¥Yo

is described as follows: Recall that there is a canonical isomorphism for
each ne Y] (cf. [K-1] §5)

H3(K,, u$*)~Br (x(1)), -
Then, the composite map

Br (k(n)),> H¥(K,, 1) —%> @ Z|nZ 2=, Z|nZ

xe¥Yo

is the zero map if x ¢ 5y, and if x € n,, it coincides with the map

Br (k(17)), — Br (x(n,)),

Here p, is the projection to the x-component. Hence, by the classical
exact sequence

~

— Z[nZ.

mn
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0 —— Br(x(n) — @ Br(x(n,)) 24ditien, 9/ 7Z — 0,

e Rimp
0/z

we have isomorphisms
Ker ()~(Z/nZ)“ and Coker(0)~Z/nZ.
Furthermore, we see that the following diagram is commutative
0 — Cg/n 255 H}(X, Agu$?)
(5.12) lps Ms.a)
0 — Tg/n — H3(Y, &).
Thus, the proof of (5.5) is reduced to the following

Lemma (5.13). Let S be any finite subset of P and let r be any positive
integer prime to ch(K). Then pg induces an isomorphism

ps: Cs/r=Tg/r.

Proof. For a finite subset S’ of P containing S, we have a com-
mutative diagram

I1 KZ(Ap) — Cyg—> Cs—0

peS’—S
( lps’ lps

I1 KZ(Ap) — Ty — Ty—> 0,
peS’—S

where the horizontal sequences are exact. Hence, it suffices to show
(5.13) replacing S with S’, so we may suppose that r is invertible on Usy.
Then, the injectivity follows at once from (5.12). As for the surjectivity,
fix Ie.# as Section 3. Since r is prime to ch(K), if we take m large
enough, we have rK,(K,)>U7K,(K, ) for any xeY, and 5, e Y7
Then our assertion follows from the surjectivity of

Ky(K)— Il Ky(K,)/UTKy(K,),

nxeYy
which foilows from the approximation theorem for a finite number of
discrete valuations on K,.
Now we complete the proof of (5.4). We may suppose n=1I" for
some prime number /#ch (K) and an integer m>0. Then, if lsch (F),

it follows at once from (5.5) and [S-1] (6.2.1). If I=p:=ch(F) and
ch (K)=0, we see that there exists a resolution X of Spec (4) such that for
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each xeY,, A, satisfies [S-1] (4.2.1) or (4.2.2). Hence, if K contains a
primitive p-th root of unity, it follows from (5.5) and [S-1] (6.2.2). In
general, it suffices to show (5.4) assuming that A satisfies either [S-1]
(4.2.1) or (4.2.2). Let A’ be the integral closure of 4 in K'=K({,) and
let S’ be the set of prime ideals of A’ lying over S. By an easy computation,
we see that r(4)=0. Since we have proved (5.4) for A’, we have

(5.14) Coker (ag)=0 and Bs: HYX', A u®)~Z|nZ.
On the other hand, we have the norm maps

N:Cg/n— Cg/n and N: H{(X', L u®?) — H{(X, igu®?),
and the natural maps

R: Cs/n—— Cgn and R: H(X, Asu?) —> H{(X', ds1pi3%),

and the composite maps N - R are the multiplication by [K’: K] which is
prime to n. Hence the norm maps N are surjective. Consequently,
(5.4) for A4 follows from (5.14) and the commutative diagrams

Cs 255 HY(X', As 2 HYX', dsp$?) L5 Z[nZ

v [v  ana | H

Cs -2 H¥(X, A u®?) HYX, AS!.un®2) Ls, Z/nZ.

§6. A duality theorem on the p-primary part

Let A and K be as before and assume ch (K)=p>0. In this section,
we give the proof of the p-primary part of (5.2), namely we prove

Theorem (6.1). Let v,,= W, Q% ., be the logarithmic part of the De
Rham-Witt complex on X,,. Then, there is an exact sequence

0—(Z/pmZy — HY(K, v,) %> p(_eDP Z[pnZ wddition, Zipm7Z __, Q.
Proof. Consider the localization sequence on X
-~ — H{(K, v,) 2 pGeL)P Hi (X, v,) — H*Y(X, v,) —> -+
We have natural isomorphisms
HY(X, v,,)~Coker (H(4,, v,)>HYK,, v,))
=~ Coker (K,(4,)/p"— K,(K,)/p™
~x(p)*/p™ (cf. [B-K] §2),
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HY(X, v) > H'(K,, v,)~ Z[p"Z  (cf. [K-2] §3),
HO(K, v,)~K,(K)/p™ (cf. [B-K] §2).

Hence we see Coker (0°)~ SK(A)/p™ (cf. the introduction) and this gives a
natural injective homomorphism

(6.2 a: SKy(A)/p" — HY(X, vy),
and an exact sequence

0 — Coker () — HY(K, v,) =% @& Z/p"Z — H¥(X, v,) — 0,
peP

where we used the fact cd,(K)=1 (cf. SGA4X). Since we know that the
image of ¢, lies in the kernel of the addition map (cf. [S-17] (2.9) or [S-2]
Ch. 1), we get a natural surjective homomorphism

(6.3) p: H{(X,v,)— Z/p"Z.
Now (6.1) follows from the following

Lemma (6.4). The map f is an isomorphism and there is a natural
isomorphism Coker (o)~ (Z/p™Z )",

To prove (6.4), we give a duality theorem for the p-torsion cohomology
groups for X. For simplicity, we write

Hi(X, Z|p"Z)=H{(Z|p"Z) and HYX, v,)=Hv,)
By SGA4X, we have
Hi(v,)=H{Z|p"Z)=0 for i=3.

On the other hand, by the pairings on the cohomology groups

Hi(v,)x H(Z[p"Z) — H™(v,,)
combined with (6.3), we get a canonical pairing

Hi(v,)x H* "X Z|p"Z) — Z|p"Z,
and a canonical homombdrphism

Vit Hi(v,) — H> (Z[p"Z)*.

Now the key result is the following

Theorem (6.5). (1) The map Yk, is an isomorphism of finite abelian
groups for i=1 and 2.
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(2) The map YY, is injective and has a dense image. If A is com-
plete, it is an isomorphism,

First, assuming (6.5), we complete the proof of (6.4). The first
assertion of (6.4) follows at once from (6.5.1) for i=2. As for the second
isomorphism of (6.4), (6.5.1) for i=1 implies that we have an isomorphism

v: HY(X, v,)~HU(X, Z|p"Z)*=n{(X)/p™.
Moreover, we can see that the following diagram is commutative
SKI(A)/pm —t— Hl(Xa vm)

(6.6) T O
w0 [

where ¥/, is the reciprocity map for A (cf. (0.5) and §1). Consequently,
our assertion follows at once from the result of Section 2.

Proof of (6.5). First we have already known the finiteness of
H'(Z/p™Z) by the results of Section 4. On the other hand, we have an
exact sequences

67) 0—— Z|pm1Z — Z|p"Z — Z|pZ — 0,

0O—v,—v,— v,_;— 0 (cf. [C-S-S] §1 Lemma 3),

which give rise to the long exact sequences of cohomology groups com-
patible with the maps . Hence, by a usual sort of argument using the
induction on m, we are reduced to the case m=1. Only difficulty is that
in the proof of the injectivity of /!, we use the following fact: Consider the
exact sequence arising from (6.7)

HXZ[p™'Z)* — H(Z|pZ)* —— H'(Z|p"Z)*
Then the image of
m-1: Ho(y— ) —> HAZ|p" ' Z)*

maps surjectively to Ker(¢). Indeed this fact follows from the density of
the image of ¥{_, which is an induction hypothesis and from the finiteness
of H(Z|pZ).

Now, to prove (6.5) for m=1, we recall the theory of local dualities
on Spec (A4) (cf. [H-1] and [H-2]), by which we know the following fact:
Let w,=H%X, Q%), where Q% is the second exterior power of Q, over
Ox. Then w, is a dualizing module on Spec(A4) in the sense of [H-2]
and it is a finite A-module without torsions of rank one. There exists a
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natural homomorphism called the residue homomorphism
res: H%(Spec(4), w,) —— F=A/m,,

where for a finite A-module M, Hi(Spec(A4), M) denotes the i-th local
cohomology group with support at the unique closed point x of Spec(A).
Since F is a finite field in our situation, we get the map

Trgp, - res: Hi(Spec(4), w,) — F,=Z|pZ.

By this map and the Yoneda pairing, we get a canonical pairing for any
finite A-module M,

(6.8) Hi(Spec (A), M) x Ext3 ' (M, w,) — Z/pZ.
Then, by the local duality theorem (cf. [H-1]), we get the following

Theorem (6.9). For each integer i=0, the pairing (6.8) induces
isomorphisms

Exty (M, o,) ® ; A~ Hi(Spec (4), M)*,
Hi(Spec (4), M)~D(Ext3™i (M, w,)),

where A denotes the completion of A, D(*) denotes the Pontrijagin dual of
*, and Ext) (M, w,) is endowed with the m,-adic topology on a finite
A-module.

Now, using the localization sequence
-+ —— Hi(Spec (4), M) — H¥(Spec (A), M) —> H{(X, M|x) — -+,
and the fact (cf. [H-1] and [H-2])
Hi(Spec (A), A)=Hi(Spec(4), w,)=0 for i#2,
we get a canonical pairing
(6.10) H{(X, 0x)x H"YX, Q%) —> Z|pZ,
which induces isomorphisms
(6.11) HY(X, Q3)~D(4) and HYX, 0yx)~D(w,),
A~DHY(X, %)) and ©,®,A~DHNX, 0y)),
where we should note

HYX, 0,)=A and HYX, Q) =w,.
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On the other hand, we have exact sequences of sheaves on X,,,
0—s Z/pZ——»(ﬂX%&‘(—>0
0—>V1—)Q}(1—_/—>Q§(—-—>0,

where f is the Frobenius and y is the Cartier operator. Moreover, the
map induced on H¥(X, 0y) by f is the dual of the map induced on
H'-i(X, Q%) by y with respect to the pairing (6.10). Thus, (6.5) for m=1
follows from (6.11).

§7. The proof of the existence theorem (the prime-to-p part)

In the last two sections, we complete the proof of (1.10.2), which is
viewed as the existence theorem in our class field theory.
In this section, we prove the following prime-to-ch (K) part.

Theorem (7.1). Let we(Cg)¥, have an order of a power of a
prime number |#ch (K). Assume that the restriction of w to (Ky(K,))*
comes from H'(K,) for every pe S. Then, w lies in the image of ¥s.

First, we have the following special case of (7.1).

Proposition (7.2). Let we(Cg)¥, have an order of a power of a
prime number 1#ch (K) and assume that it satisfies (1.10.3) (A) and (B).
Assume further the following condition:

(%) Aisregular, K contains a primitive I-th root of unity and if ch (K)=0
and l=ch (F), A satisfies either [ S-1] (4.3.2) (A) or (B).
Then, w lies in the image of Y.

The proof of (7.2) will be given in the end of this section.

Corollary (7.3). Let I be a prime number different from ch (K) and
let S be a non-empty finite subset of P. Assume (7.2) (*). Then,
(Xp)pes € @)SHI(KP)(I) lies in the image of H'(Uy) if and only if

pe

Es Prp(Xp): ng(Kp) —0/Z
annihilates the diagonal image of K,(Ag), where Ag is the affine ring of
Us.

(7.3) follows from (7.2) and (1.16).

Now we give the proof of (7.1) assuming (7.2). By a usual sort of
norm argument, we may assume that K contains a primitive I-th root of
unity. Take a resolution X of Spec (A4) as Section 2. In case ch (K)=0and
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I=ch (F), we blow up in advance ¥ successively at some closed points so
that A, satisfies (7.2) () for any xeY,. By (5.13), w is viewed as an
element of (Ty)¥, through the map pg. Moreover, since w has an order
prime to ch (K), it lies in the subgroup D(Ty) (cf. (3.7) and the proof of
(5.13)). Hence, by (3.9), we can find

(Xﬂ’ Xp)neYl,pES € (ﬂg HI(KW))@(gSHX(KD))

such that g, (resp. x,.) is mapped to w, for peS (resp.w, for xeY,
and 7, € Yy) under the map (1.3) for K, (resp. K,,), where the notations
are as (3.9). Furthermore, since (7.2) (x) is satisfied for A4,, (7.3) implies
that the condition (3.9) (*) is replaced by the following condition:

(7.4) For each x € Y, the element

(an’ Xp)nxeY’f’PeSx € ( ®Y" HI(K"”))®(p§2x Hl’(Kp))

nxe¥¥

lies in the image of HY(R, ).
Therefore, in view of the commutative diagram (3.5), we are reduced
to show the following

Lemma (7.5). The image of the natural map
HI(U) — (@ H‘(K,,))(-B(SJBSH‘(KP)) (Us=X-5)
neYq €
consists of all elements (¥, X, )yev,,pes Which satisfy (7.4).

Proof. Letjs: Us—>X and ig: Yg=X\Ug—X be the natural inclusion
maps. Using the proper base change theorem for etale cohomology, we
can see that the natural homomorphism

HY(Ug)~H'(X, Rj5+Q/Z) — H(Y, ’:‘:FRJS*Q/Z)

is an isomorphism. Put & =i¥Rjs,0/Z. Then, using the localization
theory on Yg, we get an exact sequence

HY(Us) — (@ H'(K)S( H'(K)— @& HYYs, #).

On the other hand, the localization theory on the henselization of Y at
x € Y, gives an exact sequence

H'(R, 5) — ( ® H‘(K,))@(pgx HY(K,)) — H}(Y;, 7).

nxeYy

Thus (7.5) follows from these exact sequences and this completes the proof
of (7.1) modulo the proof of (7.2)
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Proof of (7.2). In the first step, we prove (7.2) assuming that lw=0.
First, we suppose that [s#ch (F). By the regularity of A4,

HYX),~HYA),~Z|lZ and H*X, Z/l1Z)=0 (cf. [S-1](7.6)).
Hence, by the localization theory on X, we have an exact sequence

(721)  0— ZJIZ— HY(K),—> @® HK(p), u®~1) — 0.
peP

On the other hand, since (0.3) is exact by the regularity of A (cf. [B] and
[Q]), we have an exact sequence

0 — Coker (Ky(4)— [ K5(A4,)) —> Cx—> Z— 0.
peP

Hence, noting the canonical isomorphisms
K,(A)[1= K, (k(p)/1 = p(x(p)),
KA1~ K, (F)1=0,

we have an exact sequence

0— pl}u:(K(P))—% Cx/l— Z|1Z — 0.

This proves our assertion in view of (7.2.1).
Next, we suppose ch (K)=0 and I=p:=ch(F). In the following, we
will give the proof assuming that A satisfies [S-1] (4.3.2) (B). The proof

for the other case is similar and we omit it. Put R=A[% and

P'=P\{p,, py}, and let K, be the henselization of K at p, for v=a and g.
Using the localization theory on Spec (R), we have an exact sequence

(7.22) 0—> HYR),— H'(K),— @ H%x(p), u¥1')— 0.
peP’

On the other hand, define
I,=Coker (K,(R)— T1 K,(K,)) and I,=T] K,(4,).
v=a,fp peP’

We have an exact sequence and canonical isomorphisms
Iy — Cx—> 1, — 0,

Io/p=TT Ky(4,)/p~ T1 Kx(®)/p= IT mx(p)).
peP peP peP

Combining these with (7.2.2), we are reduced to prove
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Claim (7.2.3). The induced map
Coker (H!(R),— vg—%’ﬂ HY(K,),) — (I)*
is injective.
From now on, fix a primitive p-th root of unity and put
K{(L)=K,(L)/p for a field L and i=1, 2.
Then, by the Kummer theory, we have isomorphisms
H'(K,),~K,(K,) (v=a, p) and H'(K),~K,(K).
Combining this with (1.2), we have a pairing
<o 0 Ky(K)®K(K) — ZIpZ (v=0, B),
Since the image of the map

H'(R),— TI H'(K,),~ Il K(K,)
v=a,f v=a,f

is equal to the image of R*, (7.2.3) is reduced to the following
Claim (7.2.4). For i=1 and 2, define
4'=Im(K(R)~ IT K(K,)).
v=a, B

Then, At is the annihilator of 4% in the pairing
< s >a+< s >ﬁ: gﬁKZ(Kv)® Dﬁ Kl(Kv)_—_) Z/pZ'

This claim is proved in the same argument as [S—1] Section 4.
Finally, we prove (7.2) in general case. We consider the following
commutative diagram

HY(K)() —> 9, HY(X, @i/ Z) 2~ HXX, Q)| Z)

1-;/,( l

00— (Co*() 9 (K(4,)*(D).

The assumption (1.10.3) (B) implies o(w) € Im (7). Hence, we are reduced
to prove the injectivity of the induced map

p: Im (1) — Coker (a).

By what we have proved, this is reduced to the following



370 S. Saito

Claim. The map A induces a surjection
p@P H%(X, 0/Z),—» HYX, Q|/Z),.
To prove the claim, we consider the localization sequence

@ HYX,Z|1Z)— HXX, Z|1Z) — H¥K, Z|1Z)—— @PH";(X,Z/IZ).
peP pe

We have isomorphisms
H¥X, Q,/Z),~HXX, Z/lZ) and HXX, Q,/Z),~HYX, Z|I1Z),
which follow from the isomorphisms
HY(X, Q)/Z)~H'(A)(D~Q,/Z, and HYX, Q,/Z)=0.

Hence, it suffices to show the injectivity of ¢. Since K contains a primitive
I-th root of unity, we have isomorphisms

HXK, Z|1Z)~Br(K),,
Coker (Br(4,),~Br (K,),) if I#ch(x(p)),
HY(X, Z/lZ):(
Br(K,), if I=ch(x(p)).

Consequently, our assertion follows from the fact that

Ker (Br (K)— p(-eDP Br (K,)/Br (4,))

is contained in Br (X), which is trivial by the regularity of A.

§8. The proof of the existence theorem (the p-primary part)

Let the notations be as before and assume p=ch(K)>0. In this
section, we give the proof of the p-primary part of (1.10.2), namely

Theorem (8.1). Let we(Cy)¥, have an order p™ for an integer m>0.
Assume that the restriction of @ to (K,(K,))* comes from H'(K,) for
every peS. Then w lies in the image of ¥s.

Proof. Let Ag: Ug=X\S—X be the inclusion map. Using the
same notations as Section 6, there is a long exact sequence

. Hi(X’ /'{S!vm) - Hi(X9 vm) — @ Hi(SPeC (Ap), vm) Tty
peS

and we have the following natural isomorphisms
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HO(Spec (A4,), vm)~Ky(A,)/p™ (cf. [B-K] §2),
Hi(Spec (4,), v,)=0 for i=1 (cf. [K-2] §3).
Hence we have an isomorphism
8.2) H¥X, Agv,)~HXX, v,)~ Z|p"Z (cf. §6)
and an exact sequence

(8.3) HX,v,)— & K,(4,)/p" — H'(X, Asv,) —> H'(X,v,)— 0.
peS

On the other hand, we have the localization sequence on X

HO(Ka vm) I @ H}I)(X’ )'S!Vm) — HI(X’ lS!vm)’
peP

and we have the following isomorphisms
HK, v,)~Ky(K)/p™ (cf. [B-K] §2),
K,(K,))/pm if peS.
H;IJ(X: AS!vm): .
Coker (K5(4,)/p"—K(K,)/p™) ~x(p)*[p™ if p¢S.
Hence, we get a natural injective homomorphism
(8.4) as: Co/p™ — HU(X, AsiVm)-

Then, we have the following commutative diagram

0— H'(X, Z|p"Z) — H'(Us, Z|p"Z) —
l}’l l}'z
0— HU(X,v,)* — H' (X, Asv,)* —
Vs
¥
(Cs)*
— @ H{(X, Z|p"Z) — H*(X, Z|p"Z)
peS
| |

—>p§)s(Kz(Ap)/P'")* — H%(X, v,)*

with the exact horizontal sequences. Here the upper sequence comes
from the localization theory on X and the lower one is the dual of (8.3).
The maps y;, 7,, and y, come from the pairings
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Hi(X, Z|p"Z)x H* (X, v,) — H*X,v,)~ Z|p"Z,

Hi(Ug, Z|p"Z)x H* (X, Agv,) — HX (X, Agv,)~ Z|pmZ (cf. (8.2))
and y; comes from the map (1.3) ¥k, for K, noting (0.1) and the fact

H%(X, Z|pmZ)~Coker (H'(Spec(4,), Z/p"Z)—~H'(K,, Z|p"Z)).

The map 7y is the dual of the map (8.4) and we see that the composite
map 7ys-y, is nothing other than the map ¥s. Since (8.4) is injective,
ys is surjective. Hence we can find @ in H'(X, 4gv,,)* which maps to
o under y5;. Then the assumption on w in (8.1) implies that the image of
@ in @ (K5(A4,)/p™* lies in the image of y;. On the other hand, by

pe
(6.5) we know that y, is an isomorphism and y, is injective. Thus, by an

easy diagram chasing, we can see that @ lies in the image of y, and this
completes the proof.

Finally, we complete the proof of (0.5). Now that we have obtained
(1.10) and (4.2), there remains only the proof of (0.5.3).

Lemma (8.5). For any integer n>0, ¥, induces an injection
SK,(A)/n < ni*(X)/n.

Proof. 1t suffices to show (8.5) assuming either that n is a power of
ch (K) or that n is prime to ch (K). In the former case, it follows from
(6.2) and (6.6). In the latter case, we note that the dual ¥, of y, factors
as follows (cf. (3.5)),

¥4 H'(X) 2 D(T) S (T), 5 (SK (A

where T=Tg, ®=®g and p=p5 for S=¢ (cf. §3). By (1.10.2) and (5.13),
it is surjective on the prime-to-ch (K) part. On the other hand, by the
results in Section 2, its kernel is divisible. Now (8.5) follows by taking
the dual of ¥,.

Let D(A) be the maximum divisible subgroup of SK;(A4). Since
n3%(X) has no divisible element by (4.1), D(A)&Ker(y,). Hence, it
suffices to show that Ker (i) is divisible. By (8.5), we have

Ker (Y )= n-SK,(4)=Nn-SK,(A4)°,
where n ranges over all positive integer. On the other hand, if we put N

the order of n3*(X),, (cf. (4.2)), N-SK,(A)>Ker(y,). Clearly, this
proves our assertion.
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